JP6609030B2 - HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD, AND MATERIAL MANUFACTURING METHOD - Google Patents

HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD, AND MATERIAL MANUFACTURING METHOD Download PDF

Info

Publication number
JP6609030B2
JP6609030B2 JP2018500019A JP2018500019A JP6609030B2 JP 6609030 B2 JP6609030 B2 JP 6609030B2 JP 2018500019 A JP2018500019 A JP 2018500019A JP 2018500019 A JP2018500019 A JP 2018500019A JP 6609030 B2 JP6609030 B2 JP 6609030B2
Authority
JP
Japan
Prior art keywords
hydrogen
ttf
cooli
reaction
lioh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018500019A
Other languages
Japanese (ja)
Other versions
JPWO2017141692A1 (en
Inventor
由佳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JPWO2017141692A1 publication Critical patent/JPWO2017141692A1/en
Application granted granted Critical
Publication of JP6609030B2 publication Critical patent/JP6609030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は水素発生剤に関し、特に水のpHに依存して酸化状態が変わることを利用して水素を発生させる新規な水素発生剤に関する。   The present invention relates to a hydrogen generator, and more particularly to a novel hydrogen generator that generates hydrogen by utilizing the fact that its oxidation state changes depending on the pH of water.

天然に豊富に存在する水を原料とした水分解反応は、水素や酸素を純粋な形で取り出し、工業用ガスとして利用するための重要な手段と位置づけられ、実用化を目指した技術の革新が求められている。現在は太陽光などの光エネルギーを駆動力とした光触媒を用いた電気化学セル上での水分解反応について盛んに技術開発が行われている。しかしながら、いかなる触媒系を用いても太陽光の量子収率が10%に満たず、そのような触媒系を利用した水分解反応も非常に緩慢なものであるのが現状である(特許文献1)。また、光触媒以外でも、炭化水素系のガスを分解する、水蒸気を炭素と反応させる、イオン化傾向の大きな金属を酸と反応させる、水を電気分解する等の多様な方法が存在するが、これらの方法でも、コスト低下の余地が少ない、得られた水素を使用するに当たって有害である等の不純物を含む、高温や高圧下の反応であったり大規模な設備が必要である等の問題を有する。   The water splitting reaction using natural abundant water as a raw material is regarded as an important means for extracting hydrogen and oxygen in pure form and using them as industrial gas. It has been demanded. Currently, active development of water splitting reactions on electrochemical cells using photocatalysts with light energy such as sunlight as the driving force is being carried out. However, no matter what catalyst system is used, the quantum yield of sunlight is less than 10%, and the water splitting reaction using such a catalyst system is very slow (Patent Document 1). ). In addition to photocatalysts, there are various methods such as decomposing hydrocarbon gases, reacting water vapor with carbon, reacting metals with a large ionization tendency with acids, and electrolyzing water. Even in the method, there is a problem that there is little room for cost reduction, impurities such as harmfulness in using the obtained hydrogen, reaction under high temperature or high pressure, or large scale equipment is required.

特開2013−043788号公報JP 2013-043788 A 国際公開WO2014/057721International Publication WO2014 / 057721

Terauchi, T., Kobayashi, Y. & Misaki, Y. Synthesis of bis-fused tetrathiafulvalene with mono- and dicarboxylic acids. Tetrahedron Letters, 53, 3277-3280 (2012).Terauchi, T., Kobayashi, Y. & Misaki, Y. Synthesis of bis-fused tetrathiafulvalene with mono- and dicarboxylic acids.Tetrahedron Letters, 53, 3277-3280 (2012).

そこで、本発明は、水を分解して水素を発生するに当たって、既存の水素発生方法や材料とは全く異なる原理により水素を得るための水素発生剤及び水素発生方法を提供することを目的とする。   Therefore, the present invention has an object to provide a hydrogen generating agent and a hydrogen generating method for obtaining hydrogen based on a principle completely different from existing hydrogen generating methods and materials in decomposing water to generate hydrogen. .

本発明者は、テトラチアフルバレン(tetrathiafulvalene、TTF)骨格を有する化合物について種々の実験を行っていたところ、驚くべきことに、従来とは異なる機構で水から水素を発生することを見出し、かかる技術的創作を完成した。即ち、本発明は以下の通りである。
[1] テトラチアフルバレン骨格を有する化合物を含む水素発生剤。
[2] 前記テトラチアフルバレン骨格が縮環テトラチアフルバレン骨格であり、前記化合物がカルボン酸官能基及びアルカリ金属を有する、[1]に記載の水素発生剤。
[3] 前記テトラチアフルバレン内の硫黄の少なくとも一部がセレンで置換されている、[1]又は[2]に記載の水素発生剤。
[4] (TTF−TTF)(COOM)(MOH)複合体(整数n≧1)及び(COOM)(TTF−TTF−TTF)(COOM)(MOH)複合体(整数n≧0)の少なくとも一を含む水素発生剤。ただし、MはLi又はNaである。
[5] 前記MがLiである、[4]に記載の水素発生剤。
[6] 前記TTF内の硫黄の少なくとも一部がセレンで置換されている、[4]又は[5]に記載の水素発生剤。
[7] 前記nが1である、[4]〜[6]のいずれかに記載の水素発生剤。
[8] 上記[1]〜[7]のいずれかに記載の水素発生剤と水とを混合し、pHを所定範囲として水素を発生させる水素発生方法。
[9] pHの前記所定範囲が11以下である、[8]に記載の水素発生方法。
[10] pHを擬似中性又は酸性として水素を発生させた後に前記pHを前記所定範囲よりも大きな値とすることにより、前記水素発生剤を再生する、[8]又は[9]に記載の水素発生方法。
[11] 前記水素発生と前記水素発生剤の再生を繰り返す、[10]に記載の水素発生方法。
[12] 水素を必要とする化学反応を用いて物質を製造する方法において、少なくとも上記[1]〜[7]のいずれかに記載の水素発生剤、又は上記[8]〜[11]のいずれかに記載の水素発生方法を用いて水素を発生させる、物質の製造方法。
The present inventor has conducted various experiments on compounds having a tetrathiafulvalene (TTF) skeleton. Surprisingly, the inventor has found that hydrogen is generated from water by a mechanism different from the conventional one. Complete creative creation. That is, the present invention is as follows.
[1] A hydrogen generator containing a compound having a tetrathiafulvalene skeleton.
[2] The hydrogen generator according to [1], wherein the tetrathiafulvalene skeleton is a condensed tetrathiafulvalene skeleton, and the compound has a carboxylic acid functional group and an alkali metal.
[3] The hydrogen generator according to [1] or [2], wherein at least a part of sulfur in the tetrathiafulvalene is substituted with selenium.
[4] (TTF n -TTF) (COOM) 2 (MOH) complex (integer n ≧ 1) and (COOM) 2 (TTF-TTF n -TTF) (COOM) 2 (MOH) 2 complex (integer n) A hydrogen generator containing at least one of ≧ 0). However, M is Li or Na.
[5] The hydrogen generator according to [4], wherein M is Li.
[6] The hydrogen generator according to [4] or [5], wherein at least part of sulfur in the TTF is substituted with selenium.
[7] The hydrogen generator according to any one of [4] to [6], wherein n is 1.
[8] A hydrogen generation method in which the hydrogen generator according to any one of the above [1] to [7] and water are mixed to generate hydrogen at a predetermined pH range.
[9] The hydrogen generation method according to [8], wherein the predetermined range of pH is 11 or less.
[10] The hydrogen generator is regenerated by generating hydrogen after setting the pH to be pseudo-neutral or acidic, and thereby making the pH larger than the predetermined range, [8] or [9] Hydrogen generation method.
[11] The hydrogen generation method according to [10], wherein the hydrogen generation and the regeneration of the hydrogen generator are repeated.
[12] In the method for producing a substance using a chemical reaction that requires hydrogen, at least the hydrogen generator according to any one of [1] to [7] or any one of [8] to [11] above. A method for producing a substance, wherein hydrogen is generated using the hydrogen generation method according to claim 1.

本発明によれば、これまで知られている光触媒等による水の分解等とは異なる機構で水から水素を発生させる水素発生剤及びそれを使用した水素発生方法が与えられる。この水素発生剤はあるpH範囲において水から水素を発生させる。この水素発生反応により水素発生剤それ自体は化学変化により別の物質となるが、溶液のpHを変えることによって元の水素発生材料として再生させることができるため、水素発生反応に使用しても実質的に消耗せず、原理的には無制限に繰り返し水素を発生させることができる。更に、水素発生反応においては原理的に酸素は発生しないため、通常の水の分解反応の場合のように同時に発生する酸素を分離するための処置を取らなくても、酸素が不純物として混入していない水素を容易に得ることができる。さらに、水素を必要とする化学反応を用いて任意の物質を製造する方法において、本発明の水素発生剤又は及び水素発生方法を用いて水素を発生させることにより、例えば、他の水素供給源からの水素供給なしで化学反応を進行させ、極めて効率よく物質を製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen generating agent which generates hydrogen from water by the mechanism different from the decomposition | disassembly etc. of water by the photocatalyst etc. known until now, and the hydrogen generating method using the same are given. This hydrogen generator generates hydrogen from water in a certain pH range. Although the hydrogen generating agent itself becomes another substance due to a chemical change by this hydrogen generating reaction, it can be regenerated as the original hydrogen generating material by changing the pH of the solution. In principle, hydrogen can be repeatedly generated without limitation. Furthermore, in principle, oxygen is not generated in the hydrogen generation reaction, so that oxygen is not included as an impurity even if no action is taken to separate the oxygen generated at the same time as in the case of a normal water decomposition reaction. Hydrogen can be easily obtained. Furthermore, in a method for producing an arbitrary substance using a chemical reaction that requires hydrogen, hydrogen is generated using the hydrogen generating agent or the hydrogen generating method of the present invention, for example, from another hydrogen source. It is possible to produce a substance extremely efficiently by advancing a chemical reaction without supplying hydrogen.

(TTF−TTF)(COOLi)−HO複合体の分子構造を示す図。図中、結合距離の単位はオングストローム(Å)である。 (TTF-TTF) (COOLi) shows the molecular structure of 2 -H 2 O complex. In the figure, the unit of the bond distance is angstrom (Å). (TTF−TTF)(COOLi)−LiOH複合体に対して1当量の2Nの塩酸水溶液を0℃で添加した際に発生したガスをガスクロマトグラフィーによって検出した結果を示すグラフ。The graph which shows the result of having detected the gas which generate | occur | produced when 1 equivalent of 2N hydrochloric acid aqueous solution was added at 0 degreeC with respect to the (TTF-TTF) (COOLi) 2- LiOH complex at 0 degreeC. (TTF−TTF)(COOLi)−LiOH複合体に対して大過剰の水を0℃で添加した際に発生したガスをガスクロマトグラフィーによって検出した結果を示すグラフ。図中、Controlは水を添加しなかった場合の検出結果を示す。The graph which shows the result of having detected the gas which generate | occur | produced when large excess water was added at 0 degreeC with respect to the (TTF-TTF) (COOLi) 2- LiOH complex at 0 degreeC. In the figure, Control indicates a detection result when water is not added. (TTF−TTF)(COOLi)−LiOH複合体に対して段階的に塩酸水溶液を添加してpHを調製した際に発生した高酸化状態にある分子の割合をラジカル量として評価した結果を示すグラフであり、ラジカル量のpH依存性を示している。The result of having evaluated the ratio of the molecule | numerator in the highly oxidized state which generate | occur | produced when adding hydrochloric acid aqueous solution to a (TTF-TTF) (COOLi) 2- LiOH complex in steps and adjusting pH as radical amount is shown. It is a graph and shows the pH dependence of the amount of radicals. (TTF−TTF)(COOLi)−LiOH複合体に対して水を室温で添加した際に発生した水素ガスの量と反応日数との関係を示すグラフ。The graph which shows the relationship between the quantity of the hydrogen gas generated when water was added at room temperature with respect to the (TTF-TTF) (COOLi) 2- LiOH complex, and the reaction days. (COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体に対して大過剰の水を添加して室温状態で発生したガスをガスクロマトグラフィーによって検出した結果を示すグラフ。The graph which shows the result of having detected the gas which generate | occur | produced in the room temperature state by adding a large excess water with respect to (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 composite_body | complex, and detected by gas chromatography. .

テトラチアフルバレン(tetrathiafulvalene、TTF)骨格を有する化合物はその導電性等の特異な性質を有することで知られており、多数の文献がこの種の化合物を取り扱っている。たとえば、特許文献2には、縮環した含硫黄π化合物である縮環テトラチアフルバレンにカルボン酸官能基を導入したものが記載されており、そのような例として、3種の縮環テトラチアフルバレン誘導体が示されており、具体的には、(1)TTPCOOH、TTPCOOD、(2)TTP(COOH)、TTP(COOD)、(3)(TTPCOO)NH、(TTPCOO)NDが挙げられている。本発明者はこの種の化合物のうちの(TTF−TTF)(COOLi)(LiOH)(ここで整数n≧1)及び(COOLi)(TTF−TTF−TTF)(COOLi)(LiOH)(ここで整数n≧0)なる構造を有する化合物(以下、夫々(TTF−TTF)(COOLi)−LiOH複合体及び(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体と称することがある)が水中でpHを変化させることで水から水素を発生させる化学反応を起こし、また水素発生後に別のpHに変化させることで元の化合物が再生される反応を起こすことを見出し、この化合物を水素発生剤として使用するという本発明を完成させるに至った。ここで、TTF内の硫黄(S)の少なくとも一部をセレン(Se)で置換しても同じ反応が起きるので水素発生剤として使用できる。また、アルカリ金属として、リチウム(Li)の代わりにナトリウム(Na)を使用しても同様であり、従ってこの化合物も水素発生剤として使用することができる。ただし、Naの方がLiよりもイオン半径が大きいため、Liを使用する方が物質の安定性が高い。以下ではもっぱらSeによる上記置換を行わず、またLiを使用した場合について説明する。なお、以下ではそれぞれn=1の場合である(TTF−TTF)(COOLi)−LiOH複合体及び(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体に例を取って説明するが、本願の特許請求の範囲に記載された発明の技術的特徴について、一般性を失うものではない。
ここでnの上限について説明すれば、合成が可能である限り、(TTF−TTF)(COOLi)(LiOH)及び(COOLi)(TTF−TTF−TTF)(COOLi)(LiOH)は、nがどのように大きな値になっても以下で詳述する水素発生反応及びその逆反応を起こすことができる。しかし、nが大きくなるにつれて合成が極めて困難になる。そのため、現実的にはnは5以下とするのが好ましい。
A compound having a tetrathiafulvalene (TTF) skeleton is known to have unique properties such as conductivity, and a large number of documents deal with this type of compound. For example, Patent Document 2 describes a condensed ring-containing tetrathiafulvalene, which is a condensed sulfur-containing π compound, in which a carboxylic acid functional group is introduced. Valene derivatives are shown, specifically, (1) TTPCOOH, TTPCOOD, (2) TTP (COOH) 2 , TTP (COOD) 2 , (3) (TTPCOO) 2 NH 4 , (TTPCOO) 2 ND 4 is mentioned. The present inventor has identified (TTF n -TTF) (COOLi) 2 (LiOH) (where integer n ≧ 1) and (COOLi) 2 (TTF-TTF n -TTF) (COOLi) 2 ( LiOH) 2 (wherein integer n ≧ 0) (hereinafter referred to as (TTF n -TTF) (COOLi) 2 -LiOH complex and (COOLi) 2 (TTF-TTF n -TTF) (COOLi) 2- (LiOH) 2 complex) may cause a chemical reaction to generate hydrogen from water by changing the pH in water, and the original compound may be changed to another pH after hydrogen generation. The inventors have found that a regenerated reaction occurs, and have completed the present invention in which this compound is used as a hydrogen generator. Here, even if at least a part of sulfur (S) in the TTF is replaced with selenium (Se), the same reaction occurs, so that it can be used as a hydrogen generator. Moreover, it is the same even if it uses sodium (Na) instead of lithium (Li) as an alkali metal, Therefore This compound can also be used as a hydrogen generator. However, since Na has a larger ionic radius than Li, the use of Li provides higher material stability. In the following, a case will be described in which the above substitution with Se is not performed and Li is used. In the following, examples of (TTF-TTF) (COOLi) 2 -LiOH complex and (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex, respectively, where n = 1. However, generality of the technical features of the invention described in the claims of the present application is not lost.
To describe here the upper limit of n for as long as the synthesis is possible, (TTF n -TTF) (COOLi ) 2 (LiOH) and (COOLi) 2 (TTF-TTF n -TTF) (COOLi) 2 (LiOH) 2 can cause a hydrogen generation reaction and the reverse reaction described in detail below, no matter how large n is. However, synthesis becomes extremely difficult as n increases. Therefore, in practice, n is preferably 5 or less.

<(TTF−TTF)(COOLi)−LiOH複合体による水素発生>
以下に本複合体を水素発生剤として使用した水素発生反応及びその逆反応である本複合体の再生を行う反応についての化学反応式を示す。
<Hydrogen generation by (TTF-TTF) (COOLi) 2 -LiOH complex>
The chemical reaction formulas for the hydrogen generation reaction using the complex as a hydrogen generator and the reaction for regenerating the complex, which is the reverse reaction, are shown below.

本明細書及び特許請求の範囲において、反応式の左辺の複合体を、(TTF−TTF)(COOLi)−LiOH複合体とも表記し、反応式の右辺の化合物をTED−Y(ただし、Y=Li,H)と表記することがある点に留意されたい。溶液が塩基性の状態では上の反応式で表す平衡状態は、(TTF−TTF)(COOLi)−LiOH複合体中のTTF骨格が低酸化状態である左辺側に移動する。逆に擬似中性から酸性では平衡状態が右辺側に移動し、TED−Li中のTTF骨格は高酸化状態となる。In the present specification and claims, the complex on the left side of the reaction formula is also referred to as a (TTF-TTF) (COOLi) 2 -LiOH complex, and the compound on the right side of the reaction formula is represented by TED-Y (where Y Note that it may be expressed as = Li, H). When the solution is in a basic state, the equilibrium state represented by the above reaction formula moves to the left side where the TTF skeleton in the (TTF-TTF) (COOLi) 2 -LiOH complex is in a low oxidation state. On the contrary, in the case of pseudo-neutral to acidic, the equilibrium state moves to the right side, and the TTF skeleton in TED-Li is in a highly oxidized state.

なお、ここで言う「擬似中性」とはちょうどpH=7であることを意味するわけではなく、一般にpHが7の近傍を含む範囲と言うことである。(TTF−TTF)(COOLi)−LiOH複合体の場合には、以下の実施例で図4を参照して説明するように、「擬似中性から酸性」とはpHが11以下の範囲であり、「塩基性」とはpHがそれより大きな範囲を指す。水素発生剤として他の化合物を使用した場合には、その境界のpH値は異なる可能性がある。The “pseudo-neutral” referred to here does not mean that pH = 7, but generally refers to a range including the vicinity of pH 7. In the case of (TTF-TTF) (COOLi) 2 -LiOH complex, as described with reference to FIG. 4 in the following examples, “pseudo-neutral to acidic” means that the pH is in the range of 11 or less. Yes, “basic” refers to a range where the pH is greater. When other compounds are used as the hydrogen generator, the pH value at the boundary may be different.

また、既に述べたように、本発明の水素発生剤としては(TTF−TTF)(COOLi)−LiOH複合体以外の化合物も存在する。水素発生剤として使用する化合物が異なれば(例えば次の実施例の化合物)この平衡状態移動に係るpHの値が同じになるとは限らないが、いずれにせよpH値に依存して上記反応式の平衡状態が移動する。つまり、一般的に表現すれば、pH値がこの境界の値以下の範囲を「擬似中性から酸性」と呼び、pH値がこの境界の値以上の範囲を「塩基性」と呼ぶ。Moreover, as already stated, compounds other than the (TTF-TTF) (COOLi) 2 -LiOH complex also exist as the hydrogen generator of the present invention. If the compound used as the hydrogen generator is different (for example, the compound of the following example), the pH value related to this equilibrium state transfer is not necessarily the same, but in any case, depending on the pH value, The equilibrium state moves. That is, in general terms, a range where the pH value is less than or equal to this boundary value is called “pseudo-neutral to acidic”, and a range where the pH value is greater than or equal to this boundary value is called “basic”.

溶液を擬似中性〜酸性とした時、(TTF−TTF)(COOLi)−LiOH複合体は溶液中の水(あるいは上の反応式中に例示したように塩酸、臭化水素酸、ヨウ化水素酸、リン酸、その他、1当量のLiOHを中和できる程度の酸性度を有するブレンステッド酸であれば何でもよい)から水素を奪って1/2当量のHを発生し、それ自身はTED(Zwitterionic tetrathiafulvalene-extended dicarboxylate radical)−Yとなる(Y=Li、H)。Y=Hの場合、つまりTED−HのIUPAC名は2-{5-(1,3-dithiol-2-ylidene)- [1,3]dithiolo[4,5-d][1,3]dithiol-2-ylidene}-1,3-dithiole-4,5-dicarboxylic acidである(非特許文献1)。その後、溶液のpHを塩基性とすることにより平衡状態は上式の左辺側に移動し、TED−Yが(TTF−TTF)(COOLi)−LiOH複合体に変換される。このように、(TTF−TTF)(COOLi)−LiOH複合体はその水溶液のpHを擬似中性あるいは酸性とすることによって自発的に水素を発生し、pHを塩基性とすることにより、逆反応によって当初の(TTF−TTF)(COOLi)−LiOH複合体が再生される。溶液のpHを塩基性と擬似中性〜酸性の間で変化させることにより起こる上述の反応サイクルでは(TTF−TTF)(COOLi)−LiOH複合体はTED−Yへの変換と再生が行なわれるため、この複合体は実質的には消費されず、従って溶液を塩基性と擬似中性〜酸性との間で変化させるためにその都度酸あるいは塩基を投入する等のpH調節処理を行うだけで、理論的にはこの反応サイクルを無制限に繰り返し、各サイクルで(TTF−TTF)(COOLi)−LiOH複合体に対して1/2当量のHを発生させることができる。なお、溶液のpHを擬似中性〜酸性に変化させるためには、酸の代わりに水を投入してもよい。When the solution is pseudo-neutral to acidic, the (TTF-TTF) (COOLi) 2 -LiOH complex is water in the solution (or hydrochloric acid, hydrobromic acid, iodide as exemplified in the above reaction formula). Dehydrogenating hydrogen acid, phosphoric acid, or any other Bronsted acid having an acidity sufficient to neutralize 1 equivalent of LiOH) to generate 1/2 equivalent of H 2 , TED (Zwitterionic tetrathiafulvalene-extended dicarboxylate radical) -Y (Y = Li, H). When Y = H, that is, the IUPAC name of TED-H is 2- {5- (1,3-dithiol-2-ylidene)-[1,3] dithiolo [4,5-d] [1,3] dithiol -2-ylidene} -1,3-dithiole-4,5-dicarboxylic acid (Non-patent Document 1). After that, by making the pH of the solution basic, the equilibrium state moves to the left side of the above formula, and TED-Y is converted to a (TTF-TTF) (COOLi) 2 -LiOH complex. As described above, the (TTF-TTF) (COOLi) 2 -LiOH complex spontaneously generates hydrogen by making the pH of the aqueous solution pseudo-neutral or acidic, and reverses the pH by making the pH basic. The original (TTF-TTF) (COOLi) 2 -LiOH complex is regenerated by the reaction. In the above reaction cycle, which occurs by changing the pH of the solution between basic and pseudo-neutral to acidic, the (TTF-TTF) (COOLi) 2 -LiOH complex is converted to TED-Y and regenerated. Therefore, this complex is not substantially consumed. Therefore, in order to change the solution between basic and pseudo-neutral to acidic, it is only necessary to perform pH adjustment treatment such as adding acid or base each time. Theoretically, this reaction cycle can be repeated indefinitely, and ½ equivalent of H 2 can be generated with respect to the (TTF-TTF) (COOLi) 2 -LiOH complex in each cycle. In order to change the pH of the solution from pseudo-neutral to acidic, water may be added instead of acid.

溶液のpHを擬似中性〜酸性としたとき、溶液中の酸の量が少ない場合にはTED−Liが生成されるが、溶液のpHの制御のために(TTF−TTF)(COOLi)−LiOH複合体に対して1当量よりも多くの酸を用いた場合には、TED−Hまで変換される。この場合には、逆反応において、上式に記載したよりもLiOHを1当量余分に必要とする。When the pH of the solution is set to pseudo-neutral to acidic, TED-Li is produced when the amount of acid in the solution is small, but (TTF-TTF) (COOLi) 2 for controlling the pH of the solution. When more than 1 equivalent of acid is used with respect to the -LiOH complex, it is converted to TED-H. In this case, in the reverse reaction, 1 equivalent of LiOH is required more than described in the above formula.

なお、上の反応式中ではTED−Liから酸素発生剤(TTF−TTF)(COOLi)−LiOHを再生する過程で酸素が発生するように記載されている。現在のところ、この方向の反応の際に酸素が発生することは直接的には検出できていない。しかし、酸素発生を仮定しない限りこの化学式の当量が合わなくなってしまうため、当然酸素が発生するものとして上記反応式を記述した。また、以下で説明する、水素発生剤の他の実施例として活性サイトを2個所有する分子を用いた場合の化学反応式においても、同じ理由で酸素が発生するように記述した。In the above reaction formula, it is described that oxygen is generated in the process of regenerating oxygen generator (TTF-TTF) (COOLi) 2 -LiOH from TED-Li. At present, it is not directly detectable that oxygen is generated during the reaction in this direction. However, unless the generation of oxygen is assumed, the equivalents of this chemical formula will not match. Therefore, the above reaction formula is described assuming that oxygen is naturally generated. Moreover, it described so that oxygen might generate | occur | produce for the same reason also in the chemical reaction formula at the time of using the molecule | numerator which has two active sites as another Example of a hydrogen generator demonstrated below.

ここで、上で説明した反応の機構を図1を参照して説明する。(TTF−TTF)(COOLi)−LiOH複合体に水又は酸を添加すると、直ちにLiOHが外れてそこがHOに入れ替わることで、図1に示す(TTF−TTF)(COOLi)−HO複合体となる。つまり、上掲の化学反応式では左辺と右辺との間で起こるこの反応を省略してある。言い換えれば、水素発生反応は厳密には「pHに依存してLiOHがHOに置換されることから開始される水素発生反応」ということになる。この置換される水分子(図1右端下寄り)はLiイオンに強く配位する。ここでHO中のOH結合は引き延ばされていて、水がHδ+とOHδ−とに強く分極していることを表す。更に、図1右端下寄りに斜めの楕円で囲まれているLiと水分子中のOHとの間の距離(1.903Å)は、COOLi中のLiとOとの間の距離(1.915Å及び1.934Å)よりも短くなっているが、これはTTF部分の酸化の際にLi−O結合の形成及び上記反応式に示したLiOHの脱離が容易に起こることを示唆している。これにより実際にHが発生することは、実施例においてガスクロマトグラフを用いて検証した。また、これも実施例で説明しているが、(TTF−TTF)(COOLi)−LiOH及びHClの存在下で芳香族オレフィンがPd/C触媒を用いて水素還元されることによってもHが存在することが確認できた。Here, the mechanism of the reaction described above will be described with reference to FIG. When water or acid is added to the (TTF-TTF) (COOLi) 2 -LiOH complex, LiOH is immediately removed and replaced with H 2 O, so that (TTF-TTF) (COOLi) 2 -shown in FIG. It becomes a H 2 O complex. That is, in the above chemical reaction formula, this reaction occurring between the left side and the right side is omitted. In other words, strictly speaking, the hydrogen generation reaction is “a hydrogen generation reaction that starts when LiOH is replaced by H 2 O depending on pH”. This water molecule to be substituted (lower right end in FIG. 1) is strongly coordinated to Li ions. Here, the OH bond in H 2 O is extended, indicating that water is strongly polarized into H δ + and OH δ− . Furthermore, the distance (1.903 cm) between Li + surrounded by an oblique ellipse on the lower right side of FIG. 1 and OH in the water molecule is the distance between Li and O in COOLi (1 .915Å and 1.934Å), which suggests that the formation of Li-O bonds and the elimination of LiOH shown in the above reaction formula easily occur during the oxidation of the TTF moiety. Yes. The actual generation of H 2 by this was verified using a gas chromatograph in the examples. Moreover, this is also described in Example, (TTF-TTF) (COOLi ) H 2 by being hydrogen reduction using aromatic olefins in the presence of 2 -LiOH and HCl is a Pd / C catalyst Has been confirmed.

<(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体による水素発生>
上に挙げた酸素発生剤の例である(TTF−TTF)(COOLi)−LiOH複合体では、図1を参照した説明からわかるように、この化合物分子の一端(図及び化学式の表記では右端)で上述した反応が起こり、1/2当量のHが発生する(この反応が起こる化合物中の位置を以下では活性サイトと称する)。しかし、本発明はこれに限定されるものではなく、TTF骨格の両端に夫々活性サイトを設けることで1分子当たり2つの活性サイトを有する構造の水素発生剤を与えることができる。このような水素発生剤及びその発生剤を使用した水素発生及び水素発生剤再生の反応サイクルの例を以下の化学反応式に示す。
<Hydrogen generation by (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex>
In the (TTF-TTF) (COOLi) 2 -LiOH complex, which is an example of the oxygen generator listed above, as can be seen from the description with reference to FIG. 1, one end of this compound molecule (the right end in the notation of the figure and chemical formula). ) Occurs to generate 1/2 equivalent of H 2 (the position in the compound where this reaction occurs is hereinafter referred to as the active site). However, the present invention is not limited to this, and a hydrogen generator having a structure having two active sites per molecule can be provided by providing active sites at both ends of the TTF skeleton. An example of such a hydrogen generator and a reaction cycle of hydrogen generation and hydrogen generator regeneration using the generator is shown in the following chemical reaction formula.

本明細書及び特許請求の範囲において、反応式の左辺の複合体を、(TTF−TTF)(COOLi)−LiOH複合体とも表記し、反応式の右辺の化合物をTED−Y(ただし、Y=Li,H)と表記することがある点に留意されたい。上に示した反応については(TTF−TTF)(COOLi)−LiOH複合体についての説明がほぼそのまま適用され、これにより水素の発生及び当該水素は製剤の再生が起こる。ただし、(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体では活性サイトが2つ存在することから、溶液のpHを擬似中性〜酸性とすることによりHが1当量発生し、またこの反応及び逆反応に伴って生成あるいは消費される水、酸、LiOHの量も夫々2倍となる。また、溶液を酸性にするために投入された酸の量が(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体に対して2当量よりも多い場合には、活性サイトが1個の場合と同様に、TTF骨格の両端あるいは一端においてY=Hとなる。この場合には逆反応の際に余分のLiOHが必要とされる。In the present specification and claims, the complex on the left side of the reaction formula is also referred to as a (TTF-TTF) (COOLi) 2 -LiOH complex, and the compound on the right side of the reaction formula is represented by TED-Y (where Y Note that it may be expressed as = Li, H). For the reactions shown above, the explanation for the (TTF-TTF) (COOLi) 2 -LiOH complex is applied almost as it is, thereby generating hydrogen and regenerating the drug. However, (COOLi) 2 (TTF- TTF-TTF) (COOLi) 2 - H 2 by a (LiOH) since there are two active sites in the 2 complexes, the pH of the solution pseudo neutral to acidic 1 equivalent amount is generated, and the amount of water, acid, and LiOH produced or consumed in association with this reaction and the reverse reaction is doubled. Also, if the amount of acid added to make the solution acidic is greater than 2 equivalents to (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex, As in the case of one active site, Y = H at both ends or one end of the TTF skeleton. In this case, extra LiOH is required for the reverse reaction.

このような活性サイトを2個有する水素発生剤の場合も、上に示す反応サイクルでは水素発生剤は実質的に消費されないので、同様に、理論的には水素発生剤の補充なしで反応サイクルを無制限に繰り返して水素発生を行うことができる。   In the case of a hydrogen generator having two active sites as described above, the hydrogen generator is not substantially consumed in the reaction cycle shown above. Hydrogen generation can be repeated indefinitely.

上で説明したように、本発明の水素発生剤は水から水素ガスの形で水素を取り出すことができる。これに加えて、本発明の水素発生剤の下で発生した水素を、水素の存在が必要な化学反応が行なわれる反応系に供給することができる。これを実現するためには、例えば水素が必要な反応系に本発明の水素発生剤を加える。反応系のpHによっては、許されれば、酸を添加する等のpH調節処置を更に行ってもよい。これにより、当該反応系が擬似中性〜酸性の場合には水素発生剤によって水から得られた水素が水素を必要とする反応系に供給されることで、直接的には水素ガスを外部から供給することなく、所要の反応を進めることができる。   As explained above, the hydrogen generating agent of the present invention can extract hydrogen from water in the form of hydrogen gas. In addition, hydrogen generated under the hydrogen generating agent of the present invention can be supplied to a reaction system in which a chemical reaction requiring the presence of hydrogen is performed. In order to realize this, for example, the hydrogen generator of the present invention is added to a reaction system that requires hydrogen. Depending on the pH of the reaction system, a pH adjustment treatment such as addition of an acid may be further performed if permitted. Thus, when the reaction system is pseudo-neutral to acidic, hydrogen obtained from water by the hydrogen generator is supplied to the reaction system that requires hydrogen, so that hydrogen gas is directly supplied from the outside. The required reaction can proceed without supply.

以下では本発明を実施例によりさらに詳細に説明するが、当然ながら、本発明は実施例に限定されるものではない。また、実施例の説明中で、上に示した反応が実際に起こっていることを示すデータも与える。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is naturally not limited to the examples. Also provided in the description of the examples is data indicating that the reactions shown above are actually occurring.

<(TTF−TTF)(COOLi)−LiOH複合体を用いた水素発生剤>
[(TTF−TTF)(COOLi)−LiOH複合体の作製]
(TTF)(COOMe)(200mg、0.403mmol)を1,4−ジオキサン(1, 4-dioxane)(400ml)、THF(20ml)、MeOH(20ml)、トルエン(20ml)及びDMF(10ml)の混合液中に懸濁させてから2NのLiOH水溶液(2.1ml、42mmol)を添加して混合した。これを室温で一晩中強く撹拌して、薄膜フィルタ(H010A047A, ADVANTEC)により沈殿を集め、脱イオン水(3ml)、MeOH(3ml)及びクロロホルム(3ml)で洗浄した。残留した固形物を真空中で乾燥して、暗赤色の固形物である(TTF−TTF)(COOLi)−LiOH複合体(191.9mg、0.380mmol、94%)を得た。1H NMR(400MHz、DMSO−d):δ 6.79(s,2H);元素分析(C12Li):計算値:C,28.57;H,0.60、実測値:C,28.41;H,0.92。
<Hydrogen Generator Using (TTF-TTF) (COOLi) 2 -LiOH Complex>
[Production of (TTF-TTF) (COOLi) 2 -LiOH Complex]
(TTF) 2 (COOMe) 2 (200 mg, 0.403 mmol) was added to 1,4-dioxane (400 ml), THF (20 ml), MeOH (20 ml), toluene (20 ml) and DMF (10 ml). ), And 2N LiOH aqueous solution (2.1 ml, 42 mmol) was added and mixed. This was stirred vigorously at room temperature overnight, and the precipitate was collected by a membrane filter (H010A047A, ADVANTEC) and washed with deionized water (3 ml), MeOH (3 ml) and chloroform (3 ml). The remaining solid was dried in vacuo to give a dark red solid (TTF-TTF) (COOLi) 2 -LiOH complex (191.9 mg, 0.380 mmol, 94%). 1H NMR (400 MHz, DMSO-d 6 ): δ 6.79 (s, 2H); elemental analysis (C 12 H 3 Li 3 O 5 S 8 ): calculated value: C, 28.57; H, 0.60 , Found: C, 28.41; H, 0.92.

なお、ここで使用した(TTF)(COOMe)は公知の物質であり、公知文献を参照することにより当業者が実施可能である。Note that (TTF) 2 (COOMe) 2 used here is a known substance, and can be implemented by those skilled in the art by referring to known literature.

[作製した(TTF−TTF)(COOLi)−LiOH複合体による水素発生]
0℃に冷却した(TTF−TTF)(COOLi)−LiOH複合体に対して1当量の2Nの塩酸水溶液を0℃で添加した。その結果得られた約0℃の溶液のpHはほぼ9であった。これを軽く撹拌した。これにより発生したガスをガスクロマトグラフィーによって分析した。その結果を図2に示す。ここで、標準のH/N混合ガスに対する保持時間はHについては0.50分、Nについては1.52分であった。なお、測定しなかったが、水素発生反応の進行により溶液のpHは変化したと考えられる。
[Hydrogen generation by the produced (TTF-TTF) (COOLi) 2 -LiOH complex]
One equivalent of 2N aqueous hydrochloric acid was added at 0 ° C. to the (TTF-TTF) (COOLi) 2 -LiOH complex cooled to 0 ° C. The pH of the resulting solution at about 0 ° C. was approximately 9. This was stirred gently. The gas generated thereby was analyzed by gas chromatography. The result is shown in FIG. Here, the retention time for a standard H 2 / N 2 gas mixture was 0.50 minutes for H 2 and 1.52 minutes for N 2 . Although not measured, it is considered that the pH of the solution changed with the progress of the hydrogen generation reaction.

図2から、この反応により、先に示した反応式の通り、水素が発生したことが確認できた。なお、図2には窒素のピークも現れているが、これは水の脱気に使用した窒素の残留分が検出されたものである。   From FIG. 2, it was confirmed that hydrogen was generated by this reaction according to the reaction formula shown above. Note that a nitrogen peak also appears in FIG. 2, which is a residue of nitrogen used for degassing water.

更に、この水素発生剤に酸ではなく水を添加した場合にも水素が発生することを確認するため、(TTF−TTF)(COOLi)−LiOH複合体に対して大過剰の水を0℃で添加した。これにより発生したガスをガスクロマトグラフィーによって分析した結果を図3に示す。同図に示す通り、この場合でも実際に水素が発生したことが確認された。この実験では水の脱気にアルゴンを使用したので、残留したアルゴンが水素とともに検出されている。Furthermore, in order to confirm that hydrogen is generated even when water is added to the hydrogen generator instead of acid, a large excess of water is added to the (TTF-TTF) (COOLi) 2 -LiOH complex at 0 ° C. Added at. FIG. 3 shows the result of analyzing the generated gas by gas chromatography. As shown in the figure, it was confirmed that hydrogen was actually generated even in this case. In this experiment, argon was used for degassing water, so that residual argon was detected together with hydrogen.

水素の発生を別の側面から検証するため、水素ガスの存在が必要な反応を、水素ガスを与える代わりに、(TTF−TTF)(COOLi)−LiOH複合体と酸の存在下で行い、実際にその反応が起こるか否かを調べた。In order to verify the generation of hydrogen from another aspect, a reaction that requires the presence of hydrogen gas is performed in the presence of (TTF-TTF) (COOLi) 2 -LiOH complex and acid instead of supplying hydrogen gas, Whether or not the reaction actually occurs was examined.

具体的には、以下の反応式に示すように、(TTF−TTF)(COOLi)−LiOH複合体とHCl水溶液(3eq.)及びPd/Cをアリルベンゼンエーテル(1eq)に添加した。これにより、オレフィンの水素化反応が実際に進行した。なお、ここでは条件の最適化は行わなかった。この反応は通常、水素ガス雰囲気中で行わなければ進行しないが、(TTF−TTF)(COOLi)−LiOH複合体の酸化により発生した水素を水素源としてオレフィンの水素化反応が進行した。この実験により、この水素発生剤は水素ガスを外部から導入することなく水素化試薬として機能することが示された。Specifically, as shown in the following reaction formula, (TTF-TTF) (COOLi) 2 -LiOH complex, HCl aqueous solution (3 eq.) And Pd / C were added to allylbenzene ether (1 eq). As a result, the olefin hydrogenation reaction actually proceeded. Here, the conditions were not optimized. This reaction usually does not proceed unless carried out in a hydrogen gas atmosphere, but the olefin hydrogenation reaction proceeded using hydrogen generated by oxidation of the (TTF-TTF) (COOLi) 2 -LiOH complex as a hydrogen source. This experiment showed that this hydrogen generator functions as a hydrogenation reagent without introducing hydrogen gas from the outside.

更に、上記方法をベンゾキノン(BQ)の水素化反応に適用する実験を行った。以下の反応式に示す通り、(TTF−TTF)(COOLi)−LiOHとHCl水溶液(3eq.)をベンゾキノンに添加したところ、実際に水素化反応が進行し、ハイドロキノン(HQ)が生成した。これにより、上記同様、(TTF−TTF)(COOLi)−LiOH複合体が塩酸溶液により酸化されて水素を発生したことが間接的に確認された。下式には、半等式に加えて、添加した(TTF−TTF)(COOLi)−LiOHに対するベンゾキノンの当量が1及び5の場合のハイドロキノンの収率も示した。Furthermore, an experiment was conducted in which the above method was applied to the hydrogenation reaction of benzoquinone (BQ). As shown in the following reaction formula, when (TTF-TTF) (COOLi) 2 -LiOH and an aqueous HCl solution (3 eq.) Were added to benzoquinone, the hydrogenation reaction actually proceeded to produce hydroquinone (HQ). This indirectly confirmed that the (TTF-TTF) (COOLi) 2 -LiOH complex was oxidized by the hydrochloric acid solution to generate hydrogen, as described above. In addition to the half equation, the following formula also shows the yield of hydroquinone when the equivalent of benzoquinone relative to (TTF-TTF) (COOLi) 2 -LiOH added is 1 and 5.

また、先に示した式の通りの平衡反応が起こっていることを確認するため、(TTF−TTF)(COOLi)−LiOH複合体に対して段階的に塩酸水溶液を添加してpHを調製した際に発生した高酸化状態にある分子の割合をラジカル量として評価した。その結果を図4のグラフに示す。これはラジカル量のpH依存性を示しており、具体的にはpHが11以下になると、溶液中のラジカル量、すなわち高酸化状態の分子が急激に増加することがわかり、結局、このpHを境に平衡状態が上に示した反応式の右辺側に急激に移動する。なお、図4においてpH=10付近から6.5付近の間にはデータ点が何もプロットされていない。これはプロットを省略しているわけではなく、1回の塩酸水溶液の添加によりpHが10.5から6.2まで一気に変化したためである。In addition, in order to confirm that the equilibrium reaction according to the formula shown above has occurred, the pH is adjusted by adding a hydrochloric acid aqueous solution stepwise to the (TTF-TTF) (COOLi) 2 -LiOH complex. The ratio of molecules in a highly oxidized state generated during the evaluation was evaluated as the amount of radicals. The result is shown in the graph of FIG. This shows the pH dependency of the amount of radicals. Specifically, when the pH is 11 or less, it can be seen that the amount of radicals in the solution, that is, molecules in a highly oxidized state increases rapidly. At the boundary, the equilibrium state moves rapidly to the right side of the reaction equation shown above. In FIG. 4, no data point is plotted between pH = 10 and 6.5. This is because the plot was not omitted, and the pH was changed from 10.5 to 6.2 at a stroke by the addition of one aqueous hydrochloric acid solution.

次いで、この水素発生剤の反応継続性について調べた。具体的には、遮光下で、室温(25℃)において、(TTF−TTF)(COOLi)−LiOH複合体(4mg)に水(300mL)を添加し、発生する水素ガスの量をガスクロマトグラフィーにより検出した。結果を図5に示す。Next, the reaction continuity of this hydrogen generator was examined. Specifically, water (300 mL) was added to (TTF-TTF) (COOLi) 2 -LiOH complex (4 mg) at room temperature (25 ° C.) under light shielding, and the amount of generated hydrogen gas was determined by gas chromatography. Detected by chromatography. The results are shown in FIG.

図5は、(TTF−TTF)(COOLi)−LiOH複合体に対して水を室温で添加した際に発生した水素ガスの量と反応日数との関係を示す図である。FIG. 5 is a diagram showing the relationship between the amount of hydrogen gas generated when water is added to a (TTF-TTF) (COOLi) 2 -LiOH complex at room temperature and the number of reaction days.

図5において、横軸は反応日数(日)を、縦軸は水素ガスの検出強度(V)を示す。なお、反応3日目の水素ガスの検出強度が約0.8(V)から0(V)まで低下しているが、これは、外部から混入したガス(酸素ガス等)を取り除くため、反応3日目に反応で発生したガスを留去したためである。図5に示すように、ガスの留去を考慮しても、反応時間が長くなるにつれて(反応日数の増大に応じて)、水素ガスの検出強度(水素ガスの発生量)は漸次増大することが分かった。このことから、本発明の水素発生剤は、反応継続性に優れており、長期間(例えば、15日以上)の使用でも、その水素発生能を維持することが示された。   In FIG. 5, the horizontal axis indicates the number of reaction days (days), and the vertical axis indicates the hydrogen gas detection intensity (V). The detection intensity of hydrogen gas on the third day of the reaction has decreased from about 0.8 (V) to 0 (V). This is because the reaction gas is removed from the outside (oxygen gas, etc.). This is because the gas generated by the reaction was distilled off on the third day. As shown in FIG. 5, even when the gas distillation is taken into account, the detection intensity of hydrogen gas (the amount of generated hydrogen gas) gradually increases as the reaction time increases (in accordance with the increase in the number of reaction days). I understood. From this, it was shown that the hydrogen generating agent of the present invention is excellent in reaction continuity and maintains its hydrogen generating ability even when used for a long time (for example, 15 days or longer).

実施例において一部の水素発生の実験を0℃で行っているが、これについて説明しておく。水素発生を0℃で行った実験でも、温度を室温として他の条件は同じとしても水素発生反応自体は問題なく進行した。ただし、0℃で反応させた方が逆反応(発生した水素が高酸化状態の水素発生剤によって系中に残存する酸素と反応して再び水に戻る反応)が進行しにくい傾向が見られた。この点を考慮し、検出される水素の正味発生量を多くするために、一部の実験を0℃で行った。   In the examples, some hydrogen generation experiments were performed at 0 ° C., which will be described. Even in the experiment in which hydrogen generation was performed at 0 ° C., the hydrogen generation reaction itself proceeded without problems even if the temperature was set to room temperature and the other conditions were the same. However, the reverse reaction (reaction in which the generated hydrogen reacts with the oxygen remaining in the system by the highly oxidized hydrogen generator and returns to water) is less likely to proceed at 0 ° C. . Considering this point, some experiments were performed at 0 ° C. in order to increase the net amount of hydrogen detected.

<(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体を用いた水素発生剤>
この水素発生剤も先に説明した(TTF−TTF)(COOLi)−LiOHとほぼ同じ特性を示すので、上で行った各種の実験に対応する結果を一々説明はしないが、(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体に対して大過剰の水を添加して室温状態で発生したガスのガスクロマトグラフィーによる分析結果を図6に示す。これに対応する図3と同様、(COOLi)(TTF−TTF−TTF)(COOLi)−(LiOH)複合体の場合も大量の水の添加によるpH調節によって水素が発生することを確認できた。
<Hydrogen generator using (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex>
Since this hydrogen generating agent also exhibits substantially the same characteristics as the previously described (TTF-TTF) (COOLi) 2 -LiOH, the results corresponding to the various experiments performed above will not be described one by one, but (COOLi) 2 FIG. 6 shows the results of gas chromatography analysis of gas generated at room temperature by adding a large excess of water to the (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex. Similarly to FIG. 3 corresponding to this, in the case of (COOLi) 2 (TTF-TTF-TTF) (COOLi) 2- (LiOH) 2 complex, it is confirmed that hydrogen is generated by pH adjustment by adding a large amount of water. did it.

以上説明したように、本発明によれば、従来にない新規な機構で水素を発生することができ、またpHを変化させることで、水素発生剤の追加なしで無制限の回数繰り返して水素を発生させることができるようになる。また、単に水素ガスを外部に取り出すだけではなく、水素を必要とする反応に対して、外部からの水素供給に代えて本発明の水素発生材料を使用することによって水素を供給する等も可能となる。従って、本発明は産業上広範な分野での利用が期待される。   As described above, according to the present invention, hydrogen can be generated by a novel mechanism that has not been conventionally used, and by changing the pH, hydrogen can be generated repeatedly an unlimited number of times without adding a hydrogen generator. To be able to. In addition to taking out hydrogen gas to the outside, it is possible to supply hydrogen by using the hydrogen generating material of the present invention instead of supplying hydrogen from the outside for reactions that require hydrogen. Become. Therefore, the present invention is expected to be used in a wide range of industrial fields.

Claims (12)

テトラチアフルバレン骨格を有する化合物を含む水素発生剤。   A hydrogen generator containing a compound having a tetrathiafulvalene skeleton. 前記テトラチアフルバレン骨格が縮環テトラチアフルバレン骨格であり、前記化合物がカルボン酸官能基及びアルカリ金属を有する、請求項1に記載の水素発生剤。   The hydrogen generator according to claim 1, wherein the tetrathiafulvalene skeleton is a condensed tetrathiafulvalene skeleton, and the compound has a carboxylic acid functional group and an alkali metal. 前記テトラチアフルバレン内の硫黄の少なくとも一部がセレンで置換されている、請求項1又は2に記載の水素発生剤。   The hydrogen generator according to claim 1 or 2, wherein at least a part of sulfur in the tetrathiafulvalene is substituted with selenium. (TTF−TTF)(COOM)(MOH)複合体(整数n≧1)及び(COOM)(TTF−TTF−TTF)(COOM)(MOH)複合体(整数n≧0)の少なくとも一を含む水素発生剤。ただし、MはLi又はNaである。(TTF n -TTF) (COOM) 2 (MOH) complex (integer n ≧ 1) and (COOM) 2 (TTF-TTF n -TTF) (COOM) 2 (MOH) 2 complex (integer n ≧ 0) A hydrogen generator containing at least one of the following. However, M is Li or Na. 前記MがLiである、請求項4に記載の水素発生剤。   The hydrogen generator according to claim 4, wherein M is Li. 前記TTF内の硫黄の少なくとも一部がセレンで置換されている、請求項4又は5に記載の水素発生剤。   The hydrogen generator according to claim 4 or 5, wherein at least a part of sulfur in the TTF is substituted with selenium. 前記nが1である、請求項4〜6のいずれか一項に記載の水素発生剤。   The hydrogen generator according to any one of claims 4 to 6, wherein n is 1. 請求項1〜7のいずれか一項に記載の水素発生剤と水とを混合し、pHを所定範囲として水素を発生させる水素発生方法。   A hydrogen generation method in which the hydrogen generator according to any one of claims 1 to 7 and water are mixed to generate hydrogen at a predetermined pH range. pHの前記所定範囲が11以下である、請求項8に記載の水素発生方法。   The method for generating hydrogen according to claim 8, wherein the predetermined range of pH is 11 or less. pHを擬似中性又は酸性として水素を発生させた後に前記pHを前記所定範囲よりも大きな値とすることにより、前記水素発生剤を再生する、請求項8又は9に記載の水素発生方法。   The method for generating hydrogen according to claim 8 or 9, wherein the hydrogen generating agent is regenerated by generating hydrogen by setting the pH to be pseudo-neutral or acidic, and then setting the pH to a value larger than the predetermined range. 前記水素発生と前記水素発生剤の再生を繰り返す、請求項10に記載の水素発生方法。   The hydrogen generation method according to claim 10, wherein the hydrogen generation and the regeneration of the hydrogen generating agent are repeated. 水素を必要とする化学反応を用いて物質を製造する方法において、少なくとも請求項1〜7のいずれか一項に記載の水素発生剤、又は請求項8〜11のいずれか一項に記載の水素発生方法を用いて水素を発生させる、物質の製造方法。   In the method of manufacturing a substance using a chemical reaction that requires hydrogen, at least the hydrogen generator according to any one of claims 1 to 7, or the hydrogen according to any one of claims 8 to 11. A method for producing a substance, wherein hydrogen is generated using a generation method.
JP2018500019A 2016-02-19 2017-01-31 HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD, AND MATERIAL MANUFACTURING METHOD Active JP6609030B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016029440 2016-02-19
JP2016029440 2016-02-19
PCT/JP2017/003382 WO2017141692A1 (en) 2016-02-19 2017-01-31 Hydrogen generating agent, hydrogen generation method, and method of producing substance

Publications (2)

Publication Number Publication Date
JPWO2017141692A1 JPWO2017141692A1 (en) 2018-11-15
JP6609030B2 true JP6609030B2 (en) 2019-11-20

Family

ID=59625058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500019A Active JP6609030B2 (en) 2016-02-19 2017-01-31 HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD, AND MATERIAL MANUFACTURING METHOD

Country Status (2)

Country Link
JP (1) JP6609030B2 (en)
WO (1) WO2017141692A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121578B2 (en) * 2018-08-01 2022-08-18 株式会社豊田中央研究所 Hydrogen generator and hydrogen production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360461A (en) * 1993-08-23 1994-11-01 United Technologies Corporation Polymeric storage bed for hydrogen
JP2012505810A (en) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド Heterogeneous hydrogen catalyst reactor
EA028372B1 (en) * 2010-03-18 2017-11-30 Блэклайт Пауэр, Инк. Electrochemical hydrogen-catalyst power system
JP5880893B2 (en) * 2011-09-22 2016-03-09 国立研究開発法人物質・材料研究機構 Magnet containing organic itinerant magnetic compound, spintronic device and hydrogen purification material
JP5943285B2 (en) * 2012-10-13 2016-07-05 国立研究開発法人物質・材料研究機構 Electric wire, electronic device, compound, metallized organic substance, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2017141692A1 (en) 2017-08-24
JPWO2017141692A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Zhu et al. Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates
JP5616415B2 (en) Process for oxidizing bromide to form bromine and catalyst useful therefor
Evans et al. A ferrocene functionalized rotaxane host system capable of the electrochemical recognition of chloride
US11718524B2 (en) Method for manufacturing sulfur tetrafluoride
Sun et al. Direct access to β-seleno sulfones at room temperature through selenosulfonylation of alkenes
Yamase et al. Structure of double Keggin-Ti/W-mixed polyanion [(A-β-GeTi3W9O37) 2O3] 14− and multielectron-transfer-based photocatalyic H2-generation
Jiang et al. Chemoselective monobromination of alkanes promoted by unactivated MnO2
Liu et al. Light induced catalytic hydrodefluorination of perfluoroarenes by porphyrin rhodium
Karmakar et al. Solvent-free microwave-assisted peroxidative oxidation of alcohols catalyzed by iron (III)-TEMPO catalytic systems
JP6609030B2 (en) HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD, AND MATERIAL MANUFACTURING METHOD
JP4822253B2 (en) Method for producing formate from carbon dioxide and hydrogen
Wang et al. Weakly distorted 8-quinolinolato iron (III) complexes as effective catalysts for oxygenation of organic compounds by hydrogen peroxide
Gokhale et al. MnO2 nanostructures as sustainable catalysts for selectivity tuning and syntheses of amine coupling products with bio-derived glycerol
JP2014062038A (en) Method for producing carbon monoxide and/or hydrogen
Leszczynski et al. Application of Silver Compounds in Fluoroorganic Synthesis: A Minireview
KR101339649B1 (en) Novel visible light active graphene-based photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of formic acid from carbon dioxide using the same
JP5262623B2 (en) Method for producing sulfonamide compound
JP2011016782A (en) Method for producing glycolic acid, and glycolic acid-containing composition
WO2018163004A1 (en) Hydrogen production from ethylene glycol under basic conditions
CN110452120B (en) Decarboxylation of alkyl carboxylates of photo-activated electron donor-acceptor complexes and decarboxylated Giese free radical addition reactions
JP4853922B2 (en) Manufacturing method of conductive organic ultrathin film
US11827578B2 (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JP2012001419A (en) Method for producing ammonia borane
WO2015064198A1 (en) Hydrogen oxidation catalyst
KR101874740B1 (en) Method for producing oxygen containing carbon compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6609030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250