JP4176392B2 - Method for producing sulfonamide group-containing monomer - Google Patents

Method for producing sulfonamide group-containing monomer Download PDF

Info

Publication number
JP4176392B2
JP4176392B2 JP2002168303A JP2002168303A JP4176392B2 JP 4176392 B2 JP4176392 B2 JP 4176392B2 JP 2002168303 A JP2002168303 A JP 2002168303A JP 2002168303 A JP2002168303 A JP 2002168303A JP 4176392 B2 JP4176392 B2 JP 4176392B2
Authority
JP
Japan
Prior art keywords
group
lithium
carbon atoms
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002168303A
Other languages
Japanese (ja)
Other versions
JP2004010562A (en
Inventor
信之 植松
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002168303A priority Critical patent/JP4176392B2/en
Publication of JP2004010562A publication Critical patent/JP2004010562A/en
Application granted granted Critical
Publication of JP4176392B2 publication Critical patent/JP4176392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い耐熱性と高いプロトン伝導性を備えた架橋構造を有する燃料電池用高分子固体電解質膜の原料となるスルホンアミド基含有モノマーを効率良く製造する方法に関する。
【0002】
【従来の技術】
燃料電池の実用化に向けての研究は近年特に盛んになってきている。中でも電解質として高分子固体電解質膜を用いる燃料電池は、小型軽量化が可能であり、かつ比較的低温でも高い出力密度が得られることから注目されており、特に自動車に関連した用途に向けての開発が精力的に進められている。
このような目的に用いられる固体高分子材料には、優れたプロトン伝導度、適度な保水性、水素ガス、酸素ガス等に対するガスバリア性などが要求される。このような要件を満たす材料として、スルホン酸基やホスホン酸基を主鎖、あるいは側鎖の末端に有する高分子が種々検討され、多くの材料が提案されてきている(O.Savadogo、 Jounal of New Materialsfor Electrochemical Systems I、47−66(1998)など)。しかしながら実際の燃料電池運転時には、高分子固体電解質膜の近傍にある電極において、高い酸化力を有する活性酸素種が発生するので、高分子固体電解質膜は過酷な酸化条件下に置かれることになる。従って、長期に渡って燃料電池を安定に運転させるためには、このような過酷な酸化条件下での耐久性のある電解質膜が要求される。
【0003】
炭化水素系材料の電解質膜は、燃料電池の運転の初期においては優れた特性を示すものもあるが、長期の運転に関しては不安を指摘される例が多い。このため、現在、燃料電池の実用化に向けた検討においては、電解質膜材料として下記一般式(4)で表されるパーフルオロポリマーが主に採用されている。
【0004】
【化2】

Figure 0004176392
(m、nは正の整数)
【0005】
上記のパーフルオロポリマーは下記一般式(5)で表されるパーフルオロビニルエーテルモノマーとテトラフルオロエチレン(TFE)との共重合体を製膜した後、加水分解反応を施すことによって得られる。
【0006】
【化3】
Figure 0004176392
(m、nは正の整数)
【0007】
上記一般式(4)の中でも、m=1、n=2〜3のポリマーが広く用いられている。
ところで、燃料電池の運転は、より高温で行うことが好ましいとされている。これは、原理的に発電効率が向上することや、排出される高温の排気ガスから熱を回収し暖房などに利用できること等による。しかしながら、先記一般式(4)において、k/l=3〜10、m=1、n=2のポリマーからなる高分子固体電解質膜を用いた燃料電池は、100℃以上のような高温での運転は困難である。このため、より耐熱性が改善された高分子固体電解質膜が望まれている。
【0008】
ポリマーの耐熱性を向上させる有効な手段の1つとして、架橋構造を導入し、架橋重合体にする方法が挙げられる。具体的にはビススルホニルイミド結合(−SONHSO−)により架橋された架橋重合体膜を挙げることができる。このような架橋構造は側鎖末端に−SOF基とスルホンアミド基を有するポリマーを塩基で処理することにより得られる。例えば、特開2000−188013号には、−SOF基を有するパーフルオロポリマーと、−SOF基を有するパーフルオロポリマーをアンモニアまたは1級アミンと反応させることによって得られたスルホンアミド基を有するパーフルオロポリマーとを直接反応させることにより、架橋重合体を得る方法が開示されている。しかし、本発明者らが検討した結果、この反応を効率良く行うことは実際には極めて困難であることが判明した。その理由は明らかでないが両ポリマー間の相溶性が乏しいことが主たる原因と推定される。
【0009】
また、特開2001−319521号には、−SOF基を有するパーフルオロポリマーにアンモニアを反応させて一部をスルホンアミド化した後、加熱処理あるいは塩基処理により、ビススルホニルイミド結合を生成させる方法が開示されている。しかし、本発明者らが検討した結果、アンモニアは反応性が低いため、この方法においてはアンモニアを過剰に用いる必要がある。このため、形成されるビススルホニルイミド結合の量(架橋密度)を制御することが極めて難しい。また、この方法を実施する際、反応系内に水が混入すると、その水が優先的に−SOF基と反応してスルホン酸基(アンモニウム塩型)が生成し、ビススルホニルイミド結合の形成は抑制される問題点がある事が判明した。
【0010】
本発明者らは上記の問題を解決する方法を鋭意検討した結果、1)−SOF基を有するモノマーとスルホンアミド基を有するモノマーとを成分とする共重合体を製造し、2)当該共重合体を用いて−SOF基とスルホンアミド基が均一に分布したフィルムを作成し、3)次いで当該フィルム中の−SOF基とスルホンアミド基とを反応させて、ビススルホニルイミド結合を形成させる操作により、良好な物性を有する架橋膜が得られることを見出したが、その出発原料の1つであるスルホンアミド基を有するモノマーの工業的に有利な供給が課題であった。
【0011】
【発明が解決しようとする課題】
即ち、本発明は高い耐熱性と高いプロトン伝導性を備えた架橋構造を有する燃料電池用高分子固体電解質膜の原料となるスルホンアミド基含有モノマーを効率良く製造する方法の提供を目的とする。
【0012】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究を重ねた結果、先記一般式(1)で表される特定の環状パーフルオロスルホンと先記一般式(2)で表される金属アミドとを出発物質としてスルホンアミド基含有モノマーを製造すると従来にない高収率で製造可能なことを見出し、本発明をなすに至った。
以下、本発明について詳細に説明する。
【0013】
先ず初めに、本発明のスルホンアミド基含有モノマーの出発原料の一つである先記一般式(1)で表される環状パーフルオロスルホン(以下、化合物(1)と称する)について説明する。
本発明で使用される化合物(1)は、公知の化合物であり、例えば、CFCF(COF)O(CFSOF(nは2または3である)から誘導されるアルカリ金属カルボン酸塩の熱分解(特公昭47−2083号等)により、容易に合成される。
【0014】
次に本発明で使用される先記一般式(2)で表される金属アミド(以下、化合物(2)と称する)について説明する。
化合物(2)のMはアルカリ金属、あるいはアルカリ土類金属であり、好ましくはアルカリ金属が使用される。アルカリ金属としては、リチウム、ナトリウム、カリウムが使用されるが、リチウムの場合、操作性が良く、収率も高いので特に好ましい。
【0015】
化合物(2)において、R及びRは各々独立に、炭素数1〜10個の炭化水素基;または少なくとも1個の炭素数1〜10個の炭化水素基を置換基として含み、合計10個以下の炭素数を有する置換シリル基である。但し、R及びRのうち少なくとも1つは、炭素数3〜10個の2級または3級のアルキル基または上記の置換シリル基である。R及びRのいずれもがこれらの基でない場合には、先記一般式(3)で表されるスルホンアミド基含有モノマー(以下、化合物(3)と称する)を良好な収率で得ることはできない。
【0016】
炭素数3〜10個の2級または3級のアルキル基の例としては、イソプロピル基、2−ブチル基、t−ブチル基、2,4,4−トリメチル−2−ペンチル基、シクロペンチル基、シクロヘキシル基等が挙げられ、好ましくは3〜6個の分岐構造または環状構造を有するアルキル基を挙げることができる。
また、R及びRとして上記の置換シリル基を用いる場合、置換基として2個以上の炭化水素基を含むことが好ましく、3個の炭化水素基を含むことが特に好ましい。置換シリル基の好ましい例としては、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基等が挙げられる。
【0017】
化合物(2)の例としては、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウムイソプロピルシクロヘキシルアミド、2,2,6,6−テトラメチルピペリジンリチウムアミド、リチウム(t−ブチル)(2,4,4−トリメチル−2−ペンチル)アミド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド、リチウムベンジルトリメチルシリルアミド等の金属アミドが挙げられる。
【0018】
本発明では上記の化合物(1)と化合物(2)を通常の方法で混合攪拌することで容易に化合物(3)を得ることができるが、混合攪拌には溶媒を用いることが好ましい。
本発明に用いることができる溶媒は、反応時に不活性であればよく、各種の非プロトン性極性溶媒が用いられる。例えばテトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の各種のエーテル系溶媒が挙げられる。
【0019】
本発明では化合物(2)の使用量は、化合物(1)に対して当量用いれば良いが、必要により過剰量を用いてもよい。
混合攪拌の温度は通常−100℃〜80℃、好ましくは−80℃〜50℃であり、時間は通常0.01〜50時間、好ましくは0.1〜10時間である。
上記製造条件によって得られた化合物(3)におけるR及びRは、各々独立に、アルカリ金属あるいはアルカリ土類金属;炭素数1〜10個の炭化水素基;または、少なくとも1個の炭素数1〜10個の炭化水素基を置換基として含み、合計10個以下の炭素数を有する置換シリル基から選ばれる基であるが、反応条件によっては水素原子の場合も含まれる。尚、置換シリル基としては、化合物(2)のRまたはRとして用いられる置換シリル基と同様である。
【0020】
また、本発明では、得られた化合物(3)のR及びRの少なくとも一方がアルカリ金属あるいはアルカリ土類金属である場合、あるいはアルキル基、好ましくは炭素数2〜10個のアルキル基、特に好ましくは炭素数3〜10個の2級または3級のアルキル基の場合には、得られた反応生成物をプロトン性化合物で処理することにより、その金属またはアルキル基を水素原子に変換することができる。
【0021】
さらに、置換シリル基をRまたはRとして含む化合物(3)の場合も、上記と同様にして、プロトン性化合物で処理することにより、その置換シリル基を水素原子に変換することができる。
上記の場合本発明で用いることができるプロトン性化合物としては、水;塩酸、硫酸、リン酸、酢酸、トリフルオロメタンスルホン酸、シュウ酸等の酸;メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール等のアルコール;フェノール等の各種のプロトン性化合物、あるいはそれらの混合物を挙げることができる。
【0022】
プロトン性化合物による処理は、得られた反応生成物にプロトン性化合物を直接加えて混合撹拌するが、必要に応じて、得られた反応生成物から溶媒を留去した後にプロトン性化合物を加えて混合撹拌してもよい。混合撹拌温度は、通常−80℃〜200℃で行われる。混合撹拌後、蒸留操作により容易に化合物(3)(ただし、R及びRは水素原子)を得ることができる。具体的には、例えば、得られた反応生成物のRがアルカリ金属、Rが置換シリル基である場合、室温で直接プロトン性化合物を加えて混合撹拌すると、R及びRは水素原子に変換される。
【0023】
以上のようにして得られる本発明の化合物(3)の具体例を示すと、
CF=CFOCFCFSONH
CF=CFOCFCFCFSONH
CF=CFOCFCFSON[Si(CH
CF=CFOCFCFCFSON[Si(CH
CF=CFOCFCFSONHSi(CH
CF=CFOCFCFCFSONHSi(CH
CF=CFOCFCFSON(Li)Si(CH
CF=CFOCFCFCFSON(Li)Si(CH
CF=CFOCFCFSON(iPr)
CF=CFOCFCFCFSON(iPr)
等が挙げられる。
【0024】
尚、本発明の化合物(2)を用いず、化合物(1)とナトリウムアミド、ナトリウムジエチルアミドなどの金属アミド類と反応させても本発明の化合物(3)はほとんど得られない。即ち、嵩高い置換基を有する特定の金属アミドである化合物(2)を用いることによってのみ化合物(3)が効率良く得られることが判明した。
また、−SOF基を有する従来型のビニルエーテルモノマーに対して、アンモニアや、1級または2級アミンを直接反応させた場合、効率良く化合物(3)を得ることはできないことも判明した。
【0025】
本発明の化合物(3)は燃料電池用高分子固体電解質膜とするために他のラジカル重合性のモノマーとの共重合に用いることができる。化合物(3)と組み合わせて使用する場合、共重合モノマーとしては1種または2種以上のフッ素化オレフィン、1種または2種以上の非フッ素化オレフィン(例えばエチレン)、フッ素化オレフィンと非フッ素化オレフィン(例えばアルキルビニルエーテル)の組合せのいずれでも良く、化学的安定性の観点から、フッ素化オレフィンが好ましく、パーフルオロ(クロロ)オレフィンがさらに好ましく、テトラフルオロエチレンやクロロトリフルオロエチレンがさらに好ましく、テトラフルオロエチレンが特に好ましい。
【0026】
ここでフッ素化オレフィンを例示すれば、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル等が挙げられる。
また、化合物(3)は、燃料電池用高分子固体電解質膜とするために―SOF基を有するフッ素原子含有ビニルモノマーとの共重合、またはさらに上記共重合モノマー類を1種または2種以上加えて共重合させることができる。この場合、得られた共重合体は側鎖末端として―SONR基と―SOF基を有し、これらの基を反応させてビススルホニルイミド結合(−SONHSO−)を形成させれば重合体中に架橋構造を導入できるので当該共重合体は固体電解質膜材料として極めて有用である。
【0027】
実際、化合物(3)を用いて、―SONR基と―SOF基とを同一分子内に有する多元共重合体を製造し、当該共重合体を膜状物に成形後、架橋処理及び加水分解処理をすると、高い耐熱性と高いプロトン伝導度を有する架橋重合体膜を製造することができる。
以上のように、本発明は、高い耐熱性と高いプロトン伝導性を備えた架橋構造を有する燃料電池用高分子固体電解質膜の原料となるスルホンアミド基含有モノマーを効率良く製造する技術を提供するものであり、極めて有用である。
【0028】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明する。
【実施例1】
(CF=CFOCFCFSONHの合成)
窒素気流下、110mlのリチウムヘキサメチルジシラジドの1Mテトラヒドロフラン溶液を0℃に冷却しておき、環状パーフルオロスルホン;
【0029】
【化4】
Figure 0004176392
28gを滴下した。滴下後、0℃で1時間、さらに室温で1時間撹拌した後、少量の水を加え、次いで溶媒を留去した。残留反応混合物に希塩酸を加えて酸性にし、HFC43−10meeで抽出した。有機相を乾燥後、溶媒を留去してから減圧蒸留(沸点91〜92℃/0.4kPa)して23.95gの無色液体を得た。この液体は19F―NMR、H―NMR、ガスクロマトグラフィー−マススペクトル(GC−MS)から、CF=CFOCFCFSONHであることが確認された(収率87%)。
19F−NMR:δ(ppm、CFCl基準)−137(1F)、−124(1F)、−118.6(2F)、−116(1F)、−84.8ppm(2F)H−NMR:δ(ppm、TMS基準)6.0
EI―MS:m/z 180、100、97、81、80、64、16
【0030】
【参考例】
(I)3元共重合体膜の製造
ガス導入管を有するステンレス製1リットル耐圧容器に、CF=CFOCFCF(CF)OCFCFSOF(以下、SOFモノマーと称する)233g、実施例1で得られたCF=CFOCFCFSONH(以下、スルホンアミドモノマーと称する)4.4g、711gのHFC43−10mee及び重合開始剤として(CFCFCFCOの5%HFC43−10mee溶液3.7gを入れ、容器内を充分に窒素置換した後、ガス導入管よりテトラフルオロエチレン(TFE)を容器内に導入し、容器の内圧を0.16MPaまで上昇させた。その後、内圧が0.16MPaから0.14MPaまで徐々に低下するように適宜TFEを導入しながら、撹拌下35℃で5.5時間反応を行った。また、この反応の途中で(CFCFCFCOの5%HFC43−10mee溶液1.9gを追加した。
【0031】
その後、TFEの導入を停止し、圧力を常圧に戻した後、得られた反応混合物中の溶媒及び未反応モノマーを留去し、析出した固体を濾過により回収し、HFC43−10meeで洗浄した後、乾燥して50.0gの白色固体を得た。19F−NMRスペクトルより、この固体は実施例1で得られたスルホンアミドモノマーに由来するモノマー単位(スルホンアミド単位)、上記SOFモノマーに由来するモノマー単位(SOF単位)およびTFEに由来するモノマー単位(TFE単位)を含む3元共重合体であり、スルホンアミド単位、SOF単位及びTFE単位の存在比(モル比)は0.019:1.0:3.2であることが確認された。また、この固体のIRスペクトルにおいて、スルホンアミド基に基づくピーク(3391、3306、1544cm−1)が確認された。
得られた3元共重合体を270℃でプレス成形することにより、無色透明な3元共重合体膜(膜厚56μm)を得ることができた。
【0032】
(II)高分子固体電解質膜の製造
上記工程(I)で得られた3元共重合体膜を、トリエチルアミンのジオキサン溶液(ジオキサン:トリエチルアミン=5:3(容量比))中に浸漬して3時間加熱還流した後、洗浄、乾燥(以降、この処理を変性処理と称する)して変性3元共重合体膜を得た。
得られた変性3元共重合体膜を、ジメチルスルホキシド(DMSO)と水の混合溶媒に水酸化カリウム(KOH)を溶解した溶液(KOH:DMSO:水=3:6:11(重量比))に90℃で1時間浸漬し、水洗し、乾燥した。この膜のIRスペクトルにおいて、1350cm−1にビススルホニルイミド基に由来するピークが観測された。
その後、4N硫酸に90℃で1時間浸漬し、水洗、乾燥することにより、高分子固体電解質膜を得た。
【0033】
得られた高分子固体電解質膜のプロトン伝導度を測定したところ、0.099S/cmであった。
得られた高分子固体電解質膜を約30mm×3mmの長方形に切断したものを試験片とし、動的粘弾性測定装置RHOVIBRON DDV−01FP(登録商標)(日本国エーアンドデイ(株)製)を用いて室温〜300℃、周波数35Hzの条件下で引張弾性率を測定した。得られた高分子固体電解質膜の引張弾性率は、150℃で2.9×10Pa、300℃で2.5×10Paであった。
【0034】
【発明の効果】
本発明は、高い耐熱性と高いプロトン伝導性を備えた架橋構造を有する燃料電池用高分子固体電解質膜の原料となるスルホンアミド基含有モノマーを効率良く製造することができ、極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently producing a sulfonamide group-containing monomer as a raw material for a polymer solid electrolyte membrane for fuel cells having a crosslinked structure having high heat resistance and high proton conductivity.
[0002]
[Prior art]
Research for practical application of fuel cells has become particularly active in recent years. In particular, fuel cells that use a polymer solid electrolyte membrane as an electrolyte are attracting attention because they can be reduced in size and weight, and can achieve high power density even at relatively low temperatures, especially for applications related to automobiles. Development is underway.
