WO2005037879A1 - Method for producing perfluorocarbon polymer - Google Patents

Method for producing perfluorocarbon polymer Download PDF

Info

Publication number
WO2005037879A1
WO2005037879A1 PCT/JP2004/015243 JP2004015243W WO2005037879A1 WO 2005037879 A1 WO2005037879 A1 WO 2005037879A1 JP 2004015243 W JP2004015243 W JP 2004015243W WO 2005037879 A1 WO2005037879 A1 WO 2005037879A1
Authority
WO
WIPO (PCT)
Prior art keywords
perfluorocarbon
monomer
group
polymer
producing
Prior art date
Application number
PCT/JP2004/015243
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Ueno
Nobuyuki Kasahara
Shin Tatematsu
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005514792A priority Critical patent/JPWO2005037879A1/en
Publication of WO2005037879A1 publication Critical patent/WO2005037879A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1466Monomers containing sulfur
    • C08F216/1475Monomers containing sulfur and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a sulfonic acid type perfluorocarbon polymer having excellent stability.
  • a perfluorocarbon polymer having a sulfonic acid group (hereinafter, referred to as a sulfonic acid type perfluorocarbon polymer) is widely used as a base material for a cation exchange membrane for salt electrolysis or a diaphragm for a fuel cell.
  • a sulfonic acid type perfluorocarbon polymer is widely used as a base material for a cation exchange membrane for salt electrolysis or a diaphragm for a fuel cell.
  • fuel cells have attracted attention as a power generation system whose reaction product is water in principle and has almost no adverse effect on the global environment.
  • polymer electrolyte fuel cells have attracted attention. The reasons are as follows. (1) A highly conductive membrane was developed as a solid polymer electrolyte.
  • the sulfonic acid type perfluorocarbon polymer deteriorates when exposed to a long-term electrode reaction, and thus it is difficult to maintain the output as a fuel cell.
  • the cause of the deterioration of the polymer is that at least a part of the terminal group of the polymer main chain is an unstable COOH group or COF group, and the main chain is decomposed from the unstable terminal group in a chain.
  • Can be As a method for stabilizing the terminal group of the polymer there is a method of fluorinating the polymer (for example, see Patent Document 1). It is difficult to completely stabilize this.
  • Patent Document 1 Japanese Patent Publication No. 46-23245 (Claims)
  • the present invention selects a radical initiator and a chain transfer agent, conducts polymerization, and then conducts polymerization so that unstable terminals which are hardly fluorinated are formed in the polymer. It is an object of the present invention to efficiently obtain a sulfonic acid-type perfluorocarbon polymer having a stable terminal group by carrying out the conversion.
  • the present invention provides a radical polymerization initiator comprising a fluorine-containing compound, a saturated hydrocarbon having 1 to 12 carbon atoms, which may be partially substituted with a fluorine atom or a chain transfer agent comprising a hydrogen atom.
  • SO X (X
  • 2 groups are a fluorine atom or a chlorine atom) and a perfluorocarbon monomer having an ethylenic double bond (which may contain an oxygen atom having an ether bond);
  • a method for producing a perfluorocarbon polymer comprising co-polymerizing at least one perhalogenocarbon monomer containing no atom other than atoms, halogen atoms and oxygen atoms, followed by fluorination treatment. I will provide a.
  • a polymer having a terminal group which is easily fluorinated is polymerized and further subjected to fluorination treatment, so that the obtained polymer is highly perfluorinated.
  • a perfluorocarbon polymer having a sulfonic acid group obtained by hydrolysis and acidification using this polymer has excellent stability and is suitable for an electrolyte of a polymer electrolyte fuel cell.
  • the perfluorocarbon monomer may contain an oxygen atom having an ether bond.
  • Examples of the perhalogenocarbon monomer having a double bond and containing no atoms other than a carbon atom, a halogen atom and an oxygen atom include the following.
  • Perfluoro compounds such as tetrafluoroethylene, hexahenoleopropylene, and perphnolerobutynoleethylene Oloflefin.
  • Perfluoronorethone ethers such as perfluoroethyl vinyl ether, perfluoropropylvinyl ether, and perphnolerobutene-norevi-noreeteneole.
  • Cyclic perfluoro compounds such as nofluoro (1,3 diquinol), perfluoro (2,2 dimethyl-1,3 diquinol), perfluoro (2-methylene 4-methyl-1,3-dioxolan).
  • Non-perfluoroolefin monomers such as trifluoroethylene.
  • Fluoroacrylic monomers such as 1,1-dihydroperfluorophenol phthalate acrylate and 1,1-dihydroperfluorophenol methacrylate.
  • perhalogenoolefins such as tetrafluoroethylene, chloro opening trifluoroethylene, hexafluoropropylene, etc., and having an SO X group and having an ethylenic double bond
  • the production method of the present invention in the production of a copolymer with a perfluorocarbon monomer, or a multi-component copolymer of these monomers and at least one perhalogeno monomer having a double bond other than the above-mentioned perhydrogenoolefins
  • the adoption of, has a remarkable effect and is preferred.
  • the perhalogeno olefins tetrafluoroethylene is particularly preferred! /.
  • known polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization, and bulk polymerization can be used as the polymerization method for copolymerizing the above-mentioned monomers without limitation. Is preferred. Since water is used as a polymerization medium in suspension polymerization and emulsion polymerization, it is difficult to stably perform polymerization in which the perfluorocarbon monomer is hardly dissolved in the polymerization medium. In addition, in bulk polymerization, it is difficult to stably perform polymerization in which it is difficult to efficiently remove heat generated by polymerization.
  • a fluorine-containing organic solvent is preferable.
  • perfluorocarbons having 3 to 10 carbon atoms hydrofluorocarbons having 3 to 10 carbon atoms, hide-opening fluorocarbons having 3 to 10 carbon atoms, and 3 to 10 carbon atoms A group consisting of black and white fluorocarbons.
  • halogenocarbons may preferably have any of a linear, branched or cyclic structure and may contain an etheric oxygen atom in the molecule, but are preferably saturated compounds.
  • Specific polymerization media include the following.
  • the perfluorocarbon include perfluorocyclobutane, perfluorohexane, perfluoro (dipropyl ether), perfluorocyclohexane, perfluoro (2-butyltetrahydrofuran) and the like. It is preferable that the number of fluorine atoms in the molecule is larger than the number of hydrogen atoms in the fluoridated carbon. CH OC F OC F F
  • Hydrochloride Fluorocarbon has less than 3 hydrogen atoms
  • Examples thereof include 1,1,2-trifluorotrifluoroethane.
  • the amount of the polymerization medium used is preferably 10 to 90% by volume relative to the volume of the polymerization reactor, and more preferably 30 to 70%.
  • the amount of the polymerization medium is small, the amount of the perfluorocarbon monomer that can be dissolved in the polymerization medium is also small, and the amount of the obtained polymer is small, so that the production efficiency is low and industrially disadvantageous.
  • the amount of the polymerization medium is too large, it is difficult to uniformly stir the whole.
  • a substantial polymerization medium includes water.
  • the chain transfer agent in the present invention hydrogen, a saturated hydrocarbon having 112 carbon atoms, a fluorocarbon having a saturated hydride having 112 carbon atoms and the like are used. Specifically preferred are methane, ethane and CH F
  • the terminal group has an SO X group that can be easily fluorinated.
  • a perfluorocarbon polymer is formed.
  • the molecular weight of the polymer obtained by using the chain transfer agent can be controlled.
  • the chain transfer agents methane is particularly useful because it has a high chain transfer property, it is easy to control the molecular weight of the polymer, and the terminal group of the polymer is CH.
  • the amount of the chain transfer agent used is such that the perfluorocarbon monomer having a SO X group is
  • the mass ratio is preferably 0.1 to 50% based on the total amount of the mixture with the halogenocarbon monomer. If the amount of the chain transfer agent is too small, it is difficult to control the molecular weight of the polymer by the chain transfer. It is difficult. If the amount of the chain transfer agent is too large, the production amount of the perfluorocarbon monomer and the perhalogenocarbon monomer is reduced, so that the production efficiency is lowered and this is industrially disadvantageous.
  • the optimum amount of the chain transfer agent varies depending on the type of the chain transfer agent used, and 0.1 to 10% is preferable for methane, and 10 to 50% is preferable for CHF.
  • the polymerization initiator in the present invention a radical polymerization initiator which also has a fluorine-containing compound power is employed, but this polymerization initiator is preferable because it forms a copolymer having a stable terminal group.
  • a compound represented by any of the following formulas 17 is preferable.
  • R n is a perfluoroalkyl group having 11 to 10 carbon atoms
  • R i2 and R i3 are polyfluoroalkyl groups having 3 or more carbon atoms
  • X is a halogen atom
  • R M Is a fluorine atom or a perfluoroalkyl group having 12 to 12 carbon atoms
  • nl, n2 and n3 are each independently an integer of 1 or more.
  • bis (fluoroacyl) peroxides represented by the formula 1 are preferred! / ⁇ . Specifically, (CF COO), (CF CF COO), (CF CF CF COO), (HCF CF COO
  • the amount of the polymerization initiator to be used is preferably 0.01-1% by mass with respect to the mass of the perhalogenocarbon monomer, and more preferably 0.01-0.5%. If the amount of the polymerization initiator is too small, the molecular weight of the produced polymer becomes too large, resulting in poor processability and the possibility of using as an electrolyte material. If the amount of the polymerization initiator is too large, the molecular weight of the generated polymer will be reduced, for example, the electrolyte material of a polymer electrolyte fuel cell When used as a material, there is a possibility that strength sufficient for use may not be obtained.
  • the polymerization temperature in the present invention is selected based on the 10-hour half-life temperature of the polymerization initiator in the solvent used (the temperature at which the amount of the initiator becomes half after 10 hours from the start of polymerization). 75 ° C or lower is preferable. If the temperature is higher than 75 ° C., not only does the economy become poor, but also the number of generated COF terminal groups tends to increase.
  • the polymerization pressure in the present invention is preferably 0.1-lOMPa. If the polymerization pressure is too low, the content of COF terminal groups in the obtained polymer tends to increase, and if the polymerization pressure is too high, it is not preferable in terms of production equipment. More preferably, 0.3 to 5 MPa is employed.
  • a specific polymerization initiator and a specific chain transfer agent are selected respectively, so that the polymer obtained by polymerization has a terminal group which is easily fluorinated and a terminal group which is perfluorinated, Few unstable terminal groups.
  • the terminal group which is easily fluorinated include -CFH, -CFH, -CH and the like.
  • Unstable end groups include COF, -COOH
  • the obtained polymer is subjected to a fluorination treatment.
  • the method of the fluorination treatment is not particularly limited, and a known method of replacing a hydrogen atom with a fluorine atom is employed. From the viewpoint of reaction efficiency, a fluorination treatment using a fluorine gas is preferably employed.
  • the method of fluorination treatment with fluorine gas involves suspending or dissolving the fluorinated copolymer in a solvent such as carbon tetrachloride, black fluorocarbon, and perfluorocarbon having low reactivity with fluorine.
  • a gas-Z method in which the polymer is directly fluorinated with fluorine gas diluted with an inert gas, if necessary, or a gas-Z solid method in which the polymer is directly exposed to fluorine gas and fluorinated.
  • a reactor made of a material having corrosion resistance to fluorine gas to improve the contact between the polymer to be fluorinated and the fluorine gas.
  • the reaction is preferably performed with stirring or vibration.
  • a predetermined concentration of fluorine is placed in a reactor in which the polymer to be fluorinated is present.
  • a circulating method in which a raw gas is circulated to perform a fluorination treatment, a Notch method in which a predetermined concentration of a fluorinated gas is sealed and fluorinated, and the like are exemplified.
  • the polymer obtained by the method of the present invention is highly fluorinated.
  • the SO X group becomes a sulfonic acid group.
  • a polymer electrolyte fuel cell using this sulfonic acid type perfluorocarbon polymer as an electrolyte material has excellent durability because the electrolyte material has excellent stability.
  • the sulfonic acid-type perfluorocarbon polymer electrolyte material according to the present invention has a number of COF end groups of preferably 20 or less per 10 6 carbon atoms, more preferably 16 or less. .
  • quantification of unstable terminal groups was performed as follows. That is, the polymer having a SO F group obtained in this example and the number of unstable terminal groups for comparison were
  • N f X A / t
  • N the number of unstable terminal groups (number Z carbon atoms 10 6), A: absorbance, f: factor, t: thickness of the film (mm).
  • CF H (hereinafter referred to as a chain transfer agent)
  • TFE tetrafluoroethylene
  • the white powder was a film with 240 ° C was measured IR and, as the unstable terminal groups, COF groups included 10 13 6 per carbon atom, COOH group, CH OH group
  • CF CF groups was 1 or less per 10 6 carbon atoms, respectively.
  • TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 77.4 g of a white TFE-PSVE copolymer.
  • TFE-PSVE copolymer Polymerization was carried out in the same manner as in Example 1 except that the charged amount of R-32 was 25.Og and the pressure in the reaction tank was 1.1 lOMPaG, to obtain 112.lg of a TFE-PSVE copolymer.
  • the obtained TFE-PSVE copolymer was subjected to a fluorination treatment in the same manner as in Example 1 to obtain 11.3 g of a white TFE-PSVE copolymer.
  • Example 2 Polymerization was carried out in the same manner as in Example 1 to obtain 79.6 g of a TFE-PSVE copolymer.
  • the obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 76.9 g of a white TFE-PSVE copolymer.
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except for the above, to obtain 66.3 g of a TFE-PSVE copolymer.
  • the obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 66.3 g of a white TFE-PSVE copolymer.
  • the copolymer COF groups as unstable terminal to have been included 10 16 6 per carbon atom, COOH group, -CH OH group, CF CF2 group is carbon atom 10
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except that the charged amount of SVE was set to 512.3 g and the pressure of the reaction vessel was set to 0.80 MPa, to obtain 120.8 g of a TFE-PSVE copolymer.
  • the obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 115.8 g of a white TFE-PSVE copolymer.
  • the copolymer COF groups as unstable terminal to have been included 10 11 6 per carbon atom, COOH group, -CH OH group, -CF CF group carbon atom 10 6 cells per
  • Example 2 In the same manner as in Example 1, a white TFE-PSVE copolymer 105. Og was obtained. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 101.2 g of a white TFE-PSVE copolymer.
  • the copolymer COF groups as unstable terminal to have been included 48 10 6 per carbon atom, COOH group, CH OH group, -CF CF group carbon atom 10 6 Core
  • the perfluorocarbon polymer obtained by the present invention is highly fluorinated and has a small amount of unstable terminal groups.
  • the sulfonic acid-type perfluorocarbon polymer obtained by hydrolyzing and acidifying this polymer is stable, and when used as an electrolyte for a polymer electrolyte fuel cell, for example, a solid polymer-type fuel having excellent durability can be obtained. A battery is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

