JP6614244B2 - Fiber and stuffed cotton - Google Patents

Fiber and stuffed cotton Download PDF

Info

Publication number
JP6614244B2
JP6614244B2 JP2017559716A JP2017559716A JP6614244B2 JP 6614244 B2 JP6614244 B2 JP 6614244B2 JP 2017559716 A JP2017559716 A JP 2017559716A JP 2017559716 A JP2017559716 A JP 2017559716A JP 6614244 B2 JP6614244 B2 JP 6614244B2
Authority
JP
Japan
Prior art keywords
fiber
mass
inorganic particles
cotton
stuffed cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017559716A
Other languages
Japanese (ja)
Other versions
JPWO2018074544A1 (en
Inventor
志茉 中西
透雄 小野原
小林  秀章
泰行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2018074544A1 publication Critical patent/JPWO2018074544A1/en
Application granted granted Critical
Publication of JP6614244B2 publication Critical patent/JP6614244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/58Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads characterised by the coefficients of friction
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、繊維及び詰め綿に関する。
本願は、2016年10月19日に日本に出願された特願2016−204936号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to fibers and stuffed cotton.
This application claims priority based on Japanese Patent Application No. 2006-204936 for which it applied to Japan on October 19, 2016, and uses the content here.

アクリル繊維、ナイロン繊維、ポリエステル繊維等の各種繊維は、それぞれ柔軟な風合い、保温性、形態安定性、耐候性、染色性等の特徴を有しており、寝装、衣料品、インテリア分野に多用されている。   Various fibers such as acrylic fiber, nylon fiber, and polyester fiber have characteristics such as soft texture, heat retention, form stability, weather resistance, and dyeability, and are widely used in bedding, clothing and interior fields. Has been.

近年、羽毛の価格高騰があり、羽毛代替として衣料や寝装分野において化学繊維が中綿としての用途展開もされている。寝装寝具、ダウンジャケットなどの詰め綿として主に使用される羽毛は、風合いに富み、軽量で、保温性、嵩高性に優れ、更に圧縮後の回復率が高いことが知られている。しかしながら羽毛を得るためには、大量の水鳥の飼育が必要であり、多量の飼料を必要とするだけでなく、水鳥の排泄物による水質汚染、又は感染症の発生とその拡散という問題が生じている。また、羽毛を詰め綿として使用できるようにするためには、採毛、選別、消毒、及び脱脂といった多くの工程を経る必要がある。さらに、工程中に羽毛が舞い上がるため作業が繁雑になり、その結果、羽毛を詰め綿とした寝装寝具の価格は高い。   In recent years, the price of feathers has soared, and chemical fiber is being used as a batting in the clothing and bedding fields as a substitute for feathers. It is known that feathers mainly used as padding for bedding and down jackets are rich in texture, light in weight, excellent in heat retention and bulkiness, and have a high recovery rate after compression. However, in order to obtain feathers, it is necessary to raise a large amount of waterfowl, which not only requires a large amount of feed, but also causes water pollution due to waterfowl excretion, or the occurrence and spread of infectious diseases. Yes. Moreover, in order to be able to use feathers as stuffed cotton, it is necessary to go through many processes such as hair collection, selection, disinfection, and degreasing. Furthermore, since the feathers soar during the process, the work becomes complicated. As a result, the price of bedding made of cotton filled with feathers is high.

一方、衣料分野においては、合成繊維は天然繊維に比べ公定水分率が低く、吸放出性に乏しいことから、衣服として用いられる場合は高湿時において「むれ感」を生じたり、冬場の低温時には静電気を生じたりと、着用快適性においては好ましい素材とはいえない。   On the other hand, in the garment field, synthetic fibers have a lower official moisture content than natural fibers and have poor absorption and release properties. It is not a preferable material in terms of wearing comfort, such as generating static electricity.

これらの欠点を解消するため、例えば特許文献1には繊度4〜18dtexの中空ポリエステル繊維が提案されている。しかし、嵩高性を出すために太繊度であるために保温性はそれほど高いものではなかった。   In order to eliminate these drawbacks, for example, Patent Document 1 proposes a hollow polyester fiber having a fineness of 4 to 18 dtex. However, the heat retaining property was not so high due to the large fineness in order to achieve bulkiness.

特許文献2には、親水性に優れた水酸化カルシウム、水酸化マグネシウムなどの無機粒子を添加したポリエステル繊維や、特許文献3及び4にはシリカ系無機粒子を添加したポリエステル繊維が提案されているが、吸湿性を向上することが目的であり、嵩高性向上に関する記載はなかった。   Patent Document 2 proposes polyester fibers added with inorganic particles such as calcium hydroxide and magnesium hydroxide having excellent hydrophilicity, and Patent Documents 3 and 4 propose polyester fibers added with silica-based inorganic particles. However, the purpose is to improve the hygroscopicity, and there is no description regarding the improvement of bulkiness.

さらに、特許文献5には、吸湿発熱繊維として無機粒子がバインダーにより繊維表面上に固着された繊維が提案されている。   Furthermore, Patent Document 5 proposes a fiber in which inorganic particles are fixed on the fiber surface by a binder as a moisture-absorbing heat-generating fiber.

特開平8−188918号公報JP-A-8-188918 特開2001−192935号公報JP 2001-192935 A 特開2001−348733号公報JP 2001-348733 A 特開2002−363824号公報JP 2002-363824 A 特開2002−180375号公報JP 2002-180375 A

本発明の目的は、特定形状の繊維細孔が形成された繊維を使用した、合成繊維でありながら嵩高性に優れた詰め綿、及び嵩高性に優れた詰め綿に用いるための特定形状の繊維細孔が形成された繊維を提供することにある。   An object of the present invention is to use a fiber having a specific shape of fiber pores, a stuffed cotton having excellent bulkiness while being a synthetic fiber, and a fiber having a specific shape for use in stuffed cotton having excellent bulkiness The object is to provide a fiber in which pores are formed.

[1]平均粒子径が1〜20μmの無機粒子を繊維内部に含有し、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維。
[2]前記繊維(100質量%)中における、前記無機粒子の含有量が1〜15質量%である、[1]に記載の繊維。
[3]繊維間の静摩擦係数μが0.33〜0.45である、[1]又は[2]に記載の繊維。
[4]前記繊維がアクリル繊維である、[1]〜[3]のいずれかに記載の繊維。
[5]前記無機粒子に複数の細孔が形成されており、前記無機粒子の細孔容積が0.3〜2.0mL/gであり、前記無機粒子の比表面積が200〜800m/gである、[1]〜[4]のいずれかに記載の繊維。
[6]単繊維繊度が0.5〜20dtexであり、単繊維強度が1.8〜3.0cN/dtexであり、単繊維伸度が10〜50%である、[1]〜[5]のいずれかに記載の繊維。
[7]ダウンパワーが270〜400cm/gであり、Clo値が3〜5である、[1]〜[6]のいずれかに記載の繊維。
[8]温度20℃、湿度40%RHの環境から、温度20℃、湿度90%RHの環境まで変化させたときの最高到達繊維温度が24℃以上である、[1]〜[7]のいずれかに記載の繊維。
[9][1]〜[8]のいずれかに記載の繊維を用いた詰め綿。
[10]繊維Aを含有し、詰め綿(100質量%)中における繊維Aの含有量が50〜100質量%であり、ダウンパワーが270〜400cm/gである詰め綿であって、前記繊維Aは、平均粒子径が1〜20μmの無機粒子を繊維内部に含有する繊維である、詰め綿。
[11]前記繊維Aが、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維である、[10]に記載の詰め綿。
[12]Clo値が3〜5である、[10]又は[11]に記載の詰め綿。
[13]前記繊維A(100質量%)中における、前記無機粒子の含有量が1〜15質量%である、[10]〜[12]のいずれかに記載の詰め綿。
[14]前記繊維Aがアクリル繊維である、[10]〜[13]のいずれかに記載の詰め綿。
[15]前記無機粒子の細孔容積が0.3〜2.0mL/gであり、前記無機粒子の比表面積が200〜800m/gである、[10]〜[14]のいずれかに記載の詰め綿。
[16]前記繊維Aの繊維間静摩擦係数μが0.33〜0.45であり、前記繊維Aの単繊維繊度が0.5〜20dtexであり、前記繊維Aの単繊維強度が1.8〜3.0cN/dtexであり、前記繊維Aの単繊維伸度が10〜50%である、[10]〜[15]のいずれかに記載の詰め綿。
[17]さらに、前記繊維Aとは異なる化学繊維を含み、前記化学繊維の単繊維繊度が0.5〜2.2dtexである、[10]〜[16]のいずれかに記載の詰め綿。
[18]さらに、熱接着短繊維を含み、詰め綿(100質量%)中における、前記熱接着短繊維の含有量が5〜30質量%であり、前記熱接着短繊維の少なくとも一部が、前記繊維Aと接着している、[10]〜[17]のいずれかに記載の詰め綿。
[1] Inorganic fibers having an average particle diameter of 1 to 20 μm are contained inside the fiber, and fiber pores having a maximum width of 0.1 to 5 μm and a maximum length of 1 to 50 μm are formed in the fiber cross section in the fiber axis direction. Fibers.
[2] The fiber according to [1], wherein the content of the inorganic particles in the fiber (100% by mass) is 1 to 15% by mass.
[3] The fiber according to [1] or [2], wherein a coefficient of static friction μs between fibers is 0.33 to 0.45.
[4] The fiber according to any one of [1] to [3], wherein the fiber is an acrylic fiber.
[5] A plurality of pores are formed in the inorganic particles, the pore volume of the inorganic particles is 0.3 to 2.0 mL / g, and the specific surface area of the inorganic particles is 200 to 800 m 2 / g. The fiber according to any one of [1] to [4].
[6] The single fiber fineness is 0.5 to 20 dtex, the single fiber strength is 1.8 to 3.0 cN / dtex, and the single fiber elongation is 10 to 50%. [1] to [5] The fiber in any one of.
[7] The fiber according to any one of [1] to [6], wherein the down power is 270 to 400 cm 3 / g and the Clo value is 3 to 5.
[8] The maximum fiber temperature when the temperature is changed from an environment having a temperature of 20 ° C. and a humidity of 40% RH to an environment having a temperature of 20 ° C. and a humidity of 90% RH is 24 ° C. or higher, [1] to [7] The fiber according to any one of the above.
[9] A cotton pad using the fiber according to any one of [1] to [8].
[10] A stuffed cotton containing fiber A, wherein the content of fiber A in stuffed cotton (100% by mass) is 50 to 100% by mass, and the down power is 270 to 400 cm 3 / g, The fiber A is a stuffed cotton which is a fiber containing inorganic particles having an average particle diameter of 1 to 20 μm inside the fiber.
[11] The fiber A according to [10], wherein the fiber A is a fiber in which fiber pores having a maximum width of 0.1 to 5 μm and a maximum length of 1 to 50 μm are formed in a fiber cross section in the fiber axis direction. Stuffed cotton.
[12] The stuffed cotton according to [10] or [11], wherein the Clo value is 3 to 5.
[13] The stuffed cotton according to any one of [10] to [12], wherein the content of the inorganic particles in the fiber A (100% by mass) is 1 to 15% by mass.
[14] The stuffed cotton according to any one of [10] to [13], wherein the fiber A is an acrylic fiber.
[15] The pore volume of the inorganic particles is 0.3 to 2.0 mL / g, and the specific surface area of the inorganic particles is 200 to 800 m 2 / g. Filled cotton as described.
[16] The inter-fiber static friction coefficient μs of the fiber A is 0.33 to 0.45, the single fiber fineness of the fiber A is 0.5 to 20 dtex, and the single fiber strength of the fiber A is 1. The stuffed cotton according to any one of [10] to [15], which is 8 to 3.0 cN / dtex, and the single fiber elongation of the fiber A is 10 to 50%.
[17] The stuffed cotton according to any one of [10] to [16], further including a chemical fiber different from the fiber A, wherein the single fiber fineness of the chemical fiber is 0.5 to 2.2 dtex.
[18] Further, the heat-bonded short fibers include a heat-bonded short fiber, and the content of the heat-bonded short fibers in the stuffed cotton (100% by weight) is 5 to 30% by weight. The cotton pad according to any one of [10] to [17], which is bonded to the fiber A.

本発明によれば、平均粒子径1〜20μmの無機粒子が繊維中に練り込まれることによって、繊維中に特定形状の繊維細孔が形成され、嵩高性に優れた繊維を得ることができ、その繊維を用いて嵩高性に優れた詰め綿を得ることができる。
本発明の繊維は、優れた嵩高性に加え、保湿性、及び吸湿発熱性を備える。
According to the present invention, inorganic particles having an average particle diameter of 1 to 20 μm are kneaded into the fibers, whereby fiber pores having a specific shape are formed in the fibers, and fibers having excellent bulkiness can be obtained. Using the fibers, it is possible to obtain stuffed cotton having excellent bulkiness.
The fiber of the present invention has moisture retention and moisture absorption exotherm in addition to excellent bulkiness.

本発明の繊維の繊維軸方向の繊維断面図を示す。図1中、矢印の方向は繊維軸方向を示す。The fiber sectional view of the fiber axis direction of the fiber of the present invention is shown. In FIG. 1, the direction of the arrow indicates the fiber axis direction.

[繊維]
本発明の繊維は、平均粒子径が1〜20μmの無機粒子を繊維内部に含有し、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維である。
[fiber]
The fiber of the present invention contains inorganic particles having an average particle diameter of 1 to 20 μm inside the fiber, and the fiber cross section in the fiber axis direction has a maximum width of 0.1 to 5 μm and a maximum length of 1 to 50 μm. It is a fiber in which holes are formed.

本発明の繊維に含有される無機粒子の平均粒子径は1〜20μmである。
無機粒子の平均粒子径が1μm以上であれば、繊維軸方向に繊維細孔が存在しやすくなり、20μm以下であれば、紡糸性が良好になりやすい。これらの観点から、無機粒子の平均粒子径は、1〜10μmがより好ましく、2〜5μmがさらに好ましい。
The average particle diameter of the inorganic particles contained in the fiber of the present invention is 1 to 20 μm.
If the average particle diameter of the inorganic particles is 1 μm or more, fiber pores tend to exist in the fiber axis direction, and if it is 20 μm or less, the spinnability tends to be good. From these viewpoints, the average particle diameter of the inorganic particles is more preferably 1 to 10 μm, and further preferably 2 to 5 μm.

本発明の繊維において、繊維軸方向の繊維断面に形成された繊維細孔の最大幅は、0.1〜5μmである。
繊維細孔の最大幅が0.1μm以上であれば、嵩高性を高くしやすく、5μm以下であれば、繊維の折損を少なくしやすい。これらの観点から、繊維細孔の最大幅は、1〜4μmがより好ましく、2〜3μmがさらに好ましい。
本発明の繊維において、繊維細孔の最大幅とは、繊維軸方向の繊維断面に形成された、ある一つの繊維細孔断面の短径方向における幅のうち、最大値をとる部分の幅を言う。図1においては、繊維細孔の最大幅はBで示されている。
In the fiber of the present invention, the maximum width of the fiber pore formed in the fiber cross section in the fiber axis direction is 0.1 to 5 μm.
If the maximum width of the fiber pore is 0.1 μm or more, the bulkiness is easily increased, and if it is 5 μm or less, the fiber breakage is easily reduced. From these viewpoints, the maximum width of the fiber pore is more preferably 1 to 4 μm, and further preferably 2 to 3 μm.
In the fiber of the present invention, the maximum width of the fiber pore is defined as the width of the portion taking the maximum value among the widths in the minor axis direction of one fiber pore cross section formed in the fiber cross section in the fiber axis direction. say. In FIG. 1, the maximum width of the fiber pores is indicated by B.

本発明の繊維において、繊維軸方向の繊維断面に形成された繊維細孔の最大長さは、1〜50μmである。
最高の最大長さが1μm以上であれば、嵩高性を高くしやすく、50μm以下であれば、繊維の折損を少なくしやすい。これらの観点から、繊維細孔の最大長さは、10〜45μmがより好ましく、20〜40μmがさらに好ましい。
本発明の繊維において、繊維細孔の最大長さとは、繊維軸方向の繊維断面に形成された、ある一つの繊維細孔断面の長径方向における長さのうち、最大値をとる部分の長さを言う。図1においては、繊維細孔の最大長さはAで示されている。
In the fiber of the present invention, the maximum length of the fiber pore formed in the fiber cross section in the fiber axis direction is 1 to 50 μm.
If the maximum maximum length is 1 μm or more, the bulkiness is easily increased, and if it is 50 μm or less, fiber breakage is easily reduced. From these viewpoints, the maximum length of the fiber pore is more preferably 10 to 45 μm, and further preferably 20 to 40 μm.
In the fiber of the present invention, the maximum length of the fiber pore is the length of the portion that takes the maximum value among the lengths in the major axis direction of one fiber pore section formed in the fiber section in the fiber axis direction. Say. In FIG. 1, the maximum length of the fiber pore is indicated by A.

本発明の繊維(100質量%)中に含まれる無機粒子の含有量は、1〜15質量%であることが好ましい。
無機粒子の含有量が1質量%以上であれば、詰め綿にした時に、詰め綿のダウンパワーを高くしやすく、15質量%以下であれば、紡糸中の繊維切れを少なくしやすく、紡糸性が良好となる。これらの観点から、無機粒子の含有量は、1〜10質量%がより好ましく、3〜8質量%がさらに好ましい。
The content of inorganic particles contained in the fiber (100% by mass) of the present invention is preferably 1 to 15% by mass.
If the content of the inorganic particles is 1% by mass or more, it is easy to increase the down power of the stuffed cotton when the stuffed cotton is used. Becomes better. From these viewpoints, the content of the inorganic particles is more preferably 1 to 10% by mass, and further preferably 3 to 8% by mass.

本発明の繊維に含まれる無機粒子は、シリカ系無機微粒子であることが好ましい。
具体的には無機粒子(100質量%)のうち、50質量%以上がSiOで構成される無機粒子であり、無機粒子(100質量%)中のSiOの含有量は95質量%以上がより好ましい。SiOは、湿式シリカであることが、細孔容積、比表面積が大きく、繊維中の繊維細孔を大きくできる点から好ましく、具体的には、ホワイトカーボン、シリカゾル、シリカゲル、合成シリカが挙げられる。
The inorganic particles contained in the fiber of the present invention are preferably silica-based inorganic fine particles.
Specifically among the inorganic particles (100 mass%) is more than 50 mass% is an inorganic particles composed of SiO 2, the SiO 2 content in the inorganic particles (100 mass%) is more than 95 wt% More preferred. SiO 2 is preferably wet silica from the viewpoint that the pore volume and specific surface area are large and the fiber pores in the fiber can be enlarged, and specific examples include white carbon, silica sol, silica gel, and synthetic silica. .

本発明の繊維は、繊維間の静摩擦係数μが0.33〜0.45であることが好ましい。
静摩擦係数μが0.33以上であれば、詰め綿の形状が維持しやすく、嵩高性を高くしやすくなり、0.45以下であれば、詰め綿の復元性が良好となりやすい。これらの観点から、静摩擦係数μは、0.34〜0.42であることがより好ましい。
The fibers of the present invention preferably have a coefficient of static friction μs between fibers of 0.33 to 0.45.
If the static friction coefficient μ s is 0.33 or more, the shape of the stuffed cotton is easy to maintain and the bulkiness is easily increased, and if it is 0.45 or less, the resilience of the stuffed cotton tends to be good. From these viewpoints, the static friction coefficient μ s is more preferably 0.34 to 0.42.

本発明の繊維は、アクリル繊維であることが好ましい。
アクリル繊維とすることで、繊維内部に繊維細孔を形成しやすくなる。
The fibers of the present invention are preferably acrylic fibers.
By using acrylic fiber, fiber pores can be easily formed inside the fiber.

本発明の繊維がアクリル繊維である場合、アクリル繊維に使用するアクリロニトリル単位を主要な構成単位とするアクリロニトリル系共重合体は、80質量%以上のアクリロニトリル単位からなり、他にアクリロニトリルと共重合可能ないかなる単量体をも合わせ用いることが可能である。例えば、アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル、スチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、ビニルエチルエーテル、メタクリロニトリル等の中性単量体、アクリル酸、メタクリル酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルフォン酸等の酸性単量体及びこれら単量体のアンモニウム塩、アルカリ金属塩等を適宜組み合わせたものを20質量%以下の割合で、80質量%以上のアクリロニトリルと共重合せしめたものが挙げられる。このアクリロニトリル系共重合体は懸濁重合、溶液重合、乳化重合等、いかなる方法によって製造されたものでよい。   When the fiber of the present invention is an acrylic fiber, the acrylonitrile-based copolymer having an acrylonitrile unit used for the acrylic fiber as a main constituent unit is composed of 80% by mass or more of an acrylonitrile unit and can be copolymerized with acrylonitrile. Any monomer can be used in combination. For example, acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate, neutral monomers such as styrene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl ethyl ether, methacrylonitrile, acrylic acid, methacrylic acid, allyl sulfone 20% by mass or less of a suitable combination of acidic monomers such as acid, methallylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and ammonium salts and alkali metal salts of these monomers In this ratio, those copolymerized with 80% by mass or more of acrylonitrile. This acrylonitrile copolymer may be produced by any method such as suspension polymerization, solution polymerization, emulsion polymerization and the like.

本発明の繊維に含まれる無機粒子は、複数の細孔が形成されていることが好ましい。
無機粒子に複数の細孔が形成されている場合の無機粒子の細孔容積は0.3〜2.0mL/gであることが好ましい。
無機粒子の細孔容積が0.3mL/g以上であれば、詰め綿にした時にダウンパワーを高くしやすく、2.0mL/g以下であれば、無機粒子を分散させた液が高粘度となりにくく、工業的な製造が可能となる。これらの観点から、無機粒子の細孔容積は、0.5〜2.0mL/gがより好ましく、1.0〜2.0mL/gがさらに好ましい。
細孔容積は、JISZ8831−2(2010)[ISO15901−2(2006)]により測定した。
The inorganic particles contained in the fiber of the present invention preferably have a plurality of pores.
In the case where a plurality of pores are formed in the inorganic particles, the pore volume of the inorganic particles is preferably 0.3 to 2.0 mL / g.
If the pore volume of the inorganic particles is 0.3 mL / g or more, it is easy to increase the down power when stuffed with cotton, and if it is 2.0 mL / g or less, the liquid in which the inorganic particles are dispersed has a high viscosity. It is difficult and can be manufactured industrially. From these viewpoints, the pore volume of the inorganic particles is more preferably 0.5 to 2.0 mL / g, and further preferably 1.0 to 2.0 mL / g.
The pore volume was measured according to JISZ8831-2 (2010) [ISO 15901-2 (2006)].

また、本発明の繊維に含まれる無機粒子の比表面積は200〜800m/gであることが好ましい。
無機粒子の比表面積が200m/g以上であれば、詰め綿にした時にダウンパワーを高くしやすく、800m/g以下であれば、繊維の繊維細孔形成に必要な細孔容積としやすい。これらの観点から、無機粒子の比表面積は、200〜800m/gがより好ましく、300〜600m/gがさらに好ましい。
比表面積は、JISZ8830(2013)[ISO9277(2010)]のBET法により測定した。
Moreover, it is preferable that the specific surface area of the inorganic particle contained in the fiber of this invention is 200-800 m < 2 > / g.
If the specific surface area of the inorganic particles is 200 m 2 / g or more, it is easy to increase the down power when stuffed with cotton, and if it is 800 m 2 / g or less, the pore volume required to form fiber pores of the fiber is easily obtained. . From these viewpoints, the specific surface area of the inorganic particles is more preferably 200~800m 2 / g, more preferably 300 to 600 m 2 / g.
The specific surface area was measured by the BET method of JISZ8830 (2013) [ISO9277 (2010)].

また、一態様として、本発明の繊維に含まれる無機粒子は複数の細孔が形成されており、無機粒子の細孔容積は0.3〜2.0mL/gであり、本発明の繊維に含まれる無機粒子の比表面積は200〜800m/gであってもよい。Moreover, as one aspect, the inorganic particles contained in the fiber of the present invention have a plurality of pores, and the pore volume of the inorganic particles is 0.3 to 2.0 mL / g. 200-800 m < 2 > / g may be sufficient as the specific surface area of the inorganic particle contained.

本発明の繊維は、単繊維繊度が0.5〜20dtexであることが好ましい。
単繊維繊度が0.5dtex以上であれば、紡糸中に繊維が切れにくくなり、紡糸性が良好となり、20dtex以下であれば、詰め綿にした場合にダウンパワーとClo値が高くなりやすい。これらの観点から、単繊維繊度は、0.8〜10dtexがより好ましく、1.0〜7.8dtexがさらに好ましい。
The fiber of the present invention preferably has a single fiber fineness of 0.5 to 20 dtex.
If the single fiber fineness is 0.5 dtex or more, the fibers are difficult to cut during spinning, and the spinnability is good. If it is 20 dtex or less, the down power and Clo value are likely to be high when stuffed cotton. From these viewpoints, the single fiber fineness is more preferably 0.8 to 10 dtex, and further preferably 1.0 to 7.8 dtex.

本発明の繊維は、単繊維強度が1.8〜3.0cN/dtexであることが好ましい。
単繊維強度が1.8cN/dtex以上であれば、詰め綿を製造する際のカード工程における単繊維が切断して発生するフライの量を少なくしやすく、3.0cN/dtexあれば、十分な強度としやすい。これらの観点から、単繊維強度は2.0〜2.8cN/dtexがより好ましい。
The fiber of the present invention preferably has a single fiber strength of 1.8 to 3.0 cN / dtex.
If the single fiber strength is 1.8 cN / dtex or more, it is easy to reduce the amount of fly that is generated by cutting the single fiber in the carding process when producing stuffed cotton, and 3.0 cN / dtex is sufficient. Easy to strength. From these viewpoints, the single fiber strength is more preferably 2.0 to 2.8 cN / dtex.

本発明の繊維は、単繊維伸度が10〜50%であることが好ましい。
単繊維伸度が10%以上であれば、紡績、開綿工程においてフライが発生しにくく、50%以下であれば、紡績、開綿工程において通過性が良好となりやすい。これらの観点から、単繊維伸度が20〜40%であることがより好ましい。
The fibers of the present invention preferably have a single fiber elongation of 10 to 50%.
If the single fiber elongation is 10% or more, fly does not easily occur in the spinning and opening process, and if it is 50% or less, the passability tends to be good in the spinning and opening process. From these viewpoints, the single fiber elongation is more preferably 20 to 40%.

また、一態様として、本発明の繊維は、単繊維繊度が0.5〜20dtexであり、単繊維強度が1.8〜3.0cN/dtexであり、単繊維伸度が10〜50%であってもよい。   Moreover, as an aspect, the fiber of the present invention has a single fiber fineness of 0.5 to 20 dtex, a single fiber strength of 1.8 to 3.0 cN / dtex, and a single fiber elongation of 10 to 50%. There may be.

本発明の繊維は、ダウンパワーが270〜400cm/gであることが好ましい。
繊維のダウンパワーが270cm/g以上であれば、詰め綿として使用する場合に、嵩が高くなりやすく、使用する綿量を減量することができ、400cm/g以下であれば、製品の詰め綿として使用する場合に、圧縮してもコンパクトにしやすい。これらの観点から、繊維のダウンパワーは、270〜380cm/gがより好ましく、300〜350cm/gがさらに好ましい。
The fiber of the present invention preferably has a down power of 270 to 400 cm 3 / g.
If fibers of the down power 270 cm 3 / g or more, when used as a wadding, bulk tends to be high, it is possible to lose weight cotton amount used, as long as the following 400 cm 3 / g, the product When used as stuffed cotton, it is easy to make it compact even when compressed. From these viewpoints, the fiber down power is more preferably 270~380cm 3 / g, more preferably 300~350cm 3 / g.

本発明の繊維は、Clo値が3〜5であることが好ましい。
本発明の繊維のClo値が3以上であれば、詰め綿として使用する場合に、少ない量でも保温の効果が得られやすく、5以下であれば、製品にした場合に厚くなりすぎにくい。これらの観点から、Clo値は、3.5〜4.5がより好ましい。
The fiber of the present invention preferably has a Clo value of 3 to 5.
If the Clo value of the fiber of the present invention is 3 or more, when used as stuffed cotton, a heat retention effect is easily obtained even with a small amount, and if it is 5 or less, it is difficult to become too thick when made into a product. From these viewpoints, the Clo value is more preferably 3.5 to 4.5.

また、一態様として、本発明の繊維は、ダウンパワーが270〜400cm/gであり、Clo値が3〜5であってもよい。In one embodiment, the fiber of the present invention may have a down power of 270 to 400 cm 3 / g and a Clo value of 3 to 5.

本発明の繊維は、温度20℃、湿度40%RHの環境から、温度20℃、湿度90%RHの環境まで変化させたときの最高到達繊維温度が24℃以上であることが好ましい。
上記条件下における最高到達繊維温度が24℃以上であれば、人の触覚で暖かさを体感しやすい。
The fiber of the present invention preferably has a maximum fiber temperature of 24 ° C. or higher when the temperature is changed from an environment of 20 ° C. and a humidity of 40% RH to an environment of a temperature of 20 ° C. and a humidity of 90% RH.
If the maximum reached fiber temperature under the above conditions is 24 ° C. or higher, it is easy to feel warmth by human touch.

[詰め綿]
本発明の詰め綿の一態様は、本発明の繊維を用いた詰め綿である。
本発明の繊維を用いることで、嵩高性に優れた詰め綿を得ることができる。
[Stuffed cotton]
One aspect of the cotton pad of the present invention is a cotton pad using the fiber of the present invention.
By using the fiber of the present invention, it is possible to obtain stuffed cotton having excellent bulkiness.

本発明の詰め綿の別の一態様は、繊維Aを含有し、詰め綿(100質量%)中に含まれる繊維Aの含有量が50〜100質量%であり、ダウンパワーが270〜400cm/gである詰め綿であって、繊維Aは、平均粒子径が1〜20μmの無機粒子を繊維内部に含有する繊維かつである詰め綿である。Another aspect of the stuffed cotton of the present invention contains the fiber A, the content of the fiber A contained in the stuffed cotton (100% by mass) is 50 to 100% by mass, and the down power is 270 to 400 cm 3. The fiber A is stuffed cotton that contains inorganic particles with an average particle diameter of 1 to 20 μm inside the fiber.

詰め綿中における繊維Aの含有率が50質量%以上であれば、詰め綿の嵩高性を高くしやすく、100質量%以下であれば、所望する嵩高性が得られやすい。これらの観点から、繊維Aの含有率は、60質量%以上が好ましく、70質量%以上がより好ましい。
所望する嵩高性が得られれば、他の繊維を混ぜることも可能である。
他の繊維としては、例えば、抗菌性、消臭性等の機能を有する繊維、羊毛などの天然繊維、熱融着繊維が挙げられ、本発明においては、羽毛を含む。
If the content of the fiber A in the stuffed cotton is 50% by mass or more, the bulkiness of the stuffed cotton is easily increased, and if it is 100% by mass or less, the desired bulkiness is easily obtained. From these viewpoints, the content of the fiber A is preferably 60% by mass or more, and more preferably 70% by mass or more.
If the desired bulkiness is obtained, other fibers can be mixed.
Examples of other fibers include fibers having antibacterial and deodorant functions, natural fibers such as wool, and heat-sealing fibers. In the present invention, feathers are included.

詰め綿のダウンパワーが270cm/g以上であれば、詰め綿として使用する綿量を減量しやすく、400cm/g以下であれば、製品の詰め綿として使用する場合に、圧縮してもコンパクトにしやすい。これらの観点から、詰め綿のダウンパワーは、280〜380cm/gが好ましく、300〜350cm/gがより好ましい。If the down power of the stuffed cotton is 270 cm 3 / g or more, the amount of cotton used as the stuffed cotton can be easily reduced, and if it is 400 cm 3 / g or less, it can be compressed when used as stuffed cotton for products. Easy to make compact. From these viewpoints, down power of wadding is preferably 280~380cm 3 / g, 300~350cm 3 / g is more preferable.

本発明の詰め綿において、繊維Aは、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維であることが好ましい。
繊維細孔の最大幅が0.1μm以上であれば、詰め綿のダウンパワーを高くしやすく、5μm以下であれば、繊維強度が低下しにくく、繊維が破断しにくくなる。これらの観点から、繊維細孔の最大幅は1〜4μmがより好ましい。
繊維細孔の最大長さが1μm以上であれば、詰め綿のダウンパワーを高くしやすく、50μm以下であれば、繊維強度が低下しにくく、繊維が破断しにくくなる。これらの観点から、繊維細孔の最大長さは10〜45μmがより好ましい。
In the stuffed cotton of the present invention, the fiber A is preferably a fiber in which fiber pores having a maximum width of 0.1 to 5 μm and a maximum length of 1 to 50 μm are formed in the fiber cross section in the fiber axis direction.
If the maximum width of the fiber pore is 0.1 μm or more, it is easy to increase the down power of the stuffed cotton, and if it is 5 μm or less, the fiber strength is unlikely to decrease and the fiber is difficult to break. From these viewpoints, the maximum width of the fiber pore is more preferably 1 to 4 μm.
If the maximum length of the fiber pore is 1 μm or more, it is easy to increase the down power of the stuffed cotton, and if it is 50 μm or less, the fiber strength is unlikely to decrease and the fiber is difficult to break. From these viewpoints, the maximum length of the fiber pore is more preferably 10 to 45 μm.

本発明の詰め綿は、Clo値が3〜5であることが好ましい。
Clo値が3以上であれば、少ない量でも保温の効果が得られやすく、5以下であれば、製品にした場合に厚くなりすぎにくい。これらの観点から、Clo値は、3.5〜4.5がより好ましい。
The stuffed cotton of the present invention preferably has a Clo value of 3-5.
If the Clo value is 3 or more, it is easy to obtain a heat retaining effect even with a small amount, and if it is 5 or less, it is difficult to make the product too thick. From these viewpoints, the Clo value is more preferably 3.5 to 4.5.

本発明の詰め綿において、繊維A(100質量%)中に含まれる無機粒子の含有量は、1〜15質量%であることが好ましい。
無機粒子の含有量が1質量%以上であれば、繊維細孔が大きくなりやすく、詰め綿にした時に、詰め綿のダウンパワーを高くしやすく、15質量%以下であれば、繊維Aの破断を少なくしやすく、嵩高性を維持しやすくなる。これらの観点から、繊維A中に含まれる無機粒子の含有量は、1〜10質量%がより好ましく、3〜8質量%がさらに好ましい。
In the stuffed cotton of the present invention, the content of inorganic particles contained in the fiber A (100% by mass) is preferably 1 to 15% by mass.
If the content of the inorganic particles is 1% by mass or more, the fiber pores are likely to be large, and when it is made into stuffed cotton, it is easy to increase the down power of the stuffed cotton. It is easy to reduce the amount and it is easy to maintain bulkiness. From these viewpoints, the content of the inorganic particles contained in the fiber A is more preferably 1 to 10% by mass, and further preferably 3 to 8% by mass.

本発明の詰め綿において、繊維Aはアクリル繊維であることが好ましい。
アクリル繊維とすることで、繊維内部に繊維細孔を形成しやすく、嵩高性を高くしやすくなる。
In the stuffed cotton of the present invention, the fiber A is preferably an acrylic fiber.
By using an acrylic fiber, fiber pores can be easily formed inside the fiber, and the bulkiness can be easily increased.

本発明の詰め綿において、繊維Aに含まれる無機粒子は、複数の細孔が形成されていることが好ましい。
無機粒子に複数の細孔が形成されている場合の無機粒子の細孔容積は0.3〜2.0mL/gであることが好ましい。
無機粒子の細孔容積が0.3mL/g以上であれば、詰め綿のダウンパワーを高くしやすく、2.0mL/g以下であれば、物品中の繊維Aの折損を少なくしやすい。これらの観点から、無機粒子の細孔容積は、0.5〜2.0mL/gがより好ましく、1.0〜2.0mL/gがさらに好ましい。
In the stuffed cotton of the present invention, the inorganic particles contained in the fiber A preferably have a plurality of pores.
In the case where a plurality of pores are formed in the inorganic particles, the pore volume of the inorganic particles is preferably 0.3 to 2.0 mL / g.
If the pore volume of the inorganic particles is 0.3 mL / g or more, the down power of the stuffed cotton is easily increased, and if it is 2.0 mL / g or less, the breakage of the fiber A in the article is easily reduced. From these viewpoints, the pore volume of the inorganic particles is more preferably 0.5 to 2.0 mL / g, and further preferably 1.0 to 2.0 mL / g.

本発明の詰め綿において、繊維Aに含まれる無機粒子の比表面積は200〜800m/gであることが好ましい。
無機粒子の比表面積が200m/g以上であれば、繊維中の繊維細孔が大きくなり、詰め綿のダウンパワーを高くしやすく、800m/g以下であれば、繊維Aの繊維細孔形成に必要な細孔容積としやすい。これらの観点から、無機粒子の比表面積は、200〜800m/gがより好ましく、300〜600m/gがさらに好ましい。
In the stuffed cotton of the present invention, the specific surface area of the inorganic particles contained in the fiber A is preferably 200 to 800 m 2 / g.
If the specific surface area of the inorganic particles is 200 m 2 / g or more, the fiber pores in the fiber will increase, and it will be easy to increase the down power of the stuffed cotton, and if it is 800 m 2 / g or less, the fiber pores of the fiber A It is easy to make the pore volume necessary for formation. From these viewpoints, the specific surface area of the inorganic particles is more preferably 200~800m 2 / g, more preferably 300 to 600 m 2 / g.

また、一態様として、本発明の詰め綿において、繊維Aに含まれる無機粒子は複数の細孔が形成されており、無機粒子の細孔容積は0.3〜2.0mL/gであり、繊維Aに含まれる無機粒子の比表面積は200〜800m/gであってもよい。Moreover, as one aspect, in the cotton pad of the present invention, the inorganic particles contained in the fiber A are formed with a plurality of pores, and the pore volume of the inorganic particles is 0.3 to 2.0 mL / g, The specific surface area of the inorganic particles contained in the fiber A may be 200 to 800 m 2 / g.

本発明の詰め綿において、繊維Aの繊維間静摩擦係数μは0.33〜0.45であることが好ましい。
繊維間静摩擦係数μが0.33以上であれば、詰め綿の形状が維持しやすくなり、嵩高性を高くしやすくなり、0.45以下であれば、詰め綿の復元性が良好となりやすい。
In the stuffed cotton of the present invention, the inter-fiber static friction coefficient μ s of the fiber A is preferably 0.33 to 0.45.
If the inter-fiber static friction coefficient μs is 0.33 or more, the shape of the stuffed cotton is easily maintained and the bulkiness is easily increased, and if it is 0.45 or less, the resilience of the stuffed cotton is likely to be good. .

本発明の詰め綿において、繊維Aの単繊維繊度は0.5dtex〜20dtexであることが好ましい。
単繊維繊度が0.5dtex以上であれば、物品中の繊維Aの折損を少なくしやすく、20dtex以下であれば、詰め綿の嵩高性を高くしやすい。これらの観点から、単繊維繊度は、0.8〜10dtexがより好ましく、1.0〜7.8dtexがさらに好ましい。
In the stuffed cotton of the present invention, the single fiber fineness of the fiber A is preferably 0.5 dtex to 20 dtex.
If the single fiber fineness is 0.5 dtex or more, the breakage of the fiber A in the article is easily reduced, and if it is 20 dtex or less, the bulkiness of the stuffed cotton is easily increased. From these viewpoints, the single fiber fineness is more preferably 0.8 to 10 dtex, and further preferably 1.0 to 7.8 dtex.

本発明の詰め綿において、繊維Aの単繊維強度は1.8〜3.0cN/dtexであることが好ましい。
単繊維強度が1.8cN/dtex以上であれば、物品中の詰め綿の折損を少なくしやすく、3.0cN/dtex以下であれば、十分な強度としやすい。これらの観点から、単繊維強度は2.0cN/dtex以上がより好ましく、2.2cN/dtex以上がさらに好ましい。
In the stuffed cotton of the present invention, the single fiber strength of the fiber A is preferably 1.8 to 3.0 cN / dtex.
If the single fiber strength is 1.8 cN / dtex or more, breakage of the stuffed cotton in the article is easily reduced, and if it is 3.0 cN / dtex or less, sufficient strength is easily obtained. From these viewpoints, the single fiber strength is more preferably 2.0 cN / dtex or more, and further preferably 2.2 cN / dtex or more.

本発明の詰め綿において、繊維Aの単繊維伸度は10〜50%であることが好ましい。
単繊維伸度が10%以上であれば、繊維の剛性が小さくソフトな風合いにしやすく、50%以下であれば、圧縮回復性が良好となりやすい。これらの観点から、単繊維伸度は20〜40%であることがより好ましい。
In the stuffed cotton of the present invention, the single fiber elongation of the fiber A is preferably 10 to 50%.
If the single fiber elongation is 10% or more, the rigidity of the fiber is small and it is easy to obtain a soft texture, and if it is 50% or less, the compression recovery property tends to be good. From these viewpoints, the single fiber elongation is more preferably 20 to 40%.

また、一態様として、本発明の詰め綿において、繊維Aの繊維間静摩擦係数μは0.33〜0.45であり、繊維Aの単繊維繊度は0.5〜20dtexであり、繊維Aの単繊維強度は1.8〜3.0cN/dtexであり、繊維Aの単繊維伸度は10〜50%であってもよい。Further, as one aspect, in the cotton pad of the present invention, the inter-fiber static friction coefficient μ s of the fiber A is 0.33 to 0.45, the single fiber fineness of the fiber A is 0.5 to 20 dtex, and the fiber A The single fiber strength of the fiber A may be 1.8 to 3.0 cN / dtex, and the single fiber elongation of the fiber A may be 10 to 50%.

本発明の詰め綿は、さらに、単繊維繊度が0.5〜2.2dtexである、繊維Aとは異なる化学繊維を含んでもよい。
繊維Aとは異なる、特定の単繊維繊度を有する化学繊維を含むことで、抗菌性、消臭性等の機能を付与しやすくなる。
繊維Aとは異なる化学繊維の単繊維繊度が0.5dtex以上であれば、物品中の繊維Aの折損を少なくしやすく、2.2dtex以下であれば、保温性を向上しやすい。これらの観点から、繊維Aとは異なる化学繊維の単繊維繊度は、0.6〜2.0dtexがより好ましく、0.7〜1.5dtexがさらに好ましい。
化学繊維とは、合成繊維、半合成繊維、再生繊維、無機繊維を含み、本発明においては、JIS L0204−2に記載の繊維を意味する。
The stuffed cotton of the present invention may further contain a chemical fiber different from the fiber A having a single fiber fineness of 0.5 to 2.2 dtex.
By including a chemical fiber having a specific single fiber fineness different from the fiber A, it becomes easy to impart functions such as antibacterial properties and deodorizing properties.
If the single fiber fineness of the chemical fiber different from the fiber A is 0.5 dtex or more, the breakage of the fiber A in the article is easily reduced, and if it is 2.2 dtex or less, the heat retention is easily improved. From these viewpoints, the single fiber fineness of the chemical fiber different from the fiber A is more preferably 0.6 to 2.0 dtex, and further preferably 0.7 to 1.5 dtex.
The chemical fiber includes synthetic fiber, semi-synthetic fiber, recycled fiber, and inorganic fiber, and in the present invention, means a fiber described in JIS L0204-2.

本発明の詰め綿は、さらに、熱接着短繊維を含み、詰め綿(100質量%)中に含まれる熱接着短繊維の含有量が5〜30質量%であり、熱接着短繊維の少なくとも一部が、繊維Aと接着していてもよい。
熱接着短繊維の含有量が5質量%以上であれば、詰め綿の片寄り防止の効果が得られやすく、30質量%以下であれば、嵩高性と保温性低下を抑制しやすい。これらの観点から、熱接着短繊維の含有量は、6〜25質量%が好ましく、7〜20質量%がより好ましい。
また、熱接着短繊維の少なくとも一部が、繊維Aと接着していることで嵩高性を維持しやすくなる。
The stuffed cotton of the present invention further includes a heat-bonded short fiber, the content of the heat-bonded short fiber contained in the stuffed cotton (100% by weight) is 5 to 30% by weight, and is at least one of the heat-bonded short fibers. The part may be bonded to the fiber A.
If the content of the heat-bonded short fibers is 5% by mass or more, it is easy to obtain the effect of preventing the stuffed cotton from shifting, and if it is 30% by mass or less, it is easy to suppress bulkiness and heat retention. From these viewpoints, the content of the heat-bonding short fibers is preferably 6 to 25% by mass, and more preferably 7 to 20% by mass.
Moreover, it becomes easy to maintain bulkiness because at least one part of the heat-bonding short fiber is bonded to the fiber A.

[繊維の製造方法]
本発明の繊維は、湿式紡糸法や乾湿式紡糸法により得ることができるが、生産性やコストの点で、湿式紡糸法が望ましい。
[Fiber manufacturing method]
The fiber of the present invention can be obtained by a wet spinning method or a dry-wet spinning method, but the wet spinning method is desirable in terms of productivity and cost.

例えば、本発明の繊維がアクリル繊維である場合、本発明の繊維の製造方法は、前述したアクリロニトリル系共重合体が溶媒に溶解した溶液に、平均粒子径1〜20μmの無機粒子10〜20質量%が均一に混合された混合物と、アクリロニトリル系共重合体を溶媒に溶解した溶液とを混合して紡糸原液とし、これを紡糸することを特徴とする。   For example, when the fiber of the present invention is an acrylic fiber, the method for producing the fiber of the present invention is performed by adding 10 to 20 mass of inorganic particles having an average particle diameter of 1 to 20 μm in a solution in which the acrylonitrile-based copolymer is dissolved in a solvent. % Is uniformly mixed with a solution in which an acrylonitrile copolymer is dissolved in a solvent to prepare a spinning dope, which is spun.

溶媒としては、アクリロニトリル系共重合体を溶解しうる溶媒ならばいずれを使用してもよい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトン等の有機溶媒が挙げられ、中でも、繊維製造における生産性、得られたアクリル繊維の物性の面からジメチルアセトアミドが好ましい。   Any solvent may be used as long as it can dissolve the acrylonitrile copolymer. Examples thereof include organic solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and acetone. Among them, dimethylacetamide is preferable from the viewpoint of productivity in fiber production and physical properties of the obtained acrylic fiber.

無機粒子をアクリロニトリル系共重合体が溶媒に溶解した溶液に混合させるには、無機粒子が分散した分散液を添加すればよい。
分散液は、3〜10質量%のアクリロニトリル系共重合体と、3〜30質量%の無機粒子と、60〜90質量%の溶媒からなることが好ましい。分散液中の無機粒子濃度が3質量部以上30質量部以下であれば、良好な分散状態となりやすく、紡糸性が良好となり好ましい。これらの観点から、分散液中の無機粒子濃度は、5〜20質量部がより好ましい。
In order to mix the inorganic particles with the solution in which the acrylonitrile copolymer is dissolved in the solvent, a dispersion liquid in which the inorganic particles are dispersed may be added.
The dispersion is preferably composed of 3 to 10% by mass of an acrylonitrile copolymer, 3 to 30% by mass of inorganic particles, and 60 to 90% by mass of a solvent. A concentration of inorganic particles in the dispersion of 3 parts by mass or more and 30 parts by mass or less is preferable because a good dispersion state is easily obtained and spinnability is good. From these viewpoints, the concentration of inorganic particles in the dispersion is more preferably 5 to 20 parts by mass.

紡糸原液は、15〜30質量部、好ましくは18〜25質量部のアクリロニトリル系共重合体と、1.5〜6質量部の無機粒子と、70〜85質量部の溶媒とからなることが好ましい。紡糸原液中のアクリロニトリル系共重合体の含有量が上記範囲内であれば、糸切れや生産性の面から、紡糸性が良好となりやすい。   The spinning dope is preferably composed of 15 to 30 parts by mass, preferably 18 to 25 parts by mass of an acrylonitrile copolymer, 1.5 to 6 parts by mass of inorganic particles, and 70 to 85 parts by mass of a solvent. . If the content of the acrylonitrile copolymer in the spinning dope is within the above range, the spinnability tends to be good from the viewpoint of yarn breakage and productivity.

アクリロニトリル系共重合体を溶媒に溶解する溶解温度は、40〜95℃であることが好ましい。溶解温度が40℃以上であれば、未溶解分が少なく、それに従いフィルタープレス等の濾過設備における濾材の使用期間が長くでき、また曳糸性を損ねることがないので好ましい。一方、溶解温度が95℃以下であれば、共重合体が変色し難いので好ましい。   The dissolution temperature for dissolving the acrylonitrile copolymer in the solvent is preferably 40 to 95 ° C. A melting temperature of 40 ° C. or higher is preferable because the amount of undissolved material is small, the use period of the filter medium in the filter equipment such as a filter press can be increased accordingly, and the spinnability is not impaired. On the other hand, a melting temperature of 95 ° C. or lower is preferable because the copolymer hardly changes color.

また、アクリロニトリル系共重合体を溶媒に溶解した後の紡糸原液の温度は40〜95℃であることが好ましい。紡糸原液の温度が上記範囲内であれば、紡糸原液の曳糸性や、低粘度によるノズル圧上昇、紡糸原液のゲル化などを防止しやすく、紡糸性が良好である。   Moreover, it is preferable that the temperature of the spinning dope after dissolving an acrylonitrile-type copolymer in a solvent is 40-95 degreeC. If the temperature of the spinning dope is within the above range, the spinning property of the spinning dope, the increase in nozzle pressure due to low viscosity, gelation of the spinning dope, etc. can be easily prevented, and the spinning property is good.

次に、溶媒濃度が40〜60質量%、温度が35〜50℃の水溶液に紡糸ノズルが有する複数の吐出孔から紡糸原液を吐出して凝固繊維束とする。
溶媒濃度及び温度が上記範囲内であれば、凝固が早くなり過ぎず、カード通過性が良好な繊維を製造することができる。
Next, the spinning dope is discharged from a plurality of discharge holes of the spinning nozzle into an aqueous solution having a solvent concentration of 40 to 60% by mass and a temperature of 35 to 50 ° C. to obtain a coagulated fiber bundle.
If the solvent concentration and temperature are within the above ranges, solidification does not become too fast, and a fiber having good card passing properties can be produced.

紡糸ノズルの吐出孔から吐出する際のジェットストレッチは0.4〜2.2が好ましい。ジェットストレッチとは、凝固糸の引取り速度を吐出線速度で割った値である。
ジェットストレッチが0.4以上であれば、ノズル圧が上昇しにくく、連続生産時間が長くなる点で好ましく、2.2以下であれば、紡浴中での糸切れを少なくしやすく、紡糸性が良好となりやすい。これらの観点から、ジェットストレッチは0.6〜2.0がより好ましい。
ジェットストレッチは、紡浴出の引取り速度を吐出線速度で割ることから算出することができる。
The jet stretch when discharging from the discharge hole of the spinning nozzle is preferably 0.4 to 2.2. The jet stretch is a value obtained by dividing the take-up speed of the coagulated yarn by the discharge linear speed.
If the jet stretch is 0.4 or more, it is preferable in that the nozzle pressure is difficult to increase and the continuous production time becomes long, and if it is 2.2 or less, yarn breakage in the spinning bath is easily reduced, and spinnability is improved. Tends to be good. From these viewpoints, the jet stretch is more preferably 0.6 to 2.0.
The jet stretch can be calculated by dividing the take-up speed for spinning out by the discharge linear speed.

さらに、凝固繊維束を熱水中で延伸倍率2〜6倍で延伸し、油剤付与し、乾燥する。
熱水中での延伸倍率が2倍以上であれば、紡績や開綿工程で必要な単繊維強度及び単繊維伸度が得られやすく、6倍以下であれば、紡糸による糸切れが低減しやすい。
Further, the coagulated fiber bundle is stretched in hot water at a stretch ratio of 2 to 6 times, oiled, and dried.
If the draw ratio in hot water is 2 times or more, it is easy to obtain the single fiber strength and single fiber elongation required for spinning and cotton opening process, and if it is 6 times or less, yarn breakage due to spinning is reduced. Cheap.

熱水中で延伸する際の熱水の温度は、80〜98℃であることが好ましい。この範囲であれば、熱水中での延伸時に繊維の切断を防止しやすい。   The temperature of hot water when stretching in hot water is preferably 80 to 98 ° C. Within this range, it is easy to prevent the fibers from being cut during stretching in hot water.

熱水で延伸された繊維の膨潤度は80〜250%の範囲にあることが好ましい。膨潤度が上記範囲内であれば、乾燥性や生産性が良好となりやすい。   The swelling degree of the fiber drawn with hot water is preferably in the range of 80 to 250%. If the degree of swelling is within the above range, the drying property and productivity are likely to be good.

乾燥された繊維束は、捲縮を付与され、コンテナーに収納される。   The dried fiber bundle is crimped and stored in a container.

その後、コンテナーに収納された繊維が5〜40%収縮するように熱緩和処理を行い繊維とする。
熱緩和条件は繊維の熱収縮度合によって規定され、繊維の熱収縮が5〜40%であれば、紡績や開綿工程で必要な単繊維強度及び単繊維伸度となる点で好ましい。
熱収縮とは、熱緩和処理前後で繊維束が収縮した比率である。
熱緩和する温度は、120〜145℃とする。熱緩和する温度が120℃以上であれば、紡績時のカード通過性が良好な単繊維強度及び単繊維伸度を得られやすく、145℃以下であれば、繊維の風合いが良好な単繊維を得られやすい。
Thereafter, heat relaxation treatment is performed so that the fiber stored in the container shrinks by 5 to 40% to obtain a fiber.
The thermal relaxation condition is defined by the degree of thermal shrinkage of the fiber, and if the thermal shrinkage of the fiber is 5 to 40%, the single fiber strength and single fiber elongation required in the spinning and cotton opening process are preferable.
Thermal shrinkage is the ratio of shrinkage of the fiber bundle before and after thermal relaxation treatment.
The temperature for heat relaxation is 120 to 145 ° C. If the temperature for heat relaxation is 120 ° C. or higher, it is easy to obtain single fiber strength and single fiber elongation with good card passing properties during spinning. If it is 145 ° C. or lower, single fibers with good fiber texture are obtained. Easy to obtain.

本発明の繊維がアクリル繊維以外の繊維である場合、当業者に自明な方法若しくは上記アクリル繊維の製造法に準じて、アクリル繊維以外の本発明の繊維を製造することができる。   When the fiber of the present invention is a fiber other than an acrylic fiber, the fiber of the present invention other than an acrylic fiber can be produced according to a method obvious to those skilled in the art or the method for producing an acrylic fiber.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

(比表面積、細孔容積の測定方法)
JISZ8830及びJISZ8831−2:2010の窒素吸着法により測定し、比表面積についてはBET法で、細孔容積についてBJH法で解析した。
(Measurement method of specific surface area and pore volume)
Measured by the nitrogen adsorption method of JISZ8830 and JISZ8831-2: 2010, the specific surface area was analyzed by the BET method, and the pore volume was analyzed by the BJH method.

(繊維軸方向の繊維細孔の最大幅、最大長さの測定方法)
入手した原綿から少量の繊維を採取し、引き揃えてUV硬化アクリルシラップで平板状に包埋した。ガラスナイフを装着したミクロトームにより繊維の縦断面を切削加工した。試片をSEM用試料台に貼り付けてカーボンペーストで接着固定した。ターボスパッター装置(EMITECH製 K575XD)により、Ptをイオン電流20mAの条件で20秒コーティングした(コーティング厚さ:約5nm)。装置は日本電子(株) JSM−6060Aを使用し、加圧電圧は10kV、プローブ電流は30、観察倍率は3000倍、5000倍で測定した。SEM画像をA3に拡大印刷し、定規で繊維断面に形成された繊維細孔断面の長径方向及び短径方向の最大値を測定し、換算した。
(Measurement method of the maximum width and length of fiber pores in the fiber axis direction)
A small amount of fiber was collected from the obtained raw cotton, and was collected and embedded in a flat plate with UV-cured acrylic syrup. The longitudinal section of the fiber was cut by a microtome equipped with a glass knife. The specimen was affixed to the SEM sample stage and bonded and fixed with a carbon paste. Pt was coated for 20 seconds under a condition of an ion current of 20 mA (coating thickness: about 5 nm) by a turbo sputtering apparatus (K575XD manufactured by EMITECH). The apparatus used was JEOL JSM-6060A, and the measurement was performed at an applied voltage of 10 kV, a probe current of 30, and an observation magnification of 3000 times and 5000 times. The SEM image was enlarged and printed on A3, and the maximum value in the major axis direction and the minor axis direction of the fiber pore cross section formed on the fiber cross section with a ruler was measured and converted.

(平均粒子径の測定方法)
JIS Z 8825(2013)に準拠して平均粒子径を測定した。
(Measurement method of average particle size)
The average particle size was measured according to JIS Z 8825 (2013).

(単繊維の繊度、強度、伸度及び静摩擦係数の測定)
JIS L1015(2010)に準拠して測定した。
(Measurement of fineness, strength, elongation and static friction coefficient of single fiber)
It measured based on JIS L1015 (2010).

(ダウンパワーの測定方法)
JIS L1903に準拠してダウンパワーを測定した。前処理はスチーム法を行った。
(Down power measurement method)
The down power was measured according to JIS L1903. The pretreatment was performed by the steam method.

(Clo値の測定方法)
サーモラボII ドライコンタクト法で保温率を測定した。
1.20cm角のクッションカバー(生地:綿100%)に詰め綿10gを入れた試料を作製する。
2.カトーテック(株)社製のKES−F7サーモラボII験機を用い、20℃に設定した熱板に作製した試料をセットする。
3.30cm/秒の有風の条件で、試料を介して放熱された熱量(a)を求める。
4.試料をセットしない状態で放散された熱量(b)を求め、式1によりClo値を算出する。
Clo値=0.645×{1/(a−b)}
Clo値が高い程、保温性に優れる。
(Clo value measurement method)
Thermolab II The heat retention rate was measured by the dry contact method.
1. A sample in which 10 g of cotton is packed in a 20 cm square cushion cover (fabric: 100% cotton) is prepared.
2. A sample prepared on a hot plate set to 20 ° C. is set using a KES-F7 Thermolab II tester manufactured by Kato Tech Co., Ltd.
3. Obtain the amount of heat (a) radiated through the sample under a windy condition of 30 cm / sec.
4). The amount of heat (b) dissipated without setting the sample is obtained, and the Clo value is calculated by Equation 1.
Clo value = 0.645 × {1 / (ab)}
The higher the Clo value, the better the heat retention.

(吸湿発熱測定)
一般財団法人ボーケン品質評価機構が作成した吸湿発熱法性試験方法 BQE A 035−2011で測定した。
資料5gを採取し、ポリエステルのメッシュ状ネットに入れ、乾燥機において4時間処理し、シリカゲル入りのデシケータ内で一晩放置する。処理後の試料の中心に熱電対温度センサーを取り付け、試験体とする。恒温恒湿機を用いて試験体を20℃、40%RHの環境下で2時間処理した後、恒温恒湿機の設定を20℃、90%RHに変化させたときの温度毎を1分毎に15分間測定し、その最高到達温度を確認した。
(Hygroscopic exotherm measurement)
It was measured by a hygroscopic exothermic method test method BQE A 035-2011 created by Boken Quality Evaluation Organization.
5 g of material is collected, put into a polyester mesh net, processed in a dryer for 4 hours, and left overnight in a desiccator containing silica gel. A thermocouple temperature sensor is attached to the center of the sample after the treatment to prepare a test specimen. After treating the specimen for 2 hours in an environment of 20 ° C. and 40% RH using a thermo-hygrostat, 1 minute for each temperature when changing the setting of the thermo-hygrostat to 20 ° C. and 90% RH Every 15 minutes, the maximum temperature reached was confirmed.

(実施例1)
アクリロニトリル単位93質量%、酢酸ビニル単位7質量%からなるアクリロニトリル系共重合体をジメチルアセトアミドに溶解し、共重合体濃度24.3質量%、50℃における粘度が400ポイズのアクリロニトリル系共重合体溶液を得た。
さらにアクリロニトリル単位93質量%、酢酸ビニル単位7質量%からなるアクリロニトリル系共重合体6質量%と、シリカ系無機微粒子(富士シリシア化学製 サイリシア301P、細孔容積1.6mL/g、比表面積300m/g、平均粒径2.7μm)12質量%と、ジメチルアセトアミド82質量%とからなり、アクリロニトリル共重合体がジメチルアセトアミドに溶解し、シリカ系無機微粒子が均一に混合された混合物(1)を得た。
このアクリロニトリル系共重合体溶液と混合物(1)とを、アクリロニトリル系共重合体とシリカ系無機微粒子とを合わせた量に対し、シリカ系無機微粒子の量が5質量%となるように均一に混合して紡糸原液とした。
この紡糸原液を、孔径0.060mmの複数の吐出孔から、ジメチルアセトアミド濃度56質量%、温度41℃の水溶液中に吐出して繊維束とし、98℃の熱水中で溶媒を洗浄しながら5.5倍の延伸を施した。続いて油剤を付着させ、表面温度を150℃に設定した複数の熱ローラーで乾燥し、捲縮を付与後、コンテナーに振り落した。
さらに、繊維束を20%収縮するように熱緩和処理を行い、その後、短繊維に切断し、単繊維繊度が2.0dtex、繊維長が38mmのアクリル繊維を得た。その繊維物性を表1に示す。
Example 1
An acrylonitrile copolymer consisting of 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units is dissolved in dimethylacetamide, and the copolymer concentration is 24.3% by mass and the viscosity at 50 ° C. is 400 poise. Got.
Furthermore, 6% by mass of an acrylonitrile copolymer comprising 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units, silica-based inorganic fine particles (Silysia 301P manufactured by Fuji Silysia Chemical Ltd., pore volume 1.6 mL / g, specific surface area 300 m 2 / G, average particle size of 2.7 μm) 12% by mass and 82% by mass of dimethylacetamide, a mixture (1) in which the acrylonitrile copolymer is dissolved in dimethylacetamide and the silica-based inorganic fine particles are uniformly mixed. Obtained.
The acrylonitrile-based copolymer solution and the mixture (1) are uniformly mixed so that the amount of the silica-based inorganic fine particles is 5% by mass with respect to the total amount of the acrylonitrile-based copolymer and the silica-based inorganic fine particles. Thus, a spinning dope was obtained.
This spinning dope is discharged from a plurality of discharge holes having a hole diameter of 0.060 mm into an aqueous solution having a dimethylacetamide concentration of 56 mass% and a temperature of 41 ° C. to form a fiber bundle, and while washing the solvent in 98 ° C. hot water, 5 The film was stretched 5 times. Subsequently, the oil agent was adhered, dried with a plurality of heat rollers whose surface temperature was set to 150 ° C., crimped, and then shaken off into a container.
Furthermore, a heat relaxation treatment was performed so that the fiber bundle contracted by 20%, and then cut into short fibers to obtain acrylic fibers having a single fiber fineness of 2.0 dtex and a fiber length of 38 mm. The fiber properties are shown in Table 1.

(実施例2)
繊維中のシリカ系無機微粒子の含有量が3質量%になるようにアクリロニトリル系共重合体溶液と混合物(1)との混合比率を変更した以外は、実施例1と同様に紡糸を行い、アクリル繊維を得た。その繊維物性を表1に示す。
(Example 2)
Spinning was performed in the same manner as in Example 1 except that the mixing ratio of the acrylonitrile copolymer solution and the mixture (1) was changed so that the content of silica-based inorganic fine particles in the fiber was 3% by mass. Fiber was obtained. The fiber properties are shown in Table 1.

(実施例3)
吐出孔の孔径を0.100mmに変更し、単繊維繊度が6dtexになるようした以外は、実施例1と同様に紡糸を行い、アクリル繊維を得た。その繊維物性を表1に示す。
(Example 3)
Spinning was performed in the same manner as in Example 1 except that the hole diameter of the discharge hole was changed to 0.100 mm and the single fiber fineness was 6 dtex to obtain an acrylic fiber. The fiber properties are shown in Table 1.

(比較例1)
紡糸時にシリカ系無機微粒子を含む混合物(1)を混合せずに、アクリロニトリル系共重合体溶液だけを使用して紡糸した以外は、実施例1と同様に紡糸を行い、アクリル繊維を得た。その繊維物性を表1に示す。
(Comparative Example 1)
Spinning was carried out in the same manner as in Example 1 except that the mixture (1) containing silica-based inorganic fine particles was not mixed at the time of spinning, and only the acrylonitrile-based copolymer solution was used for spinning to obtain acrylic fibers. The fiber properties are shown in Table 1.

(比較例2)
紡糸時にシリカ系無機微粒子を含む混合物(1)を混合せずにアクリロニトリル系共重合体溶液だけを使用し、孔径0.100mmの複数の吐出孔から吐出し、単繊維繊度が6dtexになるようした以外は、実施例1と同様に紡糸を行い、アクリル繊維を得た。その繊維物性を表1に示す
(Comparative Example 2)
Only the acrylonitrile copolymer solution was used without mixing the mixture (1) containing silica-based inorganic fine particles during spinning, and the mixture was discharged from a plurality of discharge holes having a hole diameter of 0.100 mm so that the single fiber fineness was 6 dtex. Except for the above, spinning was performed in the same manner as in Example 1 to obtain an acrylic fiber. The fiber properties are shown in Table 1.

(実施例4)
実施例1で得たアクリル繊維100質量%をカード機で開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
Example 4
100% by mass of the acrylic fiber obtained in Example 1 was opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.

(実施例5)
実施例2で得たアクリル繊維100質量%をカード機で開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
(Example 5)
100% by mass of the acrylic fiber obtained in Example 2 was opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.

(実施例6)
実施例1で得たアクリル繊維50質量%と多孔質シリカを含有しないアクリル繊維A(三菱ケミカル(株)社製、品番:S616、単繊維繊度:0.8dtex、繊維長:38mm)50質量%を混綿し、その後、カード機にて開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
嵩高性は286cm/gで嵩高性の優れるものであった。
(Example 6)
50% by mass of acrylic fiber obtained in Example 1 and 50% by mass of acrylic fiber A containing no porous silica (manufactured by Mitsubishi Chemical Corporation, product number: S616, single fiber fineness: 0.8 dtex, fiber length: 38 mm) After that, cotton was opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.
The bulkiness was 286 cm 3 / g, and the bulkiness was excellent.

(実施例7)
実施例2で得たアクリル繊維50質量%と多孔質シリカを含有しないアクリル繊維Aの50質量%とを混綿し、その後、カード機にて開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
嵩高性は277cm/gで嵩高性の優れるものであった。
(Example 7)
50% by mass of the acrylic fiber obtained in Example 2 and 50% by mass of the acrylic fiber A not containing porous silica were mixed and then opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.
The bulkiness was 277 cm 3 / g, and the bulkiness was excellent.

(実施例8)
実施例1で得たアクリル繊維70質量%と多孔質シリカを含有しないアクリル繊維Aの30質量%とを混綿し、その後、カード機にて開綿し、詰め綿を得た。その詰め綿のダウンパワーの測定結果を表2に示す。
嵩高性は301cm/gで嵩高性の優れるものであった。
(Example 8)
70% by mass of the acrylic fiber obtained in Example 1 and 30% by mass of the acrylic fiber A not containing porous silica were mixed and then opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of the down power of the stuffed cotton.
The bulkiness was 301 cm 3 / g, and the bulkiness was excellent.

(実施例9)
実施例2で得たアクリル繊維70質量%と多孔質シリカを含有しないアクリル繊維Aの30質量%とを混綿し、その後、カード機にて開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
嵩高性は279cm/gで嵩高性の優れるものであった。
Example 9
70% by mass of the acrylic fiber obtained in Example 2 and 30% by mass of the acrylic fiber A not containing porous silica were mixed, and then opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.
The bulkiness was 279 cm 3 / g and the bulkiness was excellent.

(比較例3)
多孔質シリカを含有しないアクリル繊維Aの100質量%をカード機にて開綿し、詰め綿を得た。その詰め綿のダウンパワー、Clo値の測定結果を表2に示す。
嵩高性は275cm/gで嵩高性に劣るものであった。
(Comparative Example 3)
100% by mass of the acrylic fiber A containing no porous silica was opened with a card machine to obtain stuffed cotton. Table 2 shows the measurement results of down power and Clo value of the padding cotton.
The bulkiness was 275 cm 3 / g, which was inferior to the bulkiness.

なお、表中において、「−」はその値が測定されていないことを示す。   In the table, “-” indicates that the value is not measured.

Figure 0006614244
Figure 0006614244

Figure 0006614244
Figure 0006614244

1 繊維
3 繊維細孔
A 繊維細孔の最大長さ
B 繊維細孔の最大幅
1 Fiber 3 Fiber pore A Maximum length of fiber pore B Maximum width of fiber pore

Claims (18)

平均粒子径が1〜20μmの無機粒子を繊維内部に含有し、前記無機粒子の比表面積が300〜800m/gであり、前記無機粒子(100質量%)中のSiO の含有量が95質量%以上であり、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維。 Inorganic particles having an average particle diameter of 1 to 20 μm are contained in the fiber, the specific surface area of the inorganic particles is 300 to 800 m 2 / g, and the content of SiO 2 in the inorganic particles (100% by mass) is 95. Fiber in which fiber pores having a maximum width of 0.1 to 5 μm and a maximum length of 1 to 50 μm are formed in the fiber cross section in the fiber axis direction. 前記繊維(100質量%)中における、前記無機粒子の含有量が1〜15質量%である、請求項1に記載の繊維。   The fiber according to claim 1, wherein the content of the inorganic particles in the fiber (100% by mass) is 1 to 15% by mass. 繊維間の静摩擦係数μsが0.33〜0.45である、請求項1又は2に記載の繊維。   The fiber according to claim 1 or 2, wherein a coefficient of static friction μs between fibers is 0.33 to 0.45. 前記繊維がアクリル繊維である、請求項1〜3のいずれか一項に記載の繊維。   The fiber according to any one of claims 1 to 3, wherein the fiber is an acrylic fiber. 前記無機粒子に複数の細孔が形成されており、前記無機粒子の細孔容積が0.3〜2.0mL/gである、請求項1〜4のいずれか一項に記載の繊維。   The fiber according to any one of claims 1 to 4, wherein a plurality of pores are formed in the inorganic particles, and the pore volume of the inorganic particles is 0.3 to 2.0 mL / g. 単繊維繊度が0.5〜20dtexであり、単繊維強度が1.8〜3.0cN/dtexであり、単繊維伸度が10〜50%である、請求項1〜5のいずれか一項に記載の繊維。   The single fiber fineness is 0.5 to 20 dtex, the single fiber strength is 1.8 to 3.0 cN / dtex, and the single fiber elongation is 10 to 50%. Fiber as described in. ダウンパワーが270〜400cm/gであり、Clo値が3〜5である、請求項1〜6のいずれか一項に記載の繊維。 The fiber as described in any one of Claims 1-6 whose down power is 270-400 cm < 3 > / g and Clo value is 3-5. 温度20℃、湿度40%RHの環境から、温度20℃、湿度90%RHの環境まで変化させたときの最高到達繊維温度が24℃以上である、請求項1〜7のいずれか一項に記載の繊維。   The maximum attainable fiber temperature when changing from an environment of temperature 20 ° C and humidity 40% RH to an environment of temperature 20 ° C and humidity 90% RH is 24 ° C or higher. The described fiber. 請求項1〜8のいずれか一項に記載の繊維を用いた詰め綿。   Stuffed cotton using the fiber according to any one of claims 1 to 8. 繊維Aを含有し、詰め綿(100質量%)中における繊維Aの含有量が50〜100質量%であり、ダウンパワーが270〜400cm/gである詰め綿であって、前記繊維Aは、平均粒子径が1〜20μmの無機粒子を繊維内部に含有する繊維であり、前記無機粒子の比表面積が300〜800m/gであり、前記無機粒子(100質量%)中のSiO の含有量が95質量%以上である、詰め綿。 It is a stuffed cotton containing fiber A, the content of fiber A in stuffed cotton (100% by mass) being 50 to 100% by mass, and the down power being 270 to 400 cm 3 / g, wherein the fiber A is a fiber having an average particle diameter contains inorganic particles of 1~20μm inside the fibers, the specific surface area of the inorganic particles 300~800m 2 / g der Ri, SiO 2 of the inorganic in the particles (100 mass%) der Ru, wadding content less than 95% by weight. 前記繊維Aが、繊維軸方向の繊維断面において、最大幅が0.1〜5μm、最大長さが1〜50μmの繊維細孔が形成された繊維である、請求項10に記載の詰め綿。   The stuffed cotton according to claim 10, wherein the fiber A is a fiber in which fiber pores having a maximum width of 0.1 to 5 µm and a maximum length of 1 to 50 µm are formed in a fiber cross section in the fiber axis direction. Clo値が3〜5である、請求項10又は11に記載の詰め綿。   The stuffed cotton according to claim 10 or 11, having a Clo value of 3 to 5. 前記繊維A(100質量%)中における、前記無機粒子の含有量が1〜15質量%である、請求項10〜12のいずれか一項に記載の詰め綿。   The cotton stuffing as described in any one of Claims 10-12 whose content of the said inorganic particle in the said fiber A (100 mass%) is 1-15 mass%. 前記繊維Aがアクリル繊維である、請求項10〜13のいずれか一項に記載の詰め綿。   Stuffed cotton according to any one of claims 10 to 13, wherein the fiber A is an acrylic fiber. 前記無機粒子の細孔容積が0.3〜2.0mL/gである、請求項10〜14のいずれか一項に記載の詰め綿。   The cotton stuffing as described in any one of Claims 10-14 whose pore volume of the said inorganic particle is 0.3-2.0 mL / g. 前記繊維Aの繊維間静摩擦係数μsが0.33〜0.45であり、前記繊維Aの単繊維繊度が0.5〜20dtexであり、前記繊維Aの単繊維強度が1.8〜3.0cN/dtexであり、前記繊維Aの単繊維伸度が10〜50%である、請求項10〜15のいずれか一項に記載の詰め綿。   The inter-fiber static friction coefficient μs of the fiber A is 0.33 to 0.45, the single fiber fineness of the fiber A is 0.5 to 20 dtex, and the single fiber strength of the fiber A is 1.8 to 3. The stuffed cotton according to any one of claims 10 to 15, which is 0 cN / dtex, and the single fiber elongation of the fiber A is 10 to 50%. さらに、前記繊維Aとは異なる化学繊維を含み、前記化学繊維の単繊維繊度が0.5〜2.2dtexである、請求項10〜16のいずれか一項に記載の詰め綿。   Furthermore, the cotton stuffing as described in any one of Claims 10-16 containing the chemical fiber different from the said fiber A, and the single fiber fineness of the said chemical fiber is 0.5-2.2 dtex. さらに、熱接着短繊維を含み、詰め綿(100質量%)中における、前記熱接着短繊維の含有量が5〜30質量%であり、前記熱接着短繊維の少なくとも一部が、前記繊維Aと接着している、請求項10〜17のいずれか一項に記載の詰め綿。   Furthermore, the heat-bonding short fibers contain 5 to 30% by mass of the heat-bonding short fibers in the stuffed cotton (100% by mass), including at least a part of the heat-bonding short fibers. The stuffed cotton as described in any one of Claims 10-17 currently adhere | attached.
JP2017559716A 2016-10-19 2017-10-19 Fiber and stuffed cotton Expired - Fee Related JP6614244B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016204936 2016-10-19
JP2016204936 2016-10-19
PCT/JP2017/037828 WO2018074544A1 (en) 2016-10-19 2017-10-19 Fiber and wadding

Publications (2)

Publication Number Publication Date
JPWO2018074544A1 JPWO2018074544A1 (en) 2018-10-25
JP6614244B2 true JP6614244B2 (en) 2019-12-04

Family

ID=62019251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559716A Expired - Fee Related JP6614244B2 (en) 2016-10-19 2017-10-19 Fiber and stuffed cotton

Country Status (5)

Country Link
US (1) US20190233985A1 (en)
EP (1) EP3530777A4 (en)
JP (1) JP6614244B2 (en)
CN (1) CN109844191B (en)
WO (1) WO2018074544A1 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725410A (en) * 1980-07-22 1982-02-10 Asahi Chem Ind Co Ltd Pilling-resistant acrylic synthetic fiber
US4477515A (en) * 1981-10-29 1984-10-16 Kanebo, Ltd. Wadding materials
JPS60112656A (en) * 1983-11-21 1985-06-19 旭化成株式会社 Acrylic polymer fiber and manufacture
JP3144488B2 (en) * 1990-03-22 2001-03-12 日本バイリーン株式会社 Non-woven catalyst
JP3349028B2 (en) * 1995-12-08 2002-11-20 カネボウ株式会社 Textile products made of deodorant and antibacterial acrylic synthetic fibers
JP3301706B2 (en) * 1997-01-17 2002-07-15 株式会社クラレ Deodorant composite fiber and method for producing the same
JP4021513B2 (en) * 1997-02-21 2007-12-12 水澤化学工業株式会社 Alumina or alumina hydrate having ultra-low bulk density, high specific surface area, and high porosity, production method and use thereof
JP2000290832A (en) * 1999-04-07 2000-10-17 Kanegafuchi Chem Ind Co Ltd Porous fiber and its production
JP2001348733A (en) * 2000-06-07 2001-12-21 Toray Ind Inc Polyester yarn excellent in hygroscopic property
TW550313B (en) * 2000-05-22 2003-09-01 Toray Industries Process for producing polyester fiber and polyester composition
JP2001355173A (en) * 2000-06-13 2001-12-26 Idemitsu Unitech Co Ltd Nonwoven fabric laminate and its use
JP3736432B2 (en) * 2001-03-28 2006-01-18 東レ株式会社 Highly hygroscopic polyester fiber
JP2002339150A (en) * 2001-05-14 2002-11-27 Toray Ind Inc Wadding
DE602005020589D1 (en) * 2004-03-02 2010-05-27 Asahi Kasei Fibers Corp POLYURETHANEASE FIBER AND METHOD FOR THE PRODUCTION THEREOF
JP5298383B2 (en) * 2007-04-25 2013-09-25 Esファイバービジョンズ株式会社 Heat-adhesive conjugate fiber excellent in bulkiness and flexibility and fiber molded article using the same
JP2015014060A (en) * 2013-07-04 2015-01-22 三菱レイヨン株式会社 Functional acrylic fiber
CN105705687B (en) * 2013-11-08 2018-01-12 三菱化学株式会社 Highly shrinkable polyacrylonitrile fibre, the yarn containing the fiber and the different fuzz fabric of lint height using the yarn
JP6103059B2 (en) * 2014-05-08 2017-03-29 三菱レイヨン株式会社 Stuffed cotton

Also Published As

Publication number Publication date
JPWO2018074544A1 (en) 2018-10-25
CN109844191B (en) 2022-04-05
US20190233985A1 (en) 2019-08-01
CN109844191A (en) 2019-06-04
EP3530777A1 (en) 2019-08-28
EP3530777A4 (en) 2019-08-28
WO2018074544A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6575545B2 (en) Stuffed cotton
JPH11217757A (en) Staple fiber nonwoven fabric and its production
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
JP6241133B2 (en) Spun yarn and knitted fabric including the spun yarn
JP2009001927A (en) Blended yarn for converting light into heat and exothermic fabric using the same
KR101777180B1 (en) High-shrinkage acrylic fiber, spun yarn containing same, and step pile fabric using said yarn
JPWO2018051983A1 (en) Textile stuffing object and textile product using the same
JP2008115478A (en) Wadding, and method of manufacturing the same
JP6614244B2 (en) Fiber and stuffed cotton
JP4320231B2 (en) Spun yarn
US20170292207A1 (en) Lyocell crimped fiber
KR20190029724A (en) Nonwoven fabric for gel mask
JP3770254B2 (en) Nanoporous fiber
KR102490200B1 (en) Fiber with moisture desorbing and cooling characteristics, and fiber structure containing the same
JP5190193B2 (en) Breathable reversible anti-pill fiber
TWI828639B (en) Liquid retention nonwoven fabric and face mask containing the same
JPH1096153A (en) Stretchable nonwoven fabric and its production
JP2021526598A (en) Non-woven fiber aggregate and mask pack sheet using it
JP2000290832A (en) Porous fiber and its production
JP4645945B2 (en) Polyacrylonitrile-based transparent sheet and method for producing the same
JP2005015969A (en) Nano-porous fiber composite woven or knitted fabric
JP2006183187A (en) Spun yarn and textile using the same
JP2023137265A (en) Hydrophilic agent for inner cotton, inner cotton, and fiber product thereof
JP4410464B2 (en) Oiling sheet for skin
JP2021130887A (en) Acrylic composite deodorant fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6614244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees