JP6608266B2 - Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material - Google Patents

Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material Download PDF

Info

Publication number
JP6608266B2
JP6608266B2 JP2015245217A JP2015245217A JP6608266B2 JP 6608266 B2 JP6608266 B2 JP 6608266B2 JP 2015245217 A JP2015245217 A JP 2015245217A JP 2015245217 A JP2015245217 A JP 2015245217A JP 6608266 B2 JP6608266 B2 JP 6608266B2
Authority
JP
Japan
Prior art keywords
platinum group
group metal
recovery material
particle recovery
metal colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015245217A
Other languages
Japanese (ja)
Other versions
JP2017109166A (en
Inventor
充洋 内田
昭典 河内
良子 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2015245217A priority Critical patent/JP6608266B2/en
Publication of JP2017109166A publication Critical patent/JP2017109166A/en
Application granted granted Critical
Publication of JP6608266B2 publication Critical patent/JP6608266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)

Description

本発明は、白金族金属コロイド粒子回収材、該回収材を含むフィルター及び該回収材を用いる白金族金属コロイド粒子の回収方法に関する。   The present invention relates to a platinum group metal colloid particle recovery material, a filter including the recovery material, and a method for recovering platinum group metal colloid particles using the recovery material.

例えばプリント配線板を製造する際、無電解めっきが広くおこなわれている。その中で、配線接合部分、電気接点部品等においては、貴金属を用いた無電解めっきが行われている。従来、このような表面処理では、金めっきを施すことが主流であった。しかしながら、金は、導電性、ボンディング性に優れているものの、非常に高価である。従って、近年、より安価な白金族金属を用いる無電解めっきも開発され、採用されている。   For example, when manufacturing a printed wiring board, electroless plating is widely performed. Among them, electroless plating using a noble metal is performed on wiring junctions, electrical contact parts, and the like. Conventionally, gold plating has been the mainstream in such surface treatment. However, although gold is excellent in conductivity and bonding properties, it is very expensive. Therefore, in recent years, electroless plating using a cheaper platinum group metal has been developed and adopted.

無電解白金族金属めっきを施す工程は、一般に、電子部品の製造ラインにおいて後段に位置し、その前段には、配線を形成する銅めっきや下地をつくるためのニッケルめっき等を施す工程が存在する。種々のめっき工程の間には、水洗工程が設けられており、連続的に生産される電子部品は、各めっき工程完了後に洗浄される。しかしながら、洗浄によっても、前のめっき工程の成分が次のめっき工程に持ち込まれることがある。白金族金属の無電解めっきの工程では、前のめっき工程から銅等が持ち込まれることがある。白金族金属の無電解めっき工程においては、銅等が極微量でも混入していると、白金族金属めっきの付き回りに大きく影響し、製品不良が発生する。このため、無電解めっき液中に銅が混入して白金族金属の析出性が低下した場合には、めっき液の一部または全液を更新することが必要となり、使用した白金族金属を含むめっき液の廃液が発生する。そして、近年、無電解白金族金属めっきを施す際のめっき液として、白金族金属コロイド粒子を含むめっき液を用いることが知られており、該めっき液の廃液が同様に発生する。   The process of performing electroless platinum group metal plating is generally located in the latter part of the production line for electronic components, and in the former part, there is a process of performing copper plating for forming wiring, nickel plating for forming a base, or the like. . A water washing process is provided between the various plating processes, and continuously produced electronic components are washed after each plating process is completed. However, the components of the previous plating process may be brought into the next plating process even by cleaning. In the process of electroless plating of a platinum group metal, copper or the like may be brought in from the previous plating process. In the platinum group metal electroless plating process, if a very small amount of copper or the like is mixed, the influence of the platinum group metal plating is greatly affected, resulting in product defects. For this reason, in the case where copper is mixed in the electroless plating solution and the precipitation of the platinum group metal is reduced, it is necessary to renew a part or the whole of the plating solution, including the used platinum group metal. A plating solution waste solution is generated. In recent years, it is known that a plating solution containing platinum group metal colloidal particles is used as a plating solution when performing electroless platinum group metal plating, and a waste solution of the plating solution is similarly generated.

また、貴金属以外の金属、例えば銅やニッケルを用いた無電解めっきを施す場合、該金属めっきと被めっき材との結合を強固にする観点から、無電解めっきの核となる触媒金属を付与することが広く行われている。該触媒金属として白金族金属コロイド粒子を用いることが知られている。そして、白金族金属コロイド粒子を含む触媒液も、上述した無電解白金族金属めっき液と同様、使用した白金族金属コロイド粒子を含む触媒液の廃液が発生する。   In addition, when performing electroless plating using a metal other than a noble metal, such as copper or nickel, from the viewpoint of strengthening the bond between the metal plating and the material to be plated, a catalyst metal serving as the core of electroless plating is applied. It is widely done. It is known to use platinum group metal colloidal particles as the catalyst metal. And the catalyst liquid containing the platinum group metal colloidal particles also generates a waste liquid of the catalyst liquid containing the used platinum group metal colloidal particles, like the electroless platinum group metal plating liquid described above.

一方、上記したような白金族金属コロイド粒子を含む廃液から、白金族金属を回収する試みがなされている。   On the other hand, attempts have been made to recover platinum group metals from waste liquids containing platinum group metal colloidal particles as described above.

例えば、白金族金属をコロイド状態で含有する液から電解還元によって白金族金属を回収する方法であって、該液に電解前処理剤を添加して、そのコロイド粒子を溶解させ白金族金属をイオン化した状態にしたものについて、電解還元を実施して、白金族金属を析出させて回収する白金族金属の回収方法が知られている(例えば、特許文献1参照。)。   For example, a method of recovering a platinum group metal from a solution containing a platinum group metal in a colloidal state by electrolytic reduction, adding an electrolytic pretreatment agent to the solution, and dissolving the colloidal particles to ionize the platinum group metal. A method for recovering a platinum group metal is known in which a platinum group metal is deposited and recovered by performing electrolytic reduction on the product that has been made into a state (see, for example, Patent Document 1).

特開2001−59195号公報JP 2001-59195 A

しかしながら、上記特許文献1で開示された白金族金属の回収方法は、電解還元をおこなう必要があることから、工程が複雑化し、電解還元をおこなう装置が必要となり、実用的ではないという問題があった。   However, the platinum group metal recovery method disclosed in Patent Document 1 requires electrolytic reduction, which complicates the process and requires an apparatus for electrolytic reduction, which is not practical. It was.

本発明は、上記問題を解決し、上記特許文献1で開示されたような複雑な装置や工程を要せずとも、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果に優れた、白金族金属コロイド粒子回収材の提供を課題とする。   The present invention solves the above-mentioned problems and recovers platinum group metal colloid particles in a solution containing platinum group metal colloid particles without requiring a complicated apparatus or process as disclosed in Patent Document 1. It is an object of the present invention to provide a platinum group metal colloidal particle recovery material that is excellent in the above.