Disclosed is a method for producing a perfluorocarbon polymer wherein a perfluorocarbon monomer (which may contain an ether linkage oxygen atom) having an -SO2X group (wherein X represents a fluorine atom or a chlorine atom) and an ethylene double bond and a perhalogeno monomer having a double bond and contains no atom other than carbon atoms, halogen atoms and oxygen atoms are copolymerized in a polymerization medium using a radical polymerization initiator composed of a fluorine-containing compound and a chain-transfer agent composed of hydrogen or a saturated hydrocarbon having 1-2 carbon atoms wherein a part of hydrogen atoms may be substituted by fluorine atoms, and then the resulting is subjected to fluorination. A perfluorocarbon polymer having an -SO2X group which is obtained by such a method has few labile end groups in a molecule and thus is excellent in stability.

Description

明 細 書  Specification
パーフルォロカーボン重合体の製造方法  Method for producing perfluorocarbon polymer
技術分野  Technical field
[0001] 本発明は、安定性に優れるスルホン酸型パーフルォロカーボン重合体の製造方法 に関する。  The present invention relates to a method for producing a sulfonic acid type perfluorocarbon polymer having excellent stability.
背景技術  Background art
[0002] スルホン酸基を有するパーフルォロカーボン重合体(以下、スルホン酸型パーフル ォロカーボン重合体という)は、食塩電解用陽イオン交換膜や燃料電池用隔膜等の 基材として多く用いられている。近年、燃料電池はその反応生成物が原理的に水の みであり地球環境への悪影響がほとんどない発電システムとして注目されており、特 に固体高分子型燃料電池が注目されている。その理由として次の 2点が挙げられる。 (1)固体高分子電解質として高導電性の膜が開発された。(2)ガス拡散電極層に用 いられる触媒をカーボンに担持し、さらにこれをイオン交換樹脂で被覆することにより 、きわめて大きな活性が得られるようになった。そして、固体高分子型燃料電池用の プロトン伝導性榭脂として、スルホン酸型パーフルォロカーボン重合体力 その耐熱 性、耐薬品性、耐久性、長時間安定性等の理由で用いられている。  [0002] A perfluorocarbon polymer having a sulfonic acid group (hereinafter, referred to as a sulfonic acid type perfluorocarbon polymer) is widely used as a base material for a cation exchange membrane for salt electrolysis or a diaphragm for a fuel cell. I have. In recent years, fuel cells have attracted attention as a power generation system whose reaction product is water in principle and has almost no adverse effect on the global environment. In particular, polymer electrolyte fuel cells have attracted attention. The reasons are as follows. (1) A highly conductive membrane was developed as a solid polymer electrolyte. (2) By supporting the catalyst used for the gas diffusion electrode layer on carbon, and coating this with an ion-exchange resin, an extremely large activity can be obtained. And as a proton conductive resin for polymer electrolyte fuel cells, sulfonic acid type perfluorocarbon polymer is used because of its heat resistance, chemical resistance, durability, long-term stability, etc. .
[0003] しかし、スルホン酸型パーフルォロカーボン重合体は、長期間の電極反応にさらさ れると、劣化するため、燃料電池としての出力を維持することが困難であることが知ら れている。このポリマーの劣化の原因として、ポリマー主鎖の末端基の少なくとも一部 が不安定な COOH基、 COF基等になっており、該不安定末端基から連鎖的に 主鎖が分解することが挙げられる。ポリマーの末端基を安定ィ匕する方法としては、ポリ マーをフッ素化する方法がある(例えば、特許文献 1参照。 ) oしかし、この方法はフッ 素化し難い末端基、例えば COOH基、 COF基を完全に安定ィ匕することは困難で める。 [0003] However, it is known that the sulfonic acid type perfluorocarbon polymer deteriorates when exposed to a long-term electrode reaction, and thus it is difficult to maintain the output as a fuel cell. . The cause of the deterioration of the polymer is that at least a part of the terminal group of the polymer main chain is an unstable COOH group or COF group, and the main chain is decomposed from the unstable terminal group in a chain. Can be As a method for stabilizing the terminal group of the polymer, there is a method of fluorinating the polymer (for example, see Patent Document 1). It is difficult to completely stabilize this.
[0004] 特許文献 1:特公昭 46— 23245号公報 (特許請求の範囲)  [0004] Patent Document 1: Japanese Patent Publication No. 46-23245 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] そこで本発明は、上記従来技術の問題点を鑑み、ポリマーにフッ素化し難い不安 定末端が生成しないように、ラジカル開始剤、連鎖移動剤を選択して重合を行い、そ の後フッ素化を行うことで、安定末端基を有するスルホン酸型パーフルォロカーボン 重合体を効率的に得ることを目的とする。 Problems the invention is trying to solve [0005] In view of the above-mentioned problems of the prior art, the present invention selects a radical initiator and a chain transfer agent, conducts polymerization, and then conducts polymerization so that unstable terminals which are hardly fluorinated are formed in the polymer. It is an object of the present invention to efficiently obtain a sulfonic acid-type perfluorocarbon polymer having a stable terminal group by carrying out the conversion.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、含フッ素化合物力 なるラジカル重合開始剤と、フッ素原子で水素原子 の一部が置換されていてもよい炭素数 1一 2の飽和炭化水素又は水素力 なる連鎖 移動剤とを用い、重合媒体中で、 SO X (X [0006] The present invention provides a radical polymerization initiator comprising a fluorine-containing compound, a saturated hydrocarbon having 1 to 12 carbon atoms, which may be partially substituted with a fluorine atom or a chain transfer agent comprising a hydrogen atom. And SO X (X
2 基 はフッ素原子又は塩素原子)を有しェ チレン性二重結合を有するパーフルォロカーボンモノマー(エーテル結合性の酸素 原子を含んでいてもよい)と、二重結合を有しかつ炭素原子、ハロゲン原子及び酸素 原子以外の原子を含まないパーハロゲノカーボンモノマーの少なくとも 1種とを、共重 合させた後、フッ素化処理することを特徴とするパーフルォロカーボン重合体の製造 方法を提供する。  2 groups are a fluorine atom or a chlorine atom) and a perfluorocarbon monomer having an ethylenic double bond (which may contain an oxygen atom having an ether bond); A method for producing a perfluorocarbon polymer, comprising co-polymerizing at least one perhalogenocarbon monomer containing no atom other than atoms, halogen atoms and oxygen atoms, followed by fluorination treatment. I will provide a.
発明の効果  The invention's effect
[0007] 本発明によれば、フッ素化しやすい末端基を有するポリマーが重合され、さらにフッ 素化処理を行うので、得られるポリマーは高度にパーフルォロ化されている。このポリ マーを用いて加水分解、酸型化して得られるスルホン酸基を有するパーフルォロカ 一ボン重合体は安定性に優れており、固体高分子型燃料電池の電解質に好適であ る。  [0007] According to the present invention, a polymer having a terminal group which is easily fluorinated is polymerized and further subjected to fluorination treatment, so that the obtained polymer is highly perfluorinated. A perfluorocarbon polymer having a sulfonic acid group obtained by hydrolysis and acidification using this polymer has excellent stability and is suitable for an electrolyte of a polymer electrolyte fuel cell.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明のパーフルォロカーボン重合体の製造方法では、 SO X基を有しエチレン [0008] In the method for producing a perfluorocarbon polymer of the present invention, an ethylene having a SO X group
2  2
性二重結合を有するパーフルォロカーボンモノマーと、二重結合を有しかつ炭素原 子、ハロゲン原子及び酸素原子以外の原子を含まな 、パーハロゲノカーボンモノマ 一の少なくとも 1種と、を原料のモノマーとして共重合する。ここでパーフルォロカーボ ンモノマーは、エーテル結合性の酸素原子を含んで 、てもよ 、。  A perfluorocarbon monomer having a reactive double bond and at least one perhalogenocarbon monomer having a double bond and containing no atoms other than carbon atoms, halogen atoms and oxygen atoms. Copolymerizes as a monomer of Here, the perfluorocarbon monomer may contain an oxygen atom having an ether bond.