A solid polymer material used for such purposes is required to have excellent proton conductivity, appropriate water retention, gas barrier properties against hydrogen gas, oxygen gas, and the like. As materials satisfying such requirements, various polymers having a sulfonic acid group or a phosphonic acid group at the main chain or at the end of the side chain have been studied, and many materials have been proposed (O. Savadogo, Journal of). New Materials for Electrochemical Systems I, 47-66 (1998), etc.). However, during actual fuel cell operation, active oxygen species having high oxidizing power are generated at the electrodes in the vicinity of the polymer solid electrolyte membrane, so that the polymer solid electrolyte membrane is placed under severe oxidation conditions. . Therefore, in order to stably operate the fuel cell for a long period of time, an electrolyte membrane that is durable under such severe oxidation conditions is required.
[0003]
Some electrolyte membranes of hydrocarbon-based materials exhibit excellent characteristics in the initial stage of operation of the fuel cell, but there are many examples in which anxiety is pointed out regarding long-term operation. For this reason, currently, in the study for practical use of fuel cells, perfluoropolymers represented by the following general formula (4) are mainly employed as electrolyte membrane materials.
[0004]
[Chemical 2]
Figure 0004176392
(M 1 and n 1 are positive integers)
[0005]
The perfluoropolymer is obtained by forming a copolymer of a perfluorovinyl ether monomer represented by the following general formula (5) and tetrafluoroethylene (TFE) and then subjecting it to a hydrolysis reaction.
[0006]
[Chemical 3]
Figure 0004176392
(M 1 and n 1 are positive integers)
[0007]
Among the general formulas (4), polymers having m 1 = 1 and n 1 = 2 to 3 are widely used.
By the way, it is considered preferable to operate the fuel cell at a higher temperature. This is because, in principle, the power generation efficiency is improved, heat is recovered from exhausted high-temperature exhaust gas, and it can be used for heating and the like. However, in the general formula (4), a fuel cell using a polymer solid electrolyte membrane made of a polymer of k / l = 3 to 10, m 1 = 1, n 1 = 2 is Operation at high temperatures is difficult. For this reason, a polymer solid electrolyte membrane with improved heat resistance is desired.
[0008]
One effective means for improving the heat resistance of the polymer is to introduce a crosslinked structure into a crosslinked polymer. Specifically, a crosslinked polymer film crosslinked by a bissulfonylimide bond (—SO 2 NHSO 2 —) can be exemplified. Such a crosslinked structure can be obtained by treating a polymer having —SO 2 F group and sulfonamide group at the end of the side chain with a base. For example, JP 2000-188013, perfluoropolymer and, sulfonamide group obtained by the perfluoropolymer is reacted with ammonia or primary amines having a -SO 2 F group having a -SO 2 F group A method is disclosed in which a crosslinked polymer is obtained by directly reacting with a perfluoropolymer having the following formula. However, as a result of investigations by the present inventors, it has been found that it is extremely difficult to carry out this reaction efficiently. The reason is not clear, but it is assumed that the main reason is that the compatibility between the two polymers is poor.
[0009]
Japanese Patent Laid-Open No. 2001-319521 discloses that a perfluoropolymer having a —SO 2 F group is reacted with ammonia to partially sulfonamid, and then a bissulfonylimide bond is formed by heat treatment or base treatment. A method is disclosed. However, as a result of studies by the present inventors, ammonia has low reactivity, and therefore it is necessary to use excessive ammonia in this method. For this reason, it is extremely difficult to control the amount (crosslink density) of the bissulfonylimide bond formed. In addition, when water is mixed into the reaction system when this method is carried out, the water preferentially reacts with —SO 2 F groups to form sulfonic acid groups (ammonium salt type), and bissulfonylimide bond It has been found that there is a problem that the formation is suppressed.
[0010]
As a result of intensive studies on a method for solving the above problems, the inventors of the present invention produced a copolymer comprising 1) a monomer having a —SO 2 F group and a monomer having a sulfonamide group, and 2) Using the copolymer, a film in which —SO 2 F groups and sulfonamide groups are uniformly distributed is prepared. 3) Then, —SO 2 F groups and sulfonamide groups in the film are reacted to produce bissulfonylimide. It has been found that a crosslinked film having good physical properties can be obtained by the operation of forming a bond. However, an industrially advantageous supply of a monomer having a sulfonamide group, which is one of the starting materials, has been a problem.
[0011]
[Problems to be solved by the invention]
That is, an object of the present invention is to provide a method for efficiently producing a sulfonamide group-containing monomer as a raw material for a polymer solid electrolyte membrane for a fuel cell having a crosslinked structure having high heat resistance and high proton conductivity.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the specific cyclic perfluorosulfone represented by the general formula (1) and the metal amide represented by the general formula (2) As a starting material, a sulfonamide group-containing monomer was found to be able to be produced in an unprecedented high yield, leading to the present invention.
Hereinafter, the present invention will be described in detail.
[0013]
First, the cyclic perfluorosulfone (hereinafter referred to as compound (1)) represented by the general formula (1), which is one of the starting materials of the sulfonamide group-containing monomer of the present invention, will be described.
The compound (1) used in the present invention is a known compound, for example, an alkali metal derived from CF 3 CF (COF) O (CF 2 ) n SO 2 F (n is 2 or 3). It is easily synthesized by thermal decomposition of a carboxylate (Japanese Examined Patent Publication No. 47-2083).
[0014]
Next, the metal amide represented by the general formula (2) used in the present invention (hereinafter referred to as compound (2)) will be described.
M in the compound (2) is an alkali metal or an alkaline earth metal, and an alkali metal is preferably used. As the alkali metal, lithium, sodium, or potassium is used, and lithium is particularly preferable because it has good operability and a high yield.
[0015]
In the compound (2), R 1 and R 2 each independently contains a hydrocarbon group having 1 to 10 carbon atoms; or at least one hydrocarbon group having 1 to 10 carbon atoms as a substituent, and a total of 10 A substituted silyl group having not more than carbon atoms. However, at least one of R 1 and R 2 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms or the above substituted silyl group. When neither R 1 nor R 2 is these groups, the sulfonamide group-containing monomer represented by the general formula (3) (hereinafter referred to as compound (3)) is obtained in good yield. It is not possible.
[0016]
Examples of the secondary or tertiary alkyl group having 3 to 10 carbon atoms include isopropyl group, 2-butyl group, t-butyl group, 2,4,4-trimethyl-2-pentyl group, cyclopentyl group, and cyclohexyl. Examples thereof include an alkyl group having 3 to 6 branched structures or a cyclic structure.
In the case of using the above-described substituted silyl group as R 1 and R 2, preferably comprising two or more hydrocarbon groups as substituents, particularly preferably contains three hydrocarbon groups. Preferable examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group and the like.
[0017]
Examples of the compound (2) include lithium diisopropylamide, lithium dicyclohexylamide, lithium isopropylcyclohexylamide, 2,2,6,6-tetramethylpiperidine lithium amide, lithium (t-butyl) (2,4,4-trimethyl) 2-pentyl) amide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, lithium benzyltrimethylsilylamide, and other metal amides.
[0018]
In the present invention, the compound (3) can be easily obtained by mixing and stirring the above compound (1) and compound (2) by an ordinary method, but it is preferable to use a solvent for mixing and stirring.
The solvent that can be used in the present invention only needs to be inert during the reaction, and various aprotic polar solvents are used. Examples thereof include various ether solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
[0019]
In the present invention, the compound (2) may be used in an equivalent amount relative to the compound (1), but an excess amount may be used if necessary.
The temperature of mixing and stirring is usually −100 ° C. to 80 ° C., preferably −80 ° C. to 50 ° C., and the time is usually 0.01 to 50 hours, preferably 0.1 to 10 hours.
R 3 and R 4 in the compound (3) obtained by the above production conditions are each independently an alkali metal or an alkaline earth metal; a hydrocarbon group having 1 to 10 carbon atoms; or at least one carbon number Although it is a group selected from substituted silyl groups having 1 to 10 hydrocarbon groups as substituents and having a total of 10 or less carbon atoms, a hydrogen atom may be included depending on the reaction conditions. The substituted silyl group is the same as the substituted silyl group used as R 1 or R 2 of the compound (2).
[0020]
In the present invention, when at least one of R 3 and R 4 of the obtained compound (3) is an alkali metal or an alkaline earth metal, or an alkyl group, preferably an alkyl group having 2 to 10 carbon atoms, Particularly preferably, in the case of a secondary or tertiary alkyl group having 3 to 10 carbon atoms, the metal or alkyl group is converted to a hydrogen atom by treating the resulting reaction product with a protic compound. be able to.
