JP5262623B2 - Method for producing sulfonamide compound - Google Patents

Method for producing sulfonamide compound Download PDF

Info

Publication number
JP5262623B2
JP5262623B2 JP2008301595A JP2008301595A JP5262623B2 JP 5262623 B2 JP5262623 B2 JP 5262623B2 JP 2008301595 A JP2008301595 A JP 2008301595A JP 2008301595 A JP2008301595 A JP 2008301595A JP 5262623 B2 JP5262623 B2 JP 5262623B2
Authority
JP
Japan
Prior art keywords
compound
ppdsa
sulfonamide
sulfonamide compound
sulfonyl halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008301595A
Other languages
Japanese (ja)
Other versions
JP2010126468A (en
Inventor
洋一 細川
昌弥 川角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008301595A priority Critical patent/JP5262623B2/en
Publication of JP2010126468A publication Critical patent/JP2010126468A/en
Application granted granted Critical
Publication of JP5262623B2 publication Critical patent/JP5262623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、スルホンアミド化合物の製造方法に関し、更に詳しくは、固体高分子電解質膜の材料として適用しうるスルホンアミド化合物を高収率で合成する技術に関する。   The present invention relates to a method for producing a sulfonamide compound, and more particularly to a technique for synthesizing a sulfonamide compound that can be used as a material for a solid polymer electrolyte membrane in a high yield.

固体高分子型燃料電池は、膜電極接合体(MEA)を基本単位としており、膜電極接合体は、固体高分子電解質膜の両面に電極が接合されたものである。スルホンアミド化合物は、その固体高分子電解質膜の材料(モノマー)として用いることが検討されている。
スルホンアミド化合物の製造方法として、スルホニルハライド基(−SOX、Xはハロゲン)を含む化合物を出発原料として用いて、これにアンモニア(NH、NHOH)やアジ化ナトリウム(NaN)等を反応させることにより合成する方法が知られている。
その他にも種々のスルホンアミド化合物の製造方法が提案されている。例えば、特許文献1,2には、スルホニルハライド基を含む化合物を出発原料として用いて、これにヘキサメチルジシラザン(HMDS、Hexamethyldisilazane)を反応させることにより、スルホンアミド化合物を合成する方法が開示されている。
後述するように特許文献3〜5の報告もある。
The polymer electrolyte fuel cell has a membrane electrode assembly (MEA) as a basic unit, and the membrane electrode assembly is obtained by bonding electrodes to both surfaces of a solid polymer electrolyte membrane. The use of a sulfonamide compound as a material (monomer) for the solid polymer electrolyte membrane has been studied.
As a method for producing a sulfonamide compound, a compound containing a sulfonyl halide group (—SO 2 X, X is halogen) is used as a starting material, and ammonia (NH 3 , NH 4 OH) or sodium azide (NaN 3 ) is added thereto. A method of synthesizing them by reacting them is known.
In addition, various methods for producing sulfonamide compounds have been proposed. For example, Patent Documents 1 and 2 disclose a method of synthesizing a sulfonamide compound by using a compound containing a sulfonyl halide group as a starting material and reacting it with hexamethyldisilazane (HMDS, Hexamethyldisilazane). ing.
There are also reports of Patent Documents 3 to 5 as described later.

Y. L. Yagupol'skii et al., Z. Org. Farm. Khimii, 2003, 1(3-4), 65.Y. L. Yagupol'skii et al., Z. Org. Farm. Khimii, 2003, 1 (3-4), 65. S. F. Britcher et al., J. Org. Chem., 1983, 48(6), 763.S. F. Britcher et al., J. Org. Chem., 1983, 48 (6), 763. R. Juschke et al., Z. Naturforsch. B, 1997, 52, 359.R. Juschke et al., Z. Naturforsch. B, 1997, 52, 359. 特開平10−168194号公報JP-A-10-168194 D. D. DesMateau et al., J. Fluorine Chem., 1995, 72, 203.D. D. DesMateau et al., J. Fluorine Chem., 1995, 72, 203.

しかしながら、スルホニルハライド基を含む化合物として、XOS(CFSOX(但し、Xはハロゲン、n=1,2)を出発原料として用いて、これに上記のようにアンモニアを作用させると環状化合物のみが生成するという報告がある(特許文献3参照)。その理由は次のように考えられる。すなわち、炭素数が少ない場合(上記のようにn=1,2の場合)には、スルホニルハライド基(−SOX)が近接しているため、同一分子内のスルホニルハライド基どうしが反応し、スルホンイミド基が形成されると考えられるためである。従って、XOS(CFSOX(但し、Xはハロゲン、n=1,2)を出発原料として用いて、アンモニアを作用させて、「環状化合物ではない所望のスルホンアミド化合物」、例えば、直鎖状のスルホンアミド化合物を合成しようとする場合には、環状化合物が副生成物となり、収率が悪いという問題がある。このような場合には、カラム精製等のプロセスが必要になるため、高コストになるという問題もある。 However, as a compound containing a sulfonyl halide group, XO 2 S (CF 2 ) n SO 2 X (where X is a halogen, n = 1, 2) is used as a starting material, and ammonia is used as described above. There is a report that only a cyclic compound is produced when it is used (see Patent Document 3). The reason is considered as follows. That is, when the number of carbon atoms is small (when n = 1, 2 as described above), the sulfonyl halide groups (—SO 2 X) are close to each other, so that the sulfonyl halide groups in the same molecule react with each other. This is because a sulfonimide group is considered to be formed. Therefore, using XO 2 S (CF 2 ) n SO 2 X (where X is a halogen, n = 1, 2) as a starting material and reacting with ammonia, a “desired sulfonamide compound that is not a cyclic compound” For example, when a linear sulfonamide compound is to be synthesized, there is a problem that the cyclic compound becomes a by-product and the yield is poor. In such a case, since a process such as column purification is required, there is a problem that the cost is increased.

また、XOS(CFSOX(但し、Xはハロゲン)において、n=3とした場合、すなわち、XOS(CFSOXをアンモニアと反応させても、環状化合物が生成したとの報告はされていないが(特許文献4参照)、n=3の場合においてアンモニアと反応させる合成法は知られていない。従って、XOS(CFSOX(但し、Xはハロゲン)において、n=3とした場合、すなわち、XOS(CFSOXを出発原料とした場合においても、n=1,2の場合と同様の問題が存在することが推測される。 Further, in XO 2 S (CF 2 ) n SO 2 X (where X is a halogen), when n = 3, that is, even when XO 2 S (CF 2 ) 3 SO 2 X is reacted with ammonia, Although it has not been reported that a cyclic compound has been formed (see Patent Document 4), a synthesis method for reacting with ammonia in the case of n = 3 is not known. Accordingly, even in the case where n = 3 in XO 2 S (CF 2 ) n SO 2 X (where X is a halogen), that is, when XO 2 S (CF 2 ) 3 SO 2 X is used as a starting material, , N = 1, 2 are estimated to have the same problem.

更に、XOS(CFSOX(但し、Xはハロゲン)において、n=4とした場合、すなわち、XOS(CFSOXを出発原料として用いて、アンモニアを作用させても環状化合物が生成せず、収率良くスルホンアミド化合物が得られることは知られている(特許文献5参照)。 Further, in XO 2 S (CF 2 ) n SO 2 X (where X is halogen), when n = 4, that is, using XO 2 S (CF 2 ) 4 SO 2 X as a starting material, ammonia It is known that a sulfonamide compound can be obtained in good yield without producing a cyclic compound even when allowed to act (see Patent Document 5).

本発明は、上記事情に鑑みてなされたものであり、その目的は、環状化合物の生成を抑制でき、収率を上げることができるスルホンアミド化合物の製造方法を提供することにある。併せて、低コストでスルホンアミド化合物を得ることができるスルホンアミド化合物の製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, The objective is to provide the manufacturing method of the sulfonamide compound which can suppress the production | generation of a cyclic compound and can raise a yield. In addition, an object of the present invention is to provide a method for producing a sulfonamide compound capable of obtaining a sulfonamide compound at a low cost.

上記課題を解決するために、本発明者等は、スルホニルハライド基を備えた有機化合物として、例えば、XOS(CFSOXにおいて、n=3,X=F(フッ素)としたFOS(CFSOFを出発原料として、環状化合物を生成させることなく、高収率でスルホンアミド化合物を得る合成法を鋭意研究した。本発明者等は、その研究過程において、その出発原料(すなわち、FOS(CFSOF)にアンモニアを作用させて、スルホンアミド化合物を合成しようとすると、環状化合物が副生成物となることを確認した。 In order to solve the above-mentioned problem, the present inventors, as an organic compound having a sulfonyl halide group, for example, in XO 2 S (CF 2 ) n SO 2 X, n = 3, X = F (fluorine) and Using the FO 2 S (CF 2 ) 3 SO 2 F thus obtained as a starting material, a synthesis method for obtaining a sulfonamide compound in a high yield without generating a cyclic compound was intensively studied. In the course of the research, the present inventors made ammonia act on the starting material (that is, FO 2 S (CF 2 ) 3 SO 2 F) to synthesize a sulfonamide compound, and a cyclic compound was formed as a by-product. I confirmed that it was a thing.

一方、本発明者等は、その出発原料(すなわち、FOS(CFSOF)にリチウムヘキサメチルジシラザンを反応させると環状化合物を生成させることなく、高収率でスルホンアミド化合物を得ることができるとの知見を得た。かかる知見に基づいて更に研究を重ねた結果、本発明者等は、スルホニルハライド基を備えた有機化合物にアルカリ金属ヘキサメチルジシラザンを反応させるとスルホンイミド化合物を得ることができるとの知見を得るに至った。
本発明は、このような知見に基づいてなされたものである。
On the other hand, the present inventors have made sulfonamide in a high yield without generating a cyclic compound when lithium hexamethyldisilazane is reacted with its starting material (ie, FO 2 S (CF 2 ) 3 SO 2 F). The knowledge that a compound can be obtained was acquired. As a result of further research based on this knowledge, the present inventors have obtained knowledge that a sulfonimide compound can be obtained by reacting an organic compound having a sulfonyl halide group with an alkali metal hexamethyldisilazane. It came to.
The present invention has been made based on such knowledge.

本発明に係るスルホンアミド化合物の製造方法は、2個以上のスルホニルハライド基を備え、かつ、炭素数が1以上3以下である有機化合物にアルカリ金属ヘキサメチルジシラザンを反応させる工程を備えたことを要旨とする。
の場合に、反応温度は−100℃以上0℃以下であることが望ましい。
Method for producing a sulfonamide compound according to the present invention, e Bei two or more scan Ruhoniruharaido group, and comprises the step of reacting an alkali metal hexamethyldisilazane organic compounds carbon atoms is 1 to 3 and it shall be the gist.
In the case of this, it is desirable that the reaction temperature is -100 ° C. or higher 0 ℃ less.

本発明に係るスルホンアミド化合物の製造方法によれば、スルホニルハライド基を備えた有機化合物は、アルカリ金属ヘキサメチルジシラザンと反応させる。アルカリ金属ヘキサメチルジシラザンは、嵩高く反応性が高い。従って、同一分子内のスルホニルハライド基どうしによるスルホンイミド基生成反応が抑制され、環状化合物やオリゴマーは生成せず、高収率でスルホンアミド化合物が得られる。従って、スルホンアミド化合物の精製プロセスを簡単にすることができ、製造コストを下げることができる。   According to the method for producing a sulfonamide compound according to the present invention, an organic compound having a sulfonyl halide group is reacted with an alkali metal hexamethyldisilazane. Alkali metal hexamethyldisilazane is bulky and highly reactive. Therefore, the sulfonimide group production | generation reaction by the sulfonyl halide groups in the same molecule is suppressed, a cyclic compound and an oligomer are not produced | generated, and a sulfonamide compound is obtained with a high yield. Therefore, the purification process of the sulfonamide compound can be simplified and the production cost can be reduced.

本発明によれば、アルカリ金属ヘキサメチルジシラザンを試薬として用いるため、前記スルホニルハライド基を備えた有機化合物は、炭素数が1以上3以下でも適用できる。アルカリ金属ヘキサメチルジシラザンは、嵩高く反応性が高いため、同一分子内のスルホニルハライド基どうしによるスルホンイミド基生成反応が抑制され、環状化合物やオリゴマーは生成せず、高収率でスルホンアミド化合物が得られるからである。従来周知のアンモニアを試薬として用いると環状化合物が生成するが、本発明はその生成が抑制される点で利用価値が高い。
この場合に、反応温度は−100℃以上0℃以下であることが望ましい。すなわち、温度管理が重要であり、反応時間の管理は反応終了まで待機する点に注力すれば済む。従って、温度管理を適切に行えば、高収率でスルホンアミドが得られる点で、本発明は利用価値が高い。
According to the present invention, since alkali metal hexamethyldisilazane is used as a reagent, the organic compound having the sulfonyl halide group can be applied even if it has 1 to 3 carbon atoms. Alkali metal hexamethyldisilazane is bulky and highly reactive, so sulfonimide group formation reaction between sulfonyl halide groups in the same molecule is suppressed, and cyclic compounds and oligomers are not generated. This is because When conventionally known ammonia is used as a reagent, a cyclic compound is produced, but the present invention has a high utility value in that the production is suppressed.
In this case, the reaction temperature is desirably −100 ° C. or higher and 0 ° C. or lower. That is, temperature management is important, and reaction time management only needs to be focused on waiting until the end of the reaction. Therefore, if temperature control is performed appropriately, sulfonamide can be obtained in a high yield, and the present invention has a high utility value.

以下に本発明の一実施形態について詳細に説明する。
本発明の一実施形態に係るスルホンアミド化合物の製造方法は、スルホニルハライド基を備えた有機化合物にアルカリ金属ヘキサメチルジシラザンを反応させる工程(化1の(1)式参照)を備える。
Hereinafter, an embodiment of the present invention will be described in detail.
The manufacturing method of the sulfonamide compound which concerns on one Embodiment of this invention is equipped with the process (refer (1) Formula of Chemical formula 1) which makes the alkali compound hexamethyldisilazane react with the organic compound provided with the sulfonyl halide group.

Figure 0005262623
Figure 0005262623

本発明の一実施形態において、「スルホニルハライド基」とは、−SOX(Xはハロゲン)で表される官能基をいう。
「スルホニルハライド基を備えた有機化合物」とは、一般式:A−(SOX)(mはスルホニルハライド基の数で任意)で表され、炭素原子を構造の基本骨格に持つ化合物をいう。ここで、Aは、
(1)C−F結合を含み、C−H結合を含まないパーフルオロ化合物、
(2)パーフルオロ化合物のフッ素の一部を水素に置換したフッ化炭化水素化合物、
(3)C−H結合を含み、C−F結合を含まない炭化水素化合物のいずれであってもよい。
Aは、直鎖状又は分岐状の脂肪族骨格を備えたものでもよく、あるいは、芳香族骨格を備えたものでもよい。
In one embodiment of the present invention, the “sulfonyl halide group” refers to a functional group represented by —SO 2 X (X is halogen).
The “organic compound having a sulfonyl halide group” is a compound represented by the general formula: A- (SO 2 X) m (m is an arbitrary number of sulfonyl halide groups) and having a carbon atom as a basic skeleton of the structure. Say. Where A is
(1) a perfluoro compound containing a C—F bond and not containing a C—H bond,
(2) a fluorinated hydrocarbon compound obtained by substituting a part of fluorine of the perfluoro compound with hydrogen,
(3) Any hydrocarbon compound containing a C—H bond and no C—F bond may be used.
A may have a linear or branched aliphatic skeleton, or may have an aromatic skeleton.

「スルホニルハライド基を備えたパーフルオロ化合物」として、例えば、一般式:XOS(CFSOX(但し、Xはハロゲン、n=1〜10)で表されるものがあげられ、その具体的として、FOS(CFSOF(以下単に、「PPDSF」ともいう)、FOS(CFSOF(以下単に、「PBDSF」ともいう)、FOS(CFSOF(以下単に、「PODSF」ともいう)の他、XOS(CFO(CFSOX(但し、Xはハロゲン),CF(CFSOX(但し、Xはハロゲン),FC(SOX)(但し、Xはハロゲン),CF(SOX)(但し、Xはハロゲン)等がある。
また、「スルホニルハライド基を備えたフッ化炭化水素化合物」として、例えば、CHF(SOX)(但し、Xはハロゲン)等がある。
更に、「スルホニルハライド基を備えた炭化水素化合物」として、ベンゼン環を備えたBTSC(化2の(2)式参照)、CH(SOX)(但し、Xはハロゲン),CH(SOX)(但し、Xはハロゲン),XOS(CHSOX(但し、Xはハロゲン、n=1〜10)等が挙げられる。
Examples of the “perfluoro compound having a sulfonyl halide group” include those represented by the general formula: XO 2 S (CF 2 ) n SO 2 X (where X is halogen, n = 1 to 10). Specifically, FO 2 S (CF 2 ) 3 SO 2 F (hereinafter also simply referred to as “PPDSF”), FO 2 S (CF 2 ) 4 SO 2 F (hereinafter also simply referred to as “PBDSF”), FO 2 S (CF 2 ) 8 SO 2 F (hereinafter also simply referred to as “PODSF”), XO 2 S (CF 2 ) 2 O (CF 2 ) 2 SO 2 X (where X is a halogen), CF 3 (CF 2 ) 3 SO 2 X (where X is halogen), FC (SO 2 X) 3 (where X is halogen), CF 2 (SO 2 X) 2 (where X is halogen), etc. .
Examples of the “fluorinated hydrocarbon compound having a sulfonyl halide group” include CHF (SO 2 X) 2 (where X is a halogen).
Furthermore, as “a hydrocarbon compound having a sulfonyl halide group”, BTSC having a benzene ring (see Formula (2) in Chemical Formula 2), CH 2 (SO 2 X) 2 (where X is a halogen), CH ( SO 2 X) 3 (where X is halogen), XO 2 S (CH 2 ) n SO 2 X (where X is halogen, n = 1 to 10) and the like.

Figure 0005262623
Figure 0005262623

「アルカリ金属ヘキサメチルジシラザン」は、一般式:M−N(SiMe(M:アルカリ金属、すなわち、Li,Na,K,Rb,Cs)で表される化合物をいう。アルカリ金属ヘキサメチルジシラザンは、出発原料と反応させる試薬であり、特に、LiHMDS(リチウムヘキサメチルジシラザン(LiN(SiMe))が好ましいが、Liの全部又は一部を他のアルカリ金属(Na,K)に置換したものでもよい。LiHMDSは、一般的にはテトラヒドロフラン(THF)溶液に溶かしたものが用いられるが、その濃度は適宜調整するとよい。 “Alkali metal hexamethyldisilazane” refers to a compound represented by the general formula: MN (SiMe 3 ) 2 (M: alkali metal, ie, Li, Na, K, Rb, Cs). Alkali metal hexamethyldisilazane is a reagent that is reacted with a starting material, and in particular, LiHMDS (lithium hexamethyldisilazane (LiN (SiMe 3 ) 2 )) is preferable, but all or part of Li is replaced with another alkali metal. It may be substituted with (Na, K). LiHMDS is generally dissolved in a tetrahydrofuran (THF) solution, but the concentration may be adjusted as appropriate.

ここで、「スルホニルハライド基を備えた有機化合物」の炭素数は、1以上3以下が好ましい。炭素数が3以下の場合には、試薬としてアンモニア等を用いると環状化合物が生成するのに対して、炭素数が4以上の場合には、試薬としてアンモニアを用いても環状化合物が生成されないため、炭素数が1以上3以下の場合に特に利用価値が高いからである。
すなわち、本発明のように試薬としてアルカリ金属ヘキサメチルジシラザンを用いると、これが嵩高く反応性が高いため、出発原料の炭素数を1以上3以下としても、環化反応が生じることなく所望のスルホンアミド化合物が得られる。
Here, the number of carbon atoms of the “organic compound having a sulfonyl halide group” is preferably 1 or more and 3 or less. When the number of carbon atoms is 3 or less, a cyclic compound is generated when ammonia or the like is used as a reagent. On the other hand, when the number of carbon atoms is 4 or more, a cyclic compound is not generated even when ammonia is used as a reagent. This is because the utility value is particularly high when the carbon number is 1 or more and 3 or less.
That is, when alkali metal hexamethyldisilazane is used as a reagent as in the present invention, it is bulky and highly reactive. Therefore, even if the starting material has 1 to 3 carbon atoms, the desired cyclization reaction does not occur. A sulfonamide compound is obtained.

反応条件は特に限定されないが、反応温度は−100℃以上0℃以下であることが望ましい。−100℃を下限温度としたのは、溶媒としてTHFを用いた場合には、その凝固点が−108℃であるため、−100℃がアイスバスが作製できる限界だからである。0℃を上限温度としたのは、0℃を超えると試薬が分解するからである。
本発明の一実施形態に係るスルホンアミド化合物の製造方法を実施する場合には、上記(1)式で示した反応を完了させるまで−100℃以上0℃以下を保ち、後は室温に戻るのを待機すればよい。尚、室温に戻すのは、合成されたスルホンアミド化合物の精製処理のためである。この精製プロセスは、合成されたスルホンアミド化合物の収率が高いため従来に比べて簡単となり、生産コストが下がる。
The reaction conditions are not particularly limited, but the reaction temperature is desirably −100 ° C. or higher and 0 ° C. or lower. The reason why −100 ° C. is set as the lower limit temperature is that when THF is used as a solvent, the freezing point is −108 ° C., and therefore −100 ° C. is the limit at which an ice bath can be produced. The reason why the upper temperature is set to 0 ° C. is that when the temperature exceeds 0 ° C., the reagent is decomposed.
When carrying out the method for producing a sulfonamide compound according to one embodiment of the present invention, the temperature is maintained at −100 ° C. or more and 0 ° C. or less until the reaction represented by the above formula (1) is completed, and then the temperature returns to room temperature Just wait. The reason for returning to room temperature is to purify the synthesized sulfonamide compound. This purification process is simpler than the conventional method due to the high yield of the synthesized sulfonamide compound, and the production cost is reduced.

本発明を実施することによって合成される「スルホンアミド化合物」とは、一般式:A−(SONH(mはスルホニルハライド基の数で任意)で表される化合物をいう。ここで、スルホンアミド基(−SONH)は、合成条件や後処理により、その水素の全部又は一部が他の基(例えば、−SONHM(M:アルカリ金属),−SONHR(R=COCH,COCF,COPh,SOPh,SO(CFCF)等に置換されることもある。スルホンアミド化合物を構成する「A」の詳細については、上述した通りであるため説明を省略する。
「スルホンアミド化合物」の具体例として、上記PPDSFを出発原料とするHNOS(CFSONH(以下単に「PPDSA」ともいう)、上記PBDSFを出発原料とするHNOS(CFSONH(以下単に「PBDSA」ともいう)、上記PODSFを出発原料とするHNOS(CFSONH(以下単に「PODSA」ともいう)の他、HNOS(CFO(CFSONH,CF(CFSONH,FHC(SONH,CH(SONH,CH(SONH等が挙げられ、更に、上記BTSCを出発原料とするベンゼン環を備えたBTSA(化3の(3)式参照)が挙げられる。
The “sulfonamide compound” synthesized by carrying out the present invention refers to a compound represented by the general formula: A- (SO 2 NH 2 ) m (m is an arbitrary number of sulfonyl halide groups). Here, a sulfonamide group (-SO 2 NH 2) is a synthetic conditions and post, all or part of the hydrogen is other group (e.g., -SO 2 NHM (M: alkali metal), - SO 2 It may be substituted with NHR (R = COCH 3 , COCF 3 , COPh, SO 2 Ph, SO 2 (CF 2 ) 3 CF 3 ), etc. Details of “A” constituting the sulfonamide compound are described above. The explanation is omitted because it is as described above.
As specific examples of the “sulfonamide compound”, H 2 NO 2 S (CF 2 ) 3 SO 2 NH 2 (hereinafter also simply referred to as “PPDSA”) using the above PPDSF as a starting material, and H 2 using the above PBDSF as a starting material. NO 2 S (CF 2 ) 4 SO 2 NH 2 (hereinafter also simply referred to as “PBDSA”), H 2 NO 2 S (CF 2 ) 8 SO 2 NH 2 (hereinafter also simply referred to as “PODSA”) using the PODSF as a starting material. H 2 NO 2 S (CF 2 ) 2 O (CF 2 ) 2 SO 2 NH 2 , CF 3 (CF 2 ) 3 SO 2 NH 2 , FHC (SO 2 NH 2 ) 2 , CH 2 ( SO 2 NH 2) 2, CH (SO 2 NH 2) 3 , and the like, further, BTSA with a benzene ring to the BTSC as a starting material (formula 3 (3) reference) is given al That.

Figure 0005262623
Figure 0005262623

以下に本発明の実施例及び比較例について説明する。
(実施例1)LiHMDSを用いたPPDSAの合成
100mlの反応容器に窒素雰囲気下、LiHMDS 1M THF溶液 66ml(66mmol)を入れ、−80℃でPPDSF9.48g(30mmol)を注射器でゆっくり加え、同温で1時間攪拌した後、徐々に室温に戻しながら12時間攪拌した(化4の(4)式参照)。薄茶色のサスペンジョンになった。揮発分を除き、1N塩酸300mlを加えて300mlのジエチルエーテルで抽出した。無水硫酸マグネシウムにより乾燥、濾過した後、活性炭を20g加え、溶液が無色になるまで約20分攪拌した。活性炭を濾過して溶液留去することで、7.6gのPPDSAを得た(白色粉末、純度>99%、収率82%)。純度はNMRにより確認した。図1は、反応混合物の19F NMRスペクトル(400MHz、CDCN中)を示す。同図から、PPDSAと環状化合物の生成比は98:2と確認できた。
Examples of the present invention and comparative examples will be described below.
(Example 1) Synthesis of PPDSA using LiHMDS In a 100 ml reaction vessel, 66 ml (66 mmol) of LiHMDS 1M THF solution was placed in a nitrogen atmosphere, and 9.48 g (30 mmol) of PPDSF was slowly added at −80 ° C. with a syringe. Then, the mixture was stirred for 12 hours while gradually returning to room temperature (see the formula (4) in Chemical Formula 4). It became a light brown suspension. Volatiles were removed, 300 ml of 1N hydrochloric acid was added, and the mixture was extracted with 300 ml of diethyl ether. After drying over anhydrous magnesium sulfate and filtering, 20 g of activated carbon was added and stirred for about 20 minutes until the solution became colorless. The activated charcoal was filtered and the solution was distilled off to obtain 7.6 g of PPDSA (white powder, purity> 99%, yield 82%). Purity was confirmed by NMR. FIG. 1 shows the 19 F NMR spectrum (400 MHz in CD 3 CN) of the reaction mixture. From the figure, it was confirmed that the production ratio of PPDSA and the cyclic compound was 98: 2.

Figure 0005262623
Figure 0005262623

(実施例2)LiHMDSを用いたPPDSAの合成
−100℃でPPDSFを注射器でゆっくり加えた以外は、実施例1と同様にしてPPDSAを合成した。その結果、7.4gのPPDSAを得た(白色粉末、純度99%、収率80%)。純度はNMRにより確認した。尚、PPDSAと環状化合物の生成比は、99:1と確認できた。
(Example 2) Synthesis of PPDSA using LiHMDS PPDSA was synthesized in the same manner as in Example 1 except that PPDSF was slowly added with a syringe at -100 ° C. As a result, 7.4 g of PPDSA was obtained (white powder, purity 99%, yield 80%). Purity was confirmed by NMR. The production ratio of PPDSA and the cyclic compound was confirmed to be 99: 1.

(実施例3)LiHMDSを用いたPPDSAの合成
−50℃でPPDSFを注射器でゆっくり加えた以外は、実施例1と同様にしてPPDSAを合成した。その結果、6.9gのPPDSAを得た(白色粉末、純度95%、収率74%)。純度はNMRにより確認した。尚、PPDSAと環状化合物の生成比は、90:10と確認できた。
(Example 3) Synthesis of PPDSA using LiHMDS PPDSA was synthesized in the same manner as in Example 1 except that PPDSF was slowly added with a syringe at -50 ° C. As a result, 6.9 g of PPDSA was obtained (white powder, purity 95%, yield 74%). Purity was confirmed by NMR. The production ratio of PPDSA and the cyclic compound was confirmed to be 90:10.

(実施例4)LiHMDSを用いたPPDSAの合成
0℃でPPDSFを注射器でゆっくり加えた以外は、実施例1と同様にしてPPDSAを合成した。その結果、5.6gのPPDSAを得た(白色粉末、純度85%、収率60%)。純度はNMRにより確認した。尚、PPDSAと環状化合物の生成比は、78:22と確認できた。
(Example 4) Synthesis of PPDSA using LiHMDS PPDSA was synthesized in the same manner as in Example 1 except that PPDSF was slowly added with a syringe at 0 ° C. As a result, 5.6 g of PPDSA was obtained (white powder, purity 85%, yield 60%). Purity was confirmed by NMR. The production ratio of PPDSA and the cyclic compound was confirmed to be 78:22.

(実施例5)LiHMDSを用いたPPDSAの合成
PPDSF 0.12M THF溶液を滴下漏斗でLiHMDS 1M THF溶液にゆっくり加え、温度を0℃で3時間反応させた以外は、実施例1と同様にしてPPDSAを合成した。その結果、6.2gのPPDSAを得た(白色粉末、純度90%、収率68%)。反応混合物の19F NMRスペクトルより、PPDSAと環状化合物の生成比は85:15と確認できた。
(Example 5) Synthesis of PPDSA using LiHMDS PDSDF 0.12M THF solution was slowly added to the LiHMDS 1M THF solution with a dropping funnel and reacted at 0 ° C for 3 hours in the same manner as in Example 1. PPDSA was synthesized. As a result, 6.2 g of PPDSA was obtained (white powder, purity 90%, yield 68%). From the 19 F NMR spectrum of the reaction mixture, the production ratio of PPDSA and the cyclic compound was confirmed to be 85:15.

(実施例6)LiHMDSを用いたPPDSAの合成
温度を0℃で3時間反応させた以外は、実施例1と同様にしてPPDSAを合成した。その結果、5.5gのPPDSAを得た(白色粉末、純度85%、収率60%)。反応混合物の19F NMRスペクトルより、PPDSAと環状化合物の生成比は78:22と確認できた。
(Example 6) Synthesis of PPDSA using LiHMDS PPDSA was synthesized in the same manner as in Example 1 except that the reaction was performed at a temperature of 0 ° C for 3 hours. As a result, 5.5 g of PPDSA was obtained (white powder, purity 85%, yield 60%). From the 19 F NMR spectrum of the reaction mixture, the production ratio of PPDSA and the cyclic compound was confirmed to be 78:22.

(参考例7)LiHMDSを用いたBTSAの合成
300mlの反応容器に窒素雰囲気下、LiHMDS 1M THF溶液 100mlを入れ、−80℃以下でBTSC1.12g(3mmol)を注射器でゆっくり加え、同温で1時間攪拌した後、徐々に室温に戻しながら12時間攪拌した。薄茶色のサスペンジョンになった。揮発分を除き、1N塩酸を加えて固体を濾過することにより、718mgのBTSAを得た(白色粉末、純度>99%、収率76%)。純度はNMRにより確認した。
Reference Example 7 Synthesis of BTSA using LiHMDS In a 300 ml reaction vessel, 100 ml of LiHMDS 1M THF solution was placed in a nitrogen atmosphere, and 1.12 g (3 mmol) of BTSC was slowly added with a syringe at −80 ° C. or less. After stirring for an hour, the mixture was stirred for 12 hours while gradually returning to room temperature. It became a light brown suspension. The volatile matter was removed, 1N hydrochloric acid was added, and the solid was filtered to obtain 718 mg of BTSA (white powder, purity> 99%, yield 76%). Purity was confirmed by NMR.

(比較例1)NHを用いたPPDSAの合成
5Lの反応容器にアルゴン気流下、液体アンモニア2.4Lに、−80℃以下でPPDSF300g(0.949mol)を滴下した。その後、同温にて4時間攪拌した後、徐々に室温に戻しながら16時間攪拌した(化5の(5)式参照)。これに濃塩酸1Lを加え、1時間室温にて攪拌した後、酢酸エチルで抽出した。溶媒留去してn−ヘキサン:酢酸エチルを2:1の割合でシリカゲルカラム精製し、145gのPPDSAを得た(白色粉末、純度>99%、収率49%)。純度はNMRにより確認した。図2は、反応混合物の19F NMRスペクトル(500MHz、CDCN中)を示す。同図から、PPDSAと環状化合物の生成比は1:1と確認できた。
(Comparative example 1) Synthesis of PPDSA using NH 3 PDSDF 300 g (0.949 mol) was dropped into 2.4 L of liquid ammonia in 2.4 L of liquid ammonia in a 5 L reaction vessel under an argon stream. Thereafter, the mixture was stirred at the same temperature for 4 hours, and then stirred for 16 hours while gradually returning to room temperature (see Formula (5) of Chemical Formula 5). To this was added 1 L of concentrated hydrochloric acid, and the mixture was stirred for 1 hour at room temperature and extracted with ethyl acetate. The solvent was distilled off, and silica gel column purification was performed at a ratio of 2: 1 of n-hexane: ethyl acetate to obtain 145 g of PPDSA (white powder, purity> 99%, yield 49%). Purity was confirmed by NMR. FIG. 2 shows the 19 F NMR spectrum (500 MHz in CD 3 CN) of the reaction mixture. From the figure, it was confirmed that the production ratio of PPDSA and the cyclic compound was 1: 1.

Figure 0005262623
Figure 0005262623

(比較例2)HMDSを用いたPPDSAの合成
LiHMDSに代えて1M HMDS THF溶液を用いた以外は、実施例1と同様の手順で反応させた。反応混合物の19F NMRスペクトルより、PPDSAと環状化合物の生成比は0:100と確認できた。すなわち、環状化合物しか確認されなかった。
(Comparative Example 2) Synthesis of PPDSA using HMDS The reaction was carried out in the same procedure as in Example 1 except that 1M HMDS THF solution was used instead of LiHMDS. From the 19 F NMR spectrum of the reaction mixture, the production ratio of PPDSA and the cyclic compound was confirmed to be 0: 100. That is, only a cyclic compound was confirmed.

(比較例3)NHを用いたPBDSAの合成
比較例1と同様にアルゴン気流下、液体アンモニア250mlとPBDSF14.6g(40mmol)を反応させた後、揮発分を除去し、1N塩酸を加えて固体を濾過することで、14gのPBDSAを得た(白色粉末、純度>99%、収率97%)。純度はNMRにより確認した。反応混合物の19F NMRスペクトル(400MHz、CDCN中)から環状化合物の生成は観測されなかった。
(Comparative Example 3) Synthesis of PBDSA using NH 3 In the same manner as in Comparative Example 1, 250 ml of liquid ammonia and 14.6 g (40 mmol) of PBDSF were reacted in an argon stream, after which volatile components were removed, and 1N hydrochloric acid was added. The solid was filtered to give 14 g of PBDSA (white powder, purity> 99%, yield 97%). Purity was confirmed by NMR. From the 19 F NMR spectrum (400 MHz, in CD 3 CN) of the reaction mixture, formation of a cyclic compound was not observed.

(比較例4)NHを用いたPODSAの合成
比較例1と同様にアルゴン気流下、液体アンモニア225mlとPODSF47g(83mmol)を反応させた後、揮発分を除去し、1N塩酸を加えて固体を濾過することで、40gのPODSAを得た(白色粉末、純度>99%、収率86%)。純度はNMRにより確認した。反応混合物の19F NMRスペクトル(400MHz、CDCN中)から環状化合物の生成は観測されなかった。
(Comparative Example 4) Synthesis of PODSA using NH 3 In the same manner as in Comparative Example 1, 225 ml of liquid ammonia and 47 g (83 mmol) of PODSF were reacted in an argon stream, and then volatile components were removed, and 1N hydrochloric acid was added to obtain a solid. Filtration gave 40 g of PODSA (white powder, purity> 99%, yield 86%). Purity was confirmed by NMR. From the 19 F NMR spectrum (400 MHz, in CD 3 CN) of the reaction mixture, formation of a cyclic compound was not observed.

(比較例5)NHを用いたBTSAの合成
比較例1と同様に、アルゴン気流下、液体アンモニア150mlとBTSC7.48g(20mmol)の80mL THF溶液を反応させた後、揮発分を除去し、1N塩酸を加えて固体を濾過することで、5.2gのBTSAを得た(白色粉末、純度>99%、収率83%)。純度はNMRにより確認した。
(Comparative Example 5) Synthesis of BTSA using NH 3 As in Comparative Example 1, 150 ml of liquid ammonia and 80 mL of THF solution of 7.48 g (20 mmol) of BTSC were reacted in an argon stream, and then volatile components were removed. By adding 1N hydrochloric acid and filtering the solid, 5.2 g of BTSA was obtained (white powder, purity> 99%, yield 83%). Purity was confirmed by NMR.

(反応温度依存性)
図3は、実施例1〜4に基づいてPPDSAの収率の反応温度依存性を示したグラフである。同図に示したように、−100℃以上0℃以下の温度域では良好な収率を示すことが確認できた。特に、−80℃以下では環状化合物が殆ど生成しないことから、−80℃以下が特に好ましいことが分かった。尚、溶媒THFの凝固点が−108℃であるため、−100℃がアイスバス作製の下限温度である。また、0℃を超えると試薬(LiHMDS)が分解する。
(Reaction temperature dependence)
FIG. 3 is a graph showing the reaction temperature dependence of the yield of PPDSA based on Examples 1-4. As shown in the figure, it was confirmed that a good yield was exhibited in the temperature range of −100 ° C. or more and 0 ° C. or less. In particular, since a cyclic compound is hardly formed at −80 ° C. or less, it was found that −80 ° C. or less is particularly preferable. In addition, since the freezing point of solvent THF is -108 degreeC, -100 degreeC is the minimum temperature of ice bath preparation. Moreover, when it exceeds 0 degreeC, a reagent (LiHMDS) will decompose | disassemble.

(評価)
実施例1〜6は、環状化合物の副生が抑制され、高収率でスルホンアミド化合物が得られた。従って、実施例1〜6から、スルホニルハライド基を備えたパーフルオロ化合物にアルカリ金属ヘキサメチルジシラザンを反応させると、スルホンアミド化合物(HNOS(CFSONH)(炭素数nは任意)が高収率で得られることが判明した。参考例7も同様に、高収率でスルホンアミド化合物が得られた。従って、参考例7から、スルホニルハライド基を備えた炭化水素化合物にアルカリ金属ヘキサメチルジシラザンを反応させてもスルホンアミド化合物が高収率で得られることが判明した。
(Evaluation)
In Examples 1 to 6, by-products of the cyclic compound were suppressed, and the sulfonamide compound was obtained in high yield. Accordingly, from Examples 1 to 6, when an alkali metal hexamethyldisilazane is reacted with a perfluoro compound having a sulfonyl halide group, a sulfonamide compound (H 2 NO 2 S (CF 2 ) n SO 2 NH 2 ) ( It was found that any number of carbon atoms n) can be obtained in high yield. Similarly, in Reference Example 7 , the sulfonamide compound was obtained in high yield. Therefore, it was found from Reference Example 7 that a sulfonamide compound can be obtained in a high yield even when a hydrocarbon compound having a sulfonyl halide group is reacted with an alkali metal hexamethyldisilazane.

特に、実施例1〜6は、出発原料として「スルホニルハライド基(SOF)を備えたパーフルオロ化合物(炭素数は3)」にアルカリ金属ヘキサメチルジシラザンを反応させたものである。従来知られた比較例1,2のように、液体アンモニアやHMDSを「スルホニルハライド基(SOF)を備えたパーフルオロ化合物(炭素数は3)」に反応させると環状化合物が生成し、低収率であったことを踏まえると、実施例1〜6のようにアルカリ金属ヘキサメチルジシラザンを反応させることは、環状化合物生成が抑制され高収率で目的物質を得ることができるため、利用価値が高いことがわかる。また、実施例1の試薬(LiHMDS)は、比較例2で用いた試薬(HMDS)よりも反応性が高いことから、反応に用いる試薬は、LiHMDSのように高い反応性を備えることを要することがわかった。 In particular, Examples 1 to 6 are obtained by reacting alkali metal hexamethyldisilazane with “perfluoro compound (carbon number: 3) having a sulfonyl halide group (SO 2 F)” as a starting material. As in Comparative Examples 1 and 2 conventionally known, when liquid ammonia or HMDS is reacted with a “perfluoro compound (3 carbon atoms) having a sulfonyl halide group (SO 2 F)”, a cyclic compound is generated, Considering that the yield was low, reacting the alkali metal hexamethyldisilazane as in Examples 1 to 6 can suppress the formation of the cyclic compound and obtain the target substance in a high yield. It turns out that utility value is high. Moreover, since the reagent (LiHMDS) of Example 1 is more reactive than the reagent (HMDS) used in Comparative Example 2, the reagent used for the reaction needs to have high reactivity like LiHMDS. I understood.

比較例3,4は、出発原料として「スルホニルハライド基を備えたパーフルオロ化合物(それぞれ、炭素数は4、炭素数は8)」に液体アンモニアを反応させたものであるが、炭素数が4以上である場合には、液体アンモニアでも収率良くスルホンアミド化合物が得られることがわかった。このことから、「スルホニルハライド基を備えたパーフルオロ化合物」のうち特に炭素数が3以下のものを出発原料として用いる場合において、本発明の利用価値が高いことがわかった。   Comparative Examples 3 and 4 are obtained by reacting liquid ammonia with a “perfluoro compound having a sulfonyl halide group (4 carbon atoms and 8 carbon atoms, respectively)” as a starting material. In the case of the above, it was found that a sulfonamide compound can be obtained with good yield even with liquid ammonia. From this, it was found that the utility value of the present invention is high particularly when a “perfluoro compound having a sulfonyl halide group” having 3 or less carbon atoms is used as a starting material.

反応温度依存性については上記の通りであるが、その他の反応条件について考察する。実施例5と実施例6とを比べると、実施例6の方が実施例5よりも環状化合物の生成比が少なかったが、実施例5,6の相違は、出発原料として用いるPPDSFの濃度が異なるのみである。従って、この結果によれば、PPDSFの濃度を低くした方が環状化合物の生成を抑制できると解される。一方、実施例1と実施例5とを比べると、実施例1は実施例5よりも高収率だったが、これらは、出発原料の濃度並びに反応温度及び反応時間等、複数条件が異なっている。従って、出発原料の濃度に応じて反応温度や反応時間を調整することによって、環状化合物の生成を抑制できるものと判断される。   The reaction temperature dependency is as described above, but other reaction conditions will be discussed. Comparing Example 5 and Example 6, Example 6 produced less cyclic compound than Example 5, but the difference between Examples 5 and 6 was that the concentration of PPDSF used as the starting material was different. Only different. Therefore, according to this result, it is understood that lowering the concentration of PPDSF can suppress the formation of cyclic compounds. On the other hand, when Example 1 and Example 5 were compared, Example 1 had a higher yield than Example 5, but these differed in a plurality of conditions such as the concentration of starting materials, reaction temperature and reaction time. Yes. Therefore, it is judged that the formation of the cyclic compound can be suppressed by adjusting the reaction temperature and the reaction time according to the concentration of the starting material.

ところで、炭素数が3を超える「スルホニルハライド基を備えた炭化水素化合物」を出発原料として用いる場合にも本発明は効果的である。参考例7と比較例5とを比較すると、参考例7は試薬としてLiHMDSを用い、比較例5は試薬として液体アンモニアを用いた点が異なるが、いずれも高収率でスルホンアミド化合物が得られているためである。 By the way, the present invention is also effective when a “hydrocarbon compound having a sulfonyl halide group” having 3 or more carbon atoms is used as a starting material. Comparing Reference Example 7 and Comparative Example 5, Reference Example 7 uses LiHMDS as a reagent, and Comparative Example 5 uses liquid ammonia as a reagent. This is because.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係るスルホンアミド化合物の製造方法は、固体高分子電解質膜の材料(モノマー)として適用しうるスルホンアミド化合物の製造に好適であるため、燃料電池関連産業、自動車産業をはじめ各種産業において極めて有益である。   Since the method for producing a sulfonamide compound according to the present invention is suitable for producing a sulfonamide compound that can be applied as a material (monomer) of a solid polymer electrolyte membrane, it is extremely useful in various industries including fuel cell related industries and automobile industries. It is beneficial.

実施例1の反応混合物の19F NMRスペクトル(400MHz、CDCN中)を示す。FIG. 19 shows the 19 F NMR spectrum (400 MHz in CD 3 CN) of the reaction mixture of Example 1. FIG. 比較例1の反応混合物の19F NMRスペクトル(400MHz、CDCN中)を示す。 19 shows the 19 F NMR spectrum (400 MHz, in CD 3 CN) of the reaction mixture of Comparative Example 1. 実施例1〜実施例4の反応温度依存性を示すグラフである。It is a graph which shows the reaction temperature dependence of Example 1- Example 4. FIG.

Claims (3)

2個以上のスルホニルハライド基を備え、かつ、炭素数が1以上3以下である有機化合物にアルカリ金属ヘキサメチルジシラザンを反応させる工程を備えたことを特徴とするスルホンアミド化合物の製造方法。 E Bei two or more sulfonyl halide groups, and method for producing a sulfonamide compound characterized by comprising the step of reacting an alkali metal hexamethyldisilazane organic compounds carbon atoms is 1 to 3 . 前記有機化合物は、  The organic compound is
XOXO 22 S(CFS (CF 22 )) nn SOSO 22 X、FC(SOX, FC (SO 22 X)X) 3Three 、若しくは、CFOr CF 22 (SO(SO 22 X)X) 22 ,
CHF(SOCHF (SO 22 X)X) 22 、又は、Or
XOXO 22 S(CHS (CH 22 )) nn SOSO 22 X、CH(SOX, CH (SO 22 X)X) 3Three 、若しくは、CHOr CH 22 (SO(SO 22 X)X) 22
(但し、n=1〜3、X=ハロゲン)(However, n = 1 to 3, X = halogen)
である請求項1に記載のスルホンアミド化合物の製造方法。The method for producing a sulfonamide compound according to claim 1.
前記工程の反応温度が−100℃以上0℃以下であることを特徴とする請求項1又は2に記載のスルホンアミド化合物の製造方法。   The method for producing a sulfonamide compound according to claim 1 or 2, wherein a reaction temperature in the step is from -100 ° C to 0 ° C.
JP2008301595A 2008-11-26 2008-11-26 Method for producing sulfonamide compound Expired - Fee Related JP5262623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301595A JP5262623B2 (en) 2008-11-26 2008-11-26 Method for producing sulfonamide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301595A JP5262623B2 (en) 2008-11-26 2008-11-26 Method for producing sulfonamide compound

Publications (2)

Publication Number Publication Date
JP2010126468A JP2010126468A (en) 2010-06-10
JP5262623B2 true JP5262623B2 (en) 2013-08-14

Family

ID=42327089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301595A Expired - Fee Related JP5262623B2 (en) 2008-11-26 2008-11-26 Method for producing sulfonamide compound

Country Status (1)

Country Link
JP (1) JP5262623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586063B2 (en) 2014-04-25 2017-03-07 The Procter & Gamble Company Method of inhibiting copper deposition on hair
US9642788B2 (en) 2014-04-25 2017-05-09 The Procter & Gamble Company Shampoo composition comprising gel matrix and histidine
US9642787B2 (en) 2014-04-25 2017-05-09 The Procter & Gamble Company Method of inhibiting copper deposition on hair

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168194A (en) * 1996-12-10 1998-06-23 Toyota Motor Corp Solid polymer electrolyte
GB9625781D0 (en) * 1996-12-11 1997-01-29 Zeneca Ltd Chemical process
JP2001247557A (en) * 1999-12-27 2001-09-11 Sagami Chem Res Center Method of producing 5-oxy-7-oxabicyclo[4.1.0]hept-3-ene-3- carboxylic acid ester
DE10000907A1 (en) * 2000-01-12 2001-07-19 Boehringer Ingelheim Pharma Process for the preparation of aryl-iminomethyl-carbamic acid esters
JP4576678B2 (en) * 2000-07-21 2010-11-10 住友化学株式会社 Di- or triacetylene compound having a side chain, liquid crystal composition containing the same, and liquid crystal device using the same
JP4176392B2 (en) * 2002-06-10 2008-11-05 旭化成株式会社 Method for producing sulfonamide group-containing monomer
TW200504095A (en) * 2003-06-27 2005-02-01 Du Pont Fluorinated sulfonamide compounds and polymer electrolyte membranes prepared therefrom for use in electrochemical cells
JP5194509B2 (en) * 2007-03-27 2013-05-08 株式会社豊田中央研究所 Composite electrolyte and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586063B2 (en) 2014-04-25 2017-03-07 The Procter & Gamble Company Method of inhibiting copper deposition on hair
US9642788B2 (en) 2014-04-25 2017-05-09 The Procter & Gamble Company Shampoo composition comprising gel matrix and histidine
US9642787B2 (en) 2014-04-25 2017-05-09 The Procter & Gamble Company Method of inhibiting copper deposition on hair
US10835469B2 (en) 2014-04-25 2020-11-17 The Procter And Gamble Company Method of inhibiting copper deposition on hair

Also Published As

Publication number Publication date
JP2010126468A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
TWI401250B (en) Method for preparation of cyclic disulfonate ester
JP6011867B2 (en) Dendrimer-immobilized nitrogen-containing heterocyclic carbene-gold complex
JP5262623B2 (en) Method for producing sulfonamide compound
KR20050105487A (en) Method for producing 4-fluoro-1,3-dioxolan-2-one
JP2008280269A (en) Calixarene dimer compound and method for producing the same
JP4867201B2 (en) Process for producing optically active 1,1,1-trifluoro-2,3-epoxypropane
JP4844793B2 (en) Method for producing phenylcyclohexene derivative or styrene derivative
JP2014511345A (en) Method for producing solid carbazic acid derivative powder
JP2010235453A (en) Method for producing platinum complex
JPH10212281A (en) Production of 3-carene epoxide
US7566806B2 (en) Alkylamino group-terminated fluoroether and process for producing the same
JP4618781B2 (en) Novel proline derivative, method for producing the same, and method for producing optically active secondary alcohol compound using the same
WO2018184933A1 (en) Racemic beta-aminosulfone compounds
JP4807549B2 (en) Siloxanes, silanols and silanes, and methods for producing the same
JP4810111B2 (en) Method for producing alcoholate compound
JP2006206464A (en) Method for producing biphenyl derivative
JP5093680B2 (en) Bisquaternary ammonium salt core type dendrimer
JP4526275B2 (en) Method for producing tetra-substituted phosphonium tetrakisaroyloxyborate and its precursor
RU2348602C1 (en) Method of obtaining polyhydro[60]fullerenes
JP4625741B2 (en) Method for producing secondary phosphine-borane complex
JP2004331540A (en) Method for producing bisphosphine
JPWO2004035520A1 (en) Method for producing acetylene compound
JP2000226392A (en) Production of tris(perfluoroalkylsulfonyl)methide salt
JP2010222346A (en) Hexathiaadamantane compound and method for producing the same
JP2004250348A (en) Method for producing alkylruthenocene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

LAPS Cancellation because of no payment of annual fees