[0009] 二重結合を有しかつ炭素原子、ハロゲン原子及び酸素原子以外の原子を含まない パーハロゲノカーボンモノマーとしては、例えば以下の物が挙げられる。テトラフルォ 口エチレン、へキサフノレオ口プロピレン、パーフノレオロブチノレエチレン等のパーフノレ ォロォレフイン。パーフルォロェチルビニルエーテル、パーフルォロプロピルビニルェ ーテノレ、パーフノレオロブテ-ノレビ-ノレエーテノレ等のパーフノレオ口エーテノレ。ノ ーフ ルォロ(1, 3 ジォキノール)、パーフルォロ(2, 2 ジメチルー 1, 3 ジォキノール)、 パーフルオロー(2—メチレン 4ーメチルー 1, 3—ジォキソラン)等の環状のパーフルォ ロイ匕合物。クロ口トリフルォロエチレン等の非パーフルォロォレフインモノマー。 1, 1— ジヒドロパーフノレォロォクチノレアタリレート、 1, 1ージヒドロパーフノレォロォクチノレメタク リレート等のフルォロアクリルモノマー。 [0009] Examples of the perhalogenocarbon monomer having a double bond and containing no atoms other than a carbon atom, a halogen atom and an oxygen atom include the following. Perfluoro compounds such as tetrafluoroethylene, hexahenoleopropylene, and perphnolerobutynoleethylene Oloflefin. Perfluoronorethone ethers such as perfluoroethyl vinyl ether, perfluoropropylvinyl ether, and perphnolerobutene-norevi-noreeteneole. Cyclic perfluoro compounds such as nofluoro (1,3 diquinol), perfluoro (2,2 dimethyl-1,3 diquinol), perfluoro (2-methylene 4-methyl-1,3-dioxolan). Non-perfluoroolefin monomers such as trifluoroethylene. Fluoroacrylic monomers such as 1,1-dihydroperfluorophenol phthalate acrylate and 1,1-dihydroperfluorophenol methacrylate.
[0010] なかでも、テトラフルォロエチレン、クロ口トリフルォロエチレン、へキサフルォロプロ ピレン等のパーハロゲノォレフインと、 SO X基を有しエチレン性二重結合を有する  [0010] Above all, perhalogenoolefins such as tetrafluoroethylene, chloro opening trifluoroethylene, hexafluoropropylene, etc., and having an SO X group and having an ethylenic double bond
2  2
パーフルォロカーボンモノマーとの共重合体、又はこれらのモノマーと上述のパーハ 口ゲノォレフイン以外の二重結合を有するパーハロゲノモノマーの少なくとも 1種との 多元共重合体の製造において本発明の製造方法を採用すると顕著な効果が見られ 好まし 、。パーハロゲノォレフインのなかでも特にテトラフルォロエチレンが好まし!/、。  The production method of the present invention in the production of a copolymer with a perfluorocarbon monomer, or a multi-component copolymer of these monomers and at least one perhalogeno monomer having a double bond other than the above-mentioned perhydrogenoolefins The adoption of, has a remarkable effect and is preferred. Among the perhalogeno olefins, tetrafluoroethylene is particularly preferred! /.
[0011] —SO X基を有するパーフルォロカーボンモノマーとしては、 CF =CFO (CF CF (  [0011] —Perfluorocarbon monomers having a SO X group include CF = CFO (CF CF (
2 2 2 2 2 2
CF ) 0) (CF ) SO Fで表わされるモノマー(式中、 mは 2— 4の整数であり、 nは 0CF) 0) a monomer represented by (CF) SO F (where m is an integer of 2-4, and n is 0
3 n 2 m 2 3 n 2 m 2
一 2の整数である。)が好ましい。具体的には、 CF =CFO (CF ) SO F、 CF 二 CF  It is an integer of two. Is preferred. Specifically, CF = CFO (CF) SO F, CF two CF
2 2 2 2 2 2 2 2 2 2
0 (CF ) SO F、 CF =CFOCF CF (CF ) 0 (CF ) SO F、 CF =CFOCF CF (0 (CF) SO F, CF = CFOCF CF (CF) 0 (CF) SO F, CF = CFOCF CF (
2 3 2 2 2 3 2 2 2 2 22 3 2 2 2 3 2 2 2 2 2
CF ) 0 (CF ) SO Fゝ CF =CFO (CF CF (CF ) 0) (CF ) SO Fゝ CF =CFO (CF) 0 (CF) SO F ゝ CF = CFO (CF CF (CF) 0) (CF) SO F ゝ CF = CFO (
3 2 3 2 2 2 3 2 2 2 2 2 3 2 3 2 2 2 3 2 2 2 2 2
CF CF (CF ) 0) (CF ) SO F等が挙げられる。  CF CF (CF) 0) (CF) SO F and the like.
2 3 2 2 3 2  2 3 2 2 3 2
[0012] 本発明の製造方法において、上記モノマーを共重合させる重合方法としては、懸 濁重合、溶液重合、乳化重合、塊状重合など公知の重合方法が限定されず採用で きるが、特に溶液重合が好ましい。懸濁重合及び乳化重合では重合媒体として水を 用いるため、重合媒体中にパーフルォロカーボンモノマーを溶解し難ぐ重合を安定 的に行うことは困難である。また、塊状重合では、重合による発熱を効率的に除去し 難ぐ重合を安定的に行うことは困難である。  [0012] In the production method of the present invention, known polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization, and bulk polymerization can be used as the polymerization method for copolymerizing the above-mentioned monomers without limitation. Is preferred. Since water is used as a polymerization medium in suspension polymerization and emulsion polymerization, it is difficult to stably perform polymerization in which the perfluorocarbon monomer is hardly dissolved in the polymerization medium. In addition, in bulk polymerization, it is difficult to stably perform polymerization in which it is difficult to efficiently remove heat generated by polymerization.
[0013] 溶液重合の場合の重合媒体としては、連鎖移動係数が小さ!ヽ含フッ素有機溶媒が 好ましい。特に、炭素数 3— 10のパーフルォロカーボン、炭素数 3— 10のハイドロフ ルォロカーボン、炭素数 3— 10のハイド口クロ口フルォロカーボン及び炭素数 3— 10 のクロ口フルォロカーボンからなる群力 選ばれる一種以上が好まし 、。これらのハロ ゲノカーボンは、直鎖状、分岐状又は環状の構造のいずれも好ましく使用でき、分子 中にエーテル性酸素原子を含んでもよ 、が、飽和化合物であることが好まし 、。 [0013] As a polymerization medium in the case of solution polymerization, a chain transfer coefficient is small! A fluorine-containing organic solvent is preferable. In particular, perfluorocarbons having 3 to 10 carbon atoms, hydrofluorocarbons having 3 to 10 carbon atoms, hide-opening fluorocarbons having 3 to 10 carbon atoms, and 3 to 10 carbon atoms A group consisting of black and white fluorocarbons. These halogenocarbons may preferably have any of a linear, branched or cyclic structure and may contain an etheric oxygen atom in the molecule, but are preferably saturated compounds.
[0014] 具体的な重合媒体としては以下のものが挙げられる。パーフルォロカーボンとして は、パーフルォロシクロブタン、パーフルォ口へキサン、パーフルォロ(ジプロピルェ 一テル)、パーフルォロシクロへキサン、パーフルォロ(2—ブチルテトラヒドロフラン)等 が挙げられる。ハイド口フルォロカーボンとしては、分子中のフッ素原子の数が水素 原子よりも多いことが好ましぐ CH OC F OC F F  [0014] Specific polymerization media include the following. Examples of the perfluorocarbon include perfluorocyclobutane, perfluorohexane, perfluoro (dipropyl ether), perfluorocyclohexane, perfluoro (2-butyltetrahydrofuran) and the like. It is preferable that the number of fluorine atoms in the molecule is larger than the number of hydrogen atoms in the fluoridated carbon. CH OC F OC F F
3 2 5、 CH  3 2 5, CH
3 3 7、 C F H  3 3 7, C F H
5 10 2、 C F H  5 10 2, C F H
6 13 、 C  6 13, C
6 12 6 12
H等が挙げられる。ハイド口クロ口フルォロカーボンとしては、水素原子数が 3個以下H and the like. Hydrochloride Fluorocarbon has less than 3 hydrogen atoms
2 2
であることが好ましぐ CHC1FCF CF C1等が挙げられる。クロ口フルォロカーボンと  CHC1FCF CF C1 and the like. With black mouth fluorocarbon
2 2  twenty two
しては、 1, 1, 2—トリフロロトリフルォロェタン等が挙げられる。  Examples thereof include 1,1,2-trifluorotrifluoroethane.
[0015] 重合媒体の使用量は、重合反応器の容積に対して体積比で 10— 90%とすること が好ましぐさらには 30— 70%が好ましい。重合媒体の量が少ない場合、重合媒体 に溶解しえるパーフルォロカーボンモノマーの量も少なくなり、得られるポリマーが少 なくなるので生産効率が低く工業的に不利である。一方重合媒体の量が多すぎると 全体を均一に撹拌することが困難となる。なお、懸濁重合および乳化重合の場合、 実質的な重合媒体としては水が挙げられる。  [0015] The amount of the polymerization medium used is preferably 10 to 90% by volume relative to the volume of the polymerization reactor, and more preferably 30 to 70%. When the amount of the polymerization medium is small, the amount of the perfluorocarbon monomer that can be dissolved in the polymerization medium is also small, and the amount of the obtained polymer is small, so that the production efficiency is low and industrially disadvantageous. On the other hand, if the amount of the polymerization medium is too large, it is difficult to uniformly stir the whole. In the case of suspension polymerization and emulsion polymerization, a substantial polymerization medium includes water.
[0016] 本発明における連鎖移動剤としては、水素、炭素数 1一 2の飽和炭化水素、炭素数 1一 2の飽和ハイド口フルォロカーボン等が用いられる。具体的に好ましいものとして は、メタン、ェタン、 CH F られる  [0016] As the chain transfer agent in the present invention, hydrogen, a saturated hydrocarbon having 112 carbon atoms, a fluorocarbon having a saturated hydride having 112 carbon atoms and the like are used. Specifically preferred are methane, ethane and CH F
2 2、 CH F  2 2, CH F
3 、 CH F  3, CH F
3 、 CH CF H  3, CH CF H
3 2 、 CF CH F等が挙げ  32, CF CH F etc.
3 2  3 2
。この連鎖移動剤の使用により、末端基が容易にフッ素化できる、 SO X基を有する  . With the use of this chain transfer agent, the terminal group has an SO X group that can be easily fluorinated.
2  2
パーフルォロカーボン重合体が生成する。また、連鎖移動剤の使用により得られるポ リマーの分子量も制御できる。連鎖移動剤のなかでも特にメタンは、連鎖移動性が高 ぐポリマーの分子量制御が容易であるとともにポリマーの末端基が CHになるため  A perfluorocarbon polymer is formed. In addition, the molecular weight of the polymer obtained by using the chain transfer agent can be controlled. Among the chain transfer agents, methane is particularly useful because it has a high chain transfer property, it is easy to control the molecular weight of the polymer, and the terminal group of the polymer is CH.
3 Three
、容易にフッ素化されて- CF基に変換できる点で好ましい。 It is preferred because it can be easily fluorinated and converted to a -CF group.
3  Three
[0017] 連鎖移動剤の使用量は、 SO X基を有するパーフルォロカーボンモノマーとパー  [0017] The amount of the chain transfer agent used is such that the perfluorocarbon monomer having a SO X group is
2  2
ハロゲノカーボンモノマーとの混合物の合量に対し、質量比で 0. 1— 50%であること が好ましい。連鎖移動剤が少なすぎると連鎖移動によるポリマーの分子量制御が困 難である。連鎖移動剤が多すぎると、パーフルォロカーボンモノマーとパーハロゲノ カーボンモノマーとの仕込み量が少なくなるため生産効率が低くなり工業的に不利で ある。連鎖移動剤の最適な使用量は使用する連鎖移動剤の種類によっても異なり、 メタンの場合は 0. 1— 10%が好ましぐ CH Fの場合は 10— 50%が好ましい。 The mass ratio is preferably 0.1 to 50% based on the total amount of the mixture with the halogenocarbon monomer. If the amount of the chain transfer agent is too small, it is difficult to control the molecular weight of the polymer by the chain transfer. It is difficult. If the amount of the chain transfer agent is too large, the production amount of the perfluorocarbon monomer and the perhalogenocarbon monomer is reduced, so that the production efficiency is lowered and this is industrially disadvantageous. The optimum amount of the chain transfer agent varies depending on the type of the chain transfer agent used, and 0.1 to 10% is preferable for methane, and 10 to 50% is preferable for CHF.
2 2  twenty two
本発明における重合開始剤としては、含フッ素化合物力もなるラジカル重合開始剤 を採用するが、この重合開始剤は、安定末端基を有する共重合体を生成するので、 好ましい。特に、下記式 1一 7のいずれかで表わされる化合物であることが好ましい。 ただし、式中 Rnは炭素数 1一 10のパーフルォロアルキル基であり、 Ri2及び Ri3は炭 素数 3以上のポリフルォロアルキル基であり、 Xはハロゲン原子であり、 RMはフッ素原 子又は炭素数 1一 2のパーフルォロアルキル基であり、 nl、 n2、 n3はそれぞれ独立 に 1以上の整数である。 As the polymerization initiator in the present invention, a radical polymerization initiator which also has a fluorine-containing compound power is employed, but this polymerization initiator is preferable because it forms a copolymer having a stable terminal group. In particular, a compound represented by any of the following formulas 17 is preferable. Wherein R n is a perfluoroalkyl group having 11 to 10 carbon atoms, R i2 and R i3 are polyfluoroalkyl groups having 3 or more carbon atoms, X is a halogen atom, and R M Is a fluorine atom or a perfluoroalkyl group having 12 to 12 carbon atoms, and nl, n2 and n3 are each independently an integer of 1 or more.
[0019] [化 1] 式 1 [0019] [Formula 1] Formula 1
式 2  Equation 2
式 3  Equation 3
式 4 Equation 4
式 5 Equation 5
式 6 Equation 6
式 7Equation 7
Figure imgf000007_0001
Figure imgf000007_0001
[0020] なかでも、式 1で表わされるビス(フルォロアシル)パーォキシド類が好まし!/ヽ。具体 的には、(CF COO)、 (CF CF COO)、 (CF CF CF COO)、(HCF CF CO  Among them, bis (fluoroacyl) peroxides represented by the formula 1 are preferred! / ヽ. Specifically, (CF COO), (CF CF COO), (CF CF CF COO), (HCF CF COO
3 2 3 2 2 3 2 2 2 2 2 3 2 3 2 2 3 2 2 2 2 2
O)、 (HCF CF CF COO)等が挙げられる。 O), (HCF CF CF COO) and the like.
2 2 2 2 2  2 2 2 2 2
[0021] 重合開始剤の使用量は、パーハロゲノカーボンモノマーの質量に対して、質量比 で 0. 01— 1%であることが好ましぐさらには 0. 01-0. 5%が好ましい。重合開始 剤の量が少なすぎると、生成するポリマーの分子量が大きくなりすぎて加工性が悪ィ匕 し、電解質材料として使用しに《なるおそれがある。重合開始剤の量が多すぎると 生成するポリマーの分子量力 、さくなり、例えば固体高分子型燃料電池の電解質材 料として使用すると、使用に耐えられる強度が得られなくなるおそれがある。 [0021] The amount of the polymerization initiator to be used is preferably 0.01-1% by mass with respect to the mass of the perhalogenocarbon monomer, and more preferably 0.01-0.5%. If the amount of the polymerization initiator is too small, the molecular weight of the produced polymer becomes too large, resulting in poor processability and the possibility of using as an electrolyte material. If the amount of the polymerization initiator is too large, the molecular weight of the generated polymer will be reduced, for example, the electrolyte material of a polymer electrolyte fuel cell When used as a material, there is a possibility that strength sufficient for use may not be obtained.
[0022] 本発明における重合温度は、使用する溶媒中における重合開始剤の 10時間半減 期温度 (重合開始から 10時間経過後に開始剤の量が半量になる温度)を目安にして 選ばれるが、 75°C以下が好ましい。 75°Cより高温では経済性が悪ィ匕するだけでなく 、生成する COF末端基数が増加する傾向にある。  [0022] The polymerization temperature in the present invention is selected based on the 10-hour half-life temperature of the polymerization initiator in the solvent used (the temperature at which the amount of the initiator becomes half after 10 hours from the start of polymerization). 75 ° C or lower is preferable. If the temperature is higher than 75 ° C., not only does the economy become poor, but also the number of generated COF terminal groups tends to increase.
[0023] 本発明における重合圧力は、 0. 1— lOMPaが好ましい。重合圧力が低すぎると得 られるポリマーの COF末端基の含有量が増大する傾向にあり、重合圧力が高すぎ ると製造設備上好ましくない。より好ましくは 0. 3— 5MPaが採用される。  [0023] The polymerization pressure in the present invention is preferably 0.1-lOMPa. If the polymerization pressure is too low, the content of COF terminal groups in the obtained polymer tends to increase, and if the polymerization pressure is too high, it is not preferable in terms of production equipment. More preferably, 0.3 to 5 MPa is employed.
[0024] 本発明では重合開始剤と連鎖移動剤とをそれぞれ特定のものを選択しているので 、重合して得られるポリマーは、フッ素化しやすい末端基及びパーフルォロ化された 末端基を有し、不安定末端基が少ない。フッ素化しやすい末端基としては、例えば - CF H、 -CFH 、 -CH等が挙げられる。不安定末端基としては、 COF、 -COOH [0024] In the present invention, a specific polymerization initiator and a specific chain transfer agent are selected respectively, so that the polymer obtained by polymerization has a terminal group which is easily fluorinated and a terminal group which is perfluorinated, Few unstable terminal groups. Examples of the terminal group which is easily fluorinated include -CFH, -CFH, -CH and the like. Unstable end groups include COF, -COOH
2 2 3 2 2 3
、 一 CF = CF 、 -CH OHが挙げられる。 COF、 一 COOH、 -CH OHは分解しや  , One CF = CF, -CH OH. COF, one COOH, -CH OH decomposes
2 2 2  2 2 2
すく不安定であり、 -CF = CFは空気中で容易に- COOHになる。  Very unstable, -CF = CF easily becomes -COOH in air.
2  2
[0025] 本発明では、上述のとおりフッ素化容易な末端基を有するポリマーを重合した後、 得られたポリマーに対してフッ素化処理を行う。フッ素化処理の方法は特に限定され ず、水素原子をフッ素原子に置換する公知の方法が採用されるが、反応効率の観点 から、フッ素ガスを用いるフッ素化処理が好適に採用される。フッ素ガスによるフッ素 化処理の方法には、含フッ素共重合体をフッ素に対して反応性の低い四塩化炭素、 クロ口フルォロカーボン、パーフルォロカーボン等の溶媒中に懸濁又は溶解させた後 [0025] In the present invention, after polymerizing a polymer having an easily fluorinated terminal group as described above, the obtained polymer is subjected to a fluorination treatment. The method of the fluorination treatment is not particularly limited, and a known method of replacing a hydrogen atom with a fluorine atom is employed. From the viewpoint of reaction efficiency, a fluorination treatment using a fluorine gas is preferably employed. The method of fluorination treatment with fluorine gas involves suspending or dissolving the fluorinated copolymer in a solvent such as carbon tetrachloride, black fluorocarbon, and perfluorocarbon having low reactivity with fluorine.
、必要により不活性ガスで希釈したフッ素ガスで直接ポリマーをフッ素化する気 Z液 法、直接ポリマーをフッ素ガスに曝してフッ素化する、気 Z固法等がある。いずれの 場合もフッ素ガスに対し耐食性を有する材質の反応器を用い、フッ素化させるポリマ 一とフッ素ガスの接触を良くすることが好ましい。具体的には、気 Z液法では撹拌下 又は振動下に反応を行うことが好ましい。気 Z固法では so X基を有するパーフル And a gas-Z method in which the polymer is directly fluorinated with fluorine gas diluted with an inert gas, if necessary, or a gas-Z solid method in which the polymer is directly exposed to fluorine gas and fluorinated. In either case, it is preferable to use a reactor made of a material having corrosion resistance to fluorine gas to improve the contact between the polymer to be fluorinated and the fluorine gas. Specifically, in the gas-Z liquid method, the reaction is preferably performed with stirring or vibration. Q Z-solid method, soful with X group
2  2
ォロカーボン重合体のフッ素ガスに曝される表面積を大きくして反応を行うことが好ま しい。  It is preferable to carry out the reaction by increasing the surface area of the fluorocarbon polymer exposed to fluorine gas.
[0026] 反応方法としては、フッ素化処理するポリマーの存在する反応器に所定濃度のフッ 素ガスを流通させフッ素化処理を行う流通法、及び所定濃度のフッ素ガスを封じこめ てフッ素化するノ ツチ法等が挙げられる。 [0026] As a reaction method, a predetermined concentration of fluorine is placed in a reactor in which the polymer to be fluorinated is present. A circulating method in which a raw gas is circulated to perform a fluorination treatment, a Notch method in which a predetermined concentration of a fluorinated gas is sealed and fluorinated, and the like are exemplified.
[0027] このようにして本発明の方法により得られるポリマーは高度にフッ素化される。この ポリマーに対して加水分解、酸型化処理を行うことにより、 SO X基はスルホン酸基  [0027] Thus, the polymer obtained by the method of the present invention is highly fluorinated. By subjecting this polymer to hydrolysis and acidification, the SO X group becomes a sulfonic acid group.
2  2
(一 SO H基)に変換され、得られるスルホン酸型パーフルォロカーボン重合体は、安 (One SOH group) and the resulting sulfonic acid type perfluorocarbon polymer is
3 Three
定性に優れる。このスルホン酸型パーフルォロカーボン重合体を電解質材料として 使用する固体高分子型燃料電池は、電解質材料の安定性に優れるため耐久性に優 れる。  Excellent qualitative. A polymer electrolyte fuel cell using this sulfonic acid type perfluorocarbon polymer as an electrolyte material has excellent durability because the electrolyte material has excellent stability.
本発明におけるスルホン酸型パーフルォロカーボン重合体カゝらなる電解質材料は 、 一 COF末端基の数が炭素原子 106個あたり好ましくは 20個以下であり、より好ましく は 16個以下である。 The sulfonic acid-type perfluorocarbon polymer electrolyte material according to the present invention has a number of COF end groups of preferably 20 or less per 10 6 carbon atoms, more preferably 16 or less. .
実施例  Example
[0028] 本発明をさらに詳細に説明するために以下に実施例及び比較例を示すが、本発明 はこれらにより限定されない。  [0028] Examples and comparative examples are shown below to explain the present invention in further detail, but the present invention is not limited thereto.
本実施例においては、不安定末端基の定量は次のようにして行った。すなわち、本 実施例で得られた SO F基を有するポリマー及び比較のための不安定末端基数が  In this example, quantification of unstable terminal groups was performed as follows. That is, the polymer having a SO F group obtained in this example and the number of unstable terminal groups for comparison were
2  2
既知の標準品(CF =CF /CF =CFOCF CF (CF ) OCF CF SO F共重合体)  Known standard (CF = CF / CF = CFOCF CF (CF) OCF CF SO F copolymer)
2 2 2 2 3 2 2 2  2 2 2 2 3 2 2 2
を約 250°Cの温度でそれぞれ溶融し、加圧冷却することで約 0. 3mm厚のフィルムを それぞれ作製し、 FT— IRによる差スペクトルを測定した。そして、炭素原子 106個当 たりの不安定末端基の個数を下式によって算出した。 Were melted at a temperature of about 250 ° C., and then cooled under pressure to produce films each having a thickness of about 0.3 mm. The difference spectrum was measured by FT-IR. Then, was calculated by the following equation, the number of unstable terminal groups of the carbon atoms 10 6 equivalents have enough.
[0029] N=f X A/t [0029] N = f X A / t
N :不安定末端基の個数 (個 Z炭素原子 106個)、 A:吸光度、 f:係数、 t :フィルムの 厚さ(mm)。 N: the number of unstable terminal groups (number Z carbon atoms 10 6), A: absorbance, f: factor, t: thickness of the film (mm).
但し係数 fは下記表 1の値を用いた。 fの数値は、例え ^Journal of Fluorine C hemistry 95 (1999) 71— 84【こ記載されて!ヽる。  However, the value in Table 1 below was used for the coefficient f. The numerical value of f is, for example, ^ Journal of Fluorine Chemistry 95 (1999) 71-84.
[0030] [表 1] 不安定末端基 吸収周波数 (cm—1) 係数 [Table 1] Unstable end group Absorption frequency (cm- 1 ) coefficient
一 COF 1883 2 1 5  One COF 1883 2 1 5
-COOH 1813 230  -COOH 1813 230
-CH2OH 3648 4600 -CH 2 OH 3648 4600
— CF=CF2 1 784 455 — CF = CF 2 1 784 455
[0031] [実施例 1] [Example 1]
撹拌機を有する 1Lのステンレス製反応器に、 1, 1, 2-トリ  In a 1L stainless steel reactor equipped with a stirrer,
以下、 R— 113という) 219.4g CF =CFOCF CF(CF )0(CF ) SO F (以下、 P  219.4g CF = CFOCF CF (CF) 0 (CF) SO F (hereafter, P
2 2 3 2 2 2  2 2 3 2 2 2
SVEという)を 602. Og入れ、内部を脱気した。その後、連鎖移動剤として CF H (以  602. Og was added and the inside was evacuated. Then, CF H (hereinafter referred to as a chain transfer agent)
2 2 下、 R— 32という)を 64. Og仕込み、 40°Cの内温で、テトラフルォロエチレン(以下、 T FEという)を圧力が 1.30MPaGになるまで仕込んだ。次いで開始剤としての(FCF  2 2 Below, R-32) was charged with 64. Og, and tetrafluoroethylene (hereinafter referred to as TFE) was charged at an internal temperature of 40 ° C until the pressure reached 1.30 MPaG. Then (FCF as initiator
2 2
CF CF COO) を 3質量%の濃度で CHFC1CF CF C1に溶解した溶液を 10mL仕(CF CF COO) at a concentration of 3% by mass in CHFC1CF CF C1
2 2 2 2 2 2 2 2 2 2
込み、重合を開始した。重合中、開始剤の溶液は断続的に仕込み、合計 45mLを仕 込んだ。重合の進行に伴い、圧力が低下するので、圧力が一定になるように TFEを 連続的に後仕込みした。後仕込みの TFE量が 150gになったところで内温を 10°Cま で冷却し、未反応 TFEを空放し、圧力容器を開放した。  And polymerization was started. During the polymerization, the initiator solution was charged intermittently, and a total of 45 mL was charged. Since the pressure decreases as the polymerization progresses, TFE was continuously charged so that the pressure became constant. When the amount of TFE charged later reached 150 g, the internal temperature was cooled to 10 ° C, unreacted TFE was released, and the pressure vessel was opened.
[0032] このようにして、圧力容器の中にスラリー状の内容物(ポリマー)を得た。この中にメ タノールを入れて撹拌し、ポリマーを凝集'沈降させた。このポリマーを 80°Cで 10時 間乾燥することにより、白色の TFE— PSVE共重合体 119. lgが得られた。  [0032] In this way, a slurry-like content (polymer) was obtained in the pressure vessel. The methanol was put therein and stirred to precipitate the polymer by coagulation. The polymer was dried at 80 ° C. for 10 hours to obtain 119.lg of a white TFE-PSVE copolymer.
[0033] 次に、この共重合体 100gをフッ素化するために内容積 200mLのハステロィ製反 応器に入れ、反応器内を十分脱気した後、窒素で希釈した 20容量%のフッ素ガスを 0.3MPaGまで導入した。次に反応器を 10°Cのオイルバスに入れ、ゆっくりと 180°C まで昇温した。 180°Cで 4時間反応を行った後、内部を十分窒素置換し、反応生成 物として白色粉体を 118.3g取り出した。  Next, 100 g of the copolymer was put into a Hastelloy reactor having an internal volume of 200 mL in order to fluorinate, and the inside of the reactor was sufficiently degassed. Introduced up to 0.3MPaG. Next, the reactor was placed in a 10 ° C oil bath, and the temperature was slowly raised to 180 ° C. After performing the reaction at 180 ° C for 4 hours, the inside was sufficiently purged with nitrogen, and 118.3 g of a white powder was taken out as a reaction product.
[0034] この白色粉体を 240°Cでフィルム化して IRを測定したところ、不安定末端基として は、 COF基が炭素原子 106個あたり 13個含まれており、 COOH基、 CH OH基 [0034] The white powder was a film with 240 ° C was measured IR and, as the unstable terminal groups, COF groups included 10 13 6 per carbon atom, COOH group, CH OH group
2 CF = CF基はそれぞれ炭素原子 106個あたり 1個以下だった。 2 CF = CF groups was 1 or less per 10 6 carbon atoms, respectively.
2  2
[0035] [実施例 2]  Example 2
R— 32の仕込み量を 46.3gとし、反応槽の圧力を 1.30MPaGとした以外は実施 例 1と同様に重合して、 TFE— PSVE共重合体 80. 9gを得た。得られた TFE— PSV E共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PSVE共重合体を 77 . 4g得た。この共重合体には不安定末端の - COF基が炭素原子 106個あたり 11個 含まれており、 COOH基、 -CH OH基、—CF=CF基は炭素原子 106個あたり 1 Performed except that the charged amount of R-32 was 46.3 g and the pressure of the reaction tank was 1.30 MPaG Polymerization was carried out in the same manner as in Example 1 to obtain 80.9 g of a TFE-PSVE copolymer. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 77.4 g of a white TFE-PSVE copolymer. The copolymer unstable terminal of the - COF group included 10 11 6 per carbon atom, COOH group, -CH OH group, -CF = CF group carbon atom 10 6 cells per
2 2  twenty two
個以下だった。  It was less than pieces.
[0036] [実施例 3] [Example 3]
R— 32の仕込み量を 25. Ogとし、反応槽の圧力を 1. lOMPaGとした以外は実施 例 1と同様に重合して、 TFE— PSVE共重合体 112. lgを得た。得られた TFE— PS VE共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PSVE共重合体を 1 12. 3g得た。この共重合体には不安定末端の COF基が炭素原子 106個あたり 10 個含まれており、 COOH基、 -CH OH基、—CF = CF基は炭素原子 106個あたり Polymerization was carried out in the same manner as in Example 1 except that the charged amount of R-32 was 25.Og and the pressure in the reaction tank was 1.1 lOMPaG, to obtain 112.lg of a TFE-PSVE copolymer. The obtained TFE-PSVE copolymer was subjected to a fluorination treatment in the same manner as in Example 1 to obtain 11.3 g of a white TFE-PSVE copolymer. The copolymer contains 10 unstable terminal COF groups per 10 6 carbon atoms, and COOH groups, -CH OH groups, -CF = CF groups per 10 6 carbon atoms.
2 2  twenty two
1個以下だった。  It was less than one.
[0037] [実施例 4] [Example 4]
CH Fのかわりに CHを 1. 53g仕込み、反応槽の圧力を 0. 50MPaとした以外は Except that 1.53 g of CH was charged instead of CH F and the pressure of the reaction tank was set to 0.50 MPa
2 2 4 2 2 4
実施例 1と同様に重合して、 TFE— PSVE共重合体 79. 6gを得た。得られた TFE— P S VE共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PSVE共重合体を 76. 9g得た。この共重合体には不安定末端の COF基が炭素原子 106個あたり 8個 含まれており、 COOH基、 -CH OH基、—CF=CF基は炭素原子 106個あたり 1 Polymerization was carried out in the same manner as in Example 1 to obtain 79.6 g of a TFE-PSVE copolymer. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 76.9 g of a white TFE-PSVE copolymer. The copolymer COF groups as unstable terminal to have been included 10 8 6 per carbon atom, COOH group, -CH OH group, -CF = CF group carbon atom 10 6 cells per
2 2  twenty two
個以下だった。  It was less than pieces.
[0038] [実施例 5] [Example 5]
CH Fのかわりに CH CF Hを 75. Og仕込み、反応槽の圧力を 0. 90MPaとした 75 CF Og was charged instead of CH F, and the pressure in the reaction tank was 0.90 MPa
2 2 3 2 2 2 3 2
以外は実施例 1と同様に重合して、 TFE— PSVE共重合体 66. 3gを得た。得られた TFE— PSVE共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PS VE共 重合体を 66. 3g得た。この共重合体には不安定末端の COF基が炭素原子 106個 あたり 16個含まれており、 COOH基、 -CH OH基、 CF=CF2基は炭素原子 10 Polymerization was carried out in the same manner as in Example 1 except for the above, to obtain 66.3 g of a TFE-PSVE copolymer. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 66.3 g of a white TFE-PSVE copolymer. The copolymer COF groups as unstable terminal to have been included 10 16 6 per carbon atom, COOH group, -CH OH group, CF = CF2 group is carbon atom 10
2  2
6個あたり 1個以下だった。 It was less than one out of every six .
[0039] [実施例 6] [Example 6]
CH Fの力わりに CF CH Fを 150. Og仕込み、 R— 113の仕込み量を 150. 4g、 P 150. Og of CF CH F and 150.4g of R-113
2 2 3 2 SVEの仕込み量を 512. 3gとし、反応槽の圧力を 0. 80MPaにした以外は実施例 1 と同様に重合して、 TFE— PSVE共重合体 120. 8gを得た。得られた TFE—PSVE 共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PSVE共重合体を 115 . 8g得た。この共重合体には不安定末端の COF基が炭素原子 106個あたり 11個 含まれており、 COOH基、 -CH OH基、—CF=CF基は炭素原子 106個あたり 1 2 2 3 2 Polymerization was carried out in the same manner as in Example 1 except that the charged amount of SVE was set to 512.3 g and the pressure of the reaction vessel was set to 0.80 MPa, to obtain 120.8 g of a TFE-PSVE copolymer. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 115.8 g of a white TFE-PSVE copolymer. The copolymer COF groups as unstable terminal to have been included 10 11 6 per carbon atom, COOH group, -CH OH group, -CF = CF group carbon atom 10 6 cells per
2 2  twenty two
個以下だった。  It was less than pieces.
[0040] [比較例 1] [Comparative Example 1]
連鎖移動剤としての R— 32を使用せず、かつ重合開始剤としてのァゾイソプチ口-ト リルを 232. 9mg、重合溶媒として CHFC1CF CF C1を 146. 8g仕込んだ以外は実  The procedure was carried out except that R-32 was not used as a chain transfer agent, 223.09 mg of azoisobutyl mouth-tolyl was used as a polymerization initiator and 146.8 g of CHFC1CF CF C1 was used as a polymerization solvent.
2 2  twenty two
施例 1と同様にして、白色の TFE— PSVE共重合体 105. Ogを得た。得られた TFE— PSVE共重合体を実施例 1と同様にフッ素化処理し、白色の TFE— PSVE共重合体 を 101. 2g得た。この共重合体には不安定末端の COF基が炭素原子 106個あたり 48個含まれており、 COOH基、 CH OH基、—CF=CF基は炭素原子 106個あ In the same manner as in Example 1, a white TFE-PSVE copolymer 105. Og was obtained. The obtained TFE-PSVE copolymer was fluorinated in the same manner as in Example 1 to obtain 101.2 g of a white TFE-PSVE copolymer. The copolymer COF groups as unstable terminal to have been included 48 10 6 per carbon atom, COOH group, CH OH group, -CF = CF group carbon atom 10 6 Core
2 2  twenty two
たり 1個以下だった。  It was less than one.
産業上の利用可能性  Industrial applicability
[0041] 本発明により得られるパーフルォロカーボン重合体は高度にフッ素化されており、 不安定末端基の量が少ない。このポリマーを加水分解、酸型化して得られるスルホン 酸型パーフルォロカーボン重合体は、安定であり、例えば固体高分子型燃料電池用 電解質として使用すると、耐久性に優れる固体高分子型燃料電池が得られる。  [0041] The perfluorocarbon polymer obtained by the present invention is highly fluorinated and has a small amount of unstable terminal groups. The sulfonic acid-type perfluorocarbon polymer obtained by hydrolyzing and acidifying this polymer is stable, and when used as an electrolyte for a polymer electrolyte fuel cell, for example, a solid polymer-type fuel having excellent durability can be obtained. A battery is obtained.

Claims

請求の範囲 The scope of the claims
[1] 含フッ素化合物力 なるラジカル重合開始剤と、フッ素原子で水素原子の一部が置 換されていてもよい炭素数 1一 2の飽和炭化水素又は水素力 なる連鎖移動剤とを 用い、重合媒体中で、 SO X基 (Xはフッ素原子又は塩素原子)を有しエチレン性  [1] Using a radical polymerization initiator having a fluorine-containing compound power and a saturated hydrocarbon having 112 carbon atoms which may be partially replaced by a fluorine atom or a chain transfer agent having a hydrogen power, In the polymerization medium, having SO X group (X is a fluorine atom or chlorine atom)
2  2
二重結合を有するパーフルォロカーボンモノマー(エーテル結合性の酸素原子を含 んでいてもよい)と、二重結合を有しかつ炭素原子、ハロゲン原子及び酸素原子以外 の原子を含まないパーハロゲノカーボンモノマーの少なくとも 1種とを、共重合させた 後、フッ素化処理することを特徴とするパーフルォロカーボン重合体の製造方法。  A perfluorocarbon monomer having a double bond (which may contain an etheric oxygen atom) and a perhalogeno having a double bond and containing no atoms other than carbon, halogen and oxygen atoms A method for producing a perfluorocarbon polymer, comprising copolymerizing at least one type of carbon monomer and then subjecting it to a fluorination treatment.
[2] 前記パーハロゲノカーボンモノマーは、パーハロゲノォレフインである請求項 1に記 載のパーフルォロカーボン重合体の製造方法。  [2] The method for producing a perfluorocarbon polymer according to claim 1, wherein the perhalogenocarbon monomer is perhalogenoolefin.
[3] 前記パーフルォロカーボンモノマーが CF =CFO (CF CF (CF ) 0) (CF ) SO [3] The perfluorocarbon monomer is CF = CFO (CF CF (CF) 0) (CF) SO
2 2 3 n 2 m 2 2 2 3 n 2 m 2
Fで表わされるモノマー(式中、 mは 2— 4の整数であり、 nは 0— 2の整数である。)で あり、前記パーハロゲノォレフインがテトラフルォロエチレンである請求項 2に記載の パーフルォロカーボン重合体の製造方法。 3. A monomer represented by F (wherein m is an integer of 2-4 and n is an integer of 0-2), and the perhalogenoolefin is tetrafluoroethylene. 3. The method for producing a perfluorocarbon polymer according to item 1.
[4] 共重合は溶液重合で行われる請求項 1一 3の 、ずれかに記載のパーフルォロカー ボン重合体の製造方法。 [4] The method for producing a perfluorocarbon polymer according to any one of claims 13 to 13, wherein the copolymerization is carried out by solution polymerization.
[5] 炭素数 3— 10のパーフルォロカーボン、炭素数 3— 10のハイド口フルォロカーボン[5] Perfluorocarbon with 3-10 carbon atoms, Fluorocarbon with 3-10 carbon atoms
、炭素数 3— 10のハイド口クロ口フルォロカーボン、及び炭素数 3— 10のクロ口フルォ 口カーボン力 なる群力 選ばれる 1種以上を前記重合媒体とする請求項 4に記載の パーフルォロカーボン重合体の製造方法。 5. The perfluoro according to claim 4, wherein at least one selected from the group consisting of a fluorinated fluorofluorocarbon having 3 to 10 carbon atoms and a chlorofluorocarbon having 3 to 10 carbon atoms is used as the polymerization medium. A method for producing a carbon polymer.
[6] 前記連鎖移動剤の量が、前記パーフルォロカーボンモノマーと前記パーハロゲノカ 一ボンモノマーの合量に対し質量比で 0. 1— 50%である請求項 1一 5のいずれかに 記載のパーフルォロカーボン重合体の製造方法。 6. The method according to claim 15, wherein the amount of the chain transfer agent is 0.1 to 50% by mass relative to the total amount of the perfluorocarbon monomer and the perhalogenocarbon monomer. A method for producing a perfluorocarbon polymer.
[7] 前記ラジカル重合開始剤は、式 1一 7の 、ずれかで表わされる化合物(ただし、式 中 Rnは炭素数 1一 10のパーフルォロアルキル基であり、 Ri2及び Ri3は炭素数 3以上 のポリフルォロアルキル基であり、 Xはハロゲン原子であり、 RMはフッ素原子又は炭 一 2のパーフルォロアルキル基であり、 nl、 n2、 n3はそれぞれ独立に 1以上の 整数である。)からなる群力 選ばれる 1種以上であり、前記連鎖移動剤はメタン、ェ タン、 CH F [7] The radical polymerization initiator is a compound represented by the formula (17), wherein R n is a perfluoroalkyl group having a carbon number of 110, and R i2 and R i3 Is a polyfluoroalkyl group having 3 or more carbon atoms, X is a halogen atom, R M is a fluorine atom or a perfluoroalkyl group of carbon, and nl, n2, and n3 are each independently 1 The group transfer is at least one selected from the group consisting of methane and methane. Tan, CH F
2 2、 CH F  2 2, CH F
3 、 CH CF H又は CF CH Fである請求項 1  3.Claim 1 which is CH CF H or CF CH F
3 2 3 2 一 6のいずれ力 記載のパーフルォロカーボン重合体の製造方法。  3. The method for producing a perfluorocarbon polymer according to any one of (3), (2), (3) and (6).
[化 1] 式 1 式 2 式 3  [Formula 1] Equation 1 Equation 2 Equation 3
式 4 Equation 4
式 5 Equation 5
式 6 Equation 6
式 7
Figure imgf000014_0001
Equation 7
Figure imgf000014_0001
[8] スルホン酸基を有するパーフルォロカーボン重合体からなる固体高分子型燃料電 池用電解質材料の製造方法であって、請求項 1一 7のいずれかの方法により SO X  [8] A method for producing an electrolyte material for a solid polymer fuel cell comprising a perfluorocarbon polymer having a sulfonic acid group, comprising the steps of:
2 基を有するパーフルォロカーボン重合体を製造した後、加水分解、酸型化処理する ことを特徴とする電解質材料の製造方法。  A method for producing an electrolyte material, comprising producing a perfluorocarbon polymer having two groups, followed by hydrolysis and acidification.
[9] SO H基を有しエチレン性二重結合を有するパーフルォロカーボンモノマー(ェ [9] A perfluorocarbon monomer having an SO H group and an ethylenic double bond (e)
3  Three
一テル結合性の酸素原子を含んでいてもよい)に基づくモノマー単位と、二重結合を 有しかつ炭素原子、
Figure imgf000015_0001
、パーハロゲノ カーボンモノマーに基づくモノマー単位とを含む重合体力 なる固体高分子型燃料 電池用電解質材料であって、 COF端末基の数が炭素原子 106個あたり 20個以下 であることを特徴とする電解質材料。
A monomer unit based on a mono-bonded oxygen atom) and a double bond. Having and a carbon atom,
Figure imgf000015_0001
Consists polymerization strength and a monomer unit based on perhalogenoacetic carbon monomer a solid polymer fuel electrolyte material for a battery, the electrolyte in the number of COF terminal groups, characterized in that it is 20 or less per 10 6 carbon atoms material.
PCT/JP2004/015243 2003-10-15 2004-10-15 Method for producing perfluorocarbon polymer WO2005037879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514792A JPWO2005037879A1 (en) 2003-10-15 2004-10-15 Method for producing perfluorocarbon polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-355103 2003-10-15
JP2003355103 2003-10-15

Publications (1)

Publication Number Publication Date
WO2005037879A1 true WO2005037879A1 (en) 2005-04-28

Family

ID=34463160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015243 WO2005037879A1 (en) 2003-10-15 2004-10-15 Method for producing perfluorocarbon polymer

Country Status (2)

Country Link
JP (1) JPWO2005037879A1 (en)
WO (1) WO2005037879A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914251A1 (en) * 2006-10-17 2008-04-23 Solvay Solexis S.p.A. Process for stabilizing fluoropolymer having ion exchange groups
JPWO2006019097A1 (en) * 2004-08-18 2008-05-08 旭硝子株式会社 ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY
JP2008308681A (en) * 2007-05-16 2008-12-25 Asahi Glass Co Ltd Process and apparatus for producing perfluoropolymer, and process for producing electrolyte membrane for solid polymer electrolyte fuel cell
JP2015520283A (en) * 2012-06-20 2015-07-16 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Tetrafluoroethylene copolymer
JPWO2015002008A1 (en) * 2013-07-03 2017-02-23 旭硝子株式会社 Method for producing fluorine-containing polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234816A (en) * 1992-12-18 1994-08-23 Asahi Glass Co Ltd Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06271607A (en) * 1993-03-17 1994-09-27 Asahi Glass Co Ltd Production of fluorine-based polymer
JPH07179508A (en) * 1993-10-15 1995-07-18 Ausimont Spa Production of copolymer of tetrafluoroethylene and another perfluoromonomer
JPH11152310A (en) * 1997-11-20 1999-06-08 Asahi Glass Co Ltd Preparation of polymer containing fluorine-containing aliphatic cyclic structure
JP2002114811A (en) * 2000-07-31 2002-04-16 Asahi Glass Co Ltd Method for producing tetrafluoroethylene/ perfluoro(alkyl vinyl ether)-based copolymer having excellent stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
JPH03243608A (en) * 1990-02-20 1991-10-30 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234816A (en) * 1992-12-18 1994-08-23 Asahi Glass Co Ltd Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06271607A (en) * 1993-03-17 1994-09-27 Asahi Glass Co Ltd Production of fluorine-based polymer
JPH07179508A (en) * 1993-10-15 1995-07-18 Ausimont Spa Production of copolymer of tetrafluoroethylene and another perfluoromonomer
JPH11152310A (en) * 1997-11-20 1999-06-08 Asahi Glass Co Ltd Preparation of polymer containing fluorine-containing aliphatic cyclic structure
JP2002114811A (en) * 2000-07-31 2002-04-16 Asahi Glass Co Ltd Method for producing tetrafluoroethylene/ perfluoro(alkyl vinyl ether)-based copolymer having excellent stability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006019097A1 (en) * 2004-08-18 2008-05-08 旭硝子株式会社 ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY
JP5168903B2 (en) * 2004-08-18 2013-03-27 旭硝子株式会社 ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY
EP1914251A1 (en) * 2006-10-17 2008-04-23 Solvay Solexis S.p.A. Process for stabilizing fluoropolymer having ion exchange groups
WO2008046816A1 (en) * 2006-10-17 2008-04-24 Solvay Solexis S.P.A. Process for stabilizing fluoropolymer having ion exchange groups
JP2010506986A (en) * 2006-10-17 2010-03-04 ソルヴェイ・ソレクシス・エッセ・ピ・ア Method for stabilizing fluoropolymers having ion exchange groups
US8207235B2 (en) 2006-10-17 2012-06-26 Solvay Solexis S.P.A. Process for stabilizing fluoropolymer having ion exchange groups
JP2008308681A (en) * 2007-05-16 2008-12-25 Asahi Glass Co Ltd Process and apparatus for producing perfluoropolymer, and process for producing electrolyte membrane for solid polymer electrolyte fuel cell
JP2015520283A (en) * 2012-06-20 2015-07-16 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Tetrafluoroethylene copolymer
JPWO2015002008A1 (en) * 2013-07-03 2017-02-23 旭硝子株式会社 Method for producing fluorine-containing polymer

Also Published As

Publication number Publication date
JPWO2005037879A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US8658746B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP5454592B2 (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly
JP4788267B2 (en) Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof
JP2010018674A (en) Polymer, method for producing the same, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly
US20090227749A1 (en) Process for producing perfluorocarbon polymer
US10975209B2 (en) Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane
JP4946009B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER TYPE FUEL CELL, METHOD FOR PRODUCING MEMBRANE / ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL
JP6819605B2 (en) A method for producing a fluorine-containing compound having a reduced iodine atom content
WO2005037879A1 (en) Method for producing perfluorocarbon polymer
KR102592427B1 (en) Method for producing fluorinated copolymer containing perfluoro sulfonyl fluoride group and copolymer prepared therefrom
JP4334375B2 (en) Vinyl monomer containing N-alkylbissulfonylimide group
Kirsh et al. Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties
US8933264B2 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group
JP2007507560A5 (en)
US7790817B2 (en) Process for producing fluoropolymer
JP3356474B2 (en) Method for producing perfluorocarbon polymer having sulfonic acid type functional group
KR102587558B1 (en) A crosslinked fluorinated copolymer and the preparation method thereof
JP2011052186A (en) Coagulation separation method for fluorine-containing polymer
JPH1135638A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06199959A (en) Production of perfluorocarbon polymer having sulfonic acid-type functional group
JPH08325335A (en) Production of perfluorocarbon copolymer having sulfonic acid-type functional group

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514792

Country of ref document: JP

122 Ep: pct application non-entry in european phase