[0021]
Furthermore, in the case of the compound (3) containing a substituted silyl group as R 3 or R 4 , the substituted silyl group can be converted to a hydrogen atom by treating with a protic compound in the same manner as described above.
In the above case, the protic compound that can be used in the present invention includes water; acids such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, trifluoromethanesulfonic acid, oxalic acid; methanol, ethanol, isopropanol, n-butanol, t- Examples include alcohols such as butanol; various protic compounds such as phenol, or mixtures thereof.
[0022]
In the treatment with the protic compound, the protic compound is directly added to the obtained reaction product and mixed and stirred. If necessary, the protic compound is added after distilling off the solvent from the obtained reaction product. Mixing and stirring may be performed. Mixing stirring temperature is normally performed at -80 degreeC-200 degreeC. After mixing and stirring, the compound (3) (however, R 3 and R 4 are hydrogen atoms) can be easily obtained by distillation. Specifically, for example, when R 3 of the obtained reaction product is an alkali metal and R 4 is a substituted silyl group, when a protic compound is directly added and mixed and stirred at room temperature, R 3 and R 4 are hydrogen. Converted to atoms.
[0023]
As a specific example of the compound (3) of the present invention obtained as described above,
CF 2 = CFOCF 2 CF 2 SO 2 NH 2
CF 2 = CFOCF 2 CF 2 CF 2 SO 2 NH 2
CF 2 = CFOCF 2 CF 2 SO 2 N [Si (CH 3 ) 3 ] 2
CF 2 = CFOCF 2 CF 2 CF 2 SO 2 N [Si (CH 3 ) 3 ] 2
CF 2 = CFOCF 2 CF 2 SO 2 NHSi (CH 3) 3
CF 2 = CFOCF 2 CF 2 CF 2 SO 2 NHSi (CH 3 ) 3
CF 2 = CFOCF 2 CF 2 SO 2 N (Li) Si (CH 3) 3
CF 2 = CFOCF 2 CF 2 CF 2 SO 2 N (Li) Si (CH 3) 3
CF 2 = CFOCF 2 CF 2 SO 2 N (iPr) 2
CF 2 = CFOCF 2 CF 2 CF 2 SO 2 N (iPr) 2
Etc.
[0024]
Even if the compound (1) is reacted with a metal amide such as sodium amide or sodium diethylamide without using the compound (2) of the present invention, the compound (3) of the present invention is hardly obtained. That is, it was found that the compound (3) can be obtained efficiently only by using the compound (2) which is a specific metal amide having a bulky substituent.
It has also been found that when a conventional vinyl ether monomer having a —SO 2 F group is reacted directly with ammonia or a primary or secondary amine, the compound (3) cannot be obtained efficiently.
[0025]
The compound (3) of the present invention can be used for copolymerization with other radical polymerizable monomers in order to form a polymer solid electrolyte membrane for fuel cells. When used in combination with compound (3), the copolymerization monomer may be one or more fluorinated olefins, one or more non-fluorinated olefins (eg ethylene), fluorinated olefins and non-fluorinated olefins. Any combination of olefins (for example, alkyl vinyl ethers) may be used. From the viewpoint of chemical stability, fluorinated olefins are preferable, perfluoro (chloro) olefins are more preferable, tetrafluoroethylene and chlorotrifluoroethylene are more preferable, and tetra Fluoroethylene is particularly preferred.
[0026]
Examples of fluorinated olefins include tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, and the like.
Compound (3) is a copolymer with a fluorine atom-containing vinyl monomer having a —SO 2 F group, or further, one or two of the above copolymerized monomers to form a polymer solid electrolyte membrane for a fuel cell. In addition, copolymerization can be performed. In this case, the obtained copolymer has —SO 2 NR 3 R 4 group and —SO 2 F group as side chain ends, and these groups are reacted to form a bissulfonylimide bond (—SO 2 NHSO 2 — ), A crosslinked structure can be introduced into the polymer, so that the copolymer is extremely useful as a solid electrolyte membrane material.
[0027]
Actually, using compound (3), a multi-component copolymer having —SO 2 NR 3 R 4 group and —SO 2 F group in the same molecule is produced, and the copolymer is formed into a film-like product. When a crosslinking treatment and a hydrolysis treatment are performed, a crosslinked polymer film having high heat resistance and high proton conductivity can be produced.
As described above, the present invention provides a technique for efficiently producing a sulfonamide group-containing monomer as a raw material for a polymer solid electrolyte membrane for a fuel cell having a crosslinked structure having high heat resistance and high proton conductivity. It is extremely useful.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples.
[Example 1]
(Synthesis of CF 2 = CFOCF 2 CF 2 SO 2 NH 2 )
Under a nitrogen stream, 110 ml of a 1M tetrahydrofuran solution of lithium hexamethyldisilazide was cooled to 0 ° C., and cyclic perfluorosulfone;
[0029]
[Formula 4]
Figure 0004176392
28 g was added dropwise. After dropping, the mixture was stirred at 0 ° C. for 1 hour and further at room temperature for 1 hour, a small amount of water was added, and then the solvent was distilled off. The residual reaction mixture was acidified with dilute hydrochloric acid and extracted with HFC43-10mee. After drying the organic phase, the solvent was distilled off, followed by distillation under reduced pressure (boiling point 91 to 92 ° C./0.4 kPa) to obtain 23.95 g of a colorless liquid. This liquid was confirmed to be CF 2 = CFOCF 2 CF 2 SO 2 NH 2 from 19 F-NMR, 1 H-NMR, and gas chromatography-mass spectrum (GC-MS) (yield 87%). .
19 F-NMR: δ (ppm, CFCl 3 standard) -137 (1F), -124 (1F), -118.6 (2F), -116 (1F), -84.8 ppm (2F) 1 H-NMR : Δ (ppm, TMS standard) 6.0
EI-MS: m / z 180, 100, 97, 81, 80, 64, 16
[0030]
[Reference example]
(I) Production of ternary copolymer film In a stainless steel 1 liter pressure vessel having a gas introduction tube, CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F (hereinafter referred to as SO 2 F monomer). ) 233 g, CF 2 ═CFOCF 2 CF 2 SO 2 NH 2 (hereinafter referred to as sulfonamide monomer) obtained in Example 1, 4.4 g, 711 g of HFC43-10mee and (CF 3 CF 2 CF as a polymerization initiator) 2 CO 2) put the 2 of 5% HFC43-10mee solution 3.7 g, was thoroughly purged with nitrogen container, introducing tetrafluoroethylene (TFE) into the container from the gas introduction pipe, the internal pressure of the container 0 The pressure was increased to 16 MPa. Thereafter, the reaction was carried out at 35 ° C. for 5.5 hours with stirring while appropriately introducing TFE so that the internal pressure gradually decreased from 0.16 MPa to 0.14 MPa. Also, adding a 5% HFC43-10mee solution 1.9g in the middle of the reaction (CF 3 CF 2 CF 2 CO 2) 2.
[0031]
Thereafter, the introduction of TFE was stopped and the pressure was returned to normal pressure. Then, the solvent and unreacted monomers in the obtained reaction mixture were distilled off, and the precipitated solid was collected by filtration and washed with HFC43-10mee. Thereafter, it was dried to obtain 50.0 g of a white solid. From the 19 F-NMR spectrum, this solid was divided into a monomer unit derived from the sulfonamide monomer obtained in Example 1 (sulfonamide unit), a monomer unit derived from the SO 2 F monomer (SO 2 F unit), and TFE. It is a ternary copolymer containing derived monomer units (TFE units), and the abundance ratio (molar ratio) of sulfonamide units, SO 2 F units and TFE units is 0.019: 1.0: 3.2. It was confirmed. Moreover, in the IR spectrum of this solid, peaks (3391, 3306, 1544 cm −1 ) based on the sulfonamide group were confirmed.
By pressing the obtained terpolymer at 270 ° C., a colorless and transparent terpolymer film (film thickness 56 μm) could be obtained.
[0032]
(II) Production of polymer solid electrolyte membrane The ternary copolymer membrane obtained in the above step (I) was immersed in a dioxane solution of triethylamine (dioxane: triethylamine = 5: 3 (volume ratio)). After heating and refluxing for a period of time, washing and drying (hereinafter, this treatment is referred to as modification treatment) were performed to obtain a modified terpolymer film.
The obtained modified terpolymer film was obtained by dissolving potassium hydroxide (KOH) in a mixed solvent of dimethyl sulfoxide (DMSO) and water (KOH: DMSO: water = 3: 6: 11 (weight ratio)). In water at 90 ° C. for 1 hour, washed with water and dried. In the IR spectrum of this film, a peak derived from a bissulfonylimide group was observed at 1350 cm −1 .
Thereafter, the polymer solid electrolyte membrane was obtained by immersing in 4N sulfuric acid at 90 ° C. for 1 hour, washing with water and drying.
[0033]
When the proton conductivity of the obtained polymer solid electrolyte membrane was measured, it was 0.099 S / cm.
A sample obtained by cutting the obtained solid polymer electrolyte membrane into a rectangle of about 30 mm × 3 mm was used as a test piece, and a dynamic viscoelasticity measuring device RHOVIBRON DDV-01FP (registered trademark) (manufactured by A & D, Japan) was used. The tensile elastic modulus was measured under conditions of room temperature to 300 ° C. and a frequency of 35 Hz. The obtained polymer solid electrolyte membrane had a tensile modulus of elasticity of 2.9 × 10 6 Pa at 150 ° C. and 2.5 × 10 6 Pa at 300 ° C.
[0034]
【The invention's effect】
INDUSTRIAL APPLICATION This invention can manufacture efficiently the sulfonamide group containing monomer used as the raw material of the polymer solid electrolyte membrane for fuel cells which has a crosslinked structure with high heat resistance and high proton conductivity, and is very useful.

Claims (3)

下記一般式(1);
Figure 0004176392
(式中、nは2または3である。)
で表される環状パーフルオロスルホンと、下記一般式(2);
MNR (2)
(式中、Mはアルカリ金属、アルカリ土類金属であり、R及びRは、各々独立に、炭素数1〜10個の炭化水素基;または、少なくとも1個の炭素数1〜10個の炭化水素基を置換基として含み、合計10個以下の炭素数を有する置換シリル基である。但し、R及びRのうち少なくとも1つは、炭素数3〜10個の2級または3級のアルキル基または該置換シリル基である。)で表される金属アミドを混合攪拌する工程を含むことを特徴とする下記一般式(3)で表されるスルホンアミド基含有モノマーの製造方法。
CF=CFO(CFSONR (3)
(式中、nは一般式(1)と同じ。R及びRは、各々独立に、水素原子;アルカリ金属あるいはアルカリ土類金属;炭素数1〜10個の炭化水素基;または、少なくとも1個の炭素数1〜10個の炭化水素基を置換基として含み、合計10個以下の炭素数を有する置換シリル基から選ばれる基である。)
The following general formula (1);
Figure 0004176392
(In the formula, n is 2 or 3.)
A cyclic perfluorosulfone represented by the following general formula (2);
MNR 1 R 2 (2)
(In the formula, M is an alkali metal or an alkaline earth metal, and R 1 and R 2 are each independently a hydrocarbon group having 1 to 10 carbon atoms; or at least one having 1 to 10 carbon atoms. And a substituted silyl group having a total number of carbon atoms of 10 or less, provided that at least one of R 1 and R 2 is secondary or 3 having 3 to 10 carbon atoms. A method for producing a sulfonamide group-containing monomer represented by the following general formula (3), comprising a step of mixing and stirring a metal amide represented by the following general formula (3):
CF 2 = CFO (CF 2 ) n SO 2 NR 3 R 4 (3)
(In the formula, n is the same as in the general formula (1). R 3 and R 4 are each independently a hydrogen atom; an alkali metal or an alkaline earth metal; a hydrocarbon group having 1 to 10 carbon atoms; or at least It is a group selected from substituted silyl groups containing one hydrocarbon group having 1 to 10 carbon atoms as a substituent and having a total of 10 or less carbon atoms.)
該一般式(2)で表される金属アミドが、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウムイソプロピルシクロヘキシルアミド、2,2,6,6−テトラメチルピペリジンリチウムアミド、リチウム(t−ブチル)(2,4,4−トリメチル−2−ペンチル)アミド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド、リチウムベンジルトリメチルシリルアミドの中から選択されることを特徴とする請求項1に記載のスルホンアミド基含有モノマーの製造方法。The metal amide represented by the general formula (2) is lithium diisopropylamide, lithium dicyclohexylamide, lithium isopropylcyclohexylamide, 2,2,6,6-tetramethylpiperidine lithium amide, lithium (t-butyl) (2, 4. 4,4-trimethyl-2-pentyl) amide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, lithium benzyltrimethylsilylamide 2. A process for producing a sulfonamide group-containing monomer according to 1. 該一般式(2)で表される金属アミドが、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド、リチウムベンジルトリメチルシリルアミドの中から選択されることを特徴とする請求項2に記載のスルホンアミド基含有モノマーの製造方法。The metal amide represented by the general formula (2) is selected from lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, and lithium benzyltrimethylsilylamide. The manufacturing method of the sulfonamide group containing monomer of Claim 2.
JP2002168303A 2002-06-10 2002-06-10 Method for producing sulfonamide group-containing monomer Expired - Fee Related JP4176392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168303A JP4176392B2 (en) 2002-06-10 2002-06-10 Method for producing sulfonamide group-containing monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168303A JP4176392B2 (en) 2002-06-10 2002-06-10 Method for producing sulfonamide group-containing monomer

Publications (2)

Publication Number Publication Date
JP2004010562A JP2004010562A (en) 2004-01-15
JP4176392B2 true JP4176392B2 (en) 2008-11-05

Family

ID=30435252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168303A Expired - Fee Related JP4176392B2 (en) 2002-06-10 2002-06-10 Method for producing sulfonamide group-containing monomer

Country Status (1)

Country Link
JP (1) JP4176392B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262623B2 (en) * 2008-11-26 2013-08-14 株式会社豊田中央研究所 Method for producing sulfonamide compound
JP6941604B2 (en) * 2015-09-23 2021-09-29 スリーエム イノベイティブ プロパティズ カンパニー How to Make a Tetrafluoroethylene Copolymer with a Sulfonyl Pendant Group
US11820733B2 (en) 2018-03-14 2023-11-21 Asahi Kasei Kabushiki Kaisha Process for producing sulfonic acid group-containing monomer

Also Published As

Publication number Publication date
JP2004010562A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP4166574B2 (en) Copolymer of perfluorovinyl ether monomer having sulfonamide group and method for producing the same
JPWO2004097851A1 (en) Solid polymer electrolyte material, production method, and membrane electrode assembly for solid polymer fuel cell
CN113166304B (en) Method for producing fluorosulfonyl group-containing fluoropolymer, method for producing fluoropolymer containing salt-type sulfonic acid groups, and method for producing fluoropolymer containing acid-type sulfonic acid groups
US20090227749A1 (en) Process for producing perfluorocarbon polymer
Thomas et al. Synthesis of 3, 6-dioxa-Δ7-4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide: bis [(perfluoroalkyl) sulfonyl] superacid monomer and polymer
JPWO2019176425A1 (en) Method for producing sulfonic acid group-containing monomer
US20080032184A1 (en) Stable Trifluorostyrene Containing Compounds, And Their Use In Polymer Electroyte Membranes
US10975209B2 (en) Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane
JP4176392B2 (en) Method for producing sulfonamide group-containing monomer
JP6819605B2 (en) A method for producing a fluorine-containing compound having a reduced iodine atom content
JP4334375B2 (en) Vinyl monomer containing N-alkylbissulfonylimide group
JP4815672B2 (en) Method for producing fluorine-containing sulfonimide polymer
US8933264B2 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group
JP6007647B2 (en) Ionic polymer and method for producing the same
JP6633992B2 (en) Cycloalkyl perfluorodioxole monomer, low density ionomer, and polymer electrolyte fuel cell
JP2003515584A5 (en)
FR2948121A1 (en) FLUORINE COPOLYMERS, MEMBRANES PREPARED THEREFROM, AND FUEL CELL DEVICE COMPRISING THESE MEMBRANES
Uematsu et al. Synthesis of novel perfluorosulfonamide monomers and their application
JP2007262047A (en) New zirconium derivative of phosphono methanesulfonate
WO2005037879A1 (en) Method for producing perfluorocarbon polymer
JP2015183167A (en) Fluorine-based polymer
JP4437407B2 (en) Method for producing fluorinated sulfonic acid polymer
JPH11130743A (en) Production of perfluoroalkylvinyl ether derivative
JP4131917B2 (en) Production method of fluorinated monomer
JP2021031397A (en) Method for producing sulfonic acid group-containing monomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees