JP6615012B2 - 無効電力補償装置 - Google Patents

無効電力補償装置 Download PDF

Info

Publication number
JP6615012B2
JP6615012B2 JP2016049867A JP2016049867A JP6615012B2 JP 6615012 B2 JP6615012 B2 JP 6615012B2 JP 2016049867 A JP2016049867 A JP 2016049867A JP 2016049867 A JP2016049867 A JP 2016049867A JP 6615012 B2 JP6615012 B2 JP 6615012B2
Authority
JP
Japan
Prior art keywords
voltage
phase
vector
cell group
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016049867A
Other languages
English (en)
Other versions
JP2017169272A (ja
Inventor
洋一 大森
隆行 唐木
達矢 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Energy Support Corp
Original Assignee
Toyo Electric Manufacturing Ltd
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd, Energy Support Corp filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2016049867A priority Critical patent/JP6615012B2/ja
Publication of JP2017169272A publication Critical patent/JP2017169272A/ja
Application granted granted Critical
Publication of JP6615012B2 publication Critical patent/JP6615012B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Description

本発明は、三相交流電力系統の不平衡電圧を補償する無効電力補償装置に関するものである。
従来、三相交流電力系統の不平衡電圧を補償する機能を有する無効電力補償装置が知られている(例えば、特許文献1参照)。以下、特許文献1に記載の無効電力補償装置について説明する。
図4は、特許文献1に記載の無効電力補償装置の構成を示すブロック図である。各セル50は、図5に示すように、コンデンサ51を電源とした単相フルブリッジインバータ52に出力端子を持つ構成である。セル50が各相にN段に直列に接続されたものがY結線(スター結線)され、リアクトル(三相リアクトル)41を介して三相交流電力系統30に接続されている。ここで、1段目の3つのセル50を1段目セル群60−1とし、2段目の3つのセル50を2段目セル群60−2とし、N段目の3つのセル50をN段目セル群60−Nとする。
系統位相検出器10は、三相交流電力系統30の電圧位相θを検出する。リアクトル電流座標変換器11は、電流センサ40で検出された、リアクトル41の電流を、三相交流電力系統30の電圧と同方向成分である有効成分id、及び有効成分idに直交する無効成分iqに変換する。電流制御器12は、リアクトル41の電流の有効成分指令idr及び無効成分指令iqrを入力とし、id及びiqがそれぞれに追従するような電圧指令ベクトルVdqを出力する。直交静止座標変換器13は、電圧指令ベクトルVdqを直交静止座標のab座標に変換した出力電圧指令ベクトルVabを出力する。
三相変換器14は、出力電圧指令ベクトルVabを三相の電圧指令Vu,Vv,Vwに変換する。零相電圧演算器15は、式(1)により零相電圧V0を算出する。ここで、
Figure 0006615012
はフェーザ表示であり、それぞれ三相交流電力系統30の電圧の正相分と逆相分、及びリアクトル41の電流の正相分と逆相分である。
Figure 0006615012
加算器16は、三相の電圧指令Vu,Vv,Vwに零相電圧V0を加算する。N個のキャリア比較器17(17−1〜17−N)は、零相分を加算した各相電圧指令と、それぞれ位相の異なるキャリアとを比較(PWM制御)し、その結果をスイッチング信号(PWM信号)として、それぞれ対応する段のセル群60−1〜60−Nに出力する。
各相電圧指令に零相電圧V0を加算することで、三相交流電力系統30の1周期間の各セル50の出力電力が零になる。したがって、三相交流電力系統30の不平衡電圧を補償するためにリアクトル41の電流に不平衡成分を流しても、各セル50のコンデンサ電圧を1周期の平均値で一定に維持することができる。
特開2013−005694号公報
しかし、図4に示した従来方式では、すべてのセル50をPWM制御する必要がある。リアクトル41に印加される高調波成分を所定値以下にするためには、各セル50のスイッチング周波数を上げるか、セル50の段数を増やさなければならない。スイッチング周波数を上げて段数を少なくした場合、各セル50のスイッチング素子の耐圧を上げる必要があるが、一般に耐圧の高いスイッチング素子のスイッチング損失は大きくなり、スイッチング周波数も上がるので、損失が増大してしまう。また、セル50の段数を多くした場合、各セル50のスイッチング周波数とスイッチング素子の耐圧を低くできるのでスイッチング損失は低くできるが、通過するスイッチング素子数が多くなるので導通損失が増大してしまう。
かかる事情に鑑みてなされた本発明の目的は、PWM制御を行うセルを限定することによりリアクトルに印加される高調波成分を低減するとともに、不平衡電圧の補償を行っても各セルのコンデンサ電圧を制御することが可能な無効電力補償装置を提供することにある。
上記課題を解決するため、本発明に係る無効電力補償装置は、コンデンサを電源とする単相フルブリッジインバータをセルとし、リアクトルを介して三相交流電力系統のU相、V相、W相にそれぞれ接続される3つのセルである高圧セル群と、前記高圧セル群に直列接続される3つのセルである中圧セル群と、前記中圧セル群に直列接続される3つのセルである低圧セル群とを備える無効電力補償装置であって、前記リアクトルを流れるリアクトル電流に基づく出力電圧指令ベクトルを回転座標変換して高圧指令ベクトルを生成する回転座標変換器と、前記高圧セル群が出力可能な高圧電圧ベクトルの中から、前記高圧指令ベクトルを前記高圧セル群内のコンデンサ電圧が第1の指令値に近づくように補正したものに最も近い高圧電圧ベクトルを選択し、対応するスイッチング信号を前記高圧セル群に出力する高圧スイッチング信号選択器と、前記中圧セル群が出力可能な中圧電圧ベクトルの中から、前記出力電圧指令ベクトルと選択された前記高圧電圧ベクトルとの差分ベクトルである中圧指令ベクトルを前記中圧セル群内のコンデンサ電圧が第2の指令値に近づくように補正したものに最も近い中圧電圧ベクトルを選択し、対応するスイッチング信号を前記中圧セル群に出力する中圧スイッチング信号選択器と、前記中圧指令ベクトルと選択された前記中圧電圧ベクトルとの差分ベクトルである低圧指令ベクトルが、前記低圧セル群の出力電圧ベクトルの所定期間の平均値に一致するPWM信号を前記低圧セル群に出力する低圧スイッチング信号選択器と、を備えることを特徴とする。
さらに、本発明に係る無効電力補償装置において、前記中圧スイッチング信号選択器は、前記中圧電圧ベクトルを出力するためのスイッチング状態が複数存在する場合には、前記リアクトルに流れる各相電流、及び前記中圧セル群の各相コンデンサ電圧を用いて求められる評価関数の値に応じてスイッチング状態を選択することを特徴とする。
さらに、本発明に係る無効電力補償装置において、前記低圧スイッチング信号選択器は、前記低圧指令ベクトルを三相の電圧指令に変換して、前記低圧セル群の各セルのコンデンサ電圧とその指令値との差が小さくなるように求められる低圧コンデンサ電圧補正零相電圧、及び前記三相交流電力系統の1周期における低圧セル群の各セルの入出力電力を0とするための零相電圧を加算し、PWM制御することにより前記PWM信号を生成することを特徴とする。
本発明によれば、PWM制御を行うセルを低圧セル群に限定することによりスイッチングによる電力損失を抑え、かつリアクトルに印加される高調波成分を低減することができる。また、PWM制御を行うセルを限定しても、不平衡電圧の補償を行っても各セルのコンデンサ電圧を制御することができる。
本発明の一実施形態に係る無効電力補償装置の構成例を示すブロック図である。 U相電流とU相高圧セルの出力電圧の波形例を示す図である。 本発明の一実施形態に係る無効電力補償装置における高圧セル群及び中圧セル群が出力可能な電圧ベクトルを示す図である。 従来の無効電力補償装置の構成例を示すブロック図である。 セルの構成を示す回路図である。
以下、本発明の一実施形態について、図面を参照して詳細に説明する。
図1に、本発明の一実施形態に係る無効電力補償装置の構成例を示す。図1に示す例では、無効電力補償装置1は、リアクトル(三相リアクトル)41を介して三相交流電力系統30のU相、V相、W相にそれぞれ接続される3つのセル50−HU,50−HV,50−HWである高圧セル群70−1と、高圧セル群70−1に直列接続される3つのセル50−MU,50−MV,50−MWである中圧セル群70−2と、中圧セル群70−2に直列接続される3つのセル50−LU,50−LV,50−LWである低圧セル群70−3とを備える。
セル50−HU,50−HV,50−HW,50−MU,50−MV,50−MW,50−LU,50−LV,及び50−LWの構成は同じであり、図5に示したように、コンデンサ51を電源とした単相フルブリッジインバータ52に出力端子を持つ構成である。以下の説明において、特にこれら9つのセルを区別しない場合には、単に「セル50」と称する。
セル50が各相に3段に直列に接続されたものがY結線(スター結線)され、リアクトル41を介して三相交流電力系統30に接続される。無効電力補償装置1は、低圧セル群70−3(すなわち、一部のセル50)のみPWM制御し、他のセル50は必要最小限のスイッチング周波数で動作させる。中圧セル群70−2の各セル50のコンデンサ電圧VMは、高圧セル群70−1の各セル50のコンデンサ電圧VH以下であり、低圧セル群70−3の各セル50のコンデンサ電圧VLは、中圧セル群の各セル50のコンデンサ電圧VM以下である。
また、無効電力補償装置1は、系統位相検出器10と、リアクトル電流座標変換器11と、電流制御器12と、直交静止座標変換器13と、回転座標変換器18と、高圧スイッチング信号選択器19と、中圧スイッチング信号選択器20と、低圧スイッチング信号選択器21とを備える。
系統位相検出器10は、三相交流電力系統30の電圧位相θを検出する。
リアクトル電流座標変換器11は、電流センサ40で検出された、リアクトル41を流れるリアクトル電流を、三相交流電力系統30の電圧と同方向成分である有効成分id、及び有効成分idに直交する無効成分iqに変換する。
電流制御器12は、リアクトル41の電流の有効成分指令idr及び無効成分指令iqrを入力とし、リアクトル電流の有効成分id及び無効成分iqがそれぞれに追従するような電圧指令ベクトルVdqを出力する。
直交静止座標変換器13は、電圧指令ベクトルVdqを直交静止座標のab座標に変換した電圧指令ベクトル(出力電圧指令ベクトル)Vabを出力する。
ここで、三相交流電力系統30の不平衡電圧を補償するための電流をリアクトル41に流した場合について説明する。リアクトル電流座標変換器11が出力する有効電流成分id及び無効電流成分iqは、式(2)で表される。式(2)の右辺第1項は、三相交流電力系統30の力率や電圧の大きさを制御するための電流である。なおidmはほぼ零なので、以降はidm=0とする。式(2)の右辺第2項が三相交流電力系統30の不平衡電圧を補償するための電流であり、Irはその成分の大きさであり、ξはその成分の位相を表している。
Figure 0006615012
図2に、高圧セル群70−1のU相セルであるセル50−HUの出力電圧VuoHとU相電流iuとの波形例を示す。各相電流iu,iv,iwは式(3)のようになり、U相を例に取ると図2の一点鎖線の波形となり、不平衡電圧を補償電流によりβuだけ位相がずれることが分かる。βuは、式(4)で表される。βv,βwは、それぞれ式(5),(6)で表される。
Figure 0006615012
回転座標変換器18は、リアクトル電流又はその指令に応じた角度だけ出力電圧指令ベクトルVabを回転座標変換して高圧指令ベクトルVHrを生成し、高圧スイッチング信号選択器19に出力する。例えば電圧位相θが60≦θ<120や240≦θ<300の場合は式(4)のβuを選択し、0≦θ<60や180≦θ<240の場合は式(5)のβvを選択し、−60≦θ<0や120≦θ<180の場合は式(6)のβwを選択する。そうすると、三相交流電力系統30の不平衡電圧を補償するための電流をリアクトル41に流した場合でも、例えばU相の場合において、図2に示されるように一点鎖線のU相電流iuの場合に、U相高圧セル50−HUの出力電圧VuoHの位相をβuだけずらして、下側に示す一点鎖線の波形とすることができ、U相電流iuとU相出力電圧VuoHの位相差を90度とすることができる。そのため、三相交流電力系統電圧の半周期間のU相高圧セル50−HUの平均出力電力は0となり、コンデンサ電圧は変化しないことになる。V相やW相も同様となる。
図3は、高圧セル群70−1及び中圧セル群70−2が出力可能な電圧ベクトルを示す図である。黒丸は出力可能な電圧ベクトルの頂点を表し、カッコ内の数値は左からU,V,W相の順に各セル50の出力電圧の極性を表している。また、1は正のコンデンサ電圧、0は0電圧、−1は負のコンデンサ電圧を意味している。1つの黒丸に対して括弧が2つ以上あるのは、1つの電圧ベクトルに対して複数のスイッチング状態が存在することを意味する。
高圧スイッチング信号選択器19は、図3に示される高圧セル群70−1が出力可能な19種類の高圧電圧ベクトルの中から、高圧指令ベクトルVHrを高圧セル群70−1内のコンデンサ電圧がその指令値VHcrに近づくように補正したものに最も近い高圧電圧ベクトルを選択し、対応するスイッチング信号を高圧セル群70−1に出力する。該補正は、具体的には、高圧指令ベクトルVHrに高圧コンデンサ電圧補正ベクトルVHcを加算することで行われる。
高圧コンデンサ電圧補正ベクトルVHcは、高圧セル群70−1の各セル50のコンデンサ電圧VHcU,VHcV,VHcWと、その指令値VHcrとの差が小さくなるように求められる。例えば、VHcの各軸成分は、式(7)及び式(8)で求めることができる。ここで、GU,GV,GWはリアクトル41の各相電流の単位正弦波であり、KHは補正ゲインである。
Figure 0006615012
中圧スイッチング信号選択器20は、図3に示される中圧セル群70−2が出力可能な19種類の中圧電圧ベクトルの中から、出力電圧指令ベクトルVabと高圧スイッチング信号選択器19で選択された高圧電圧ベクトルとの差分ベクトルである中圧指令ベクトルVMrを中圧セル群70−2内のコンデンサ電圧がその指令値VMcrに近づくように補正したものに最も近い中圧電圧ベクトルを選択し、対応するスイッチング信号を中圧セル群70−2に出力する。該補正は、具体的には、中圧指令ベクトルVMrに中圧コンデンサ電圧補正ベクトルVMcを加算することで行われる。
中圧コンデンサ電圧補正ベクトルVMcは、中圧セル群70−2の各セル50の各コンデンサ電圧VMcU,VMcV,VMcWと、その指令値VMcrとの差が小さくなるように求められる。例えば、VMcの各軸成分は、式(9)及び式(10)で求めることができる。ここで、GU,GV,GWはリアクトル41の各相電流の単位正弦波であり、KMは補正ゲインである。
Figure 0006615012
図3に示されるように、内側の黒丸で示される電圧ベクトルにはそれぞれ複数のスイッチング状態がある。よって、中圧スイッチング信号選択器20は、リアクトル41に流れる各相電流iu,iv,iw、及び中圧セル群70−2の各セル50のコンデンサ電圧VMcU,VMcV,VMcWを用いて求められる評価関数Eの値に応じてスイッチング状態を選択するのが好適である。例えば、それぞれのスイッチング状態において式(11)の評価関数Eの値を求めて、その値が大きい方のスイッチング状態を選択して出力する。なお、評価関数Eを用いないで三相不平衡電圧補償する場合、補正ゲインKMを大きくすれば中圧セル群70−2内のコンデンサ電圧をその指令値VMcrにすることが一応可能ではあるが、制御が不安定になりやすく困難となる。
Figure 0006615012
ここで、VuoM,VvoM,VwoMは、それぞれ各スイッチング状態での中圧セル群70−2の各セル50の出力電圧である。式(11)の評価関数Eは、中圧セル群70−2の各セル50のコンデンサ電圧とその指令値VMcrとの偏差が小さくなるスイッチング状態ほど正の方向に大きな値となることから、この評価関数Eの値が最も大きなスイッチング状態を選択することで、中圧セル群70−2の各セル50のコンデンサ電圧を指令値VMcrに追従させることができる。
低圧スイッチング信号選択器21は、中圧指令ベクトルVMrと中圧スイッチング信号選択器20で選択された中圧電圧ベクトルとの差分ベクトルである低圧指令ベクトルVLrが、低圧セル群70−3の出力電圧ベクトルの所定期間の平均値に一致するPWM信号を低圧セル群70−3に出力する。そのために、低圧指令ベクトルVLrを三相の電圧指令に変換して、低圧コンデンサ電圧補正零相電圧VLc0及び所定の零相電圧v0を加算し、それぞれキャリア比較(PWM制御)することにより、スイッチング信号(PWM信号)を生成し、低圧セル群70−3に出力する。
低圧コンデンサ電圧補正零相電圧VLc0は、低圧セル群70−3の各セル50のコンデンサ電圧VLcU,VLcV,VLcWと、その指令値VLcrとの差が小さくなるように求められる。例えば、式(12)で得られる。ここで、GU,GV,GWはリアクトル41の各相電流の単位正弦波であり、KLは補正ゲインである。
Figure 0006615012
また、零相電圧v0は式(13)により算出される。この式の零相電圧v0は、三相交流電力系統30の1周期における低圧セル群70−3の各セル50の入出力電力を0とするための電圧であり、三相交流電力系統30の不平衡電圧を補償するためのリアクトル41に流す電流を式(2)として求めたものである。ここで、VL0は式(14)で表され、ψは式(15)で表される。また式(14)のVLdは、低圧指令ベクトルVLrの有効成分である。式(14)及び式(15)は、式(2)の電流と式(13)の零相電圧v0の条件における各相の電流と電圧との積で表される低圧セル群70−3の各セル50の出力電力の1周期の積分値が0となる条件で導出される。
Figure 0006615012
次に、高圧コンデンサ電圧補正ベクトルVHcにより、高圧セル群70−1の各セル50のコンデンサ電圧を制御できる原理を、図2を参照して説明する。
リアクトル41の電流の有効成分指令idrはほぼ零なので、図2に示されるように電圧と電流の位相差はほぼ90度となる。したがって、三相交流電力系統電圧の半周期間のU相高圧セル50−HUの平均出力電力は0となり、コンデンサ電圧は変化しないことになる。しかし、電圧と電流の位相差が90度から少しずれるだけでU相高圧セル50−HUのコンデンサ電圧は変化する。その変化を抑制するために、高圧コンデンサ電圧補正ベクトルVHcを使って指令電圧ベクトルを少し補正することで、例えば破線で示された電圧波形となるように電圧位相を修正している。図2の破線の場合は、U相高圧セル50−HUのコンデンサ電圧は増加するようになる。なお、電圧補正ベクトルは、各相個別に設定できないので、式(7),(8)に示されるように、各相の重み付けと極性を兼ねたGU,GV,GWを用いて高圧コンデンサ電圧補正ベクトルVHcを求めている。中圧コンデンサ電圧補正ベクトルVMcによる中圧セル群70−2の各セル50のコンデンサ電圧を制御できる原理も同様である。
次に、低圧コンデンサ電圧補正零相電圧VLc0によって、低圧セル群70−3の各セル50のコンデンサ電圧を制御できる原理を説明する。低圧セル群70−3の各セル50の出力電圧の平均値は零相電圧に比例する。したがって、例えば、iu>0かつ正の零相電圧、又はiu<0かつ負の零相電圧とすると、低圧セル群70−3のU相セル50−LUのコンデンサ電圧は増加する。零相電圧を各相個別の値にすることはできないので、各相の重み付けと極性を兼ねたGU,GV,GWによる零相電圧としている。
なお、回転座標変換器18を備えない構成とすることも考えられるが、その場合には、図2からも分かるように、電圧と電流の位相差が90度からβu分だけ定常的に大きくずれる。そのため、補正ゲインKHを大きくする必要があるが、そうすると制御が不安定になりやすいことから、高圧コンデンサ電圧補正ベクトルVHcで高圧セル群70−1の各セル50のコンデンサ電圧を制御することが困難となる。
上述したように、無効電力補償装置1は、セル50の段数を3段と少なくし、各段のコンデンサ電圧を高圧、中圧、低圧の異なる値として、高圧と中圧のセル50はPWM制御を行わず必要最低限のスイッチング周波数で動作させ、低圧のセル50のみ高いスイッチング周波数でPWM制御する。セル50の段数が少ないので導通損失を低くでき、耐圧が低くてスイッチング損失が小さい低圧のセル50のみPWM制御することからスイッチング損失も低くできるので無効電力補償装置1の総合損失を小さくすることができる。
上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
このように、本発明は、三相交流電力系統の不平衡電圧を補償する無効電力補償装置に利用することができる。
1 無効電力補償装置
10 系統位相検出器
11 リアクトル電流座標変換器
12 電流制御器
13 直交静止座標変換器
18 回転座標変換器
19 高圧スイッチング信号選択器
20 中圧スイッチング信号選択器
21 低圧スイッチング信号選択器
30 三相交流電力系統
40 電流センサ
41 リアクトル
50 セル
51 コンデンサ
52 単相フルブリッジインバータ
70−1 高圧セル群
70−2 中圧セル群
70−3 低圧セル群

Claims (3)

  1. コンデンサを電源とする単相フルブリッジインバータをセルとし、リアクトルを介して三相交流電力系統のU相、V相、W相にそれぞれ接続される3つのセルである高圧セル群と、前記高圧セル群に直列接続される3つのセルである中圧セル群と、前記中圧セル群に直列接続される3つのセルである低圧セル群とを備える無効電力補償装置であって、
    前記リアクトルを流れるリアクトル電流に基づく出力電圧指令ベクトルを回転座標変換して高圧指令ベクトルを生成する回転座標変換器と、
    前記高圧セル群が出力可能な高圧電圧ベクトルの中から、前記高圧指令ベクトルを前記高圧セル群内のコンデンサ電圧が第1の指令値に近づくように補正したものに最も近い高圧電圧ベクトルを選択し、対応するスイッチング信号を前記高圧セル群に出力する高圧スイッチング信号選択器と、
    前記中圧セル群が出力可能な中圧電圧ベクトルの中から、前記出力電圧指令ベクトルと選択された前記高圧電圧ベクトルとの差分ベクトルである中圧指令ベクトルを前記中圧セル群内のコンデンサ電圧が第2の指令値に近づくように補正したものに最も近い中圧電圧ベクトルを選択し、対応するスイッチング信号を前記中圧セル群に出力する中圧スイッチング信号選択器と、
    前記中圧指令ベクトルと選択された前記中圧電圧ベクトルとの差分ベクトルである低圧指令ベクトルが、前記低圧セル群の出力電圧ベクトルの所定期間の平均値に一致するPWM信号を前記低圧セル群に出力する低圧スイッチング信号選択器と、
    を備えることを特徴とする無効電力補償装置。
  2. 前記中圧スイッチング信号選択器は、前記中圧電圧ベクトルを出力するためのスイッチング状態が複数存在する場合には、前記リアクトルに流れる各相電流、及び前記中圧セル群の各相コンデンサ電圧を用いて求められる評価関数の値に応じてスイッチング状態を選択することを特徴とする、請求項1に記載の無効電力補償装置。
  3. 前記低圧スイッチング信号選択器は、前記低圧指令ベクトルを三相の電圧指令に変換して、前記低圧セル群の各セルのコンデンサ電圧とその指令値との差が小さくなるように求められる低圧コンデンサ電圧補正零相電圧、及び前記三相交流電力系統の1周期における低圧セル群の各セルの入出力電力を0とするための零相電圧を加算し、PWM制御することにより前記PWM信号を生成することを特徴とする、請求項1又は2に記載の無効電力補償装置。
JP2016049867A 2016-03-14 2016-03-14 無効電力補償装置 Active JP6615012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049867A JP6615012B2 (ja) 2016-03-14 2016-03-14 無効電力補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049867A JP6615012B2 (ja) 2016-03-14 2016-03-14 無効電力補償装置

Publications (2)

Publication Number Publication Date
JP2017169272A JP2017169272A (ja) 2017-09-21
JP6615012B2 true JP6615012B2 (ja) 2019-12-04

Family

ID=59910321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049867A Active JP6615012B2 (ja) 2016-03-14 2016-03-14 無効電力補償装置

Country Status (1)

Country Link
JP (1) JP6615012B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039182A (zh) * 2018-08-17 2018-12-18 三重能有限公司 一种谐振抑制方法及装置
CN109066716B (zh) * 2018-08-31 2021-12-07 深圳供电局有限公司 一种110kV变电站无功补偿单组容量选择和分组方法
CN110021938A (zh) * 2018-11-12 2019-07-16 国家电网有限公司 一种低压电路调节及补偿装置及其补偿方法
JP7322567B2 (ja) * 2019-07-24 2023-08-08 株式会社明電舎 モジュラー・マルチレベル・カスケード変換器
CN110739697B (zh) * 2019-10-21 2021-08-10 广东电网有限责任公司广州供电局 低压配电网低电压治理装置及治理方法
JP7409471B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ
JP7409470B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019823B2 (ja) * 2006-08-16 2012-09-05 三菱電機株式会社 無効電力補償装置
JP5753738B2 (ja) * 2011-06-21 2015-07-22 一般財団法人電力中央研究所 無効電力補償装置、無効電力補償方法、および無効電力補償プログラム

Also Published As

Publication number Publication date
JP2017169272A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6615012B2 (ja) 無効電力補償装置
JP6218961B2 (ja) 多重巻線電動機駆動制御装置
KR101460458B1 (ko) 매트릭스 컨버터
JP5658224B2 (ja) 回生型高圧インバータの制御装置
CN108966682B (zh) 逆变器控制装置
GB2394129A (en) Control of parallel connected bridge converters
KR102485705B1 (ko) 멀티 레벨 인버터의 3상 평형 전압 제어 방법
JP5192258B2 (ja) クランプ式電力変換装置
JP2011217501A (ja) 中性点昇圧方式の直流−三相変換装置
JP5580095B2 (ja) 系統連系インバータ装置
JP5375715B2 (ja) 中性点昇圧方式の直流−三相変換装置
JP2004304868A (ja) モーター制御装置
JP5147624B2 (ja) インバータ装置
JP5351390B2 (ja) 電力変換装置
JP2733724B2 (ja) 多巻線交流電動機の電流制御装置
JP2005269805A (ja) 交流交流電力変換器の制御装置
JP2009153297A (ja) 自励式変換器の制御装置
CN113746108B (zh) 一种t型三电平sapf开路故障序列模型预测容错控制方法
JPH04117137A (ja) 並列多重インバータ
KR101732028B1 (ko) 풍력 발전기 및 그의 계통연계점 불평형 전압 보상 제어 방법
JP7040077B2 (ja) 電力変換装置
JP2010226806A (ja) 電力変換装置
JP7322566B2 (ja) モジュラー・マルチレベル・カスケード変換器
JP2017022882A (ja) 電力変換装置
JP7249471B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6615012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150