JP6609862B2 - Carbon catalyst production method, carbon catalyst - Google Patents

Carbon catalyst production method, carbon catalyst Download PDF

Info

Publication number
JP6609862B2
JP6609862B2 JP2015551029A JP2015551029A JP6609862B2 JP 6609862 B2 JP6609862 B2 JP 6609862B2 JP 2015551029 A JP2015551029 A JP 2015551029A JP 2015551029 A JP2015551029 A JP 2015551029A JP 6609862 B2 JP6609862 B2 JP 6609862B2
Authority
JP
Japan
Prior art keywords
carbon catalyst
sample
cobalt
carbon
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015551029A
Other languages
Japanese (ja)
Other versions
JPWO2015080274A1 (en
Inventor
純一 尾崎
眞知子 瀧上
剛史 川口
理沙 吉川
靖雄 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Gunma University NUC
Original Assignee
Nisshinbo Holdings Inc
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Gunma University NUC filed Critical Nisshinbo Holdings Inc
Publication of JPWO2015080274A1 publication Critical patent/JPWO2015080274A1/en
Application granted granted Critical
Publication of JP6609862B2 publication Critical patent/JP6609862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

本発明は、炭素触媒の製造方法、並びにこの炭素触媒の製造方法により得られる炭素触媒に係わる。   The present invention relates to a carbon catalyst production method and a carbon catalyst obtained by the carbon catalyst production method.

燃料電池において、酸化還元反応触媒として、白金が用いられている。
しかし、白金は高価であるため、白金を使用しない触媒の開発が進められている。
In a fuel cell, platinum is used as a redox reaction catalyst.
However, since platinum is expensive, a catalyst that does not use platinum is being developed.

白金代替触媒として、触媒活性を有する炭素材料が提案されている。
特に、窒素を含む炭素材料は、酸素還元活性を有することが知られている。
そして、例えば、窒素を含有する前駆体高分子化合物を使用して、この前駆体高分子化合物を炭素化して、窒素を含有する炭素触媒を製造することが提案されている(例えば、特許文献1を参照。)。
As a platinum substitute catalyst, a carbon material having catalytic activity has been proposed.
In particular, it is known that a carbon material containing nitrogen has oxygen reduction activity.
For example, it has been proposed to produce a carbon catalyst containing nitrogen by using a precursor polymer compound containing nitrogen and carbonizing the precursor polymer compound (see, for example, Patent Document 1). .)

国際特許公開第2004/112174号International Patent Publication No. 2004/112174

特許文献1に記載された製造方法は、前駆体高分子化合物として、ポリアクリロニトリル系高分子化合物やポリイミド系高分子化合物等の合成ポリマーを使用している。
合成ポリマーを使用しているため、環境に負荷がかかる。
また、白金代替触媒として、特許文献1の製造方法によって製造される炭素触媒よりも、さらに高い触媒活性を有することが望まれている。
The manufacturing method described in Patent Document 1 uses a synthetic polymer such as a polyacrylonitrile polymer compound or a polyimide polymer compound as a precursor polymer compound.
Since synthetic polymers are used, the environment is burdened.
Moreover, as a platinum alternative catalyst, it is desired to have a higher catalytic activity than the carbon catalyst produced by the production method of Patent Document 1.

上述した問題の解決のために、本発明においては、環境への負荷を低減すると共に、高い触媒活性を実現することができる、炭素触媒の製造方法及び炭素触媒を提供するものである。   In order to solve the above-described problems, the present invention provides a method for producing a carbon catalyst and a carbon catalyst that can reduce environmental burdens and achieve high catalytic activity.

本発明の炭素触媒の製造方法は、タンパク質と金属の化合物を混合する工程と、その後、混合物を炭素化する工程とを有し、タンパク質として、鶏卵又は豆乳を使用し、金属として鉄又はコバルトを使用し、金属の化合物として、塩化鉄、塩化コバルト、酢酸鉄、酢酸コバルトから選ばれる化合物を使用するThe method for producing a carbon catalyst of the present invention comprises a step of mixing a protein and a metal compound, and then a step of carbonizing the mixture , using egg or soy milk as the protein, and iron or cobalt as the metal. A compound selected from iron chloride, cobalt chloride, iron acetate, and cobalt acetate is used as the metal compound .

本発明の炭素触媒は、水電解触媒として用いられる炭素触媒であって、炭素と、タンパク質を炭素化した物質中の窒素と、鉄又はコバルトとを含み、電解液に濃度0.5Mの硫酸を用いて測定された、−1mA/cm の電流が流れ始める、水電解触媒としての反応開始電位の絶対値|EH2|の値が0.18〜0.39V(対可逆水素電極)であるものである。 The carbon catalyst of the present invention is a carbon catalyst used as a water electrocatalyst, comprising carbon, nitrogen in a substance obtained by carbonizing protein, and iron or cobalt, and sulfuric acid having a concentration of 0.5 M in the electrolytic solution. The absolute value of the reaction starting potential | E H2 | as a water electrocatalyst , measured with a current of −1 mA / cm 2 , is 0.18 to 0.39 V (against a reversible hydrogen electrode). Is.

上述の本発明の炭素触媒の製造方法によれば、タンパク質と金属(鉄又はコバルト)の化合物を混合した後に、混合物を炭素化することにより、タンパク質由来の窒素を多く含有し、高い触媒活性を有する炭素触媒を製造することが可能になる。   According to the above-described method for producing a carbon catalyst of the present invention, after mixing a protein and a metal (iron or cobalt) compound, the mixture is carbonized to contain a large amount of protein-derived nitrogen and have high catalytic activity. It becomes possible to manufacture the carbon catalyst which has.

上述の本発明の炭素触媒の構成によれば、水電解触媒としての反応開始電位の絶対値|E H2 |の値が0.18〜0.39Vであることから、高い触媒活性を有する。
According to the configuration of the carbon catalyst of the present invention described above, the absolute value | E H2 | of the reaction start potential as a water electrocatalyst is 0.18 to 0.39 V, and therefore has high catalytic activity.

上述の本発明によれば、高い触媒活性を有する炭素触媒が得られる。
また、原料として、タンパク質と鉄又はコバルトの化合物を使用するので、環境への負荷を低減することや、原料コストを低減することができる。
According to the above-described present invention, a carbon catalyst having high catalytic activity can be obtained.
In addition, since a compound of protein and iron or cobalt is used as a raw material, the burden on the environment can be reduced and the raw material cost can be reduced.

本発明の炭素触媒の製造方法の一実施の形態のフローチャートである。It is a flowchart of one Embodiment of the manufacturing method of the carbon catalyst of this invention. 実験1の各試料の酸素還元触媒としての性能を評価するためのボルタモグラムである。3 is a voltammogram for evaluating the performance of each sample of Experiment 1 as an oxygen reduction catalyst. 実験1の各試料の水電解触媒としての性能を評価するためのボルタモグラムである。4 is a voltammogram for evaluating the performance of each sample of Experiment 1 as a water electrocatalyst. 羊毛と合成ポリマーをそれぞれ原料に使用して作製した炭素触媒の試料のEO2の値と炭素化後のカーボンの窒素含有量の値をプロットした図である。It is the figure which plotted the value of EO2 of the sample of the carbon catalyst produced using wool and a synthetic polymer as a raw material, respectively, and the value of nitrogen content of carbon after carbonization. 実験3の各試料のEO2の値を示す図である。It is a figure which shows the value of EO2 of each sample of Experiment 3. 実験3の各試料の0.7Vでの電流密度の絶対値|i0.7V|を示す図である。It is a figure which shows absolute value | i0.7V | of the current density in 0.7V of each sample of Experiment 3. 実験3の各試料のEH2の絶対値|EH2|を示す図である。It is a figure which shows absolute value | EH2 | of EH2 of each sample of Experiment 3. 実験3の各試料の−0.5Vでの電流密度の絶対値|i―0.5V|を示す図である。It is a figure which shows absolute value | i- 0.5V | of the current density in -0.5V of each sample of Experiment 3. A、B 実験4の各試料のコバルトの含有量と触媒活性の評価の測定結果の関係を示す図である。It is a figure which shows the relationship between the measurement result of the cobalt content of each sample of A and B Experiment 4, and evaluation of catalyst activity. A、B 実験5の各試料の炭素化温度と触媒活性の評価の測定結果の関係を示す図である。It is a figure which shows the relationship between the carbonization temperature of each sample of A, B experiment 5, and the measurement result of evaluation of catalyst activity. A、B 実験5の各試料の炭素化温度と触媒活性の評価の測定結果の関係を示す図である。It is a figure which shows the relationship between the carbonization temperature of each sample of A, B experiment 5, and the measurement result of evaluation of catalyst activity. A、B 実験5の各試料の炭素化温度と触媒活性の評価の測定結果の関係を示す図である。It is a figure which shows the relationship between the carbonization temperature of each sample of A, B experiment 5, and the measurement result of evaluation of catalyst activity. A、B 実験5の各試料の炭素化温度と触媒活性の評価の測定結果の関係を示す図である。It is a figure which shows the relationship between the carbonization temperature of each sample of A, B experiment 5, and the measurement result of evaluation of catalyst activity. 本発明に係る炭素触媒の前駆体及びケッチェンブラックの混合比と、酸素還元触媒活性を評価するためのボルタモグラムとの関係を示す図である。It is a figure which shows the relationship between the mixing ratio of the precursor of the carbon catalyst which concerns on this invention, and ketjen black, and the voltammogram for evaluating oxygen reduction catalyst activity. A、B カゼイン及びカーボンブラックの混合比と、水電解触媒活性の測定結果との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of A, B casein and carbon black, and the measurement result of water electrocatalytic activity. A、B カゼイン及びカーボンブラックの混合比と、酸素還元触媒活性の測定結果との関係を示す図である。It is a figure which shows the relationship between the mixing ratio of A, B casein and carbon black, and the measurement result of oxygen reduction catalyst activity. A、B 原料が異なる2種の炭素触媒の各試料と混合物の試料の、水電解触媒活性の評価の測定値を示す図である。It is a figure which shows the measured value of evaluation of water electrocatalyst activity of each sample of two types of carbon catalysts from which A and B raw materials differ, and the sample of a mixture. A、B 再熱処理の前後の各試料の触媒活性の測定結果である。A, B It is a measurement result of the catalyst activity of each sample before and after re-heat treatment. A〜D 炭素化前のカーボン前駆体の示差熱分析の結果である。AD is a result of differential thermal analysis of the carbon precursor before carbonization. E〜G 炭素化前のカーボン前駆体の示差熱分析の結果である。EG is a result of differential thermal analysis of the carbon precursor before carbonization. 実験12の各試料の水電解触媒活性の測定結果を示すボルタモグラムである。14 is a voltammogram showing a measurement result of water electrocatalytic activity of each sample of Experiment 12. ケッチェンブラックを混合した試料と混合していない試料の水電解触媒活性の測定結果を示すボルタモグラムである。It is a voltammogram which shows the measurement result of the water electrocatalytic activity of the sample which mixed the ketjen black, and the sample which is not mixed. A〜G 実験12の各試料のXPS測定により得られた窒素原子の1s軌道の電子の結合エネルギーのスペクトルである。AG is a spectrum of the binding energy of electrons in the 1s orbit of a nitrogen atom obtained by XPS measurement of each sample in Experiment 12.

本発明の炭素触媒の製造方法は、各種のタンパク質を使用して、金属の化合物を添加して混合し、混合物を炭素化して、炭素触媒を製造する。そして、金属として、鉄又はコバルトを使用する。   The method for producing a carbon catalyst of the present invention uses various proteins to add and mix a metal compound, and carbonize the mixture to produce a carbon catalyst. And iron or cobalt is used as a metal.

好ましくは、炭素化後に、さらに、金属(鉄又はコバルト)を除去する工程を行って、炭素触媒を製造する。鉄又はコバルトの除去は、酸、例えば塩酸を用いて、行うことができる。
金属を除去する工程を行うことにより、得られる炭素触媒では、炭素化の際の混合物の金属の少なくとも一部(一部又は全部)が除去されている。
Preferably, after carbonization, a step of removing metal (iron or cobalt) is further performed to produce a carbon catalyst. The removal of iron or cobalt can be performed using an acid, for example hydrochloric acid.
By performing the step of removing the metal, at least a part (a part or the whole) of the metal in the mixture at the time of carbonization is removed in the obtained carbon catalyst.

本発明の炭素触媒は、各種のタンパク質と、鉄又はコバルトの化合物との混合物を、炭素化して成る炭素触媒である。
本発明の炭素触媒は、タンパク質と、鉄又はコバルトの化合物との混合物を、炭素化して成るタンパク質に由来するため、窒素を含有している。本発明の炭素触媒では、炭素触媒中に窒素を2質量%以上含有していることが好ましい。
The carbon catalyst of the present invention is a carbon catalyst formed by carbonizing a mixture of various proteins and an iron or cobalt compound.
The carbon catalyst of the present invention contains nitrogen because it is derived from a protein obtained by carbonizing a mixture of a protein and an iron or cobalt compound. In the carbon catalyst of this invention, it is preferable that 2 mass% or more of nitrogen is contained in the carbon catalyst.

そして、本発明の炭素触媒及び本発明の炭素触媒の製造方法では、タンパク質として、例えば、羊毛(ウール)、カシミア、動物の毛・皮、シルク等のタンパク質含有繊維、カゼイン、豆乳や鶏卵等のタンパク質含有食品を使用することができる。
羊毛等のタンパク質含有繊維では、廃棄繊維や羽毛布団等を原料として用いることができる。そして、これらの原料を用いることにより、原料となる廃棄物の廃棄コストを削減することが期待できる。
タンパク質含有食品では、割れた鶏卵や賞味期限切れの食品を原料として用いることも可能である。これらの原料を用いることにより、鶏卵や食品の廃棄コストを低減することが期待できる。
And in the carbon catalyst of this invention and the manufacturing method of the carbon catalyst of this invention, as protein, protein-containing fibers, such as wool (wool), cashmere, animal hair and skin, silk, casein, soy milk, a chicken egg, etc. Protein-containing foods can be used.
For protein-containing fibers such as wool, waste fibers or duvets can be used as raw materials. And by using these raw materials, it can be expected to reduce the disposal cost of the waste material.
In protein-containing foods, it is also possible to use cracked eggs or foods that have expired. By using these raw materials, it can be expected to reduce the disposal cost of chicken eggs and food.

本発明の炭素触媒の製造方法において、鉄又はコバルトの化合物としては、各種の鉄化合物やコバルト化合物を使用することが可能である。例えば、塩化鉄、塩化コバルト、硝酸鉄、硝酸コバルト、酢酸コバルト、硫酸鉄、硫酸コバルト、酸化コバルト等が挙げられる。
より好ましくは、鉄又はコバルトの化合物として、水溶性の鉄の塩や水溶性のコバルトの塩を使用する。水溶性の塩を使用することにより、タンパク質との混合を容易にかつより均一に行うことができる。水溶性の鉄の塩や水溶性のコバルトの塩としては、例えば、上述の鉄又はコバルト化合物のうち、塩化物、硝酸塩、酢酸塩、硫酸塩が挙げられる。
さらに、タンパク質として水溶性のタンパク質を使用すると、タンパク質と、鉄塩又はコバルト塩を均一に混合することができる。また、タンパク質と金属塩(鉄塩又はコバルト塩)の混合比も自由に変えることができる。
In the method for producing a carbon catalyst of the present invention, various iron compounds and cobalt compounds can be used as the iron or cobalt compound. Examples thereof include iron chloride, cobalt chloride, iron nitrate, cobalt nitrate, cobalt acetate, iron sulfate, cobalt sulfate, and cobalt oxide.
More preferably, a water-soluble iron salt or a water-soluble cobalt salt is used as the iron or cobalt compound. By using a water-soluble salt, mixing with protein can be performed easily and more uniformly. Examples of the water-soluble iron salt and the water-soluble cobalt salt include chlorides, nitrates, acetates, and sulfates of the above-described iron or cobalt compounds.
Further, when a water-soluble protein is used as the protein, the protein and the iron salt or cobalt salt can be mixed uniformly. Moreover, the mixing ratio of protein and metal salt (iron salt or cobalt salt) can be freely changed.

本発明の炭素触媒の製造方法において、炭素化の温度は、800〜1200℃とすることが好ましい。
また、タンパク質と鉄又はコバルトの化合物の混合比は、タンパク質100質量部に対して、化合物中の鉄又はコバルトの金属成分が1〜15質量部であることが好ましく、3〜5質量部であることがより好ましい。
In the method for producing a carbon catalyst of the present invention, the carbonization temperature is preferably 800 to 1200 ° C.
Moreover, it is preferable that the mixing ratio of the compound of protein, iron, or cobalt is 1-15 mass parts with respect to 100 mass parts of proteins, and the metal component of iron or cobalt in a compound is 3-5 mass parts. It is more preferable.

本発明の炭素触媒の製造方法によれば、タンパク質と鉄又はコバルトの化合物を混合してから炭素化を行っていることにより、タンパク質由来の窒素を多く含有し、高い触媒活性を有する炭素触媒が得られる。
そして、タンパク質と鉄又はコバルトの化合物を混合してから炭素化を行っていることにより、タンパク質のみを炭素化した場合と比較して、より高い触媒活性が得られる。なお、炭素化後に、酸処理によって鉄又はコバルトを除去しても、高い触媒活性が得られる。これは、炭素化の際に、鉄又はコバルトの化合物が存在していることにより、タンパク質との間で相互作用が生じているためと考えられる。
また、タンパク質と鉄又はコバルトの化合物を混合してから炭素化を行っていることにより、窒素を含有する合成ポリマー(例えば、ポリアクリロニトリル)と鉄又はコバルトの化合物を混合して炭素化した場合と比較して、より高い触媒活性が得られる。これは、窒素を含有する合成ポリマーと鉄又はコバルトの化合物を混合して炭素化した場合と比較して、炭素化後の窒素の含有率が多くなっており、タンパク質由来の窒素が炭素化後も多く残存しているためと考えられる。
また、鉄又はコバルトを使用することにより、鉄及びコバルト以外の金属(カルシウム、マグネシウム、ニッケル、チタン等)を使用した場合と比較して、より高い触媒活性が得られる。
また、原料として、タンパク質と鉄又はコバルトの化合物を使用するので、合成ポリマーを使用した場合と比較して、環境への負荷を低減することや、原料コストを低減することができる。
According to the method for producing a carbon catalyst of the present invention, by performing carbonization after mixing a protein and an iron or cobalt compound, a carbon catalyst containing a large amount of protein-derived nitrogen and having high catalytic activity is obtained. can get.
Further, by performing carbonization after mixing the protein and the iron or cobalt compound, higher catalytic activity can be obtained as compared with the case where only the protein is carbonized. Even if iron or cobalt is removed by acid treatment after carbonization, high catalytic activity can be obtained. This is presumably because an interaction with the protein occurs due to the presence of an iron or cobalt compound during carbonization.
In addition, when carbonization is performed after mixing a protein and an iron or cobalt compound, the carbonization is performed by mixing a nitrogen-containing synthetic polymer (for example, polyacrylonitrile) and an iron or cobalt compound. In comparison, higher catalytic activity is obtained. This is because the nitrogen content after carbonization is higher than when carbonized by mixing a synthetic polymer containing nitrogen and an iron or cobalt compound. This is probably because many of them remain.
Further, by using iron or cobalt, higher catalytic activity can be obtained as compared with the case where a metal other than iron and cobalt (calcium, magnesium, nickel, titanium, etc.) is used.
Moreover, since the compound of protein and iron or cobalt is used as a raw material, compared with the case where a synthetic polymer is used, the load to an environment can be reduced and the raw material cost can be reduced.

さらに、本発明の製造方法により得られる炭素触媒は、酸素還元触媒としての活性と、水電解触媒としての活性とについて、それぞれ高い活性を発現する。
これにより、同じ炭素触媒で、酸素還元も水電解も行うことができる。
Furthermore, the carbon catalyst obtained by the production method of the present invention exhibits high activity in terms of activity as an oxygen reduction catalyst and activity as a water electrolysis catalyst.
Thereby, oxygen reduction and water electrolysis can be performed with the same carbon catalyst.

また、特に、コバルトを使用した場合には、水電解触媒としての活性が、鉄を使用した場合と比較して、さらに高くなる。   In particular, when cobalt is used, the activity as a water electrolysis catalyst is further increased as compared with the case where iron is used.

なお、羊毛と金属塩の混合物から作製した本発明に係る炭素触媒と、合成ポリマーであるフェノール樹脂と金属フタロシアニンの混合物から作製した炭素触媒について、X線回折測定と、X線分光分析装置(XPS)によるスペクトルの測定を行ったところ、炭素触媒の構造や窒素原子の状態が異なっていることがわかった。
X線回折測定の結果から、羊毛と金属塩の混合物から作製した炭素触媒は、フェノール樹脂と金属フタロシアニンの混合物から作製した炭素触媒のようなナノシェル構造をとらないことがわかった。
また、XPSによるスペクトルの測定結果から、羊毛と金属塩の混合物から作製した炭素触媒と、羊毛のみを炭素化して作製した炭素触媒とで、N1sスペクトルが異なることがわかった。
In addition, about the carbon catalyst based on this invention produced from the mixture of wool and a metal salt, and the carbon catalyst produced from the mixture of the phenol resin which is a synthetic polymer, and a metal phthalocyanine, X-ray-diffraction measurement and an X-ray-spectral-analysis apparatus (XPS) ) Spectrum measurement revealed that the structure of the carbon catalyst and the state of the nitrogen atom were different.
From the results of X-ray diffraction measurement, it was found that the carbon catalyst prepared from a mixture of wool and a metal salt does not have a nanoshell structure like a carbon catalyst prepared from a mixture of a phenol resin and a metal phthalocyanine.
Moreover, from the measurement result of the spectrum by XPS, it was found that the N1s spectrum was different between a carbon catalyst prepared from a mixture of wool and a metal salt and a carbon catalyst prepared by carbonizing only wool.

また、タンパク質と金属塩の混合物を炭素化して得られる炭素触媒は、タンパク質単独で炭素化して得られる炭素触媒と比較して、X線回折測定により求められるカーボンの002面間隔が小さくなることがわかった。そして、炭素化後に金属の除去を行っても、002面間隔が小さいままとなる。
従って、002面間隔から、炭素化の際に金属塩を使用したことが判別可能である。
In addition, a carbon catalyst obtained by carbonizing a mixture of a protein and a metal salt has a smaller carbon 002 plane spacing required by X-ray diffraction measurement than a carbon catalyst obtained by carbonizing a protein alone. all right. Even when the metal is removed after carbonization, the 002 plane spacing remains small.
Therefore, it can be determined from the 002 plane spacing that a metal salt is used during carbonization.

続いて、本発明の炭素触媒の製造方法の一実施の形態について説明する。本発明の炭素触媒の製造方法の一実施の形態のフローチャートを、図1に示す。   Next, an embodiment of the carbon catalyst production method of the present invention will be described. A flowchart of an embodiment of the method for producing a carbon catalyst of the present invention is shown in FIG.

まず、図1のステップS1において、タンパク質と、金属塩の水溶液又は金属化合物の懸濁液を、混合する。金属塩としては、前述した鉄やコバルトの塩を使用する。
金属化合物(鉄やコバルトの化合物)のうち、例えば、CoOは水に溶解しないため、懸濁液とする。
羊毛等の繊維は水に溶解しないため、タンパク質として繊維を使用する場合には、水溶液又は懸濁液の中に、繊維を分散させる。
First, in step S1 of FIG. 1, a protein and an aqueous solution of a metal salt or a suspension of a metal compound are mixed. As the metal salt, the aforementioned iron or cobalt salt is used.
Of the metal compounds (iron and cobalt compounds), for example, CoO is not dissolved in water, so it is a suspension.
Since fibers such as wool do not dissolve in water, when fibers are used as proteins, the fibers are dispersed in an aqueous solution or suspension.

次に、ステップS2において、乾燥させて水分を除去する。
乾燥方法は、特に限定されず、風乾燥、温風乾燥、減圧乾燥、凍結乾燥等、いずれの乾燥方法も可能である。
Next, in step S2, it is dried to remove moisture.
The drying method is not particularly limited, and any drying method such as air drying, hot air drying, reduced pressure drying, freeze drying and the like can be used.

その後、ステップS3において、炭素化工程を行う。
次に、ステップS4において、炭素化したものを、ボールミル等を用いて粉砕する。
Thereafter, in step S3, a carbonization process is performed.
Next, in step S4, the carbonized material is pulverized using a ball mill or the like.

さらに、ステップS5において、粉砕したものを酸処理する。例えば、濃度1Mの塩酸を用いて、70℃で2時間の処理を3回繰り返す。
この酸処理工程により、ステップS1で混合した金属塩や金属化合物が除去される。
In step S5, the pulverized product is acid-treated. For example, the treatment for 2 hours at 70 ° C. is repeated 3 times using 1 M hydrochloric acid.
By this acid treatment step, the metal salt or metal compound mixed in step S1 is removed.

このようにして、タンパク質から炭素触媒を製造することができる。   In this way, a carbon catalyst can be produced from protein.

実際に炭素触媒を作製して、触媒活性等の各種の特性を調べた。   A carbon catalyst was actually produced, and various characteristics such as catalytic activity were examined.

<実験1>
金属塩を混合して炭素化した場合と、金属塩を混合しないでタンパク質のみを炭素化した場合とで、触媒活性等の特性を比較した。
<Experiment 1>
Characteristics such as catalytic activity were compared between the case of carbonization by mixing metal salts and the case of carbonization of only proteins without mixing metal salts.

(実施例1)
タンパク質として羊毛(ウール)を使用し、金属塩として塩化コバルト(CoCl)を使用して、羊毛と塩化コバルト水溶液を混合した。混合比は、タンパク質100質量部に対して、金属塩(塩化コバルト)中の金属を5質量部とした。
乾燥後、炭素化を行った。炭素化温度は1000℃として、窒素気流中、1000℃で1時間保持して炭素化を行った。
炭素化後、ボールミルで粉砕した。
次に、濃度1Mの塩酸で70℃・2時間の酸処理を3回繰り返して、コバルトを除去した。
このようにして、実施例1の試料を得た。
以下、この試料を、「羊毛−CoCl−1000」と表記する。
なお、その他の試料についても同様に、原料(タンパク質又は合成ポリマー)と金属塩と炭素化温度によって、試料を表記する。
Example 1
Wool and aqueous cobalt chloride solution were mixed using wool (wool) as protein and cobalt chloride (CoCl 2 ) as metal salt. The mixing ratio was 5 parts by mass of metal in the metal salt (cobalt chloride) with respect to 100 parts by mass of protein.
After drying, carbonization was performed. The carbonization temperature was set to 1000 ° C., and the carbonization was carried out by holding at 1000 ° C. for 1 hour in a nitrogen stream.
After carbonization, it was pulverized with a ball mill.
Next, the acid treatment with 1 M hydrochloric acid at 70 ° C. for 2 hours was repeated three times to remove cobalt.
Thus, the sample of Example 1 was obtained.
Hereinafter, this sample is referred to as “wool-CoCl 2 -1000”.
In addition, about other samples, a sample is described similarly with a raw material (protein or synthetic polymer), a metal salt, and carbonization temperature.

(比較例1)
羊毛(ウール)を炭素化した。炭素化温度は1000℃として、窒素気流中、1000℃で1時間保持して炭素化を行った。
炭素化後、ボールミルで粉砕した。
このようにして、比較例1の試料を得た。
以下、この試料を、「羊毛−1000」と表記する。
(Comparative Example 1)
The wool (wool) was carbonized. The carbonization temperature was set to 1000 ° C., and the carbonization was carried out by holding at 1000 ° C. for 1 hour in a nitrogen stream.
After carbonization, it was pulverized with a ball mill.
In this way, a sample of Comparative Example 1 was obtained.
Hereinafter, this sample is described as “wool-1000”.

(触媒性能の評価)
各試料について、酸素還元触媒としての性能と、水電解触媒としての性能を、評価した。
ポテンシオスタット(ALS 700シリーズ)と、その付属品である回転リングディスク電極(BAS社製RRDE)を使用して、電解液に濃度0.5Mの硫酸を用いて、対極をガラス状炭素とし、参照極を可逆水素電極(RHE)として、室温、電極回転数1500rpmにて、それぞれの触媒としての性能の評価を行った。
(Evaluation of catalyst performance)
About each sample, the performance as an oxygen reduction catalyst and the performance as a water electrolysis catalyst were evaluated.
Using a potentiostat (ALS 700 series) and its accessory rotating ring disk electrode (RRDE manufactured by BAS), sulfuric acid with a concentration of 0.5M was used as the electrolyte, and the counter electrode was made into glassy carbon. With the reference electrode as a reversible hydrogen electrode (RHE), the performance of each catalyst was evaluated at room temperature and at an electrode rotational speed of 1500 rpm.

酸素還元触媒としての性能の評価は、走査範囲を1〜0Vvs.RHEとして、ボルタモグラムと、−10μA/cmの電流が流れ始める電位(反応開始電位)EO2と、電圧0.7Vのときの電流密度の絶対値|i0.7V|を、それぞれ測定した。
各試料のボルタモグラムを図2に示し、EO2及び|i0.7V|を表1に示す。
The evaluation of the performance as an oxygen reduction catalyst was carried out using a scanning range of 1 to 0 V vs. As RHE, a voltammogram, a potential at which a current of −10 μA / cm 2 starts to flow (reaction starting potential) E O2, and an absolute value | i 0.7V | of the current density at a voltage of 0.7 V were measured.
The voltammogram of each sample is shown in FIG. 2, and E O2 and | i 0.7 V | are shown in Table 1.

Figure 0006609862
Figure 0006609862

反応開始電位EO2は、数値が大きいほど、触媒が高性能であることを示す。
電圧0.7Vのときの電流密度の絶対値|i0.7V|は、数値が大きいほど、触媒が高性能であることを示す。
図2及び表1より、羊毛に金属塩(CoCl)を添加することにより、触媒活性が向上することがわかる。
The reaction start potential E O2 indicates that the higher the value, the higher the performance of the catalyst.
The absolute value | i 0.7V | of the current density at a voltage of 0.7V indicates that the higher the value, the higher the performance of the catalyst.
From FIG. 2 and Table 1, it can be seen that the catalytic activity is improved by adding a metal salt (CoCl 2 ) to wool.

水電解触媒としての性能の評価は、走査範囲を0〜−1Vvs.RHEとして、ボルタモグラムと、−1mA/cmの電流が流れ始める電位EH2と、電圧−0.5Vのときの電流密度i―0.5Vを、それぞれ測定した。
各試料のボルタモグラムを図3に示し、EH2及びi−0.5Vを表2に示す。
Evaluation of the performance as a water electrocatalyst was performed by changing the scanning range from 0 to 1 V vs. As RHE, a voltammogram, a potential E H2 at which a current of −1 mA / cm 2 starts to flow, and a current density i −0.5 V at a voltage of −0.5 V were measured.
The voltammogram of each sample is shown in FIG. 3, and E H2 and i −0.5 V are shown in Table 2.

Figure 0006609862
Figure 0006609862

−1mA/cmの電流が流れ始める電位EH2は、絶対値が小さいほど、触媒が高性能であることを示す。
電圧−0.5Vのときの電流密度i―0.5Vは、絶対値が大きいほど、触媒が高性能であることを示す。
図3及び表2より、羊毛に金属塩(CoCl)を添加して炭素化すると、触媒活性が向上することがわかる。
The potential E H2 at which a current of −1 mA / cm 2 starts to flow indicates that the smaller the absolute value, the higher the performance of the catalyst.
The current density i −0.5 V at a voltage of −0.5 V indicates that the higher the absolute value, the higher the performance of the catalyst.
From FIG. 3 and Table 2, it can be seen that the catalytic activity is improved when a metal salt (CoCl 2 ) is added to the wool and carbonized.

<実験2>
タンパク質、窒素を含有する合成ポリマー、金属塩を、それぞれ各種用意して、炭素触媒を作製した。
タンパク質としては、羊毛(ウール)、犬の毛、カシミア、高窒素含有カゼイン、絹(シルク)、鶏卵、豆乳、羽毛、牛皮、ゼラチンを用意した。羊毛は、メリノ種トップ羊毛を使用した。犬の毛は、ゴールデンリトリバー種の犬の抜け毛を洗浄して使用した。高窒素含有カゼインは、MP Biomedicals製(ミルク由来)を使用した。豆乳は、紀文製無調整豆乳を凍結乾燥して使用した。ゼラチンは、和光純薬製ゼラチンをそのまま使用した。
窒素を含有する合成ポリマーとしては、ポリアクリロニトリルと、フェノール樹脂を用意した。
金属塩は、鉄又はコバルトの塩として、CoCl,FeCl,Co(NO,Fe(NO,Co(CHCOO),Fe(SOを用意し、その他の金属の塩として、CaCl,ZnCl,ZrCl,TiCl,SnCl,Ni(NO,MgSOを用意した。
また、合成ポリマーと混合するために、コバルトフタロシアニン(CoPc)と鉄フタロシアニン(FePc)を用意した。
<Experiment 2>
A variety of proteins, nitrogen-containing synthetic polymers, and metal salts were prepared to prepare carbon catalysts.
As the protein, wool (wool), dog hair, cashmere, high nitrogen-containing casein, silk, chicken egg, soy milk, feathers, cowhide, and gelatin were prepared. As the wool, Merino top wool was used. The hair of the dog was used after washing the hair loss of a Golden Retriever dog. As the high nitrogen content casein, MP Biomedicals (from milk) was used. The soy milk was lyophilized from Kibun non-adjusted soy milk. As the gelatin, Wako Pure Chemical gelatin was used as it was.
As a synthetic polymer containing nitrogen, polyacrylonitrile and a phenol resin were prepared.
For the metal salt, CoCl 2 , FeCl 3 , Co (NO 3 ) 2 , Fe (NO 3 ) 3 , Co (CH 3 COO) 2 , Fe 2 (SO 4 ) 3 are prepared as iron or cobalt salts, As other metal salts, CaCl 2 , ZnCl 2 , ZrCl 4 , TiCl 4 , SnCl 2 , Ni (NO 3 ) 2 , and MgSO 4 were prepared.
Also, cobalt phthalocyanine (CoPc) and iron phthalocyanine (FePc) were prepared for mixing with the synthetic polymer.

ここで、上述した各種のタンパク質、合成ポリマー、タンパク質と金属塩との混合物、合成ポリマーとフタロシアニンの混合物のうちの一部の物について、炭素化前の前駆体としての窒素含有量を、表3に示す。
なお、表3の数値において、ポリアクリロニトリル−FePc、フェノール樹脂−CoPc、フェノール樹脂−FePcの窒素含有量は、合成ポリマー100に対して質量比3で金属を添加したとして計算しており、羊毛−金属塩の窒素含有量は、羊毛100質量部に、金属塩中の金属5質量部を混合したとして計算している。
Here, the nitrogen content as a precursor before carbonization is shown in Table 3 for some of the above-described various proteins, synthetic polymers, mixtures of proteins and metal salts, and mixtures of synthetic polymers and phthalocyanines. Shown in
In the numerical values in Table 3, the nitrogen content of polyacrylonitrile-FePc, phenol resin-CoPc, and phenol resin-FePc is calculated on the assumption that a metal is added at a mass ratio of 3 to the synthetic polymer 100. The nitrogen content of the metal salt is calculated assuming that 5 parts by mass of metal in the metal salt is mixed with 100 parts by mass of wool.

Figure 0006609862
Figure 0006609862

フェノール樹脂には窒素は含まれておらず、ポリアクリロニトリルには多量の窒素が含まれている。
羊毛とカゼインには、10%以上の窒素が含まれている。
Phenol resin does not contain nitrogen, and polyacrylonitrile contains a large amount of nitrogen.
Wool and casein contain more than 10% nitrogen.

上述した各種の原料を使用して、タンパク質単独、タンパク質と金属塩との混合物、合成ポリマーと金属フタロシアニンとの混合物によって、それぞれ炭素化前の前駆体を作製した。タンパク質と金属塩の混合比は、タンパク質100質量部に対して、金属塩中の金属を5質量部とした。
そして、各前駆体を用いて、実験1の実施例1又は比較例1の工程にならって、炭素触媒の試料を作製した。なお、一部の前駆体については、炭素化温度を800℃とした試料を作製した。
作製した各試料について、実験1と同様にEO2を測定し、一部の試料については、カーボンの窒素含有量をX線光電子分析装置で測定した。
測定結果を表4及び表5に示す。表4は本発明に係る炭素触媒の試料の結果を示し、表5はその他の炭素触媒(タンパク質単独、鉄又はコバルト以外の金属塩を使用、合成ポリマーを使用)の試料の結果を示している。
Using the above-mentioned various raw materials, precursors before carbonization were prepared using protein alone, a mixture of protein and metal salt, and a mixture of synthetic polymer and metal phthalocyanine, respectively. The mixing ratio of protein and metal salt was 5 parts by mass of metal in the metal salt with respect to 100 parts by mass of protein.
And using each precursor, the sample of the carbon catalyst was produced according to the process of Example 1 of Experiment 1, or Comparative Example 1. For some of the precursors, samples with a carbonization temperature of 800 ° C. were prepared.
About each produced sample, EO2 was measured like Experiment 1, and the nitrogen content of carbon was measured with the X ray photoelectron analyzer about a part of sample.
The measurement results are shown in Tables 4 and 5. Table 4 shows the result of the sample of the carbon catalyst according to the present invention, and Table 5 shows the result of the sample of other carbon catalyst (protein alone, using a metal salt other than iron or cobalt, using a synthetic polymer). .

Figure 0006609862
Figure 0006609862

Figure 0006609862
Figure 0006609862

表4よりわかるように、本発明に係る炭素触媒の試料では、EO2が0.80以上と高くなっている。
表5よりわかるように、タンパク質単独や、鉄又はコバルト以外の金属塩を使用したときには、EO2が0.80未満の低い値となっている。
また、合成ポリマーを使用したときには、EO2が、本発明に係る炭素触媒の試料と同程度もしくは低くなっている。
さらに、窒素含有量について、表3と表5を比較すると、合成ポリマーを使用した場合には、炭素化前後で窒素含有量が減少しており、特にポリアクリロニトリルの場合に顕著に減少していることがわかる。
As can be seen from Table 4, in the carbon catalyst sample according to the present invention, E O2 is as high as 0.80 or more.
As can be seen from Table 5, when a protein alone or a metal salt other than iron or cobalt is used, E O2 is a low value of less than 0.80.
In addition, when a synthetic polymer is used, E O2 is about the same or lower than that of the sample of the carbon catalyst according to the present invention.
Furthermore, when Table 3 and Table 5 are compared about nitrogen content, when a synthetic polymer is used, nitrogen content has decreased before and after carbonization, and it has decreased remarkably especially in the case of polyacrylonitrile. I understand that.

表4及び表5に記載した、羊毛と合成ポリマーをそれぞれ原料に使用して作製した炭素触媒の試料、並びに、それらの試料と同様の原料及び金属を用いて作製した炭素触媒の試料について、EO2の値と炭素化後のカーボンの窒素含有量の値を測定した。各試料の2つの値をプロットして、図4に示す。
図4からわかるように、羊毛−鉄や羊毛−コバルトは、ある程度(2質量%以上)の窒素を含有しており、合成ポリマーを原料とした場合と比較して窒素の含有量が多く、かつ、EO2の値が0.8V以上と高くなっている。
Samples of carbon catalysts prepared using wool and synthetic polymer as raw materials described in Table 4 and Table 5, respectively, and carbon catalyst samples prepared using the same raw materials and metals as those samples. The value of O2 and the nitrogen content of carbon after carbonization were measured. The two values for each sample are plotted and shown in FIG.
As can be seen from FIG. 4, wool-iron and wool-cobalt contain a certain amount (2% by mass or more) of nitrogen, and the content of nitrogen is higher than when synthetic polymer is used as a raw material. The value of E O2 is as high as 0.8 V or higher.

<実験3>
実験2の表3〜表5や図4に示した各試料と、さらに、絹や羊毛以外のタンパク質100質量部と金属塩中の金属5質量部とを混合した試料について、実験1の実施例1や比較例1の工程にならって、炭素触媒の試料を作製した。
作製した各試料について、実験1と同様に酸素還元触媒活性の評価を行い、EO2の値及び0.7Vでの電流密度を測定した。各試料のEO2の値を図5に示し、各試料の0.7Vでの電流密度の絶対値|i0.7V|を図6に示す。
また、作製した各試料について、実験1と同様に水電解反応触媒活性の評価を行い、EH2の値及び−0.5Vでの電流密度を測定した。各試料のEH2の絶対値|EH2|を図7に示し、各試料の−0.5Vでの電流密度の絶対値|i―0.5V|を図8に示す。
図5〜図8において、タンパク質単独で炭素化した試料の測定値は、棒グラフの先に*印を付して区別している。
<Experiment 3>
Example 1 of Experiment 1 with respect to each sample shown in Table 3 to Table 5 of Experiment 2 and FIG. 4 and a sample in which 100 parts by mass of protein other than silk or wool and 5 parts by mass of metal in a metal salt were mixed. Samples of carbon catalyst were prepared following the steps of No. 1 and Comparative Example 1.
For each sample prepared, evaluated similarly oxygen reduction catalyst activity as in Experiment 1 to measure the current density with a value and 0.7V of E O2. The value of EO 2 of each sample is shown in FIG. 5, and the absolute value | i 0.7V | of the current density at 0.7 V of each sample is shown in FIG.
Also, for each sample prepared, evaluated similarly water electrolysis reaction catalyst activity as in Experiment 1 to measure the current density with a value and -0.5V of E H2. The absolute value of E H2 of each sample | E H2 | is shown in Figure 7, the absolute value of the current density at -0.5V for each sample | showing the Figure 8 | i -0.5V.
In FIG. 5 to FIG. 8, the measured values of the sample carbonized with the protein alone are distinguished by attaching an asterisk (*) at the end of the bar graph.

図5のEO2は、値が大きいほど触媒が高性能であることを意味する。
図5の結果から、タンパク質と金属塩を混合して炭素化することにより、酸素還元触媒活性の高い炭素触媒が得られることがわかる。
E O2 in FIG. 5, the catalyst larger value means that a high performance.
From the results of FIG. 5, it can be seen that a carbon catalyst having a high oxygen reduction catalytic activity can be obtained by mixing and carbonizing a protein and a metal salt.

図6の電流密度の絶対値|i0.7V|は、絶対値が大きいほど触媒が高性能であることを意味する。
図6の結果から、タンパク質と金属塩を混合して炭素化した試料は、タンパク質単独で炭素化した試料と比較して、酸素還元反応で高い電流密度を示すことがわかる。特に、金属塩に鉄又はコバルトを用いると、顕著である。なお、豆乳は単独で炭素化しても高い電流密度を示しているが、これは豆乳に金属の化合物が含まれているので、その影響であると考えられる。
The absolute value | i 0.7V | of the current density in FIG. 6 means that the larger the absolute value, the higher the performance of the catalyst.
From the results of FIG. 6, it can be seen that the sample carbonized by mixing the protein and the metal salt shows a higher current density in the oxygen reduction reaction than the sample carbonized by the protein alone. In particular, when iron or cobalt is used for the metal salt, it is remarkable. It should be noted that soymilk shows a high current density even when carbonized alone, but this is considered to be due to the fact that soymilk contains a metal compound.

図7の|EH2|は、絶対値が小さいほど触媒が高性能であることを意味する。
図7の結果から、タンパク質と金属塩を混合して炭素化することにより、水電解反応触媒活性の高い炭素触媒が得られることがわかる。特に、金属塩にコバルト塩を用いた場合に効果が大きく、その他の金属塩を用いた場合には効果が少ないことがわかる。
| E H2 | in FIG. 7 means that the smaller the absolute value, the higher the performance of the catalyst.
From the results of FIG. 7, it can be seen that a carbon catalyst having a high water electrolysis reaction catalytic activity can be obtained by mixing and carbonizing a protein and a metal salt. In particular, it can be seen that the effect is large when a cobalt salt is used as the metal salt, and the effect is small when other metal salts are used.

図8の電流密度の絶対値|i―0.5V|は、絶対値が大きいほど触媒が高性能であることを意味する。
図8の結果から、タンパク質と金属塩を混合して炭素化することにより、水電解反応触媒活性の高い炭素触媒が得られることがわかる。特に、金属塩にコバルト塩を用いた場合に効果が大きいことがわかる。
また、図7と図8を比較すると、金属塩の添加の影響は、電位よりも電流で大きいことがわかり、特に金属塩にコバルト塩を用いるとその効果が顕著であることがわかる。
The absolute value | i− 0.5V | of the current density in FIG. 8 means that the higher the absolute value, the higher the performance of the catalyst.
From the results shown in FIG. 8, it can be seen that a carbon catalyst having high water electrolysis reaction catalytic activity can be obtained by mixing and carbonizing a protein and a metal salt. It can be seen that the effect is particularly great when a cobalt salt is used as the metal salt.
Further, comparing FIG. 7 and FIG. 8, it can be seen that the influence of the addition of the metal salt is larger than the potential in terms of current, and that the effect is particularly remarkable when a cobalt salt is used as the metal salt.

<実験4>
金属塩の添加量を変えて、触媒活性の評価を行い、適切な添加量の検討を行った。
タンパク質としては水溶性のカゼインを使用して、金属塩としては水溶性の塩化コバルトを使用して、これらを均一な比率で混合できるようにした。
混合比は、カゼイン100gに対して、金属コバルトの含有量が1g,3g,5g,10gとなるように、塩化コバルトを加えた。
それぞれカゼインと塩化コバルトを混合して、実験1と同様にして、乾燥した混合物を1000℃で1時間炭素化した後に、酸処理を行ってコバルトを除去して、炭素触媒の試料を作製した。
<Experiment 4>
The catalytic activity was evaluated by changing the addition amount of the metal salt, and the appropriate addition amount was examined.
Water-soluble casein was used as the protein, and water-soluble cobalt chloride was used as the metal salt so that they could be mixed in a uniform ratio.
As for the mixing ratio, cobalt chloride was added so that the content of metallic cobalt was 1 g, 3 g, 5 g, and 10 g with respect to 100 g of casein.
Casein and cobalt chloride were mixed with each other, and the dried mixture was carbonized at 1000 ° C. for 1 hour in the same manner as in Experiment 1. Then, acid treatment was performed to remove cobalt to prepare a sample of a carbon catalyst.

得られた炭素触媒の試料について、それぞれ、酸素還元触媒活性の評価として、EO2の値と0.7Vの電流密度と0.5Vの電流密度を測定し、水電解反応触媒活性の評価として、EH2の値と−0.5Vの電流密度と−0.4Vの電流密度を測定した。
各試料のコバルトの含有量と酸素還元触媒活性の評価の測定結果の関係を、図9Aに示し、各試料のコバルトの含有量と水電解反応触媒活性の評価の測定結果の関係を、図9Bに示す。なお、図9A及び図9Bにおいて、各測定値を絶対値で示している。EH2の測定値は絶対値が小さいほど触媒が高性能であることを示し、他の測定値は絶対値が大きいほど触媒が高性能であることを示している。
About the obtained carbon catalyst sample, as an evaluation of the oxygen reduction catalytic activity, the value of E O2 , a current density of 0.7 V, and a current density of 0.5 V were measured, respectively, and as an evaluation of the water electrolysis reaction catalytic activity, the current density of the current density and -0.4V value of E H2 and -0.5V were measured.
FIG. 9A shows the relationship between the cobalt content of each sample and the measurement result of the evaluation of the oxygen reduction catalytic activity. FIG. 9B shows the relationship between the cobalt content of each sample and the measurement result of the evaluation of the water electrolysis reaction catalytic activity. Shown in In addition, in FIG. 9A and FIG. 9B, each measured value is shown by the absolute value. The measured value of E H2 indicates that the smaller the absolute value, the higher the performance of the catalyst, and the other measured value indicates that the higher the absolute value, the higher the performance of the catalyst.

図9A及び図9Bより、EO2及びEH2は、金属の濃度にほとんど依存しないが、電流密度は金属が1gの場合に他の試料より低いことがわかる。
従って、カゼインとコバルト塩を混合する場合、カゼイン100g当たり、金属コバルトが3〜5gとなるようにコバルト塩を混合することが望ましい。5gを超えて過剰にコバルト塩を加えても、効果が変わらないためである。
9A and 9B show that E O2 and E H2 hardly depend on the concentration of the metal, but the current density is lower than the other samples when the metal is 1 g.
Therefore, when mixing casein and a cobalt salt, it is desirable to mix a cobalt salt so that metallic cobalt may be 3-5g per 100g of casein. This is because the effect does not change even if the cobalt salt is added in excess of 5 g.

<実験5>
炭素化工程の温度を変えて、触媒活性の評価を行い、適切な炭素化温度の検討を行った。
タンパク質としては羊毛を使用して、金属塩としては、CoCl,Co(NO,FeCl,Fe(NOをそれぞれ使用した。
混合比は、羊毛100質量部に対して金属塩中の金属を5質量部とした。
それぞれの試料を複数用意して、炭素化温度を800℃、900℃、1000℃、1100℃、1200℃と変えて、その他は実験1と同様にして、炭素触媒の試料を作製した。
<Experiment 5>
The catalyst activity was evaluated by changing the temperature of the carbonization process, and an appropriate carbonization temperature was examined.
Wool was used as the protein, and CoCl 2 , Co (NO 3 ) 2 , FeCl 3 , and Fe (NO 3 ) 3 were used as the metal salts, respectively.
The mixing ratio was 5 parts by mass of metal in the metal salt with respect to 100 parts by mass of wool.
A plurality of each sample was prepared, and the carbonization temperature was changed to 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1200 ° C., and the carbon catalyst sample was prepared in the same manner as in Experiment 1.

得られた炭素触媒の試料について、それぞれ、酸素還元触媒活性の評価として、EO2の値と0.7Vの電流密度と0.5Vの電流密度を測定し、水電解反応触媒活性の評価として、EH2の値と−0.5Vの電流密度と−0.4Vの電流密度を測定した。
CoClを使用した場合の測定結果を図10A及び図10Bに示し、Co(NOを使用した場合の測定結果を図11A及び図11Bに示し、FeClを使用した場合の測定結果を図12A及び図12Bに示し、Fe(NOを使用した場合の測定結果を図13A及び図13Bに示す。各試料の炭素化温度と酸素還元触媒活性の評価の測定結果の関係を、図10A、図11A、図12A、図13Aに示し、各試料の炭素化温度と水電解反応触媒活性の評価の測定結果の関係を、図10B、図11B、図12B、図13Bに示す。なお、それぞれの図において、各測定値を絶対値で示している。EH2の測定値は絶対値が小さいほど触媒が高性能であることを示し、他の測定値は絶対値が大きいほど触媒が高性能であることを示している。
About the obtained carbon catalyst sample, as an evaluation of the oxygen reduction catalytic activity, the value of E O2 , a current density of 0.7 V, and a current density of 0.5 V were measured, respectively, and as an evaluation of the water electrolysis reaction catalytic activity, the current density of the current density and -0.4V value of E H2 and -0.5V were measured.
The measurement results when CoCl 2 is used are shown in FIGS. 10A and 10B, the measurement results when Co (NO 3 ) 2 is used are shown in FIGS. 11A and 11B, and the measurement results when FeCl 3 is used are shown. FIG. 13A and FIG. 13B show the measurement results when Fe (NO 3 ) 3 is used as shown in FIG. 12A and FIG. 12B. FIG. 10A, FIG. 11A, FIG. 12A, and FIG. 13A show the relationship between the carbonization temperature of each sample and the measurement results of the evaluation of the oxygen reduction catalyst activity, and the measurement of the carbonization temperature of each sample and the evaluation of the water electrolysis reaction catalytic activity. The relationship of the results is shown in FIGS. 10B, 11B, 12B, and 13B. In each figure, each measured value is shown as an absolute value. The measured value of E H2 indicates that the smaller the absolute value, the higher the performance of the catalyst, and the other measured value indicates that the higher the absolute value, the higher the performance of the catalyst.

図10〜図13の結果より、900〜1200℃の範囲であれば、ある程度高い触媒活性が得られている。800℃の場合は、900〜1200℃と比較して、触媒活性が低くなることがある。
炭素化は、900〜1200℃の範囲で1時間行えば良いことがわかる。
From the results of FIGS. 10 to 13, a certain degree of high catalytic activity is obtained in the range of 900 to 1200 ° C. In the case of 800 degreeC, a catalyst activity may become low compared with 900-1200 degreeC.
It turns out that carbonization should just be performed in the range of 900-1200 degreeC for 1 hour.

<実験6>
実験2及び実験3の結果も踏まえて、さらに、本発明に係る炭素触媒と合成ポリマーを使用した炭素触媒との触媒活性の比較を行った。
本発明に係る炭素触媒として、タンパク質として鶏卵を使用した、鶏卵−CoCl−1000と鶏卵−FeCl−1000の各試料を用意した。また、参考例として、鶏卵のみで炭素化した試料を用意した。
合成ポリマーを使用した炭素触媒として、フェノール樹脂(Ph)を使用した、Ph−1000、Ph−CoPc−1000、Ph−FePc−1000の各試料を用意した。
それぞれの試料について、酸素還元触媒活性(EO2、|i0.7V|)と水電解触媒活性(|EH2|,|i−0.5V|)の各評価を行った。
結果を、表6に示す。
<Experiment 6>
Based on the results of Experiment 2 and Experiment 3, the catalytic activity of the carbon catalyst according to the present invention was compared with that of a carbon catalyst using a synthetic polymer.
As the carbon catalyst according to the present invention, chicken egg-CoCl 2 -1000 and chicken egg-FeCl 3 -1000 samples using chicken eggs as proteins were prepared. Moreover, the sample carbonized only with the chicken egg was prepared as a reference example.
Each sample of Ph-1000, Ph-CoPc-1000, and Ph-FePc-1000 using a phenol resin (Ph) was prepared as a carbon catalyst using a synthetic polymer.
Each sample was evaluated for oxygen reduction catalytic activity (E O2 , | i 0.7V |) and water electrocatalytic activity (| E H2 |, | i −0.5V |).
The results are shown in Table 6.

Figure 0006609862
Figure 0006609862

表6からわかるように、1000℃で炭素化した鶏卵由来の試料は、フェノール樹脂由来のカーボンに比較して、高い酸素還元活性・水電解活性を示している。   As can be seen from Table 6, the egg-derived sample carbonized at 1000 ° C. shows higher oxygen reduction activity / water electrolysis activity than carbon derived from phenol resin.

<実験7>
本発明に係る炭素触媒の触媒活性をさらに高めることを目的として、他の炭素材料との混合や、原料が異なる炭素触媒の混合を行い、触媒活性を調べた。
<Experiment 7>
For the purpose of further enhancing the catalytic activity of the carbon catalyst according to the present invention, mixing with other carbon materials and mixing of carbon catalysts with different raw materials were conducted to investigate the catalytic activity.

まず、カゼイン水溶液にCoCl水溶液を加え、フードプロセッサーで均一に混合した後、ケッチェンブラックを添加して再度均一に混合し、乾燥し炭素前駆体とした。炭素化は、窒素気流中、昇温速度10℃/分で1000℃まで昇温させ、1000℃で1時間保持して行った。
カゼイン−CoCl:ケッチェンブラックの混合比は、100:0(ケッチェンブラック無し)、98:2、95:5、75:25(いずれも質量比)、と変えて、それぞれ炭素触媒の試料を作製した。
First, a CoCl 2 aqueous solution was added to a casein aqueous solution and mixed uniformly with a food processor, ketjen black was added and mixed uniformly again, and dried to obtain a carbon precursor. Carbonization was performed in a nitrogen stream by raising the temperature to 1000 ° C. at a rate of temperature increase of 10 ° C./min and holding at 1000 ° C. for 1 hour.
Casein -COCl 2: mixing ratio of Ketjen black is 100: 0 (no Ketjen black), 98: 2, 95: 5,75: 25 (all by weight), and instead, the carbon catalyst each sample Was made.

得られた炭素触媒の試料について、酸素還元触媒活性の評価を行った。各試料のボルタモグラムを、図14に示す。
図14からわかるように、ケッチェンブラックを混合しても、EO2の値は変化しないが、電流密度は大きくなった。
The sample of the obtained carbon catalyst was evaluated for oxygen reduction catalytic activity. The voltammogram of each sample is shown in FIG.
As it can be seen from FIG. 14, be mixed ketjen black, the value of E O2 does not change, the current density is increased.

続いて、図14と同様にタンパク質としてカゼインを使用して、さらに他の炭素材料の種類と混合比を変えて、触媒活性を調べた。
他の炭素材料として、各種のカーボンブラックである、ケッチェンブラック、ブラックパール、バルカンを用意した。
そして、カゼイン水溶液にCoCl水溶液を加え、フードプロセッサーで均一に混合した後、カーボンブラックを添加して再度均一に混合し、乾燥し炭素前駆体とした。炭素化を行った。炭素化は、窒素気流中、昇温速度10℃/分で1000℃まで昇温させ、1000℃で1時間保持して行った。
なお、図14の測定では、カゼイン−CoCl:ケッチェンブラックの混合比(質量比)を記載していたが、この測定では、カゼイン:カーボンブラックの混合比(質量比)を%で算出した。
カーボンブラックの種類と混合比を変えて、それぞれ炭素触媒の試料を作製した。
Subsequently, as in FIG. 14, casein was used as a protein, and the catalytic activity was examined by changing the types and mixing ratios of other carbon materials.
As other carbon materials, various carbon blacks such as Ketjen Black, Black Pearl, and Vulcan were prepared.
Then, a CoCl 2 aqueous solution was added to the casein aqueous solution and mixed uniformly with a food processor, then carbon black was added and mixed uniformly again, and dried to obtain a carbon precursor. Carbonization was performed. Carbonization was performed in a nitrogen stream by raising the temperature to 1000 ° C. at a rate of temperature increase of 10 ° C./min and holding at 1000 ° C. for 1 hour.
In addition, in the measurement of FIG. 14, the mixing ratio (mass ratio) of casein-CoCl 2 : Ketjen black was described, but in this measurement, the mixing ratio (mass ratio) of casein: carbon black was calculated in%. .
Samples of carbon catalyst were prepared by changing the type and mixing ratio of carbon black.

得られた炭素触媒の試料について、水電解触媒活性及び酸素還元触媒活性の評価を行った。各試料の水電解触媒活性については、EH2の値と混合比との関係を図15Aに示し、電流密度の値と混合比との関係を図15Bに示す。各試料の酸素還元触媒活性については、EO2の値と混合比との関係を図16Aに示し、電流密度の値と混合比との関係を図16Bに示す。
図15Aより、ケッチェンブラックの添加量が50%までは、EH2はケッチェンブラックの添加量と共に増加し、添加量が75%では低下した。図15Bより、電流密度は添加量が50%のときにピークがある。また、EH2及び電流密度のいずれも、カーボンブラックの種類により、ピーク位置に差が見られた。
図16Aより、ケッチェンブラックの添加量が75%まで、EO2はケッチェンブラックの添加量に関係なく活性がほぼ一定であり、添加量が100%では低下した。図16Bより、電流密度は添加量が50%のときにピークがある。そして、電流密度については、カーボンブラックの種類により、ピーク位置に差が見られた。
About the sample of the obtained carbon catalyst, water electrolysis catalytic activity and oxygen reduction catalytic activity were evaluated. Regarding the water electrocatalytic activity of each sample, the relationship between the value of E H2 and the mixing ratio is shown in FIG. 15A, and the relationship between the value of current density and the mixing ratio is shown in FIG. 15B. Regarding the oxygen reduction catalytic activity of each sample, the relationship between the value of E O2 and the mixing ratio is shown in FIG. 16A, and the relationship between the value of current density and the mixing ratio is shown in FIG. 16B.
From FIG. 15A, E H2 increased with the addition amount of ketjen black until the addition amount of ketjen black was 50%, and decreased when the addition amount was 75%. From FIG. 15B, the current density has a peak when the addition amount is 50%. Moreover, both E H2 and current density showed a difference in peak position depending on the type of carbon black.
From FIG. 16A, until a 75% amount of Ketjen Black, E O2 is substantially constant activity irrespective of the amount of Ketjen black, the amount of addition was reduced 100%. From FIG. 16B, the current density has a peak when the addition amount is 50%. Regarding the current density, a difference was observed in the peak position depending on the type of carbon black.

次に、絹−CoCl−1000の炭素触媒の試料と、カゼイン−CoCl−1000の炭素触媒の試料を、等量で混合して、水電解触媒活性の評価を行った。各試料と混合物の試料について、EH2の絶対値|EH2|を図17Aに示し、−0.5Vの電流密度の絶対値を図17Bに示す。
図17A及び図17Bからわかるように、混合物のEH2の値は、各試料の値が平均化されるだけで向上しなかったが、混合物の電流密度は混合前のいずれの試料よりも大きくなった。
Next, we a sample of carbon catalyst silk -COCl 2 -1000, the samples of the carbon catalyst of casein -COCl 2 -1000, were mixed in equal amounts, the evaluation of the water electrolysis catalytic activity. Samples of the mixture with the sample, the absolute value of E H2 | E H2 | is shown in FIG. 17A, FIG. 17B the absolute value of the current density of -0.5 V.
As can be seen from FIGS. 17A and 17B, the E H2 value of the mixture did not improve simply by averaging the values for each sample, but the current density of the mixture was greater than any of the samples before mixing. It was.

<実験8>
本発明に係る炭素触媒の触媒活性をさらに高めることを目的として、いったん作製した炭素触媒を再熱処理して、触媒活性の変化を調べた。
再熱処理する対象の試料として、羊毛−FeCl−1000を用意して、触媒活性の測定を行った。
また、羊毛−FeCl−1000を、850℃で30分熱処理して、再熱処理試料とした。この再熱処理試料は、「羊毛−FeCl−1000−850」と表記する。再熱処理試料についても、触媒活性の測定を行った。
2つの試料の触媒活性の測定結果を比較して、図18A及び図18Bに示す。図18Aは酸素還元触媒活性の測定結果(ボルタモグラム)を示し、図18Bは水電解触媒活性の測定結果(ボルタモグラム)を示す。
図18A及び図18Bのボルタモグラムから、EO2,i0.7V、EH2,i−0.5Vのいずれも、再熱処理によって向上していることがわかる。
<Experiment 8>
For the purpose of further enhancing the catalytic activity of the carbon catalyst according to the present invention, the carbon catalyst once produced was reheated and the change in the catalytic activity was examined.
As a sample to be reheated, wool-FeCl 3 -1000 was prepared and the catalytic activity was measured.
Further, wool-FeCl 3 -1000 was heat-treated at 850 ° C. for 30 minutes to obtain a reheat-treated sample. This reheat-treated sample is expressed as “wool-FeCl 3 -1000-850”. The catalyst activity was also measured for the reheat-treated sample.
18A and 18B show a comparison of the measurement results of the catalytic activity of the two samples. FIG. 18A shows the measurement result (voltammogram) of the oxygen reduction catalyst activity, and FIG. 18B shows the measurement result (voltammogram) of the water electrolysis catalyst activity.
It can be seen from the voltammograms of FIGS. 18A and 18B that all of E O2 , i 0.7V , E H2 , and i −0.5V are improved by reheat treatment.

<実験9>
燃料電池のカソードでの酸素の還元反応は、以下の2つの反応がある。
4H+O+4e→2HO(4電子反応)
2H+O+2e→H(2電子反応)
これらの反応のうち、4電子反応が優勢であると、活性が高く、触媒としての機能も持続する。
<Experiment 9>
The oxygen reduction reaction at the fuel cell cathode includes the following two reactions.
4H + + O 2 + 4e → 2H 2 O (4-electron reaction)
2H + + O 2 + 2e → H 2 O 2 (two-electron reaction)
Among these reactions, when the 4-electron reaction is dominant, the activity is high and the function as a catalyst is maintained.

本発明に係る炭素触媒と、他の炭素触媒について、4電子反応選択性を調べた。
本発明に係る炭素触媒として、羊毛−FeCl−1000の試料と、羊毛−CoCl−1000の試料を用意した。
他の炭素触媒として、フェノール樹脂−CoPc−1000の試料と、フェノール樹脂−FePc−1000の試料を用意した。
各試料について、4電子反応選択性を、Levichプロットで求めた。結果は、以下の通りとなった。
羊毛−FeCl−1000:94%
羊毛−CoCl−1000:88%
フェノール樹脂−CoPc−1000:47%
フェノール樹脂−FePc−1000:86%
即ち、本発明に係る炭素触媒の方が、高い4電子反応選択性を示した。
Four-electron reaction selectivity was investigated about the carbon catalyst which concerns on this invention, and another carbon catalyst.
As the carbon catalyst according to the present invention, a sample of wool-FeCl 3 -1000 and a sample of wool-CoCl 2 -1000 were prepared.
As another carbon catalyst, a phenol resin-CoPc-1000 sample and a phenol resin-FePc-1000 sample were prepared.
For each sample, the 4-electron reaction selectivity was determined by Levich plot. The results were as follows.
Wool-FeCl 3 -1000: 94%
Wool -CoCl 2 -1000: 88%
Phenolic resin-CoPc-1000: 47%
Phenolic resin-FePc-1000: 86%
That is, the carbon catalyst according to the present invention showed higher 4-electron reaction selectivity.

<実験10>
混合する金属の種類を変えて、炭素化前のカーボン前駆体の示差熱分析を行った。
カーボン前駆体としては、羊毛単独、羊毛−Co(NO、羊毛−Fe(NO、羊毛−FeCl、羊毛−TiCl、羊毛−Ni(NO、羊毛−MgSOの7種類を用意した。
<Experiment 10>
Different types of metals to be mixed were subjected to differential thermal analysis of the carbon precursor before carbonization.
Examples of the carbon precursor include wool alone, wool-Co (NO 3 ) 2 , wool-Fe (NO 3 ) 3 , wool-FeCl 3 , wool-TiCl 4 , wool-Ni (NO 3 ) 2 , wool-MgSO 4 Seven types of were prepared.

上述の7種類のカーボン前駆体の示差熱分析の結果を、順に、図19A〜図19Dと図20E〜図20Gに示す。
図19Aに示す羊毛単独の場合は、羊毛の結晶融解に伴う吸熱ピークが220℃付近に現れている。
図19B〜図19Dに示す、鉄塩やコバルト塩を添加した場合には、この220℃付近の吸熱ピークは低温側にシフトしている。
図20E〜図20Gに示す、その他の金属塩を添加した場合には、同じ温度に吸熱ピークを示す。
これらの結果から、添加する金属の種類によって、タンパク質と金属塩の相互作用に差異があり、鉄塩やコバルト塩では相互作用が大きいと考えられる。
The results of differential thermal analysis of the above seven types of carbon precursors are shown in order in FIGS. 19A to 19D and FIGS. 20E to 20G.
In the case of the wool alone shown in FIG. 19A, an endothermic peak accompanying the crystal melting of the wool appears around 220 ° C.
When iron salt or cobalt salt shown in FIGS. 19B to 19D is added, the endothermic peak around 220 ° C. is shifted to the low temperature side.
When other metal salts shown in FIGS. 20E to 20G are added, an endothermic peak is shown at the same temperature.
From these results, there is a difference in the interaction between protein and metal salt depending on the type of metal to be added, and it is considered that the interaction is large in iron salt and cobalt salt.

<実験11>
タンパク質に金属塩を添加して炭素化した場合と、タンパク質単独で炭素化した場合とで、結晶構造が違うかどうか調べた。
タンパク質としては、羊毛を使用した。金属塩としては、CoCl,FeCl,MgSO,Ni(NOを使用した。
それぞれ、実験1の実施例1又は比較例1の工程にならって、1000℃での炭素化や、酸処理による金属塩の除去を行って、炭素触媒の試料を得た。
各試料を粉砕して、X線回折装置(島津製作所製XRD−6100)を使用して、CuKα、40kV、30mAで、2θ=5〜90°の範囲で測定を行った。また、測定により得られたX線回折パターンから、カーボンの002面間隔を求めた。各試料の002面の位置の2θ(°)の値と、002面間隔(Å)の値を、表7に示す。
<Experiment 11>
It was investigated whether the crystal structure was different between the case of carbonization by adding a metal salt to protein and the case of carbonization by protein alone.
As protein, wool was used. As the metal salt, CoCl 2 , FeCl 3 , MgSO 4 , and Ni (NO 3 ) 2 were used.
In accordance with the steps of Example 1 or Comparative Example 1 of Experiment 1, carbonization at 1000 ° C. and removal of metal salts by acid treatment were performed to obtain carbon catalyst samples.
Each sample was pulverized and measured using an X-ray diffractometer (XRD-6100 manufactured by Shimadzu Corporation) at CuKα, 40 kV, 30 mA in a range of 2θ = 5 to 90 °. Further, the 002 plane spacing of carbon was obtained from the X-ray diffraction pattern obtained by the measurement. Table 7 shows the value of 2θ (°) at the position of the 002 plane of each sample and the value of the 002 plane spacing (Å).

Figure 0006609862
Figure 0006609862

表7より、羊毛に金属塩を添加して炭素化すると、002面間隔が小さくなることがわかる。この傾向は、鉄やコバルトを添加した、酸素還元触媒活性の高い試料で顕著である。
また、この結果から、炭素化後に金属を除去していても、炭素化時に金属塩が存在していたか否かを判断することができる。
From Table 7, it can be seen that when a metal salt is added to wool and carbonized, the 002 plane spacing becomes small. This tendency is remarkable in the sample having high oxygen reduction catalytic activity to which iron or cobalt is added.
Moreover, even if it removes a metal after carbonization from this result, it can be judged whether the metal salt existed at the time of carbonization.

<実験12>
タンパク質として鶏卵を使用して、金属塩の添加の有無、炭素化温度、カーボンブラックの混合の有無及び混合比を変えて、触媒活性を調べた。金属塩としては、CoCl,FeClを使用し、カーボンブラックとしては、ケッチェンブラックを使用した。
<Experiment 12>
Using chicken eggs as protein, the catalytic activity was examined by changing the presence or absence of addition of a metal salt, the carbonization temperature, the presence or absence of carbon black mixing, and the mixing ratio. CoCl 2 and FeCl 3 were used as the metal salt, and Ketjen black was used as the carbon black.

(金属塩を添加しない試料)
鶏卵の卵殻を除去した後、フードプロセッサーでよく混合し、凍結乾燥させた。その後、窒素流通下で、昇温速度10℃/分で昇温させて、炭素化温度で1時間保持して炭素化を行った。炭素化温度は、800℃と1000℃とした。炭素化後、ボールミルで粉砕した。このようにして、Egg−800及びEgg−1000の炭素触媒の試料をそれぞれ作製した。
(Sample without added metal salt)
After removing the eggshell of the eggs, the eggs were mixed well in a food processor and lyophilized. Thereafter, under nitrogen flow, the temperature was increased at a temperature increase rate of 10 ° C./min, and the carbonization was performed at the carbonization temperature for 1 hour. The carbonization temperature was 800 ° C and 1000 ° C. After carbonization, it was pulverized with a ball mill. In this way, samples of Egg-800 and Egg-1000 carbon catalysts were prepared.

(金属塩を添加した試料)
鶏卵の卵殻を除去し、フードプロセッサーでよく混合した後、CoCl水溶液又はFeCl水溶液を添加して再度均一に混合した。金属塩は、卵殻を除去した鶏卵の固体成分に対して、金属元素の質量比が5%となるように添加した。金属塩を添加した後に凍結乾燥させた。その後は、金属塩を添加していない試料と同様にして、炭素化及び粉砕を行った。さらに、濃度1Mの塩酸で70℃・2時間の酸処理を3回繰り返してCo又はFeを除去した。このようにして、Egg−Co−800,Egg−Co−1000,Egg−Fe−800,Egg−Fe−1000の炭素触媒の試料をそれぞれ作製した。
(Sample with added metal salt)
After removing the eggshell of the chicken egg and mixing well with a food processor, a CoCl 2 aqueous solution or an FeCl 3 aqueous solution was added and mixed uniformly again. The metal salt was added so that the mass ratio of the metal element was 5% with respect to the solid component of the egg from which the eggshell had been removed. The metal salt was added and then lyophilized. Thereafter, carbonization and pulverization were performed in the same manner as the sample to which no metal salt was added. Furthermore, the acid treatment at 70 ° C. for 2 hours with 1 M hydrochloric acid was repeated three times to remove Co or Fe. In this way, carbon catalyst samples of Egg-Co-800, Egg-Co-1000, Egg-Fe-800, and Egg-Fe-1000 were prepared.

各試料の水電解触媒活性を測定した。各試料の水電解触媒活性の測定結果(ボルタモグラム)をまとめて、図21に示す。
図21より、特に、Egg−Co−800,Egg−Co−1000,Egg−Fe−1000の3つの試料で高い触媒活性を示し、Egg−Co−1000が最も触媒活性が高かった。
The water electrocatalytic activity of each sample was measured. The measurement results (voltammogram) of the water electrocatalytic activity of each sample are shown together in FIG.
From FIG. 21, in particular, three samples of Egg-Co-800, Egg-Co-1000, and Egg-Fe-1000 showed high catalytic activity, and Egg-Co-1000 showed the highest catalytic activity.

(カーボンブラックを混合した試料)
次に、最も触媒活性が高かったEgg−Co−1000に対して、実験7でカゼインに対して行ったと同様に、混合比を変えてそれぞれカーボンブラックを混合して、触媒活性の変化を調べた。
カーボンブラックとしてはケッチェンブラックを使用して、Egg−Co−1000と同様にCoCl水溶液を添加し、混合した後、ケッチェンブラックを添加して、全体を混合した。ケッチェンブラックの混合比は、卵殻を除去した鶏卵の固体成分に対するケッチェンブラックの質量比を0〜50%の間で変化させた。CoCl及びケッチェンブラックを混合した後に、1000℃で炭素化を行い、その後はEgg−Co−1000と同様にして炭素触媒の試料を作製した。
各試料の水電解触媒活性を測定した。その結果、EH2及び電流密度のいずれにおいても、ケッチェンブラックの混合比が10%の試料で最も良い結果が得られた。この試料を、以下、Egg−Co−1000−KB10とする。
(Sample mixed with carbon black)
Next, for Egg-Co-1000 having the highest catalytic activity, carbon black was mixed at different mixing ratios in the same manner as performed for casein in Experiment 7, and changes in catalytic activity were examined. .
Ketjen black was used as the carbon black, and a CoCl 2 aqueous solution was added and mixed in the same manner as Egg-Co-1000. After that, Ketjen black was added and the whole was mixed. The mixing ratio of the ketjen black was varied between 0 to 50% by mass ratio of the ketjen black to the solid component of the egg from which the eggshell had been removed. After mixing CoCl 2 and Ketjen Black, carbonization was performed at 1000 ° C., and then a sample of a carbon catalyst was prepared in the same manner as Egg-Co-1000.
The water electrocatalytic activity of each sample was measured. As a result, the best results were obtained with a sample having a ketjen black mixing ratio of 10% in both E H2 and current density. Hereinafter, this sample is referred to as Egg-Co-1000-KB10.

ここで、Egg−Co−1000とEgg−Co−1000−KB10の水電解触媒活性の測定結果(ボルタモグラム)をまとめて、図22に示す。なお、図22では図21よりも縦軸の電流密度を拡げている。
図22により、ケッチェンブラックを10%混合することにより、混合しない場合と比較して大幅に触媒活性が向上することがわかる。
Here, the measurement results (voltammograms) of water electrocatalytic activity of Egg-Co-1000 and Egg-Co-1000-KB10 are shown together in FIG. In FIG. 22, the current density on the vertical axis is expanded as compared with FIG.
From FIG. 22, it can be seen that mixing 10% of ketjen black greatly improves the catalytic activity compared to the case of not mixing.

さらに、図21にボルタモグラムを示した6つの試料と、Egg−Co−1000−KB10の試料について、XPS(X線光電子分光観察)による測定を行った。この測定により得られた、窒素原子の1s軌道の電子の結合エネルギーのスペクトルを、図23A〜図23Gに示す。Egg−800のスペクトルを図23Aに示し、Egg−1000のスペクトルを図23Bに示し、Egg−Co−800のスペクトルを図23Cに示し、Egg−Co−1000のスペクトルを図23Dに示し、Egg−Fe−800のスペクトルを図23Eに示し、Egg−Fe−1000のスペクトルを図23Fに示し、Egg−Co−1000−KB10のスペクトルを図23Gに示す。
また、各試料のXPS測定で得られたスペクトルから、窒素と炭素の原子比N/Cと、ピリジン型の窒素原子成分のピークのエネルギー(eV)、ピロール型の窒素原子成分のピークのエネルギー(eV)を、それぞれ求めた。各試料について、これらの測定結果と、ボルタモグラムから求めた水電解触媒活性の−0.5Vでの電流密度及びEH2をまとめて、表8に示す。
Furthermore, six samples whose voltammograms are shown in FIG. 21 and a sample of Egg-Co-1000-KB10 were measured by XPS (X-ray photoelectron spectroscopy). The spectrum of the binding energy of the electrons of the 1s orbit of the nitrogen atom obtained by this measurement is shown in FIGS. 23A to 23G. The spectrum of Egg-800 is shown in FIG. 23A, the spectrum of Egg-1000 is shown in FIG. 23B, the spectrum of Egg-Co-800 is shown in FIG. 23C, the spectrum of Egg-Co-1000 is shown in FIG. The spectrum of Fe-800 is shown in FIG. 23E, the spectrum of Egg-Fe-1000 is shown in FIG. 23F, and the spectrum of Egg-Co-1000-KB10 is shown in FIG. 23G.
Further, from the spectrum obtained by XPS measurement of each sample, the atomic ratio N / C of nitrogen and carbon, the peak energy of the pyridine type nitrogen atom component (eV), the peak energy of the pyrrole type nitrogen atom component (eV) eV) was determined respectively. Table 8 shows the measurement results, the current density at −0.5 V of the water electrocatalytic activity determined from the voltammogram, and E H2 for each sample.

Figure 0006609862
Figure 0006609862

表8より、水電解触媒活性の高い触媒では、低エネルギー成分のピークのエネルギーが398.2eV以上である。水電解触媒活性の低い触媒では、低エネルギー成分のピークのエネルギーが398.0eV、398.1eVと、より低いエネルギーである。
また、ケッチェンブラックを混合した場合、混合していないEgg−Co−1000と比較して、N/C比及びN1sの各ピークのエネルギーは同程度であるが、水電解触媒活性は向上している。
From Table 8, in the catalyst with high water electrocatalytic activity, the peak energy of the low energy component is 398.2 eV or more. In a catalyst having low water electrocatalytic activity, the energy of the peak of the low energy component is 398.0 eV, 398.1 eV, which is lower energy.
In addition, when ketjen black is mixed, the N / C ratio and the energy of each peak of N1s are comparable as compared with the non-mixed Egg-Co-1000, but the water electrocatalytic activity is improved. Yes.

<実験13>
絨毯・羊毛布団を含む廃棄羊毛は、微生物による分解を受けにくく、燃焼時に不快な臭気を発するために、処理法が問題の1つになっている。
環境・資源の立場から廃棄羊毛の有効利用を考えて、タンパク質の原料として、羊毛100%の着古したカーディガンを使用して、炭素触媒の試料を作製した。また、比較対照として、新品の羊毛を使用して、炭素触媒の試料を作製した。
それぞれの炭素触媒の試料について、水電解触媒活性及び酸素還元触媒活性を測定した。
炭素触媒の試料の作製方法や水電解触媒活性及び酸素還元触媒活性の測定方法は、前述した実験と同様とした。
<Experiment 13>
Waste wool, including carpets and wool duvets, is difficult to be decomposed by microorganisms and emits an unpleasant odor during combustion, so that the treatment method is one of the problems.
Considering the effective use of waste wool from the standpoint of environment and resources, a carbon catalyst sample was prepared using a worn cardigan made of 100% wool as a protein raw material. As a comparative control, a carbon catalyst sample was prepared using new wool.
Water electrocatalytic activity and oxygen reduction catalytic activity were measured for each carbon catalyst sample.
The method for preparing the carbon catalyst sample and the method for measuring the water electrolysis catalytic activity and the oxygen reduction catalytic activity were the same as in the experiment described above.

各試料の水電解触媒活性の測定結果から求めた、EH2及び−0.5Vにおける電流密度i−0.5Vを、表9に示す。また、各試料の酸素還元触媒活性の測定結果から求めた、EO2及び−0.7Vにおける電流密度i−0.7Vを、表10に示す。Table 9 shows the current density i −0.5 V at E H2 and −0.5 V obtained from the measurement result of the water electrocatalytic activity of each sample. Table 10 shows the current density i −0.7 V at EO 2 and −0.7 V obtained from the measurement result of the oxygen reduction catalytic activity of each sample.

Figure 0006609862
Figure 0006609862

Figure 0006609862
Figure 0006609862

表9より、羊毛(古着)のEH2は羊毛(新)とほぼ等しく、i−0.5Vは8割程度であった。
表10より、羊毛(古着)のEo2は羊毛(新)とほぼ等しく、i−0.7Vは6割程度であった。
これらの結果から、羊毛の古着を原料として使用して、炭素触媒を作製しても十分な活性が得られることがわかる。
From Table 9, the E H2 wool (clothes) substantially equal to the wool (new), i -0.5 V was about 80%.
From Table 10, E o2 of wool (old clothes) was almost equal to wool (new), and i- 0.7V was about 60%.
From these results, it can be seen that sufficient activity can be obtained even if a carbon catalyst is produced using wool clothes as a raw material.

本発明は、上述の実施の形態や実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described embodiments and examples, and various other configurations can be taken without departing from the gist of the present invention.

Claims (6)

タンパク質と金属の化合物を混合する工程と、
その後、混合物を炭素化する工程とを有し、
前記タンパク質として、鶏卵又は豆乳を使用し、
前記金属として、鉄又はコバルトを使用し、
前記金属の化合物として、塩化鉄、塩化コバルト、酢酸鉄、酢酸コバルトから選ばれる化合物を使用する
炭素触媒の製造方法。
Mixing a protein and a metal compound;
And then carbonizing the mixture,
Using the egg or soy milk as the protein,
As the metal, iron or cobalt is used,
A method for producing a carbon catalyst, wherein a compound selected from iron chloride, cobalt chloride, iron acetate, and cobalt acetate is used as the metal compound.
前記炭素化する工程の後に、前記金属を除去する工程を行う、請求項1に記載の炭素触媒の製造方法。   The method for producing a carbon catalyst according to claim 1, wherein a step of removing the metal is performed after the step of carbonizing. 前記金属を除去する工程において、酸で処理して前記金属を除去する、請求項2に記載の炭素触媒の製造方法。   The method for producing a carbon catalyst according to claim 2, wherein in the step of removing the metal, the metal is removed by treatment with an acid. 前記タンパク質と前記金属の化合物に、さらにカーボンブラックを添加した後、前記混合物を炭素化する工程を行う、請求項1〜請求項3のいずれか1項に記載の炭素触媒の製造方法。   The method for producing a carbon catalyst according to any one of claims 1 to 3, wherein a step of carbonizing the mixture is performed after further adding carbon black to the protein and the metal compound. 水電解触媒として用いられる炭素触媒であって、炭素と、タンパク質を炭素化した物質中の窒素と、鉄又はコバルトとを含み、電解液に濃度0.5Mの硫酸を用いて測定された、−1mA/cm の電流が流れ始める、水電解触媒としての反応開始電位の絶対値|EH2|の値が0.18〜0.39V(対可逆水素電極)である炭素触媒。 A carbon catalyst used as a water electrocatalyst, comprising carbon, nitrogen in a carbonized substance of protein, and iron or cobalt, and measured using sulfuric acid having a concentration of 0.5 M in an electrolytic solution, A carbon catalyst having an absolute value | E H2 | of a reaction initiation potential as a water electrocatalyst of 0.18 to 0.39 V (vs. reversible hydrogen electrode) at which a current of 1 mA / cm 2 begins to flow . 前記タンパク質が、鶏卵又は豆乳である請求項5に記載の炭素触媒。   The carbon catalyst according to claim 5, wherein the protein is chicken egg or soy milk.
JP2015551029A 2013-11-29 2014-11-28 Carbon catalyst production method, carbon catalyst Active JP6609862B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013247627 2013-11-29
JP2013247627 2013-11-29
PCT/JP2014/081648 WO2015080274A1 (en) 2013-11-29 2014-11-28 Method for manufacturing carbon catalyst, and carbon catalyst

Publications (2)

Publication Number Publication Date
JPWO2015080274A1 JPWO2015080274A1 (en) 2017-03-16
JP6609862B2 true JP6609862B2 (en) 2019-11-27

Family

ID=53199209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551029A Active JP6609862B2 (en) 2013-11-29 2014-11-28 Carbon catalyst production method, carbon catalyst

Country Status (2)

Country Link
JP (1) JP6609862B2 (en)
WO (1) WO2015080274A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041790B1 (en) * 2013-09-02 2018-01-17 Council of Scientific and Industrial Research Process for the synthesis of nitrogen-doped carbon electro-catalyst
JP7160721B2 (en) * 2019-02-28 2022-10-25 株式会社ダイセル Method for producing iron oxide catalyst and method for producing aldehyde and/or alcohol
EP3789112A1 (en) * 2019-09-05 2021-03-10 Evonik Operations GmbH Materials comprising carbon-embedded cobalt nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
CN112206802A (en) * 2020-09-28 2021-01-12 苏州阿德旺斯新材料有限公司 Preparation method of monatomic catalyst, prepared product and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167645A (en) * 2004-12-17 2006-06-29 Daikin Ind Ltd Carbon monoxide decomposition catalyst, carbon monoxide decomposition filter using the same, air cleaning apparatus using carbon monoxide decomposition filter, air conditioner and production method of carbon monoxide decomposition catalyst
JP2009299111A (en) * 2008-06-11 2009-12-24 Nec Corp Electrode catalyst for generating oxygen, electrode for generating oxygen and water electrolysis apparatus
JP2010221126A (en) * 2009-03-24 2010-10-07 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method therefor
JP5149364B2 (en) * 2010-11-08 2013-02-20 国立大学法人群馬大学 Carbon catalyst, method for producing the same, electrode and battery using the same

Also Published As

Publication number Publication date
WO2015080274A1 (en) 2015-06-04
JPWO2015080274A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6609862B2 (en) Carbon catalyst production method, carbon catalyst
CN112005413B (en) ZIF-8-based nickel-iron-nitrogen-doped carbon material three-function electrocatalyst and preparation method and application thereof
Islam et al. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis
CN107930672B (en) Metal-nitrogen-carbon material with metal in atomic-level dispersion, preparation method and application thereof
JP4964292B2 (en) Electrode and battery
WO2017091955A1 (en) Bifunctional electrocatalyst for water splitting and preparation method thereof
Dodelet The controversial role of the metal in Fe-or Co-based electrocatalysts for the oxygen reduction reaction in acid medium
KR102129274B1 (en) Method for Preparing Metal Composite Oxides Using Deep Eutectic Solvent
Jiang et al. Co3+-O-V4+ cluster in CoVOx nanorods for efficient and stable electrochemical oxygen evolution
CN107159268B (en) Hollow molybdenum disulfide/molybdenum trioxide flower-shaped heterostructure nano material, preparation method and application
Jiang et al. Sub-5 nm palladium nanoparticles in situ embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties
CN106744858B (en) A kind of three-dimensional grapheme and the preparation method and application thereof
Wang et al. Pd3Cu coupling with nitrogen-doped mesoporous carbon to boost performance in glycerol oxidation
Yao et al. Synthesis and ORR electrocatalytic activity of mixed Mn–Co oxides derived from divalent metal-based MIL-53 analogues
Gonzalez-Reyna et al. Nickel supported on carbon nanotubes and carbon nanospheres for ammonia oxidation reaction
Kong et al. Soft-confinement conversion of Co-Salen-organic-frameworks to uniform cobalt nanoparticles embedded within porous carbons as robust trifunctional electrocatalysts
Stamatin et al. Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts
Luong et al. An effective strategy for preparing nickel nanoparticles encapsulated in polymer matrix-derived carbon shell with high catalytic activity and long-term durability toward urea electro-oxidation
CN111778517A (en) Electrode material and preparation method and application thereof
Jiang et al. Effect of phosphorization temperature on the structure and hydrogen evolution reaction performance of nickel cobalt phosphide electrocatalysts
JP6590138B2 (en) Oxygen electrode catalyst and method for producing the same
JP5689379B2 (en) Catalyst support carrier, catalyst support, electrode and battery
KR101932612B1 (en) Preparing method of nitrogen-iron doped porous carbon nanoparticle catalyst for oxygen reduction reaction
Dar et al. Enhanced alkaline bifunctional electrocatalytic water splitting achieved through N and S dual-doped carbon shell reinforced Co 9 S 8 microplates
WO2015087168A2 (en) Electrocatalyst

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20160203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6609862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250