本発明者等は、回収材として、本来溶液中に分散するコロイドの吸着を苦手とする活性炭に着目した。そして、本発明者等が鋭意検討したところ、意外にも、白金族金属コロイド粒子回収材として、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において細孔直径35〜110Åの範囲の細孔容積が0.07ml/g以上である活性炭を用いた場合に、上記特許文献1で開示されたような複雑な装置や工程を要せずとも、白金族金属を含有する溶液中の白金族金属の回収効果が優れることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。   The inventors of the present invention focused on activated carbon, which is not good at adsorbing colloids originally dispersed in a solution, as a recovery material. As a result of intensive studies by the present inventors, surprisingly, as a platinum group metal colloidal particle recovery material, a pore diameter of 35 to 110 mm in a pore distribution determined by the BJH method from a nitrogen desorption isotherm at a temperature of 77.4K. In the case where activated carbon having a pore volume in the range of 0.07 ml / g or more is used, a solution containing a platinum group metal without requiring a complicated apparatus or process as disclosed in Patent Document 1 above. It has been found that the platinum group metal recovery effect is excellent. The present invention has been completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1.白金族金属コロイド粒子を含有する溶液の前記白金族金属コロイド粒子の回収材であって、前記回収材が、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.07ml/g以上である活性炭である、白金族金属コロイド粒子回収材。
項2.前記溶液のpHが9以上である、項1に記載の白金族金属コロイド粒子回収材。
項3.前記溶液が、無電解めっきにおける触媒液である、項1又は2に記載の白金族金属コロイド粒子回収材。
項4.前記溶液が、無電解パラジウムめっき液である、項1又は2に記載の白金族金属コロイド粒子回収材。
項5.前記溶液の前記白金族金属コロイド粒子の回収前の含有量が1〜1000mg/Lである、項1〜4のいずれか1項に記載の白金族金属コロイド粒子回収材。
項6.前記白金族金属コロイド粒子がパラジウムコロイド粒子である、項1〜5のいずれか1項に記載の白金族金属コロイド粒子回収材。
項7.項1〜6のいずれか1項に記載の白金族金属コロイド粒子回収材を含む、フィルター。
項8.項1〜6のいずれか1項に記載の白金族金属コロイド粒子回収材を用いて、白金族金属コロイド粒子を含有する溶液から前記白金族金属コロイド粒子を回収する方法。
That is, this invention provides the invention of the aspect hung up below.
Item 1. A recovery material for the platinum group metal colloid particles in a solution containing platinum group metal colloid particles, wherein the recovery material has a pore distribution determined by a BJH method from a nitrogen desorption isotherm at a temperature of 77.4K. A platinum group metal colloidal particle recovery material, which is activated carbon having a pore volume in the range of 35 to 110 mm in diameter of 0.07 ml / g or more.
Item 2. Item 2. The platinum group metal colloid particle recovery material according to Item 1, wherein the pH of the solution is 9 or more.
Item 3. Item 3. The platinum group metal colloid particle recovery material according to Item 1 or 2, wherein the solution is a catalyst solution in electroless plating.
Item 4. Item 3. The platinum group metal colloid particle recovery material according to Item 1 or 2, wherein the solution is an electroless palladium plating solution.
Item 5. Item 5. The platinum group metal colloid particle recovery material according to any one of Items 1 to 4, wherein a content of the solution before recovery of the platinum group metal colloid particles is 1-1000 mg / L.
Item 6. Item 6. The platinum group metal colloid particle recovery material according to any one of Items 1 to 5, wherein the platinum group metal colloid particles are palladium colloid particles.
Item 7. Item 7. A filter comprising the platinum group metal colloid particle recovery material according to any one of items 1 to 6.
Item 8. Item 7. A method for recovering the platinum group metal colloidal particles from a solution containing the platinum group metal colloidal particles using the platinum group metal colloidal particle recovery material according to any one of Items 1-6.

本発明の白金族金属コロイド粒子回収材によれば、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において細孔直径35〜110Åの範囲の細孔容積が0.07ml/g以上である活性炭とすることから、例えば上記特許文献1で開示されたような複雑な工程や装置を要せずとも、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果が優れる。従って、例えば、白金族金属コロイド粒子を含む無電解めっき液の廃液や白金族金属コロイド粒子を含む触媒液の廃液等から、白金族金属コロイド粒子を効率的に回収でき、資源リサイクルへの貢献やコスト削減等に寄与することも一層可能となる。   According to the platinum group metal colloidal particle recovery material of the present invention, the pore volume in the range of pore diameters of 35 to 110 mm in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K is 0.07 ml / Since the activated carbon is equal to or more than g, recovery of platinum group metal colloid particles in a solution containing platinum group metal colloid particles without requiring a complicated process or apparatus as disclosed in Patent Document 1 above, for example. Excellent effect. Therefore, for example, the platinum group metal colloid particles can be efficiently recovered from the waste liquid of the electroless plating solution containing the platinum group metal colloid particles and the catalyst solution containing the platinum group metal colloid particles, thereby contributing to resource recycling. It also becomes possible to contribute to cost reduction.

分光光度計の波長340nmにおける吸光度とパラジウムコロイド粒子の濃度との相関関係を示す図である。It is a figure which shows the correlation with the light absorbency in wavelength 340nm of a spectrophotometer, and the density | concentration of a palladium colloid particle. 実施例における、白金族金属コロイド粒子回収材の、細孔直径35〜110Åの範囲の細孔容積と、回収性能との関係を示す図である。It is a figure which shows the relationship between the pore volume of the range of 35-110 mm of pore diameters, and collection | recovery performance of the platinum group metal colloid particle collection material in an Example.

1.白金族金属コロイド粒子回収材
本発明の白金族金属コロイド粒子回収材は、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.07ml/g以上である活性炭である。特定範囲の細孔直径の細孔の容積を0.07ml/g以上とすることにより、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果が優れる。当該効果をより一層優れたものとする観点から、本発明の白金族金属コロイド粒子回収材は、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.09ml/g以上であることが好ましく、0.095以上がより好ましく、0.100以上が一層好ましい。また、上記効果をより一層優れたものとしつつ、回収材の取扱い性をより向上させるという観点から、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.100〜0.600ml/gであることが好ましい。
1. Platinum group metal colloidal particle recovery material The platinum group metal colloidal particle recovery material of the present invention has a pore distribution in the pore diameter range of 35 to 110 mm in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K. The activated carbon has a volume of 0.07 ml / g or more. By making the volume of the pores having a pore diameter in a specific range 0.07 ml / g or more, the recovery effect of the platinum group metal colloid particles in the solution containing the platinum group metal colloid particles is excellent. From the viewpoint of further improving the effect, the platinum group metal colloidal particle recovery material of the present invention has a pore diameter of 35 to 35 in a pore distribution determined by the BJH method from a nitrogen desorption isotherm at a temperature of 77.4K. The pore volume in the range of 110 kg is preferably 0.09 ml / g or more, more preferably 0.095 or more, and still more preferably 0.100 or more. Further, from the viewpoint of further improving the handleability of the recovered material while further improving the above effect, in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4 K, the pore diameter of 35 It is preferable that the pore volume in the range of ˜110 mm is 0.100 to 0.600 ml / g.

本発明の白金族金属コロイド粒子回収材の比表面積(窒素を被吸着物質として用いたBET法(1点法)により測定される値)としては、特に制限されないが、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果に優れつつ、回収材の取扱い性をより向上させるという観点から、好ましくは1000〜3500m/g程度、より好ましくは1200〜3000m/g程度が挙げられる。 The specific surface area of the platinum group metal colloid particle recovery material of the present invention (value measured by the BET method (one-point method) using nitrogen as an adsorbed substance) is not particularly limited, but contains platinum group metal colloid particles. From the viewpoint of further improving the handleability of the recovered material, while being excellent in the recovery effect of the platinum group metal colloid particles in the solution, preferably about 1000 to 3500 m 2 / g, more preferably about 1200 to 3000 m 2 / g. Can be mentioned.

本発明において、活性炭の細孔分布は、温度77.4Kにおいて窒素脱着等温線に基づいて算出されるものであり、具体的には次のようにして窒素脱着等温線が作成される。活性炭を温度77.4K(窒素の沸点)に冷却し、窒素ガスを導入して容量法により窒素ガスの脱着量V[ml/g]を測定する。このとき、導入する窒素ガスの圧力P[mmHg]を徐々に上げ、窒素ガスの飽和蒸気圧P[mmHg]で除した値を相対圧力P/Pとして、各相対圧力に対する脱着量をプロットすることにより窒素脱着等温線が作成される。窒素ガスの脱着量は、市販の自動ガス脱着量測定装置(商品名「AUTOSORB−6」(QUANTACHROME製)を用いて実施できる。本発明では、窒素脱着等温線に基づき、BJH法に従って求めた細孔分布から細孔直径30Å以上50Å以下の範囲の細孔容積(ml/g)を算出することができる。この解析は、上記装置に付属する解析プログラム等のような公知の手段を用いることができる。そして、活性炭の全細孔容積は、上記の窒素ガスの脱着量の測定結果における窒素の最大脱着量から計算することができる。 In the present invention, the pore distribution of the activated carbon is calculated based on the nitrogen desorption isotherm at a temperature of 77.4K. Specifically, the nitrogen desorption isotherm is created as follows. The activated carbon is cooled to a temperature of 77.4K (the boiling point of nitrogen), nitrogen gas is introduced, and the desorption amount V [ml / g] of the nitrogen gas is measured by a volumetric method. At this time, the pressure P [mmHg] of the introduced nitrogen gas is gradually increased, and the value obtained by dividing by the saturated vapor pressure P 0 [mmHg] of the nitrogen gas is set as the relative pressure P / P 0 , and the desorption amount with respect to each relative pressure is plotted. This creates a nitrogen desorption isotherm. The desorption amount of nitrogen gas can be carried out using a commercially available automatic gas desorption amount measuring apparatus (trade name “AUTOSORB-6” (manufactured by QUANTACHROME)). From the pore distribution, the pore volume (ml / g) in the range of pore diameters of 30 mm to 50 mm can be calculated using a known means such as an analysis program attached to the above apparatus. The total pore volume of the activated carbon can be calculated from the maximum desorption amount of nitrogen in the measurement result of the desorption amount of nitrogen gas.

本発明の白金族金属コロイド粒子回収材の全細孔容積としては、特に制限されないが、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果に優れつつ、回収材の取扱い性をより向上させるという観点から、好ましくは0.4〜1.5ml/g程度が挙げられる。繊維状活性炭の全細孔容積は、前述の方法により測定した値である。   The total pore volume of the platinum group metal colloidal particle recovery material of the present invention is not particularly limited, but it is excellent in the recovery effect of the platinum group metal colloidal particles in the solution containing the platinum group metal colloidal particles while handling the recovery material. From the standpoint of further improving the properties, it is preferably about 0.4 to 1.5 ml / g. The total pore volume of the fibrous activated carbon is a value measured by the method described above.

また、本発明の白金族金属コロイド粒子回収材において、全細孔容積(ml/g)に対する細孔直径35〜110Åの範囲の細孔容積(ml/g)の割合(細孔直径35〜110Åの範囲の細孔容積/全細孔容積)としては、好ましくは0.05以上が挙げられる。   In the platinum group metal colloidal particle recovery material of the present invention, the ratio of the pore volume (ml / g) in the range of pore diameters of 35 to 110 mm to the total pore volume (ml / g) (pore diameter of 35 to 110 mm). (Pore volume / total pore volume) is preferably 0.05 or more.

温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.07ml/g以上である活性炭を製造する方法としては、特に限定されないが、例えば、次のような方法が挙げられる。すなわち、Mg、Mn、Fe、Y、Pt、Gdの少なくとも1種の金属成分を0.01〜5重量%含有するピッチからなる活性炭前駆体を、不融化処理、炭化処理を行い、雰囲気温度800〜1000℃でおこなう賦活処理工程と、該賦活処理工程より後に空気存在下室温まで冷却する冷却工程とを含む製造方法により得る方法等が挙げられる。本発明の白金族金属コロイド粒子回収材の原料としては特に限定されず、木材、おがくず、ヤシガラ、ポリアクリロニトリル系、セルロース系、フェノール樹脂系、石油系ピッチ、石炭系ピッチ等を用いることができる。また、本発明の活性炭の形状は特に限定されず、例えば、粉末状、粒状、繊維状などが挙げられる。   In the pore distribution obtained by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K, as a method for producing activated carbon having a pore volume in the range of 35 to 110 mm in pore diameter is 0.07 ml / g or more, Although it does not specifically limit, For example, the following methods are mentioned. That is, an activated carbon precursor composed of a pitch containing 0.01 to 5% by weight of at least one metal component of Mg, Mn, Fe, Y, Pt, and Gd is subjected to infusibilization treatment and carbonization treatment, and an atmospheric temperature of 800 Examples include a method obtained by a production method including an activation treatment step performed at ˜1000 ° C. and a cooling step of cooling to room temperature in the presence of air after the activation treatment step. The raw material for the platinum group metal colloidal particle recovery material of the present invention is not particularly limited, and wood, sawdust, coconut shell, polyacrylonitrile, cellulose, phenol resin, petroleum pitch, coal pitch, and the like can be used. Moreover, the shape of the activated carbon of this invention is not specifically limited, For example, a powder form, a granular form, a fibrous form etc. are mentioned.

本発明の白金族金属コロイド粒子回収材は、白金族金属コロイド粒子を、回収前の白金族金属コロイド粒子を含有する溶液から特定の活性炭によって吸着するものである。従って、例えば、上記溶液から白金族金属コロイド粒子を除去する目的で使用することもできる。   The platinum group metal colloid particle recovery material of the present invention adsorbs platinum group metal colloid particles with a specific activated carbon from a solution containing the platinum group metal colloid particles before recovery. Therefore, for example, it can also be used for the purpose of removing platinum group metal colloidal particles from the solution.

白金族金属コロイド粒子回収材を含むフィルター
本発明のフィルターは、本発明の白金族金属コロイド粒子回収材を含む。本発明の白金族金属コロイド粒子回収材の含有形態は、特に制限されない。例えば、本発明の白金族金属コロイド粒子回収材をそのまま容器に充填したり、本発明の白金族金属コロイド粒子回収材を成型したりすることが挙げられる。成型体としては、公知のものが挙げられ、例えば、湿式抄紙法、乾式法等により得られる不織布、該不織布からなるシート、該不織布を捲回して得られる円筒状、円柱状等のフィルター、繊維状活性炭を含む水性スラリー中に吸引口を有する成形型を入れ、吸引口から吸引し成型される所謂湿式成型法により得られる円筒状、円柱状等のフィルター等が挙げられる。
Filter containing platinum group metal colloidal particle recovery material The filter of the present invention includes the platinum group metal colloidal particle recovery material of the present invention. The content of the platinum group metal colloid particle recovery material of the present invention is not particularly limited. For example, the platinum group metal colloidal particle recovery material of the present invention is filled in a container as it is, or the platinum group metal colloidal particle recovery material of the present invention is molded. Examples of the molded body include known ones. For example, a nonwoven fabric obtained by a wet papermaking method, a dry method, a sheet made of the nonwoven fabric, a cylindrical or columnar filter obtained by winding the nonwoven fabric, a fiber, and the like Examples thereof include a cylindrical or columnar filter obtained by a so-called wet molding method in which a molding die having a suction port is placed in an aqueous slurry containing glassy activated carbon and sucked from the suction port and molded.

白金族金属コロイド粒子を含有する溶液
本発明において、白金族金属コロイド粒子を構成する白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金が挙げられる。中でも、特に白金族金属コロイド粒子の回収効果に優れるという観点から、パラジウムが好ましい。
Solution containing platinum group metal colloidal particles In the present invention, examples of the platinum group metal constituting the platinum group metal colloidal particles include ruthenium, rhodium, palladium, osmium, iridium, and platinum. Among these, palladium is particularly preferable from the viewpoint of excellent recovery effect of the platinum group metal colloidal particles.

パラジウムコロイドとしては、特に制限されないが、パラジウムコロイド粒子を含有する溶液中のパラジウムコロイド粒子の回収効果を一層発揮するという観点から、スズを実質的に含有しないものが好ましい。本発明において、「実質的に含有しない」とは、溶液中の対象物質の含有量が10ppm以下であることが好ましく挙げられる。   Although it does not restrict | limit especially as a palladium colloid, From a viewpoint that the collection | recovery effect of the palladium colloid particle in the solution containing a palladium colloid particle is exhibited further, what does not contain tin substantially is preferable. In the present invention, “substantially does not contain” preferably means that the content of the target substance in the solution is 10 ppm or less.

本発明において、白金族金属コロイド粒子を含有する溶液における白金族金属コロイド粒子の回収前の含有量としては、特に制限されないが、例えば、1〜1000mg/Lが挙げられ、50〜500mg/Lがより好ましく挙げられる。   In the present invention, the content before recovery of the platinum group metal colloid particles in the solution containing the platinum group metal colloid particles is not particularly limited, and examples thereof include 1 to 1000 mg / L, and 50 to 500 mg / L. More preferably.

本発明において、白金族金属コロイド粒子を含有する溶液には、白金族金属コロイド粒子を分散させる分散剤や、還元剤を含んでもよい。分散剤は、公知のものでよく、例えば、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレンイミン、ポリアクリル酸などの高分子界面活性剤、ドデシル硫酸ナトリウムなどのアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などが挙げられる。また、還元剤も、公知のものでよく、例えば、次亜リン酸及びその塩、水素化ホウ素及びその塩(例えば、塩としてはナトリウム塩、カリウム塩、アンモニウム塩など)、ジメチルアミンボラン、トリメチルアミンボランなどが挙げられる。   In the present invention, the solution containing the platinum group metal colloid particles may contain a dispersing agent for dispersing the platinum group metal colloid particles and a reducing agent. The dispersant may be a known one, for example, a polymer surfactant such as polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polyethyleneimine and polyacrylic acid, an anionic surfactant such as sodium dodecyl sulfate, and a cationic surfactant. Agents, amphoteric surfactants and the like. The reducing agent may be a known one, for example, hypophosphorous acid and its salt, borohydride and its salt (for example, sodium salt, potassium salt, ammonium salt, etc.), dimethylamine borane, trimethylamine. For example, borane.

なお、本発明において、白金族金属コロイド粒子の含有量の測定は、JIS K 0102 2013 5.5に準じ、試料10mlに硝酸5%を2.5ml加え、100℃×1時間の条件で加熱し、常温まで冷却後、超純水を加えて50mlとして前処理をおこない、JIS K 0102 2013 52.4に規定されるICP発光分光分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなう。白金族金属コロイド粒子の濃度が0.05ppm以下の場合であって、上記ICP発光分光分析法により測定不可の場合は、JIS K 0102 2013 52.5ICP質量分析法に準じ、内標準液としてイットリウム溶液を用いて測定をおこなう。また、後述する金属担体及び/又は金属化合物の含有量の測定も、同様におこなう。   In the present invention, the content of the platinum group metal colloidal particles is measured according to JIS K 0102 2013 5.5 by adding 2.5 ml of 5% nitric acid to 10 ml of the sample and heating at 100 ° C. for 1 hour. After cooling to room temperature, ultra-pure water is added to make a pre-treatment of 50 ml, and measurement is performed using an yttrium solution as an internal standard solution in accordance with the ICP emission spectroscopic analysis method defined in JIS K 0102 2013 52.4. . When the concentration of the platinum group metal colloidal particles is 0.05 ppm or less and measurement is impossible by the ICP emission spectroscopic analysis method, an yttrium solution is used as an internal standard solution according to JIS K 0102 2013 52.5 ICP mass spectrometry. Use to measure. Further, the measurement of the content of the metal carrier and / or metal compound described later is performed in the same manner.

また、本発明において、白金族金属コロイド粒子を含有する溶液には、金属担体及び/又は金属化合物が含まれていても良い。金属担体及び/又は金属化合物を構成する金属元素としては、例えば、白金族金属の他、銅、ニッケル、銀、金等が含まれていてもよい。白金族金属コロイド粒子を含有する溶液における、上記金属担体及び/又は金属化合物の含有量としては、例えば、30ppm以下が挙げられ、10ppm以下が好ましく挙げられる。   In the present invention, the solution containing the platinum group metal colloidal particles may contain a metal carrier and / or a metal compound. As a metal element which comprises a metal carrier and / or a metal compound, copper, nickel, silver, gold | metal | money etc. may be contained other than a platinum group metal, for example. The content of the metal carrier and / or metal compound in the solution containing platinum group metal colloidal particles is, for example, 30 ppm or less, and preferably 10 ppm or less.

本発明において、白金族金属コロイド粒子を含有する溶液のpHは、回収する白金族金属コロイドが安定に存在し得るpHであれば特に制限されないが、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果を一層発揮するという観点から、pHが8以上が好ましく、9以上がより好ましく、9〜13が特に好ましい。   In the present invention, the pH of the solution containing the platinum group metal colloid particles is not particularly limited as long as the recovered platinum group metal colloid can stably exist, but the platinum in the solution containing the platinum group metal colloid particles is not limited. From the viewpoint of further exerting the group metal colloid particle recovery effect, the pH is preferably 8 or more, more preferably 9 or more, and particularly preferably 9 to 13.

本発明の白金族金属コロイド粒子回収材は、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において細孔直径35〜110Åの範囲の細孔容積が0.07ml/g以上である活性炭とすることから、例えば上記特許文献1で開示されたような複雑な工程や装置を要せずとも、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果が優れる。従って、白金族金属コロイド粒子を含有する溶液として、例えば、無電解めっきにおける触媒液、または無電解パラジウムめっき液とした場合にも、白金族金属コロイド粒子を効率よく回収することが可能となる。特に、無電解めっきにおける触媒液又は無電解パラジウムめっき液が、使用済みのものであり、廃液とされるものである場合には、上記効果の意義が一層高まり、資源リサイクルへの貢献やコスト削減等に寄与することが一層可能となる。   The platinum group metal colloidal particle recovery material of the present invention has a pore volume in the range of a pore diameter of 35 to 110 mm in a pore distribution determined by the BJH method from a nitrogen desorption isotherm at a temperature of 77.4K of 0.07 ml / g or more. Therefore, the recovery effect of the platinum group metal colloid particles in the solution containing the platinum group metal colloid particles can be obtained without requiring a complicated process or apparatus as disclosed in Patent Document 1, for example. Excellent. Accordingly, even when the solution containing the platinum group metal colloid particles is, for example, a catalyst solution in electroless plating or an electroless palladium plating solution, the platinum group metal colloid particles can be efficiently recovered. In particular, when the catalyst solution or electroless palladium plating solution in electroless plating is a used one that is used as a waste solution, the above effect is further enhanced, contributing to resource recycling and reducing costs. It is possible to further contribute to the above.

白金族金属コロイド粒子回収材の性能
本発明の白金族金属コロイド粒子回収材は、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において細孔直径35〜110Åの範囲の細孔容積が0.07ml/g以上である活性炭とすることから、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収性能が優れる。本発明の白金族金属コロイド粒子回収材が備える上記回収性能としては、具体的には、以下に示す評価方法により測定される除去率が20%以上が好ましく、40%以上がより好ましく、60%以上がさらに好ましく、90%以上が特に好ましい。
Performance of platinum group metal colloidal particle recovery material The platinum group metal colloidal particle recovery material of the present invention has a fine pore diameter in the range of 35 to 110 mm in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K. Since the activated carbon having a pore volume of 0.07 ml / g or more is used, the recovery performance of the platinum group metal colloid particles in the solution containing the platinum group metal colloid particles is excellent. Specifically, the recovery performance of the platinum group metal colloidal particle recovery material of the present invention is preferably 20% or more, more preferably 40% or more, and more preferably 60%, as measured by the following evaluation method. The above is more preferable, and 90% or more is particularly preferable.

<回収性能の評価方法>
白金族金属コロイド粒子を含有する溶液として、パラジウムコロイド粒子の含有量が170mg/L、パラジウムコロイド粒子以外の物質の総濃度が実質的に含有しないものとし、pHが10、温度30℃のものをブランクとし、下記測定方法により該ブランクの吸光度Aを測定する。次に、ブランクの溶液100ml中に白金族金属コロイド粒子回収材を1g投入し、温度を維持したまま振とう機(タイテック株式会社製商品名Bio−Shaker BR−300L)で振とう速度140rpmの条件で2時間振とうする。そして、振とうした液をろ過して白金族金属コロイド粒子回収材を取り除き、該回収材を取り除いた液の吸光度A´を下記方法により測定し、上記吸光度AとA´を下記式(1)に代入し、得られた値P(%)を白金族金属コロイド粒子回収材の除去率とする。
P(%)={1−(A´/A)}×100 ・・・・(1)
<吸光度測定方法>
測定する液を純水で7倍希釈し、温度30℃で、分光光度計(日本分光株式会社製V−650型)を用い波長340nmにおける吸光度(abs)を測定する。
<パラジウム濃度と吸光度の相関>
上記吸光度測定によるパラジウムコロイド粒子回収性能を評価するにあたり、事前に任意の異なる濃度のパラジウムコロイド粒子を含む溶液を4点準備し、波長340nmにおけるそれぞれの吸光度を測定したところ、パラジウムコロイド粒子の濃度と上記吸光度との間に相関係数R=0.998と正の強い相関関係がみられた。該相関関係を図1に示す。
<Evaluation method of recovery performance>
As a solution containing platinum group metal colloid particles, the content of palladium colloid particles is 170 mg / L, the total concentration of substances other than palladium colloid particles is substantially not contained, the pH is 10 and the temperature is 30 ° C. A blank is measured, and the absorbance A of the blank is measured by the following measurement method. Next, 1 g of the platinum group metal colloidal particle recovery material is put into 100 ml of a blank solution, and the condition is that the shaking speed is 140 rpm with a shaker (trade name Bio-Shaker BR-300L manufactured by Taitec Co., Ltd.) while maintaining the temperature. Shake for 2 hours. The shaken liquid is filtered to remove the platinum group metal colloidal particle recovery material, and the absorbance A ′ of the liquid from which the recovery material has been removed is measured by the following method. The absorbances A and A ′ are expressed by the following formula (1): And the obtained value P (%) is taken as the removal rate of the platinum group metal colloid particle recovery material.
P (%) = {1- (A ′ / A)} × 100 (1)
<Absorbance measurement method>
The liquid to be measured is diluted 7-fold with pure water, and the absorbance (abs) at a wavelength of 340 nm is measured using a spectrophotometer (JASCO Corporation V-650 type) at a temperature of 30 ° C.
<Correlation between palladium concentration and absorbance>
In evaluating the palladium colloid particle recovery performance by the above absorbance measurement, four solutions containing palladium colloid particles having arbitrarily different concentrations were prepared in advance, and the respective absorbances at a wavelength of 340 nm were measured. A strong positive correlation was found between the absorbance and the correlation coefficient R = 0.998. The correlation is shown in FIG.

白金族金属コロイド粒子を回収する方法
本発明の白金族金属コロイド粒子を回収する方法は、本発明の白金族金属コロイド粒子回収材を用いる。該回収材と、白金族金属コロイド粒子を含有する溶液との接触方法としては、例えば、該回収材を例えばフィルターにして白金族金属コロイド粒子を含有する溶液を連続的に通液させる通液方式や、白金族金属コロイド粒子を含有する溶液中に該回収材を投入し、一定時間振とうさせる振とう方式等が挙げられる。
Method of recovering platinum group metal colloidal particles The method of recovering platinum group metal colloidal particles of the present invention uses the platinum group metal colloidal particle recovery material of the present invention. As a method for contacting the recovered material with the solution containing platinum group metal colloidal particles, for example, a liquid passing method in which the solution containing platinum group metal colloidal particles is continuously passed using the recovered material as a filter, for example. And a shaking method in which the recovered material is put into a solution containing platinum group metal colloidal particles and shaken for a predetermined time.

本発明の白金族金属コロイド粒子を回収する方法において、白金族金属コロイド粒子を回収すべき白金族金属コロイド粒子を含有する溶液の好ましい態様は、上記したとおりである。例えば、白金族金属コロイド粒子の回収前の含有量としては、特に制限されないが1〜1000mg/Lが挙げられ、該溶液のpHは8以上が好ましい等である。   In the method for recovering platinum group metal colloidal particles of the present invention, the preferred embodiment of the solution containing the platinum group metal colloidal particles from which the platinum group metal colloidal particles are to be recovered is as described above. For example, the content before recovery of the platinum group metal colloidal particles is not particularly limited, but may be 1-1000 mg / L, and the pH of the solution is preferably 8 or more.

白金族金属コロイド粒子を回収した本発明の白金族金属コロイド粒子回収材から白金族金属を回収する方法としては、公知の方法でよく、例えば、王水等の無機強酸等で白金族金属塩として解離させ、水素還元や電気還元することにより、白金族金属として回収する方法や、白金族金属を吸着した本発明の白金族金属コロイド粒子回収材を燃焼させて灰化し、得られた灰化物から白金族金属を王水等の無機強酸等で抽出し、還元する方法等が挙げられる。   As a method for recovering the platinum group metal from the platinum group metal colloid particle recovery material of the present invention, in which the platinum group metal colloid particles are recovered, a known method may be used, for example, a platinum group metal salt with an inorganic strong acid such as aqua regia. A method of recovering as a platinum group metal by dissociation, hydrogen reduction or electroreduction, or ashing by burning the platinum group metal colloidal particle recovery material of the present invention adsorbing the platinum group metal from the obtained ash Examples include a method of extracting and reducing a platinum group metal with an inorganic strong acid such as aqua regia.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

1.評価方法
(1)白金族金属コロイド粒子回収材の、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布における細孔直径35〜110Åの範囲の細孔容積(ml/g)、全細孔容積(ml/g)、比表面積(m/g)
前述の方法により求めた。
(2)回収性能の評価方法
前述の方法により求めた。
1. Evaluation method (1) Pore volume (ml / g) in the range of pore diameter of 35 to 110 mm in pore distribution determined by BJH method from nitrogen desorption isotherm at temperature of 77.4K of platinum group metal colloid particle recovery material , Total pore volume (ml / g), specific surface area (m 2 / g)
It was determined by the method described above.
(2) Evaluation method of recovery performance It was determined by the method described above.

(実施例1)
白金族金属コロイド粒子回収材として、ユニチカ株式会社製活性炭繊維W−15W(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.48ml/g、全細孔容積が0.97ml/g、比表面積が1300m/g)を用いた。白金族金属コロイド粒子を含有する溶液として、パラジウムコロイド粒子の含有量が170mg/L、パラジウムコロイド粒子以外の物質の総濃度が実質的に含有しないものとし、pHが11、温度30℃のものをブランクとし、前述した測定方法により該ブランクの吸光度Aを測定した。次に、ブランクの溶液100ml中に上記白金族金属コロイド粒子回収材を1g投入し、温度を維持したまま振とう機(タイテック株式会社製商品名Bio−Shaker BR−300L)で振とう速度140rpmの条件で2時間振とうした。そして、振とうした液をろ過して白金族金属コロイド粒子回収材を取り除き、該回収材を取り除いた液の吸光度A´を前述した測定方法により測定し、上記吸光度AとA´を前述した式(1)に代入し、得られた値P(%)を白金族金属コロイド粒子回収材の除去率とした。
Example 1
As a platinum group metal colloidal particle recovery material, activated carbon fiber W-15W manufactured by Unitika Co., Ltd. (pores having a pore diameter in the range of 35 to 110 mm in pore distribution determined by BJH method from nitrogen desorption isotherm at temperature 77.4K) The volume was 0.48 ml / g, the total pore volume was 0.97 ml / g, and the specific surface area was 1300 m 2 / g). As a solution containing platinum group metal colloidal particles, the content of palladium colloidal particles is 170 mg / L, the total concentration of substances other than palladium colloidal particles is not substantially contained, the pH is 11, and the temperature is 30 ° C. Absorbance A of the blank was measured by the measurement method described above. Next, 1 g of the platinum group metal colloid particle recovery material is put into 100 ml of a blank solution, and the shaking speed is 140 rpm with a shaker (trade name Bio-Shaker BR-300L, manufactured by Taitec Corporation) while maintaining the temperature. Shake for 2 hours under conditions. Then, the shaken liquid is filtered to remove the platinum group metal colloidal particle recovery material, the absorbance A ′ of the liquid from which the recovery material has been removed is measured by the measurement method described above, and the absorbances A and A ′ are calculated using the formulas described above. Substituting into (1), the obtained value P (%) was taken as the removal rate of the platinum group metal colloid particle recovery material.

(実施例2)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、ユニチカ株式会社製活性炭繊維W−10W(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.092ml/g、全細孔容積が0.60ml/g、比表面積が1100m/g)を用いた以外は、実施例1と同様におこなった。
(Example 2)
As a platinum group metal colloid recovery material, instead of the activated carbon fiber W-15W manufactured by Unitika Ltd., the activated carbon fiber W-10W manufactured by Unitika Ltd. (in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K) Except that the pore volume in the range of 35 to 110 mm in pore diameter was 0.092 ml / g, the total pore volume was 0.60 ml / g, and the specific surface area was 1100 m 2 / g). It was done.

(実施例3)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、ユニチカ株式会社製活性炭繊維A−20(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.07ml/g、全細孔容積が1.15ml/g、比表面積が2000m/g)を用いた以外は、実施例1と同様におこなった。
(Example 3)
As the platinum group metal colloid recovery material, instead of the activated carbon fiber W-15W manufactured by Unitika Ltd., the activated carbon fiber A-20 manufactured by Unitika Ltd. (in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K) , Except that the pore volume in the range of pore diameters of 35 to 110 mm was 0.07 ml / g, the total pore volume was 1.15 ml / g, and the specific surface area was 2000 m 2 / g). It was done.

(実施例4)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、関西熱化学株式会社製活性炭マックスソーブ(登録商標)MSC30(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.100ml/g、全細孔容積が1.70ml/g、比表面積が3000m/g)を用いた以外は、実施例1と同様におこなった。
Example 4
As a platinum group metal colloid recovery material, instead of activated carbon fiber W-15W manufactured by Unitika Co., Ltd., activated carbon Maxsorb (registered trademark) MSC30 manufactured by Kansai Thermochemical Co., Ltd. (determined by BJH method from nitrogen desorption isotherm at temperature 77.4K) In the pore distribution, the pore volume in the range of pore diameters of 35 to 110 mm was 0.100 ml / g, the total pore volume was 1.70 ml / g, and the specific surface area was 3000 m 2 / g). The same operation as in Example 1 was performed.

(実施例5)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、大阪ガスケミカル株式会社製活性炭白鷺(登録商標)WH2c(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.096ml/g、全細孔容積が0.92ml/g、比表面積が1700m/g)を用いた以外は、実施例1と同様におこなった。
(Example 5)
As a platinum group metal colloid recovery material, instead of the activated carbon fiber W-15W manufactured by Unitika Co., Ltd., activated carbon Hakuho (registered trademark) WH2c manufactured by Osaka Gas Chemical Co., Ltd. The pore distribution was performed except that the pore volume in the range of 35 to 110 mm in pore diameter was 0.096 ml / g, the total pore volume was 0.92 ml / g, and the specific surface area was 1700 m 2 / g). As in Example 1.

(比較例1)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、ユニチカ株式会社製活性炭繊維A−10(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.01ml/g、全細孔容積が0.56ml/g、比表面積が1300m/g)を用いた以外は、実施例1と同様におこなった。
(Comparative Example 1)
As a platinum group metal colloid recovery material, instead of activated carbon fiber W-15W manufactured by Unitika Ltd., activated carbon fiber A-10 manufactured by Unitika Ltd. (in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K) Except that the pore volume in the range of 35 to 110 mm in pore diameter was 0.01 ml / g, the total pore volume was 0.56 ml / g, and the specific surface area was 1300 m 2 / g). It was done.

(比較例2)
白金族金属コロイド回収材として、ユニチカ株式会社製活性炭繊維W−15Wに代えて、ユニチカ株式会社製活性炭繊維A−15(温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が0.03ml/g、全細孔容積が0.84ml/g、比表面積が1700m/g)を用いた以外は、実施例1と同様におこなった。
(Comparative Example 2)
As the platinum group metal colloid recovery material, instead of the activated carbon fiber W-15W manufactured by Unitika Ltd., activated carbon fiber A-15 manufactured by Unitika Ltd. (in the pore distribution determined by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K) , Except that the pore volume in the range of pore diameters of 35 to 110 mm was 0.03 ml / g, the total pore volume was 0.84 ml / g, and the specific surface area was 1700 m 2 / g). It was done.

各実施例、比較例の物性を表1に示す。また、各実施例、比較例における、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積と、回収性能との関係を示すグラフを図2に示す。   Table 1 shows the physical properties of each example and comparative example. In each example and comparative example, in the pore distribution obtained by the BJH method from the nitrogen desorption isotherm at a temperature of 77.4K, the relationship between the pore volume in the range of the pore diameter of 35 to 110 mm and the recovery performance is as follows. The graph shown is shown in FIG.

実施例1〜5の白金族金属コロイド回収材は、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.07ml/g以上である活性炭であることから、白金族金属コロイド粒子を含有する溶液中の白金族金属コロイド粒子の回収効果が優れるものであった。特に、図2に示されるように、実施例1〜5及び比較例1、2の結果から、上記細孔直径35〜110Åの範囲の細孔容積が0.07ml/g以上において、上記効果が顕著に優れることが明らかとなった。 The platinum group metal colloid recovery materials of Examples 1 to 5 have a pore volume in the range of a pore diameter of 35 to 110 mm in a pore distribution determined by the BJH method from a nitrogen desorption isotherm at a temperature of 77.4K, which is 0.00. Since the activated carbon was 07 ml / g or more, the recovery effect of the platinum group metal colloid particles in the solution containing the platinum group metal colloid particles was excellent. In particular, as shown in FIG. 2, from the results of Examples 1 to 5 and Comparative Examples 1 and 2, when the pore volume in the range of the pore diameter of 35 to 110 mm is 0.07 ml / g or more, the above effect is obtained. It became clear that it was remarkably superior.

Claims (9)

白金族金属コロイド粒子を含有する溶液の前記白金族金属コロイド粒子の回収材であって、
前記回収材が、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.07ml/g以上である活性炭である、白金族金属コロイド粒子回収材。
A recovery material for the platinum group metal colloid particles in a solution containing platinum group metal colloid particles,
The recovered material is activated carbon having a pore volume in a range of 35 to 110 mm in pore diameter of 0.07 ml / g or more in a pore distribution determined by a BJH method from a nitrogen desorption isotherm at a temperature of 77.4K. , Platinum group metal colloidal particle recovery material.
前記回収材が、温度77.4Kにおける窒素脱着等温線よりBJH法で求めた細孔分布において、細孔直径35〜110Åの範囲の細孔容積が、0.09ml/g以上である活性炭である、請求項1に記載の白金族金属コロイド粒子回収材。The recovered material is activated carbon having a pore volume within a range of 35 to 110 mm in pore diameter of 0.09 ml / g or more in a pore distribution determined by a BJH method from a nitrogen desorption isotherm at a temperature of 77.4K. The platinum group metal colloidal particle recovery material according to claim 1. 前記溶液のpHが9以上である、請求項1又は2に記載の白金族金属コロイド粒子回収材。 The platinum group metal colloidal particle recovery material according to claim 1 or 2 , wherein the pH of the solution is 9 or more. 前記溶液が、無電解めっきにおける触媒液である、請求項1〜3のいずれか1項に記載の白金族金属コロイド粒子回収材。 The platinum group metal colloidal particle recovery material according to any one of claims 1 to 3 , wherein the solution is a catalyst solution in electroless plating. 前記溶液が、無電解パラジウムめっき液である、請求項1〜3のいずれか1項に記載の白金族金属コロイド粒子回収材。 The platinum group metal colloid particle recovery material according to any one of claims 1 to 3 , wherein the solution is an electroless palladium plating solution. 前記溶液の前記白金族金属コロイド粒子の回収前の含有量が1〜1000mg/Lである、請求項1〜のいずれか1項に記載の白金族金属コロイド粒子回収材。 The platinum group metal colloid particle recovery material according to any one of claims 1 to 5 , wherein a content of the solution before recovery of the platinum group metal colloid particles is 1-1000 mg / L. 前記白金族金属コロイド粒子がパラジウムコロイド粒子である、請求項1〜のいずれか1項に記載の白金族金属コロイド粒子回収材。 The platinum group metal colloid particle recovery material according to any one of claims 1 to 6 , wherein the platinum group metal colloid particles are palladium colloid particles. 請求項1〜のいずれか1項に記載の白金族金属コロイド粒子回収材を含む、フィルター。 A filter comprising the platinum group metal colloidal particle recovery material according to any one of claims 1 to 7 . 請求項1〜のいずれか1項に記載の白金族金属コロイド粒子回収材を用いて、白金族金属コロイド粒子を含有する溶液から前記白金族金属コロイド粒子を回収する方法。 A method for recovering the platinum group metal colloidal particles from a solution containing the platinum group metal colloidal particles using the platinum group metal colloidal particle recovery material according to any one of claims 1 to 7 .
JP2015245217A 2015-12-16 2015-12-16 Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material Active JP6608266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245217A JP6608266B2 (en) 2015-12-16 2015-12-16 Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245217A JP6608266B2 (en) 2015-12-16 2015-12-16 Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material

Publications (2)

Publication Number Publication Date
JP2017109166A JP2017109166A (en) 2017-06-22
JP6608266B2 true JP6608266B2 (en) 2019-11-20

Family

ID=59079857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245217A Active JP6608266B2 (en) 2015-12-16 2015-12-16 Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material

Country Status (1)

Country Link
JP (1) JP6608266B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197543A (en) * 1987-02-10 1988-08-16 Kansai Coke & Chem Co Ltd Adsorbent for recovering group viii noble metallic complex and recovering method
JPS63197505A (en) * 1987-02-10 1988-08-16 Kansai Coke & Chem Co Ltd Desorption liquid of group viii noble metallic complex adsorbed to adsorbent and desorbing method
JP2000313927A (en) * 1999-04-27 2000-11-14 Matsuda Sangyo Co Ltd Method for recovering platinum group metal from solution containing platinum group metal
JP2001059195A (en) * 1999-08-23 2001-03-06 Matsuda Sangyo Co Ltd Method for recovering platinum group metal from platinum group metal-containing solution
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same
EP2865769B1 (en) * 2012-06-22 2018-12-12 Kuraray Co., Ltd. Activated carbon for noble metal adsorption, noble metal adsorption filter, and method for recovering noble metals
JP6247088B2 (en) * 2013-12-20 2017-12-13 田中貴金属工業株式会社 Method for recovering precious metal from hydrochloric acid acidic Sn-containing precious metal catalyst recovery liquid

Also Published As

Publication number Publication date
JP2017109166A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
Martini et al. Methyl orange and tartrazine yellow adsorption on activated carbon prepared from boiler residue: kinetics, isotherms, thermodynamics studies and material characterization
JP6151691B2 (en) Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method
Hou et al. High adsorption pearl‐necklace‐like composite membrane based on metal–organic framework for heavy metal ion removal
Liu et al. Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon
Sabourian et al. Fabrication of chitosan/silica nanofibrous adsorbent functionalized with amine groups for the removal of Ni (II), Cu (II) and Pb (II) from aqueous solutions: Batch and column studies
Du et al. Biomass-derived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range
CN100522814C (en) Method for purifying aqueous alkaline solution
Zhou et al. Adsorption of Hg (II) in aqueous solutions using mercapto‐functionalized alkali lignin
Sharma et al. An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst
Candido et al. Adsorption and identification of traces of dyes in aqueous solutions using chemically modified eggshell membranes
Saman et al. Selective biosorption of aurum (III) from aqueous solution using oil palm trunk (OPT) biosorbents: Equilibrium, kinetic and mechanism analyses
Lin et al. Development of polyethyleneimine-starch fibers stable over the broad pH range for selective adsorption of gold from actual leachate solutions of waste electrical and electronic equipment
Lin et al. Development of quaternized polyethylenimine-cellulose fibers for fast recovery of Au (CN) 2-in alkaline wastewater: Kinetics, isotherm, and thermodynamic study
Zeytuncu et al. Synthesis and adsorption application of in situ photo-cross-linked electrospun poly (vinyl alcohol)-based nanofiber membranes
JP6608266B2 (en) Platinum group metal colloidal particle recovery material, filter including the recovery material, and platinum group metal colloidal particle recovery method using the recovery material
Zhang et al. Drying enables multiple reuses of activated carbon without regeneration
Asadi-Kesheh et al. Bagasse-based adsorbents for gold recovery from aqueous solutions
JP6401814B2 (en) Method for recovering precious metal from hydrochloric acid acidic Sn-containing precious metal catalyst recovery liquid
Rajesh et al. Preparation, characterization and Pd (II) adsorption characteristics of chitosan–AC composites from electroless plating solutions
Cui et al. Chitosan derived layered porous carbon and its performance on gallium adsorption
JP6247088B2 (en) Method for recovering precious metal from hydrochloric acid acidic Sn-containing precious metal catalyst recovery liquid
JP6236311B2 (en) Method for recovering precious metal from hydrochloric acid acidic Sn-containing precious metal catalyst recovery liquid
JP6617957B2 (en) Copper removal material for electroless palladium plating solution
CN116529207A (en) Carbonaceous material, process for producing the same, fluorine-containing organic compound removing material, filter for water purification, and water purifier
Li et al. Adsorption of Ni (II) by a thermo-sensitive colloid: methylcellulose/calcium alginate beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150