JP2011143359A - Compound gas adsorbent, compound gas adsorbent composition and adsorption filter using the adsorbent or composition - Google Patents

Compound gas adsorbent, compound gas adsorbent composition and adsorption filter using the adsorbent or composition Download PDF

Info

Publication number
JP2011143359A
JP2011143359A JP2010006649A JP2010006649A JP2011143359A JP 2011143359 A JP2011143359 A JP 2011143359A JP 2010006649 A JP2010006649 A JP 2010006649A JP 2010006649 A JP2010006649 A JP 2010006649A JP 2011143359 A JP2011143359 A JP 2011143359A
Authority
JP
Japan
Prior art keywords
acid
gas adsorbent
mass
activated carbon
composite gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006649A
Other languages
Japanese (ja)
Other versions
JP5420434B2 (en
Inventor
Junichi Arima
淳一 有馬
Yoshifumi Egawa
義史 江川
Kenichi Koyakumaru
健一 小役丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2010006649A priority Critical patent/JP5420434B2/en
Publication of JP2011143359A publication Critical patent/JP2011143359A/en
Application granted granted Critical
Publication of JP5420434B2 publication Critical patent/JP5420434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound gas adsorbent having excellent performance of adsorbing a compound gas containing an aldehyde and butane. <P>SOLUTION: The compound gas adsorbent includes activated charcoal added with an aromatic amino sulfonic acid and an organic acid. The compound gas adsorbent has a BET specific surface area of activated charcoal of 700-1,300 m<SP>2</SP>/g, and the organic acid is a 2-6C organic acid being soluble in water and solid at 25°C. The addition ratio of the aromatic amino sulfonic acid is 2-12 pts.mass to 100 pts.mass of activated charcoal, with a combined addition ratio of the aromatic amino sulfonic acid and the organic acid of 3-20 pts.mass. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複合ガス吸着材およびそれを用いた吸着フィルターに関する。   The present invention relates to a composite gas adsorbent and an adsorption filter using the same.

住宅の室内、自動車の車内などには、種々の臭気成分(例えば、アルデヒド類(アセトアルデヒドなど)、低級炭化水素(ブタンなど)、アミン類(トリメチルアミンなど)など)が存在し、これらの臭気成分の濃度が高くなると、不快感を受ける場合がある。このような臭気成分を除去するために、一般的に活性炭が用いられている。   There are various odor components (such as aldehydes (such as acetaldehyde), lower hydrocarbons (such as butane), amines (such as trimethylamine)) in the interiors of houses and automobiles. Higher concentrations may cause discomfort. In order to remove such odor components, activated carbon is generally used.

しかし、活性炭の臭気成分に対する吸着力は十分とはいえない。また、活性炭は、吸着する臭気成分の選択性を有し、例えばアセトアルデヒドなどを吸着しにくい。さらに、活性炭は吸着した成分を再度離脱しやすいという問題もある。したがって、活性炭は、単独の臭気成分を選択的に除去する場合には、効果的であるが、複数の臭気成分を除去する場合には、効果的であるとはいえない。   However, it cannot be said that the adsorptive power to the odor component of activated carbon is sufficient. Moreover, activated carbon has selectivity of the odor component to adsorb | suck, for example, it is hard to adsorb | suck acetaldehyde etc. Furthermore, the activated carbon has a problem that the adsorbed components are easily separated again. Therefore, activated carbon is effective in selectively removing a single odor component, but is not effective in removing a plurality of odor components.

複数の臭気成分を除去し得る吸着材(脱臭材)として、活性炭にアミノベンゼンスルホン酸を添着させた吸着材(特許文献1)、および活性炭にアミノベンゼンスルホン酸と弱酸とを添着させた脱臭材(特許文献2)が開示されている。これらの吸着材(脱臭材)は、アルデヒド類およびアンモニアを除去することを目的としている。   As an adsorbing material (deodorizing material) capable of removing a plurality of odor components, an adsorbing material obtained by attaching aminobenzenesulfonic acid to activated carbon (Patent Document 1), and a deodorizing material obtained by attaching aminobenzenesulfonic acid and a weak acid to activated carbon. (Patent Document 2) is disclosed. These adsorbents (deodorizing materials) are intended to remove aldehydes and ammonia.

近年、アルデヒド類に加え、ブタンなどの低級炭化水素を除去し得る吸着材が望まれている。しかし、特許文献1および2の吸着材(脱臭材)は、アルデヒド類およびアンモニアの除去を目的とするものである。   In recent years, adsorbents capable of removing lower hydrocarbons such as butane in addition to aldehydes have been desired. However, the adsorbents (deodorizing materials) in Patent Documents 1 and 2 are intended to remove aldehydes and ammonia.

分子サイズが小さいブタンなどの低級炭化水素は、活性炭が有するミクロ孔によく吸着される。しかし、ホルムアルデヒド、アセトアルデヒドなどの低級アルデヒドは、ブタン同様分子サイズが小さいにも関わらず、活性炭のミクロ孔に吸着されにくい。そこで、アミノベンゼンスルホン酸などのアルデヒドと反応する薬剤を活性炭に添着させることによって、活性炭のアルデヒド吸着性能を高めることができる。   Lower hydrocarbons such as butane having a small molecular size are well adsorbed in the micropores of the activated carbon. However, lower aldehydes such as formaldehyde and acetaldehyde are less likely to be adsorbed in the micropores of the activated carbon even though the molecular size is small like butane. Therefore, the aldehyde adsorption performance of the activated carbon can be enhanced by attaching the agent that reacts with the aldehyde such as aminobenzenesulfonic acid to the activated carbon.

特に、アルデヒド吸着性能を高めるには、アルデヒドと反応する薬剤をできるだけ多く、かつ均一に添着するだけでなく、毛細管凝縮による物理吸着機能を有するミクロ孔およびメソ孔に添着されることが好ましい。しかし、薬剤がミクロ孔に添着された場合、ブタンが吸着される細孔が薬剤によって閉塞されてしまうため、アルデヒドに加えてブタンなどの低級炭化水素を吸着する性能も低下する問題が発生する。   In particular, in order to enhance the aldehyde adsorption performance, it is preferable to add not only as much and as uniformly a drug that reacts with the aldehyde but also to micropores and mesopores having a physical adsorption function by capillary condensation. However, when the drug is attached to the micropores, the pores to which butane is adsorbed are blocked by the drug, which causes a problem that the performance of adsorbing lower hydrocarbons such as butane in addition to aldehyde is reduced.

特開平7−136502号公報JP-A-7-136502 特開2001−522号公報JP 2001-522 A

本発明の目的は、アルデヒドおよびブタンを含有する複合ガスの吸着性能に優れた複合ガス吸着材を提供することにある。   An object of the present invention is to provide a composite gas adsorbent excellent in the adsorption performance of a composite gas containing aldehyde and butane.

本発明者らは、活性炭のメソ孔およびミクロ孔のうち、ブタンを吸着する細孔であるミクロ孔を薬剤にて閉塞させない程度に、メソ孔領域に均一に芳香族アミノスルホン酸と特定の有機酸とを添着させることによって、アルデヒドおよびブタンを含有する複合ガスを効率よく吸着し得る複合ガス吸着材が得られることを見出し、本発明を完成するに至った。   Among the mesopores and micropores of activated carbon, the present inventors uniformly distributed aromatic aminosulfonic acid and a specific organic material in the mesopore region to such an extent that the micropores, which are butane-adsorbing pores, are not blocked by the drug. It has been found that by adding an acid, a composite gas adsorbent capable of efficiently adsorbing a composite gas containing aldehyde and butane can be obtained, and the present invention has been completed.

本発明は、活性炭に芳香族アミノスルホン酸と有機酸とを添着させた複合ガス吸着材を提供し、該複合ガス吸着材は、該活性炭のBET比表面積が、700〜1300m/gであり、該有機酸が、水溶性かつ25℃で固体の炭素数が2〜6の有機酸であり、そして該活性炭100質量部に対して、該芳香族アミノスルホン酸が2〜12質量部の割合で添着し、かつ該芳香族アミノスルホン酸と該有機酸とが、合計で3〜20質量部の割合で添着している。 The present invention provides a composite gas adsorbent in which an aromatic aminosulfonic acid and an organic acid are impregnated into activated carbon, and the composite gas adsorbent has a BET specific surface area of the activated carbon of 700 to 1300 m 2 / g. The organic acid is a water-soluble organic acid having 2 to 6 carbon atoms that is solid at 25 ° C., and the proportion of the aromatic aminosulfonic acid is 2 to 12 parts by mass with respect to 100 parts by mass of the activated carbon. And the aromatic aminosulfonic acid and the organic acid are added in a ratio of 3 to 20 parts by mass in total.

1つの実施態様では、上記有機酸は、90℃以上の融点を有する。   In one embodiment, the organic acid has a melting point of 90 ° C. or higher.

他の実施態様では、上記芳香族アミノスルホン酸と上記有機酸のカルボキシル基とのモル当量比は、1:0.75〜1:2である。   In another embodiment, the molar equivalent ratio of the aromatic aminosulfonic acid to the carboxyl group of the organic acid is 1: 0.75 to 1: 2.

さらに、本発明は、複合ガス吸着材の製造方法を提供し、該方法は、芳香族アミノスルホン酸を可溶化させて、活性炭に添着させる工程;および該芳香族アミノスルホン酸の添着後、1分〜24時間以内に有機酸を該活性炭に添着させる工程を包含し、該活性炭のBET比表面積が、700〜1300m/gであり、該有機酸が、水溶性かつ25℃で固体の炭素数が2〜6の有機酸であり、そして該活性炭100質量部に対して、該芳香族アミノスルホン酸を2〜12質量部の割合で添着させ、かつ該芳香族アミノスルホン酸と該有機酸とを、合計で3〜20質量部の割合で添着させる。 Furthermore, the present invention provides a method for producing a composite gas adsorbent, the method comprising solubilizing an aromatic aminosulfonic acid and attaching it to activated carbon; and after the addition of the aromatic aminosulfonic acid, 1 A step of impregnating the activated carbon with the organic acid within minutes to 24 hours, wherein the activated carbon has a BET specific surface area of 700 to 1300 m 2 / g, and the organic acid is water-soluble and solid carbon at 25 ° C. 2 to 6 organic acids, and the aromatic aminosulfonic acid is added in an amount of 2 to 12 parts by mass with respect to 100 parts by mass of the activated carbon, and the aromatic aminosulfonic acid and the organic acid Are added at a ratio of 3 to 20 parts by mass in total.

1つの実施態様では、上記有機酸は、90℃以上の融点を有する。   In one embodiment, the organic acid has a melting point of 90 ° C. or higher.

他の実施態様では、上記芳香族アミノスルホン酸と上記有機酸のカルボキシル基とのモル当量比は、1:0.75〜1:2である。   In another embodiment, the molar equivalent ratio of the aromatic aminosulfonic acid to the carboxyl group of the organic acid is 1: 0.75 to 1: 2.

別の実施態様では、上記複合ガス吸着材のpHは2〜8に調整される。   In another embodiment, the pH of the composite gas adsorbent is adjusted to 2-8.

さらに、本発明は、上記複合ガス吸着材と他の吸着材とを含む複合ガス吸着材組成物を提供する。   Furthermore, the present invention provides a composite gas adsorbent composition comprising the composite gas adsorbent and another adsorbent.

1つの実施態様では、上記他の吸着材は、活性炭である。   In one embodiment, the other adsorbent is activated carbon.

また、本発明は、上記複合ガス吸着材および上記複合ガス吸着材組成物からなる群より選択される少なくとも1種を備える吸着フィルターを提供する。   The present invention also provides an adsorption filter comprising at least one selected from the group consisting of the composite gas adsorbent and the composite gas adsorbent composition.

本発明によれば、アルデヒドおよびブタンを含有する複合ガスの吸着性能に優れた複合ガス吸着材を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, the composite gas adsorption material excellent in the adsorption | suction performance of the composite gas containing an aldehyde and butane can be provided.

本発明の複合ガス吸着材は、活性炭に芳香族アミノスルホン酸と特定の有機酸とが添着されている。   In the composite gas adsorbent of the present invention, an aromatic aminosulfonic acid and a specific organic acid are attached to activated carbon.

本発明に用いられる活性炭のBET比表面積は、窒素吸着法により測定される。本発明に用いられる活性炭のBET比表面積は、700〜1300m/gであり、好ましくは800〜1200m/g、より好ましくは850〜1100m/gである。 The BET specific surface area of the activated carbon used in the present invention is measured by a nitrogen adsorption method. The BET specific surface area of the activated carbon used in the present invention is 700 to 1300 m 2 / g, preferably 800 to 1200 m 2 / g, more preferably 850 to 1100 m 2 / g.

活性炭は、細孔直径2nm以下のミクロ孔、細孔直径2〜50nmのメソ孔、および細孔直径50nm以上のマクロ孔を有している。分子サイズの小さいブタンなどの低級炭化水素は、ミクロ孔によく吸着されることから、ミクロ孔容積は多い方が好ましい。   Activated carbon has micropores having a pore diameter of 2 nm or less, mesopores having a pore diameter of 2 to 50 nm, and macropores having a pore diameter of 50 nm or more. Since lower hydrocarbons such as butane having a small molecular size are well adsorbed in the micropores, it is preferable that the volume of the micropores is large.

BET比表面積が700m/g未満の場合、賦活が不十分であるためミクロ孔容積が小さく、ブタン吸着性能が低くなる。また、比表面積が少ないため、芳香族アミノベンゼンスルホン酸および特定の有機酸の添着量も少なくなり、好ましくない。一方、ミクロ孔容積を高めるため賦活を進め、BET比表面積が1300m/gを超える場合、細孔が広がってしまい、相対的に活性炭のミクロ孔容積の割合が減少する。また、メソ孔およびマクロ孔が増加することによる活性炭の密度減少が体積あたりのブタン吸着性能を低下させる。したがって、BET比表面積が700m/g〜1300m/gの範囲で、ミクロ孔容積が好ましくは0.25mL/g以上、より好ましくは0.35mL/g以上を有する複合ガス吸着材が、体積あたりのブタン吸着性能に優れており好ましい。 When the BET specific surface area is less than 700 m 2 / g, since the activation is insufficient, the micropore volume is small and the butane adsorption performance is lowered. Moreover, since the specific surface area is small, the amount of aromatic aminobenzenesulfonic acid and the specific organic acid added is also not preferable. On the other hand, when the activation is advanced to increase the micropore volume and the BET specific surface area exceeds 1300 m 2 / g, the pores expand, and the ratio of the micropore volume of the activated carbon relatively decreases. Moreover, the decrease in the density of activated carbon due to the increase in mesopores and macropores reduces the butane adsorption performance per volume. Therefore, the range BET specific surface area of 700m 2 / g~1300m 2 / g, micropore volume is preferably 0.25 mL / g or more, more preferably composite gas adsorbent having the above 0.35 mL / g, volume It is preferable because of its excellent butane adsorption performance.

本発明に用いられる活性炭の炭素質材料としては、例えば、果実殻(ヤシ殻、クルミ殻など)、木材、鋸屑、木炭、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物系材料;泥炭、草炭、亜炭、褐炭、レキ青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣などの鉱物系材料;フェノール樹脂、サラン樹脂、アクリル樹脂などの合成系材料;再生繊維(レーヨンなど)などの繊維系材料が挙げられる。これらの中でも、ミクロ孔の割合が高いなどの理由で、ヤシ殻活性炭がより好ましい。   Examples of the carbonaceous material of activated carbon used in the present invention include plant-based materials such as fruit shells (coconut shells, walnut shells, etc.), wood, sawdust, charcoal, fruit seeds, pulp production by-products, lignin, and molasses. Mineral materials such as peat, grass charcoal, lignite, lignite, lignite, anthracite, coke, coal tar, coal pitch, petroleum distillation residue; synthetic materials such as phenol resin, saran resin, acrylic resin; regenerated fiber (rayon) Etc.). Among these, coconut shell activated carbon is more preferable because the ratio of micropores is high.

炭素質材料を炭化する条件としては、特に限定されず、例えば、粒状の炭素質材料の場合は、回分式ロータリーキルンに少量の不活性ガスを流しながら300℃以上の温度で処理する条件などが挙げられる。   The condition for carbonizing the carbonaceous material is not particularly limited. For example, in the case of a granular carbonaceous material, a condition of processing at a temperature of 300 ° C. or higher while flowing a small amount of inert gas through a batch rotary kiln, etc. It is done.

活性炭の製法は、特に限定されない。通常、本発明に用いられる活性炭は、炭素質材料を十分に炭化した後、ガス賦活、薬剤賦活などの方法で賦活することにより得られる。ガス賦活法において使用されるガスとしては、水蒸気、炭酸ガス、酸素、LPG燃焼排ガス、またはこれらの混合ガスなどが挙げられる。安全性および反応性を考慮すると、水蒸気含有ガス(水蒸気を10〜50容量%含有するガス)が好ましい。   The method for producing activated carbon is not particularly limited. Usually, the activated carbon used in the present invention is obtained by sufficiently carbonizing a carbonaceous material and then activating by a method such as gas activation or drug activation. Examples of the gas used in the gas activation method include water vapor, carbon dioxide, oxygen, LPG combustion exhaust gas, or a mixed gas thereof. In consideration of safety and reactivity, a water vapor-containing gas (a gas containing 10 to 50% by volume of water vapor) is preferable.

賦活温度は、通常700℃〜1100℃、好ましくは800℃〜1000℃である。しかし、賦活温度、時間、および昇温速度は、特に限定されず、選択する炭素質材料の種類、形状、サイズなどにより異なる。賦活により得られる活性炭は、そのまま複合ガス吸着材の材料として使用され得るが、酸洗浄、水洗浄などにより、該活性炭中の金属酸化物成分などの無機成分が除去された活性炭を使用することが好ましい。   The activation temperature is usually 700 ° C to 1100 ° C, preferably 800 ° C to 1000 ° C. However, the activation temperature, time, and heating rate are not particularly limited, and vary depending on the type, shape, size, etc. of the carbonaceous material to be selected. Activated carbon obtained by activation can be used as it is as a material for the composite gas adsorbent, but it is possible to use activated carbon from which inorganic components such as metal oxide components in the activated carbon have been removed by acid washing, water washing or the like. preferable.

活性炭の形状としては、特に限定されず、粉末状、粒状、繊維状などが挙げられる。本発明の複合ガス吸着材が空気浄化フィルターとして使用される場合、動的な吸着特性と適度な通気度との両立が要求されることがあり、35μm〜2.8mm(350メッシュ〜7メッシュ)の平均粒径を有する活性炭が好ましい。   The shape of the activated carbon is not particularly limited, and examples thereof include powder, granule, and fiber. When the composite gas adsorbent of the present invention is used as an air purification filter, it is sometimes required to satisfy both dynamic adsorption characteristics and appropriate air permeability, and 35 μm to 2.8 mm (350 mesh to 7 mesh). Preferred is activated carbon having an average particle size of

本発明に用いられる芳香族アミノスルホン酸としては、特に限定されず、例えば、p−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、o−アミノベンゼンスルホン酸、多環式芳香族アミノスルホン酸(例えば、2−アミノ−1−ナフタレンスルホン酸、4−アミノ−1−ナフタレンスルホン酸など)が挙げられる。これらの中でも、取り扱いが容易で安価であり、アルデヒドとの反応性に優れるなどの点で、p−アミノベンゼンスルホン酸を少なくとも1種類用いることが好ましい。   The aromatic aminosulfonic acid used in the present invention is not particularly limited, and examples thereof include p-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, o-aminobenzenesulfonic acid, polycyclic aromatic aminosulfonic acid ( For example, 2-amino-1-naphthalenesulfonic acid, 4-amino-1-naphthalenesulfonic acid, and the like). Among these, it is preferable to use at least one kind of p-aminobenzenesulfonic acid in terms of easy handling, low cost, and excellent reactivity with aldehyde.

本発明に用いられる特定の有機酸は、水溶性かつ25℃で固体の炭素数が2〜6の有機酸である。本明細書において、「水溶性」とは、25℃の水に対する溶解度が3質量%以上であることをいい、好ましくは5質量%以上、より好ましくは8質量%以上であることをいう。25℃の水に対する溶解度が3質量%未満の場合、芳香族アミノスルホン酸を析出させるために有機酸水溶液が多く必要となり煩雑になる。   The specific organic acid used in the present invention is a water-soluble organic acid having 2 to 6 carbon atoms that is solid at 25 ° C. In the present specification, “water-soluble” means that the solubility in water at 25 ° C. is 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more. When the solubility in water at 25 ° C. is less than 3% by mass, a large amount of an organic acid aqueous solution is required to precipitate the aromatic aminosulfonic acid, which is complicated.

水溶性(すなわち、25℃の水に対する溶解度が3質量%以上)かつ25℃で固体の炭素数が2〜6の有機酸としては、例えば、ヒドロキシ酢酸、乳酸などのモノカルボン酸;シュウ酸、マロン酸、コハク酸、マレイン酸、リンゴ酸、酒石酸などのジカルボン酸;アコニット酸、クエン酸などの多価カルボン酸;アスコルビン酸などが挙げられる。これらの中でも、乾燥など加熱する工程で余剰の有機酸が溶融して、活性炭のミクロ孔を閉塞することを防ぐために、60℃以上の融点を有する有機酸が好ましく、90℃以上の融点を有する有機酸がより好ましい。   Examples of the organic acid having a water solubility (that is, a solubility in water at 25 ° C. of 3% by mass or more) and a solid having 2 to 6 carbon atoms at 25 ° C. include monocarboxylic acids such as hydroxyacetic acid and lactic acid; oxalic acid, Examples include dicarboxylic acids such as malonic acid, succinic acid, maleic acid, malic acid, and tartaric acid; polyvalent carboxylic acids such as aconitic acid and citric acid; and ascorbic acid. Among these, an organic acid having a melting point of 60 ° C. or higher is preferable, and an organic acid having a melting point of 90 ° C. or higher is preferable in order to prevent excess organic acid from melting and clogging the micropores of the activated carbon in the heating step such as drying. Organic acids are more preferred.

芳香族アミノスルホン酸は、一般的に水への溶解性が低いため、例えば水酸化ナトリウムなどを用いてアルカリ条件下で可溶化させる。   Aromatic aminosulfonic acid generally has low solubility in water, and is solubilized under alkaline conditions using, for example, sodium hydroxide.

本発明の複合ガス吸着材は、活性炭に芳香族アミノスルホン酸と特定の有機酸とを添着させることにより得られる。活性炭に芳香族アミノスルホン酸および特定の有機酸を添着させる方法は、これらの芳香族アミノスルホン酸および特定の有機酸を活性炭に均一に添着し得る方法であれば、特に限定されない。しかし、ミクロ孔を各成分にて閉塞させないようにするために、メソ孔領域に均一に芳香族アミノスルホン酸と特定の有機酸とを添着させることが重要であり、そのためには、芳香族アミノスルホン酸および特定の有機酸の各成分を、それぞれ単独成分ごとに添着させることが好ましい。それによって、芳香族アミノスルホン酸が活性炭のメソ孔領域において、溶解度が低下して析出が容易になる。   The composite gas adsorbent of the present invention can be obtained by attaching an aromatic aminosulfonic acid and a specific organic acid to activated carbon. The method of attaching the aromatic aminosulfonic acid and the specific organic acid to the activated carbon is not particularly limited as long as the aromatic aminosulfonic acid and the specific organic acid can be uniformly attached to the activated carbon. However, in order to prevent the micropores from being clogged with each component, it is important to uniformly add the aromatic aminosulfonic acid and the specific organic acid to the mesopore region. It is preferable to attach each component of a sulfonic acid and a specific organic acid for each individual component. Thereby, the aromatic aminosulfonic acid has a reduced solubility in the mesopore region of the activated carbon, and is easily precipitated.

具体的には、例えば、活性炭に芳香族アミノスルホン酸を可溶化させた液の添着完了後、有機酸を溶解させた液の添着を開始させることが望ましい。この場合、芳香族アミノスルホン酸を溶解させた液の添着完了後、1分〜24時間以内に有機酸の添着を開始させることが好ましく、より好ましくは2分〜12時間以内、最も好ましくは5分〜1時間以内である。1分未満の場合、メソ孔領域での芳香族アミノスルホン酸および特定の有機酸の添着が均一に行われない可能性がある。一方、24時間を越える場合、芳香族アミノスルホン酸を可溶化させた液がミクロ孔を閉塞する可能性がある。   Specifically, for example, it is desirable to start the addition of the liquid in which the organic acid is dissolved after the completion of the addition of the liquid in which the aromatic aminosulfonic acid is solubilized in the activated carbon. In this case, it is preferable to start the addition of the organic acid within 1 minute to 24 hours after completion of the addition of the liquid in which the aromatic aminosulfonic acid is dissolved, more preferably within 2 minutes to 12 hours, and most preferably 5 minutes. Within minutes to 1 hour. When the time is less than 1 minute, the aromatic aminosulfonic acid and the specific organic acid may not be uniformly applied in the mesopore region. On the other hand, when it exceeds 24 hours, the liquid solubilized with the aromatic aminosulfonic acid may block the micropores.

活性炭に芳香族アミノスルホン酸および特定の有機酸を添着させる方法としては、芳香族アミノスルホン酸を可溶化させた溶液および特定の有機酸溶液に活性炭を浸漬する、芳香族アミノスルホン酸を可溶化させた溶液および特定の有機酸溶液を活性炭に噴霧するなどの方法が挙げられる。   To add aromatic aminosulfonic acid and specific organic acid to activated carbon, solubilize aromatic aminosulfonic acid by immersing activated carbon in a solution in which aromatic aminosulfonic acid is solubilized or in a specific organic acid solution. For example, the activated carbon and the specific organic acid solution are sprayed onto activated carbon.

上記の添着方法を採用することにより、アルデヒドおよびブタンの両方の吸着性能に優れた複合ガス吸着材が得られる原因については確認できていないものの、活性炭のメソ孔領域において芳香族アミノスルホン酸と特定の有機酸とが均一に添着され、かつミクロ孔領域の閉塞が非常に少なくなる現象が発生しているためと推測される。   Although the cause of obtaining a composite gas adsorbent with excellent adsorption performance of both aldehyde and butane by adopting the above-mentioned impregnation method has not been confirmed, it has been identified as aromatic aminosulfonic acid in the mesopore region of activated carbon This is presumed to be due to the phenomenon that the organic acid is uniformly attached and the micropore region is extremely closed.

活性炭100質量部に対して、芳香族アミノスルホン酸は2〜12質量部、好ましくは4〜10質量部、より好ましくは6〜9質量部の割合で添着され、芳香族アミノスルホン酸と特定の有機酸とが、合計で3〜20質量部、好ましくは5〜18質量部、より好ましくは6〜16質量部の割合で添着される。合計で3質量部より少ない場合、得られる複合ガス吸着材のアルデヒド吸着性能が低下する。一方、20質量部より多い場合、ミクロ孔の閉塞が発生し、ブタン吸着性能が低下する。   The aromatic aminosulfonic acid is added in an amount of 2 to 12 parts by mass, preferably 4 to 10 parts by mass, more preferably 6 to 9 parts by mass with respect to 100 parts by mass of the activated carbon. The organic acid is added in a proportion of 3 to 20 parts by mass in total, preferably 5 to 18 parts by mass, more preferably 6 to 16 parts by mass. When the total is less than 3 parts by mass, the aldehyde adsorption performance of the obtained composite gas adsorbent is lowered. On the other hand, when the amount is more than 20 parts by mass, the micropores are blocked and the butane adsorption performance is lowered.

芳香族アミノスルホン酸および特定の有機酸は、芳香族アミノスルホン酸と特定の有機酸のカルボキシル基とのモル当量比が、好ましくは1:0.75〜1:2、より好ましくは1:0.9〜1:1.5となるように、活性炭に添着される。モル当量比が1:2を超える場合、未反応の有機酸が細孔を閉塞する可能性がある。一方、モル当量比が1:0.75未満の場合、十分に芳香族アミノスルホン酸が析出せず、ミクロ孔を閉塞する可能性がある。   The aromatic aminosulfonic acid and the specific organic acid preferably have a molar equivalent ratio of the aromatic aminosulfonic acid to the carboxyl group of the specific organic acid of 1: 0.75 to 1: 2, more preferably 1: 0. .9 to 1: 1.5 so as to be attached to the activated carbon. When the molar equivalent ratio exceeds 1: 2, the unreacted organic acid may block the pores. On the other hand, when the molar equivalent ratio is less than 1: 0.75, the aromatic aminosulfonic acid is not sufficiently precipitated, and the micropores may be blocked.

複合ガス吸着材のpHが2〜8を満足するように芳香族アミノスルホン酸と特定の有機酸とが添着されることが好ましく、pHが3〜7を満足するように添着されることがより好ましい。pHが2未満の場合、複合ガス吸着材の接触により装置が腐食する可能性がある。一方、pHが8を超える場合、アルデヒド吸着性能が低下するだけでなく、芳香族アミノスルホン酸が析出しにくくなり、ミクロ孔を閉塞する可能性がある。   The aromatic aminosulfonic acid and the specific organic acid are preferably attached so that the pH of the composite gas adsorbent satisfies 2 to 8, and more preferably attached so that the pH satisfies 3 to 7. preferable. When the pH is less than 2, the apparatus may corrode due to contact with the composite gas adsorbent. On the other hand, when pH exceeds 8, not only aldehyde adsorption | suction performance falls, but aromatic aminosulfonic acid becomes difficult to precipitate and there exists a possibility of plugging a micropore.

このようにして得られた複合ガス吸着材の使用形態は特に限定されず、空気清浄機用フィルター、天井材、工業用フィルターなどに用いられ、特に自動車車内用キャビンフィルターに好ましく用いられる。   The use form of the composite gas adsorbent thus obtained is not particularly limited, and is used for an air cleaner filter, a ceiling material, an industrial filter, and the like, and particularly preferably used for a cabin filter for an automobile.

本発明の複合ガス吸着材は、単独でアルデヒドおよびブタンを効率よく吸着するが、他の吸着材(脱臭材など)と組み合わせて、複合ガス吸着材組成物として用いてもよい。例えば、添着処理を行っていない活性炭と組み合わせて用いることによって、ブタンをより効率よく吸着し得る。   The composite gas adsorbent of the present invention efficiently adsorbs aldehyde and butane alone, but may be used as a composite gas adsorbent composition in combination with another adsorbent (such as a deodorizing material). For example, butane can be more efficiently adsorbed by using it in combination with activated carbon that has not been subjected to an impregnation treatment.

本発明の複合ガス吸着材と他の吸着材とを組み合わせて用いる場合、本発明の複合ガス吸着材と他の吸着材とは、好ましくは1:0.5〜1:30の質量比で、より好ましくは1:2〜1:20の質量比で組み合わされる。   When the composite gas adsorbent of the present invention is used in combination with another adsorbent, the composite gas adsorbent of the present invention and the other adsorbent are preferably in a mass ratio of 1: 0.5 to 1:30, More preferably, they are combined at a mass ratio of 1: 2 to 1:20.

以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(活性炭)
ココヤシの殻の炭化物から得られた粒度30〜60メッシュの活性炭を用いた。
(Activated carbon)
Activated carbon having a particle size of 30 to 60 mesh obtained from carbide of coconut shell was used.

(活性炭の酸洗浄方法)
活性炭を、0.5Nの塩酸溶液(95℃)に20分間浸漬した。次いで、洗浄液のpHが6〜7になるまで水洗を繰り返した。このように処理した活性炭を、含水量が3質量%以下になるまで乾燥した。
(Acid cleaning method for activated carbon)
The activated carbon was immersed in a 0.5N hydrochloric acid solution (95 ° C.) for 20 minutes. Next, washing with water was repeated until the pH of the washing solution reached 6-7. The activated carbon thus treated was dried until the water content was 3% by mass or less.

(BET比表面積の測定方法)
定容法による77Kにおける窒素吸着等温線測定を、ベルソープ28SA(日本ベル株式会社製)を用いて行った。得られた結果からBET比表面積を算出した。
(Measurement method of BET specific surface area)
Measurement of nitrogen adsorption isotherm at 77K by the constant volume method was performed using Bell Soap 28SA (Nippon Bell Co., Ltd.). The BET specific surface area was calculated from the obtained results.

(pHの測定方法)
活性炭または複合ガス吸着材1gに、10mLの蒸留水を加えた。60分後の上澄み液のpHを、pHメーター(株式会社堀場製作所製:F−52)を用いて測定した。
(Measurement method of pH)
10 mL of distilled water was added to 1 g of activated carbon or composite gas adsorbent. The pH of the supernatant after 60 minutes was measured using a pH meter (Horiba, Ltd .: F-52).

(複合ガス吸着材の測定前処理)
20gの複合ガス吸着材を、50mLのビーカーに入れた。複合ガス吸着材を入れたビーカーを、乾燥機(90℃)にて16日間加熱処理を行った後、各ガスの吸着試験を行った。
(Pre-measurement of composite gas adsorbent)
20 g of composite gas adsorbent was placed in a 50 mL beaker. The beaker containing the composite gas adsorbent was heat-treated for 16 days in a dryer (90 ° C.), and then an adsorption test for each gas was performed.

(アセトアルデヒド吸着量の測定方法)
測定前処理を行った複合ガス吸着材1gを約4Lのガラス製密閉容器に入れ密閉した。このガラス製密閉容器に、適量のアセトアルデヒドをシリンジで注入した。次いで、このガラス製密閉容器を25℃恒温槽内に24時間静置した。24時間後、気体検知管(株式会社ガステック製:No.92Lアセトアルデヒド)を用いて、ガラス製密閉容器内の気相部のアセトアルデヒド濃度を測定しアセトアルデヒド吸着等温線を得た。得られたアセトアルデヒド吸着等温線から10ppm時のアセトアルデヒド平衡吸着量を算出した。
(Measurement method of acetaldehyde adsorption amount)
1 g of the composite gas adsorbent subjected to the measurement pretreatment was placed in an about 4 L glass sealed container and sealed. An appropriate amount of acetaldehyde was injected into this glass sealed container with a syringe. Then, this glass closed container was left still in a 25 degreeC thermostat for 24 hours. After 24 hours, an acetaldehyde adsorption isotherm was obtained by measuring the acetaldehyde concentration in the gas phase portion in the glass sealed container using a gas detector tube (manufactured by Gastec Co., Ltd .: No. 92L acetaldehyde). The acetaldehyde equilibrium adsorption amount at 10 ppm was calculated from the obtained acetaldehyde adsorption isotherm.

(ブタン吸着量の測定方法)
測定前処理した複合ガス吸着材2.23gをサンプルホルダー(60mm×60mm)に入れた。次いで、このサンプルホルダー内に、n−ブタンを混合した空気(n−ブタン80ppm、相対湿度50%)を、線速度(LV)31cm/秒の条件で流し、携帯型多成分大気分析計(日本サーモエレクトロン株式会社製:MIRAN SapphlRe)を用いて、サンプルホルダー内のn−ブタンの濃度を測定した。サンプルホルダー入口側のn−ブタン濃度をC1、出口側のn−ブタンの濃度をC2とし、C2/C1×100=95(%)になるまで測定を行った。以下の式によって、n−ブタンの吸着量を算出した。
(Measurement method of butane adsorption amount)
2.23 g of the composite gas adsorbent pre-measured was placed in a sample holder (60 mm × 60 mm). Next, air mixed with n-butane (n-butane 80 ppm, relative humidity 50%) was allowed to flow into the sample holder under the condition of a linear velocity (LV) of 31 cm / sec. The concentration of n-butane in the sample holder was measured using Thermo Electron Co., Ltd. product: MIRAN SapphlRe). The n-butane concentration on the sample holder inlet side was C1, and the n-butane concentration on the outlet side was C2, and measurement was performed until C2 / C1 × 100 = 95 (%). The adsorption amount of n-butane was calculated by the following formula.

n−ブタン吸着量(質量%)=[C2/C1×100=95(%)]になるまでに複合ガス吸着材に吸着したn−ブタン量/複合ガス吸着材量×100   n-butane adsorption amount (% by mass) = [C2 / C1 × 100 = 95 (%)] n-butane amount adsorbed on the composite gas adsorbent / composite gas adsorbent amount × 100

(実施例1)
酸洗浄を行ったBET比表面積が1050m/gの活性炭に、濃度が18質量%のp−アミノベンゼンスルホン酸水溶液(p−アミノベンゼンスルホン酸1モルに対して水酸化ナトリウム0.95モル含有)を噴霧し、p−アミノベンゼンスルホン酸を添着させた。30分後、この活性炭に濃度が46質量%のクエン酸(融点153℃、溶解度59.2質量%)水溶液を噴霧し、クエン酸を添着させた。クエン酸の添着から60分後、この活性炭を、乾燥機(90℃)にて24時間乾燥させた。このようにして、活性炭100質量部に対して、p−アミノベンゼンスルホン酸8質量部およびクエン酸4.4質量部を添着させた複合ガス吸着材を得た。
Example 1
Acid-washed activated carbon having a BET specific surface area of 1050 m 2 / g and a p-aminobenzenesulfonic acid aqueous solution having a concentration of 18% by mass (containing 0.95 mol of sodium hydroxide per 1 mol of p-aminobenzenesulfonic acid) ) And sprayed with p-aminobenzenesulfonic acid. After 30 minutes, an aqueous solution of citric acid having a concentration of 46% by mass (melting point: 153 ° C., solubility: 59.2% by mass) was sprayed on the activated carbon to add citric acid. After 60 minutes from the addition of citric acid, the activated carbon was dried in a dryer (90 ° C.) for 24 hours. In this way, a composite gas adsorbent in which 8 parts by mass of p-aminobenzenesulfonic acid and 4.4 parts by mass of citric acid were added to 100 parts by mass of activated carbon was obtained.

次いで、得られた複合ガス吸着材を、上記の測定前処理に供した後、アセトアルデヒドおよびブタンの吸着量を、上記の方法によって測定した。結果を表1に示す。   Next, the obtained composite gas adsorbent was subjected to the above-described measurement pretreatment, and then the adsorption amounts of acetaldehyde and butane were measured by the above method. The results are shown in Table 1.

(実施例2)
酸洗浄を行ったBET比表面積が890m/gの活性炭を用いたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 2)
A composite gas adsorbent was obtained by the same procedure as in Example 1 except that activated carbon having a BET specific surface area of 890 m 2 / g that had been subjected to acid cleaning was used. Adsorption of acetaldehyde and butane by the same procedure as in Example 1 The amount was measured. The results are shown in Table 1.

(実施例3)
酸洗浄を行ったBET比表面積が1150m/gの活性炭を用いたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 3)
A composite gas adsorbent was obtained by the same procedure as in Example 1 except that activated carbon having a BET specific surface area of 1150 m 2 / g subjected to acid cleaning was used. Adsorption of acetaldehyde and butane by the same procedure as in Example 1 The amount was measured. The results are shown in Table 1.

(実施例4)
酸洗浄を行わなかったBET比表面積が1000m/gの活性炭を用い、クエン酸8.9質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
Example 4
A composite gas adsorbent was obtained in the same procedure as in Example 1 except that activated carbon having a BET specific surface area of 1000 m 2 / g without acid cleaning was used and 8.9 parts by mass of citric acid was added. The adsorption amount of acetaldehyde and butane was measured in the same procedure as in Example 1. The results are shown in Table 1.

(実施例5)
クエン酸3質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 5)
A composite gas adsorbent was obtained by the same procedure as in Example 1 except that 3 parts by mass of citric acid was added, and the amounts of acetaldehyde and butane adsorbed were measured by the same procedure as in Example 1. The results are shown in Table 1.

(実施例6)
濃度が46質量%のクエン酸水溶液の代わりに、濃度が9質量%のヒドロキシ酢酸(融点80℃、溶解度100質量%)水溶液を用いて、ヒドロキシ酢酸4.4質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 6)
Aside from adding 4.4 parts by mass of hydroxyacetic acid using an aqueous solution of hydroxyacetic acid (melting point: 80 ° C., solubility: 100% by mass) having a concentration of 9% by mass instead of the citric acid aqueous solution having a concentration of 46% by mass. The composite gas adsorbent was obtained in the same procedure as in Example 1, and the adsorption amounts of acetaldehyde and butane were measured in the same procedure as in Example 1. The results are shown in Table 1.

(実施例7)
p−アミノベンゼンスルホン酸の添着とクエン酸の添着との間に、複合ガス吸着材を密閉容器に入れて60℃にて72時間加熱したこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 7)
The composite gas was prepared in the same procedure as in Example 1 except that the composite gas adsorbent was placed in a sealed container and heated at 60 ° C. for 72 hours between the p-aminobenzenesulfonic acid and citric acid. An adsorbent was obtained, and the adsorption amount of acetaldehyde and butane was measured in the same procedure as in Example 1. The results are shown in Table 1.

(実施例8)
p−アミノベンゼンスルホン酸6質量部およびクエン酸3.3質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 8)
A composite gas adsorbent was obtained in the same procedure as in Example 1 except that 6 parts by mass of p-aminobenzenesulfonic acid and 3.3 parts by mass of citric acid were added. The amount of butane adsorbed was measured. The results are shown in Table 1.

(実施例9)
p−アミノベンゼンスルホン酸9質量部およびクエン酸6.7質量部を添着させたこと以外は、実施例3と同様の手順で複合ガス吸着材を得、実施例3と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
Example 9
A composite gas adsorbent was obtained in the same procedure as in Example 3 except that 9 parts by mass of p-aminobenzenesulfonic acid and 6.7 parts by mass of citric acid were added. The amount of butane adsorbed was measured. The results are shown in Table 1.

(実施例10)
酸洗浄を行わなかったBET比表面積が1050m/gの活性炭を用い、p−アミノベンゼンスルホン酸8質量部およびクエン酸1.5質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 10)
The same as in Example 1 except that activated carbon having a BET specific surface area of 1050 m 2 / g without acid washing was used and 8 parts by mass of p-aminobenzenesulfonic acid and 1.5 parts by mass of citric acid were added. The composite gas adsorbent was obtained by the procedure, and the adsorption amounts of acetaldehyde and butane were measured by the same procedure as in Example 1. The results are shown in Table 1.

(実施例11)
濃度が46質量%のクエン酸水溶液の代わりに、濃度が8質量%のシュウ酸(融点190℃、溶解度8.34質量%)水溶液を用いて、シュウ酸2.1質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 11)
Instead of an aqueous citric acid solution having a concentration of 46% by mass, an aqueous solution of oxalic acid having a concentration of 8% by mass (melting point: 190 ° C., solubility: 8.34% by mass) was added with 2.1 parts by mass of oxalic acid. Except for the above, a composite gas adsorbent was obtained in the same procedure as in Example 1, and the adsorption amounts of acetaldehyde and butane were measured in the same procedure as in Example 1. The results are shown in Table 1.

(実施例12)
濃度が46質量%のクエン酸水溶液の代わりに、濃度が35質量%のリンゴ酸(融点132℃、溶解度55.8質量%)水溶液を用いて、リンゴ酸4.6質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 12)
Instead of the citric acid aqueous solution with a concentration of 46% by mass, malic acid (melting point: 132 ° C., solubility: 55.8% by mass) aqueous solution with a concentration of 35% by mass was added with 4.6 parts by mass of malic acid. Except for the above, a composite gas adsorbent was obtained in the same procedure as in Example 1, and the adsorption amounts of acetaldehyde and butane were measured in the same procedure as in Example 1. The results are shown in Table 1.

(実施例13)
p−アミノベンゼンスルホン酸3質量部およびクエン酸1.7質量部を添着させたこと以外は、実施例2と同様の手順で複合ガス吸着材を得、実施例2と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Example 13)
A composite gas adsorbent was obtained in the same procedure as in Example 2 except that 3 parts by mass of p-aminobenzenesulfonic acid and 1.7 parts by mass of citric acid were added. The amount of butane adsorbed was measured. The results are shown in Table 1.

(比較例1)
酸洗浄を行わなかったBET比表面積が1050m/gの活性炭を用い、クエン酸水溶液を用いなかったこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 1)
A composite gas adsorbent was obtained in the same procedure as in Example 1 except that activated carbon having a BET specific surface area of 1050 m 2 / g without acid cleaning was used and no citric acid aqueous solution was used. The adsorption amount of acetaldehyde and butane was measured by the procedure described above. The results are shown in Table 1.

(比較例2)
酸洗浄を行ったBET比表面積が600m/gの活性炭を用い、p−アミノベンゼンスルホン酸4質量部およびクエン酸2.2質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 2)
The same procedure as in Example 1 except that activated carbon having a BET specific surface area of 600 m 2 / g subjected to acid cleaning was used and 4 parts by mass of p-aminobenzenesulfonic acid and 2.2 parts by mass of citric acid were added. Then, a composite gas adsorbent was obtained, and the adsorption amounts of acetaldehyde and butane were measured in the same procedure as in Example 1. The results are shown in Table 1.

(比較例3)
酸洗浄を行ったBET比表面積が1400m/gの活性炭を用いたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 3)
A composite gas adsorbent was obtained by the same procedure as in Example 1 except that activated carbon having a BET specific surface area of 1400 m 2 / g subjected to acid cleaning was used. Adsorption of acetaldehyde and butane by the same procedure as in Example 1 The amount was measured. The results are shown in Table 1.

(比較例4)
濃度が46質量%クエン酸水溶液の代わりに、濃度が45質量%の硫酸(融点10℃、水に可溶)水溶液を用いて、硫酸3.4質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 4)
Example, except that instead of the 46% by mass citric acid aqueous solution, a sulfuric acid (melting point: 10 ° C., soluble in water) aqueous solution having a concentration of 45% by mass was used, and 3.4 parts by mass of sulfuric acid was added. The composite gas adsorbent was obtained by the same procedure as in Example 1, and the adsorption amounts of acetaldehyde and butane were measured by the same procedure as in Example 1. The results are shown in Table 1.

(比較例5)
p−アミノベンゼンスルホン酸16質量部およびクエン酸8.9質量部を添着させたこと以外は、実施例2と同様の手順で複合ガス吸着材を得、実施例2と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 5)
A composite gas adsorbent was obtained in the same procedure as in Example 2 except that 16 parts by mass of p-aminobenzenesulfonic acid and 8.9 parts by mass of citric acid were added. The amount of butane adsorbed was measured. The results are shown in Table 1.

(比較例6)
濃度が46質量%クエン酸水溶液の代わりに、濃度が45質量%のギ酸(融点8.4℃、水に可溶)水溶液を用いて、ギ酸3.2質量部を添着させたこと以外は、実施例1と同様の手順で複合ガス吸着材を得、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。結果を表1に示す。
(Comparative Example 6)
A formic acid (melting point: 8.4 ° C., soluble in water) aqueous solution having a concentration of 45 mass% was used instead of the 46 mass% citric acid aqueous solution, and 3.2 parts by mass of formic acid was added. A composite gas adsorbent was obtained in the same procedure as in Example 1, and the amounts of acetaldehyde and butane adsorbed were measured in the same procedure as in Example 1. The results are shown in Table 1.

Figure 2011143359
Figure 2011143359

表1に示すように、本発明の複合ガス吸着材(実施例1〜13)は、比較例1〜6の複合ガス吸着材に比べて、アセトアルデヒドおよびブタンの吸着量が多いことがわかる。   As shown in Table 1, it can be seen that the composite gas adsorbents (Examples 1 to 13) of the present invention have larger amounts of adsorption of acetaldehyde and butane than the composite gas adsorbents of Comparative Examples 1 to 6.

一方、比較例1の複合ガス吸着材は、水溶性かつ25℃で固体の炭素数が2〜6の有機酸を添着させていないためアルカリ性となっており、アセトアルデヒド吸着量が非常に少ないことがわかる。比較例2の複合ガス吸着材は、活性炭のBET比表面積が小さく(700m/g以下)、賦活が不十分になるため、ブタン吸着量が少なく、さらに十分にp−アミノベンゼンスルホン酸およびクエン酸を添着できないため、アセトアルデヒド吸着量が少ないことがわかる。比較例3の複合ガス吸着材は、活性炭のBET比表面積が大きく(1300m/g以上)、賦活が過剰になるため、ミクロ孔の割合が相対的に減少し、ブタンの吸着量が少ないことがわかる。比較例4の複合ガス吸着材は、液状の硫酸がミクロ孔に浸入したため、アセトアルデヒドおよびブタンの吸着量が少ないと考えられる。比較例5の複合ガス吸着材は、p−アミノベンゼンスルホン酸およびクエン酸の添着量が過剰(合計で20質量部以上)であるため、ミクロ孔が閉塞し、ブタン吸着量が非常に少ないことがわかる。比較例6の複合ガス吸着材は、液状のギ酸がミクロ孔に浸入したため、ブタンの吸着量が少なく、さらに90℃で乾燥した際にギ酸が蒸発し、製造が困難であった。 On the other hand, the composite gas adsorbent of Comparative Example 1 is alkaline because it is water-soluble and not impregnated with a solid organic acid having 2 to 6 carbon atoms at 25 ° C., and has a very small amount of acetaldehyde adsorption. Recognize. The composite gas adsorbent of Comparative Example 2 has a small BET specific surface area of activated carbon (700 m 2 / g or less) and insufficient activation, so that the amount of butane adsorbed is small, and p-aminobenzenesulfonic acid and citric acid are sufficiently sufficient. It can be seen that since the acid cannot be impregnated, the amount of acetaldehyde adsorbed is small. In the composite gas adsorbent of Comparative Example 3, the activated carbon has a large BET specific surface area (1300 m 2 / g or more) and the activation becomes excessive, so that the proportion of micropores is relatively reduced and the amount of butane adsorbed is small. I understand. The composite gas adsorbent of Comparative Example 4 is considered to have a small amount of adsorption of acetaldehyde and butane because liquid sulfuric acid has entered the micropores. In the composite gas adsorbent of Comparative Example 5, the amount of p-aminobenzenesulfonic acid and citric acid added is excessive (20 parts by mass or more in total), so that the micropores are blocked and the butane adsorption amount is very small. I understand. The composite gas adsorbent of Comparative Example 6 was difficult to produce because the liquid formic acid entered the micropores, so that the amount of butane adsorbed was small, and the formic acid evaporated when dried at 90 ° C.

(実施例14:複合ガス吸着材組成物の調製)
実施例1で得られた複合ガス吸着材およびBET比表面積が1000m/gの活性炭を、3:7の質量比で混合し、複合ガス吸着材組成物を得た。この複合ガス吸着材組成物を用いて、実施例1と同様の手順でアセトアルデヒドおよびブタンの吸着量を測定した。アルデヒド吸着量は1.6質量%およびブタン吸着量は3.2質量%であった。
(Example 14: Preparation of composite gas adsorbent composition)
The composite gas adsorbent obtained in Example 1 and the activated carbon having a BET specific surface area of 1000 m 2 / g were mixed at a mass ratio of 3: 7 to obtain a composite gas adsorbent composition. Using this composite gas adsorbent composition, the adsorption amounts of acetaldehyde and butane were measured in the same procedure as in Example 1. The aldehyde adsorption amount was 1.6% by mass, and the butane adsorption amount was 3.2% by mass.

本発明によれば、アルデヒドおよびブタンを含有する複合ガスの吸着性能に優れた複合ガス吸着材を提供し得る。したがって、本発明の複合ガス吸着材は、空気清浄機用フィルター、天井材、工業用フィルターなどに用いられ、特に自動車車内用キャビンフィルターなどに使用される。   ADVANTAGE OF THE INVENTION According to this invention, the composite gas adsorption material excellent in the adsorption | suction performance of the composite gas containing an aldehyde and butane can be provided. Therefore, the composite gas adsorbing material of the present invention is used for an air cleaner filter, a ceiling material, an industrial filter, and the like, and particularly used for a cabin filter for an automobile.

Claims (10)

活性炭に芳香族アミノスルホン酸と有機酸とを添着させた複合ガス吸着材であって、
該活性炭のBET比表面積が、700〜1300m/gであり、
該有機酸が、水溶性かつ25℃で固体の炭素数が2〜6の有機酸であり、そして
該活性炭100質量部に対して、該芳香族アミノスルホン酸が2〜12質量部の割合で添着し、かつ該芳香族アミノスルホン酸と該有機酸とが、合計で3〜20質量部の割合で添着している、複合ガス吸着材。
A composite gas adsorbent in which an aromatic aminosulfonic acid and an organic acid are attached to activated carbon,
The activated carbon has a BET specific surface area of 700 to 1300 m 2 / g;
The organic acid is a water-soluble organic acid having 2 to 6 carbon atoms that is solid at 25 ° C., and the aromatic aminosulfonic acid is in a ratio of 2 to 12 parts by mass with respect to 100 parts by mass of the activated carbon. A composite gas adsorbent which is attached and the aromatic aminosulfonic acid and the organic acid are attached in a ratio of 3 to 20 parts by mass in total.
前記有機酸が、90℃以上の融点を有する、請求項1に記載の複合ガス吸着材。   The composite gas adsorbent according to claim 1, wherein the organic acid has a melting point of 90 ° C. or higher. 前記芳香族アミノスルホン酸と前記有機酸のカルボキシル基とのモル当量比が、1:0.75〜1:2である、請求項1または2に記載の複合ガス吸着材。   The composite gas adsorbent according to claim 1 or 2, wherein a molar equivalent ratio between the aromatic aminosulfonic acid and the carboxyl group of the organic acid is 1: 0.75 to 1: 2. 複合ガス吸着材の製造方法であって、
芳香族アミノスルホン酸を可溶化させて、活性炭に添着させる工程;および
該芳香族アミノスルホン酸の添着後、1分〜24時間以内に有機酸を該活性炭に添着させる工程;を包含し、
該活性炭のBET比表面積が、700〜1300m/gであり、
該有機酸が、水溶性かつ25℃で固体の炭素数が2〜6の有機酸であり、そして
該活性炭100質量部に対して、該芳香族アミノスルホン酸を2〜12質量部の割合で添着させ、かつ該芳香族アミノスルホン酸と該有機酸とを、合計で3〜20質量部の割合で添着させる、方法。
A method for producing a composite gas adsorbent, comprising:
Solubilizing and attaching aromatic aminosulfonic acid to activated carbon; and attaching organic acid to the activated carbon within 1 minute to 24 hours after addition of the aromatic aminosulfonic acid;
The activated carbon has a BET specific surface area of 700 to 1300 m 2 / g;
The organic acid is a water-soluble organic acid having 2 to 6 carbon atoms that is solid at 25 ° C., and the aromatic aminosulfonic acid is added in an amount of 2 to 12 parts by mass with respect to 100 parts by mass of the activated carbon. A method in which the aromatic aminosulfonic acid and the organic acid are added at a ratio of 3 to 20 parts by mass in total.
前記有機酸が、90℃以上の融点を有する、請求項4に記載の方法。   The method of claim 4, wherein the organic acid has a melting point of 90 ° C. or higher. 前記芳香族アミノスルホン酸と前記有機酸のカルボキシル基とのモル当量比が、1:0.75〜1:2である、請求項4または5に記載の方法。   The method according to claim 4 or 5, wherein a molar equivalent ratio between the aromatic aminosulfonic acid and the carboxyl group of the organic acid is 1: 0.75 to 1: 2. 前記複合ガス吸着材のpHが2〜8に調整される、請求項4から6のいずれかの項に記載の方法。   The method according to any one of claims 4 to 6, wherein the pH of the composite gas adsorbent is adjusted to 2 to 8. 請求項1から3のいずれかの項に記載の複合ガス吸着材と他の吸着材とを含む、複合ガス吸着材組成物。   A composite gas adsorbent composition comprising the composite gas adsorbent according to any one of claims 1 to 3 and another adsorbent. 前記他の吸着材が、活性炭である、請求項8に記載の複合ガス吸着材組成物。   The composite gas adsorbent composition according to claim 8, wherein the other adsorbent is activated carbon. 請求項1から3のいずれかの項に記載の複合ガス吸着材および請求項8または9に記載の複合ガス吸着材組成物からなる群より選択される少なくとも1種を備える、吸着フィルター。   An adsorption filter comprising at least one selected from the group consisting of the composite gas adsorbent according to any one of claims 1 to 3 and the composite gas adsorbent composition according to claim 8 or 9.
JP2010006649A 2010-01-15 2010-01-15 Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same Active JP5420434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006649A JP5420434B2 (en) 2010-01-15 2010-01-15 Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006649A JP5420434B2 (en) 2010-01-15 2010-01-15 Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same

Publications (2)

Publication Number Publication Date
JP2011143359A true JP2011143359A (en) 2011-07-28
JP5420434B2 JP5420434B2 (en) 2014-02-19

Family

ID=44458692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006649A Active JP5420434B2 (en) 2010-01-15 2010-01-15 Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same

Country Status (1)

Country Link
JP (1) JP5420434B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094606A (en) * 2011-11-07 2013-05-20 Sepio Japan Co Ltd Formaldehyde scavenger
WO2017086177A1 (en) * 2015-11-20 2017-05-26 株式会社クラレ Composite gas adsorbent member, adsorbent filter in which same is used, and method for manufacturing composite gas adsorbent member
WO2021186980A1 (en) * 2020-03-17 2021-09-23 株式会社クラレ Mercury adsorbent and method for producing same
CN113509904A (en) * 2021-04-15 2021-10-19 湖南省林业科学院 Sulfamic acid modified camellia oleifera shell biochar material, and preparation method and application thereof
JP7453463B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and adsorption filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180833A (en) * 1990-11-16 1992-06-29 Zexel Corp Deodorant
JP2003053179A (en) * 2001-08-20 2003-02-25 Toyobo Co Ltd Adsorbent and producing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180833A (en) * 1990-11-16 1992-06-29 Zexel Corp Deodorant
JP2003053179A (en) * 2001-08-20 2003-02-25 Toyobo Co Ltd Adsorbent and producing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094606A (en) * 2011-11-07 2013-05-20 Sepio Japan Co Ltd Formaldehyde scavenger
WO2017086177A1 (en) * 2015-11-20 2017-05-26 株式会社クラレ Composite gas adsorbent member, adsorbent filter in which same is used, and method for manufacturing composite gas adsorbent member
JPWO2017086177A1 (en) * 2015-11-20 2018-09-06 株式会社クラレ Composite gas adsorbent, adsorption filter using the same, and method for producing composite gas adsorbent
WO2021186980A1 (en) * 2020-03-17 2021-09-23 株式会社クラレ Mercury adsorbent and method for producing same
JP6999067B1 (en) * 2020-03-17 2022-01-18 株式会社クラレ Mercury adsorbent and its manufacturing method
US12064746B2 (en) 2020-03-17 2024-08-20 Kuraray Co., Ltd. Mercury adsorbent and method for producing same
CN113509904A (en) * 2021-04-15 2021-10-19 湖南省林业科学院 Sulfamic acid modified camellia oleifera shell biochar material, and preparation method and application thereof
JP7453463B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous material and its manufacturing method, and adsorption filter

Also Published As

Publication number Publication date
JP5420434B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
Arivoli et al. Adsorption of malachite green onto carbon prepared from borassus bark
JP5420434B2 (en) Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same
JP5781992B2 (en) Parenteral adsorbent provided with basic functional group and method for producing the same
WO2014017588A1 (en) Activated carbon having large active surface area
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
JP2018114463A (en) Aldehyde adsorbent
JP2010222163A (en) High functional granulated carbon and method for manufacturing the same
WO2007004614A1 (en) Adsorbent and process for producing the same
JP2008178788A (en) Adsorbent
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
JP4139486B2 (en) Lower aldehyde adsorbent
JP4484232B1 (en) Adsorbent for lower aldehydes and process for producing the same
JP2014047087A (en) Method of producing chemical-carrying active carbon, chemical-carrying active carbon and filter using the carbon
JP6871535B2 (en) Deodorant manufacturing method
JP2007014857A (en) Adsorbent and its production method
JPH01236941A (en) Gaseous ammonia adsorbent
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
WO2016031474A1 (en) Adsorbent
JP6509591B2 (en) Hydrophobized carbon material and method for producing the same
JPWO2017086177A1 (en) Composite gas adsorbent, adsorption filter using the same, and method for producing composite gas adsorbent
JP2017177047A (en) Adsorbent for metal removal
JP7141089B2 (en) Deodorizing material and deodorizing sheet
JP2007217223A (en) Method for producing hydrophobic activated carbon
JPH0252043A (en) Air purifying agent
JP7097004B2 (en) Manufacturing method of deodorant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350