JP4788267B2 - Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof - Google Patents

Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof Download PDF

Info

Publication number
JP4788267B2
JP4788267B2 JP2005281724A JP2005281724A JP4788267B2 JP 4788267 B2 JP4788267 B2 JP 4788267B2 JP 2005281724 A JP2005281724 A JP 2005281724A JP 2005281724 A JP2005281724 A JP 2005281724A JP 4788267 B2 JP4788267 B2 JP 4788267B2
Authority
JP
Japan
Prior art keywords
carbon
atom
group
oxygen atom
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281724A
Other languages
Japanese (ja)
Other versions
JP2006152249A (en
JP2006152249A5 (en
Inventor
順一 田柳
貢 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005281724A priority Critical patent/JP4788267B2/en
Publication of JP2006152249A publication Critical patent/JP2006152249A/en
Publication of JP2006152249A5 publication Critical patent/JP2006152249A5/ja
Application granted granted Critical
Publication of JP4788267B2 publication Critical patent/JP4788267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、フルオロスルホニル基とペルフルオロ(1,3−ジオキソラン)構造を有する重合体に関する。また該重合体の製造方法および該製造方法において有用な化合物に関する。また本発明は該重合体から得られる新規なフルオロポリマーとその固体高分子電解質としての用途に関する。   The present invention relates to a polymer having a fluorosulfonyl group and a perfluoro (1,3-dioxolane) structure. The present invention also relates to a method for producing the polymer and a compound useful in the production method. The present invention also relates to a novel fluoropolymer obtained from the polymer and its use as a solid polymer electrolyte.

食塩電解用のイオン交換膜、燃料電池用の固体高分子電解質等に用いるスルホニル基またはその誘導基を有する重合体(以下、スルホニル基またはその誘導基を有する重合体を総称してスルホン酸ポリマーという。)としては、下式(1)で表される化合物を重合させた後に加水分解および酸処理した重合体が知られている。
CF=CF(OCFCFY)m1(O)m2(CFm3SOF (1)
ただし、Yはフッ素原子またはトリフルオロメチル基示し、m1は0〜3の整数を示し、m2は0または1を示し、m3は1〜12の整数を示す。
Polymers having sulfonyl groups or derivatives thereof used for ion exchange membranes for salt electrolysis, solid polymer electrolytes for fuel cells, etc. (hereinafter, polymers having sulfonyl groups or derivatives thereof are collectively referred to as sulfonic acid polymers) .) Is a polymer obtained by polymerizing the compound represented by the following formula (1), followed by hydrolysis and acid treatment.
CF 2 = CF (OCF 2 CFY) m1 (O) m2 (CF 2 ) m3 SO 2 F (1)
Y represents a fluorine atom or a trifluoromethyl group, m1 represents an integer of 0 to 3, m2 represents 0 or 1, and m3 represents an integer of 1 to 12.

また特許文献1には、下式(p)で表される化合物が例示されている。   Patent Document 1 exemplifies a compound represented by the following formula (p).

Figure 0004788267
Figure 0004788267

ただし、Rはフッ素原子、炭素数1〜14のエーテル性酸素原子を含有していてもよいペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜14のエーテル性酸素原子を含有していてもよいペルフルオロアルキレン基を示す。 However, R p is fluorine atom, an etheric oxygen atom which may contain a perfluoroalkyl group or a -Q p SO 2 F 1 to 14 carbon atoms, Q p is etheric oxygen 1 to 14 carbon atoms A perfluoroalkylene group which may contain an atom is shown.

特開昭64−079170号公報JP-A 64-0779170

軟化温度の高いスルホン酸ポリマーとしては、フッ素原子を有する重合体が提案されている。固体高分子型燃料電池は発電効率を高める必要性があることから、高温で運転(たとえば、120℃での運転。)されるのが望ましい。しかし、従来のスルホン酸ポリマーは軟化温度が80℃程度と低く高温で運転される燃料電池用の固体高分子電解質として物性が不充分であった。   As a sulfonic acid polymer having a high softening temperature, a polymer having a fluorine atom has been proposed. Since the polymer electrolyte fuel cell needs to increase the power generation efficiency, it is desirable to operate at a high temperature (for example, operation at 120 ° C.). However, the conventional sulfonic acid polymer has a low softening temperature of about 80 ° C. and has insufficient physical properties as a solid polymer electrolyte for a fuel cell operated at a high temperature.

またフッ素原子を有するスルホン酸ポリマーの合成は、一般に困難であり実際に提供されるポリマーの種類は限定されている。たとえば、式(p)で表される化合物の製造方法は不明である。また仮に該化合物が得られたとしても、Qの炭素数が7以上の化合物(p)を重合させて得られるスルホン酸ポリマーは軟化温度が不充分であり、高温運転する固体高分子型の燃料電池に用いる固体高分子電解質としては不充分である。 In addition, synthesis of sulfonic acid polymers having fluorine atoms is generally difficult, and the types of polymers actually provided are limited. For example, the method for producing the compound represented by the formula (p) is unknown. Further, even if the compound is obtained, the number of carbon atoms of Q p is 7 or more compounds (p) acid polymer obtained by polymerizing is insufficient softening temperature, the polymer electrolyte for high temperature operation It is insufficient as a solid polymer electrolyte used in a fuel cell.

本発明者らは、ペルフルオロ(1,3−ジオキソール)構造の2位にフルオロスルホニル基を含有する特定の基が結合した構造を有するモノマーから、高い軟化温度を有するスルホン酸ポリマーが製造できると考えた。そして該スルホン酸ポリマーは固体高分子電解質として有用であるとの知見を得た。すなわち、本発明は下記の発明を提供する。   The present inventors believe that a sulfonic acid polymer having a high softening temperature can be produced from a monomer having a structure in which a specific group containing a fluorosulfonyl group is bonded to the 2-position of a perfluoro (1,3-dioxole) structure. It was. And the knowledge that this sulfonic acid polymer is useful as a solid polymer electrolyte was obtained. That is, the present invention provides the following inventions.

<1>:下式(A)で表されるモノマー単位を含む重合体。   <1>: A polymer containing a monomer unit represented by the following formula (A).

Figure 0004788267
Figure 0004788267

ただし、Rはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。 Where R F represents a fluorine atom, a C 1-6 perfluoroalkyl group, a C 2-6 carbon-carbon bond-containing perfluoroalkyl group containing an etheric oxygen atom, or —Q F SO 2 F; F represents a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.

<2>:式(A)で表されるモノマー単位が、下式(A2)で表されるモノマー単位である<1>の重合体。   <2>: The polymer of <1>, wherein the monomer unit represented by the formula (A) is a monomer unit represented by the following formula (A2).

Figure 0004788267
Figure 0004788267

ただし、RF2はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QF2SOFを示し、QF2は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。 However, R F2 represents a fluorine atom, a C 1-6 perfluoroalkyl group or —Q F 2 SO 2 F, and Q F 2 is a perfluoroalkylene containing an etheric oxygen atom between C 2 -C 6 carbon-carbon bonds. Indicates a group.

<3>:数平均分子量が、5000〜5000000である<1>または<2>の重合体。
<4>:下式(a)で表される化合物を重合させる下式(A)で表されるモノマー単位を含む重合体の製造方法(ただし、RおよびQは前記と同じ意味を示す。)。
<3>: The polymer of <1> or <2> having a number average molecular weight of 5000 to 5000000.
<4>: Method for producing a polymer containing the monomer unit represented by the following formula (A) for polymerizing the compound represented by the following formula (a) (wherein R F and Q F have the same meaning as described above) .)

Figure 0004788267
Figure 0004788267

<5>:下式(a−1)で表される化合物を脱ハロゲン化剤の存在下に脱ハロゲン化反応させる下式(a)で表される化合物の製造方法(ただし、XおよびXはそれぞれ独立に塩素原子または臭素原子を示し、RおよびQは前記と同じ意味を示す。)。 <5>: A method for producing a compound represented by the following formula (a) in which a compound represented by the following formula (a-1) is dehalogenated in the presence of a dehalogenating agent (however, X 1 and X 2 each independently represents a chlorine atom or a bromine atom, and R F and Q F have the same meaning as described above.

Figure 0004788267
Figure 0004788267

<6>:下式(a−1)で表される化合物(ただし、X、X、RおよびQは前記と同じ意味を示す。)。 <6>: A compound represented by the following formula (a-1) (provided that X 1 , X 2 , R F and Q F have the same meaning as described above).

Figure 0004788267
Figure 0004788267

<7>:下式(a2)で表される化合物(ただし、RF2およびQF2は前記と同じ意味を示す。)。 <7>: A compound represented by the following formula (a2) (provided that R F2 and Q F2 have the same meaning as described above).

Figure 0004788267
Figure 0004788267

<8>:下式(B)で表されるモノマー単位を含むフルオロポリマー。   <8>: A fluoropolymer containing a monomer unit represented by the following formula (B).

Figure 0004788267
Figure 0004788267

ただし、Qは前記同じ意味を示す。RFBはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基、または−Q(SO(SO)M基を示し、Yは酸素原子、窒素原子、または炭素原子を示し、Rはエーテル性酸素原子を含んでいてもよいペルフルオロアルキル基を示し、sはYに対応し、Yが酸素原子である場合には0、Yが窒素原子である場合には1、Yが炭素原子である場合には2を示し、Mは、H、1価の金属カチオン、または1以上の水素原子が炭化水素基で置換されていてもよいアンモニウムを示す。 However, Q F has the same meaning as described above. R FB is a fluorine atom, perfluoroalkyl group having 1 to 6 carbon atoms, carbon atoms of 2 to 6 carbon atoms - a perfluoroalkyl group containing an etheric oxygen atom between carbon bond or -Q F (SO 2 Y, - (SO 2 R f ) s ) M + group, Y represents an oxygen atom, a nitrogen atom, or a carbon atom, R f represents a perfluoroalkyl group that may contain an etheric oxygen atom, and s corresponds to Y , 0 when Y is an oxygen atom, 1 when Y is a nitrogen atom, 2 when Y is a carbon atom, M + is H + , a monovalent metal cation, or 1 represents ammonium in which one or more hydrogen atoms may be substituted with a hydrocarbon group.

本発明はモノマーとして有用な化合物、その中間体、および該化合物を重合させて得られる新規な重合体を提供する。また本発明は新規なフルオロポリマーを提供する。本発明のフルオロポリマーは軟化温度の高いフルオロポリマーであり、120℃程度の高温でも機械的強度に優れる。すなわち本発明によれば、高温使用に適する固体高分子電解質として有用な新規なフルオロポリマーが提供される。   The present invention provides a compound useful as a monomer, an intermediate thereof, and a novel polymer obtained by polymerizing the compound. The present invention also provides novel fluoropolymers. The fluoropolymer of the present invention is a fluoropolymer having a high softening temperature and is excellent in mechanical strength even at a high temperature of about 120 ° C. That is, according to the present invention, a novel fluoropolymer useful as a solid polymer electrolyte suitable for high temperature use is provided.

本明細書において、式(a)で表される化合物を化合物(a)と、式(A)で表されるモノマー単位をモノマー単位(A)と、記す。他の式で表される化合物およびモノマー単位も同様に記す。   In this specification, a compound represented by the formula (a) is referred to as a compound (a), and a monomer unit represented by the formula (A) is referred to as a monomer unit (A). The same applies to compounds and monomer units represented by other formulas.

本発明は、下式で表されるモノマー単位(A)を含む重合体(以下、単に重合体Aという。)を提供する(ただし、RおよびQは前記と同じ意味を示す。以下同じ。)。 The present invention provides a polymer containing a monomer unit (A) represented by the following formula (hereinafter, simply referred to as polymer A) (provided that R F and Q F have the same meaning as described above. The same applies hereinafter). .)

Figure 0004788267
Figure 0004788267

が炭素数1〜6のペルフルオロアルキル基である場合、直鎖の基が好ましく、−(CFn1F(n1は1〜4の整数。)がより好ましく、−CFが特に好ましい。
が、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基である場合、直鎖の基がより好ましく、−(CFn2F(n2は2〜4の整数。)の炭素−炭素結合間にエーテル性酸素原子が1個挿入された基が特に好ましい。
が−QSOFである場合のQは、1,3−ジオキソールの2位の炭素原子に結合したもう一つの−QSOFにおけるQと同一構造が好ましい。
としては、フッ素原子または炭素数1〜6のペルフルオロアルキル基が好ましく、−CFがより好ましい。
When R F is a C 1-6 perfluoroalkyl group, a linear group is preferable, — (CF 2 ) n1 F (n1 is an integer of 1 to 4) is more preferable, and —CF 3 is particularly preferable. .
When R F is a perfluoroalkyl group containing an etheric oxygen atom between a carbon-carbon bond having 2 to 6 carbon atoms, a straight-chain group is more preferable, and — (CF 2 ) n2 F (n2 is 2 to 4). In which an etheric oxygen atom is inserted between carbon-carbon bonds.
Q F where R F is -Q F SO 2 F is, Q F the same structure in another -Q F SO 2 F attached to the 2-position carbon atom of the 1,3-dioxole are preferred.
R F is preferably a fluorine atom or a C 1-6 perfluoroalkyl group, more preferably —CF 3 .

が、炭素数1〜6のペルフルオロアルキレン基である場合、直鎖の基が好ましく、−(CFm1−(m1は2〜4の整数。)が特に好ましい。
が、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子が含むペルフルオロアルキレン基である場合、直鎖の基がより好ましく、−(CFm2−(m2は2〜4の整数。)の炭素−炭素結合間にエーテル性酸素原子が1個挿入された基が特に好ましく、式−CFO(CFm21−で表される基(m21は1〜3の整数。ただし、基の向きは右側が−SOFに結合することを意味する。以下同様。)が最も好ましい。
When Q F is a C 1-6 perfluoroalkylene group, a linear group is preferable, and — (CF 2 ) m1 — (m1 is an integer of 2 to 4) is particularly preferable.
Q F is carbon 2 to 6 carbon atoms - if a perfluoroalkylene group containing an etheric oxygen atom between carbon bond, more preferably a linear group, - (CF 2) m2 - (m2 2-4 A group in which one etheric oxygen atom is inserted between carbon-carbon bonds, and a group represented by the formula —CF 2 O (CF 2 ) m21 — (m21 is an integer of 1 to 3). However, the direction of the group means that the right side is bonded to —SO 2 F. The same applies hereinafter.)

モノマー単位(A)としては、軟化温度の観点からは下記モノマー単位(A1)が好ましく、軟化温度と入手容易性の観点からは下記モノマー単位(A2)が好ましい(以下、モノマー単位(A1)を含む重合体を重合体A1と、モノマー単位(A2)を含む重合体を重合体A2と、いう。)。   As the monomer unit (A), the following monomer unit (A1) is preferable from the viewpoint of the softening temperature, and the following monomer unit (A2) is preferable from the viewpoint of the softening temperature and availability (hereinafter, the monomer unit (A1) is referred to as the monomer unit (A1)). The polymer containing the polymer A1 and the polymer containing the monomer unit (A2) are referred to as a polymer A2.)

Figure 0004788267
Figure 0004788267

ただし、RF1はフッ素原子または炭素数1〜6のペルフルオロアルキ基または−QF1SOFを示し、QF1は炭素数1〜6のペルフルオロアルキレン基を示し、RF2およびQF2は前記と同じ意味を示す(以下同様。)。
F2はトリフルオロメチル基であるのが好ましい。QF2は式−CFO(CFm21−で表される基であるのが好ましい。
However, R F1 is a fluorine atom or or perfluoroalkylene Le group having 1 to 6 carbon atoms -Q F1 SO 2 F, Q F1 represents a perfluoroalkylene group having 1 to 6 carbon atoms, R F2 and Q F2 is the Indicates the same meaning (the same shall apply hereinafter).
R F2 is preferably a trifluoromethyl group. Q F2 is preferably a group represented by the formula —CF 2 O (CF 2 ) m21 —.

モノマー単位(A1)の具体例としては、下記モノマー単位が挙げられる。   Specific examples of the monomer unit (A1) include the following monomer units.

Figure 0004788267
Figure 0004788267

モノマー単位(A2)の具体例としては、下記モノマー単位が挙げられる。   Specific examples of the monomer unit (A2) include the following monomer units.

Figure 0004788267
Figure 0004788267

重合体Aは、下記化合物(a)を重合させることによって製造できる。   The polymer A can be produced by polymerizing the following compound (a).

Figure 0004788267
Figure 0004788267

化合物(a)としては、下記化合物(a1)または下記化合物(a2)が好ましい。下記化合物(a1)を重合させることによって重合体A1が、下記化合物(a2)を重合させることによって重合体A2が製造できる。   As the compound (a), the following compound (a1) or the following compound (a2) is preferable. Polymer A1 can be produced by polymerizing the following compound (a1), and polymer A2 can be produced by polymerizing the following compound (a2).

Figure 0004788267
Figure 0004788267

化合物(a1)の具体例としては、下記化合物が挙げられる。   Specific examples of the compound (a1) include the following compounds.

Figure 0004788267
Figure 0004788267

化合物(a2)の具体例としては、下記化合物が挙げられる。   Specific examples of the compound (a2) include the following compounds.

Figure 0004788267
Figure 0004788267

重合体Aは、モノマー単位(A)からなる重合体であっても、モノマー単位(A)とモノマー単位(A)以外のモノマー単位(以下、単に他のモノマー単位という。)とを含む重合体(以下、単に共重合体という。)であってよく、共重合体であるのが好ましい。
共重合体は、化合物(a)と、化合物(a)以外の化合物(a)と共重合しうるモノマー(以下、単に他のモノマーという。)とを重合させて製造できる。また共重合体における各モノマー単位の並び方は、ランダム状であってもブロック状であってもよく、重合の簡便性の観点からランダム状であるのが好ましい。
Even if the polymer A is a polymer comprising the monomer unit (A), the polymer A includes a monomer unit (A) and a monomer unit other than the monomer unit (A) (hereinafter simply referred to as other monomer units). (Hereinafter simply referred to as a copolymer), and is preferably a copolymer.
The copolymer can be produced by polymerizing the compound (a) and a monomer that can be copolymerized with the compound (a) other than the compound (a) (hereinafter simply referred to as another monomer). The arrangement of the monomer units in the copolymer may be random or block, and is preferably random from the viewpoint of ease of polymerization.

重合体Aが共重合体である場合、重合体A中の全モノマー単位に対するモノマー単位(A)の割合は、後述のフルオロポリマーの溶解性の向上、寸法安定性等の観点から1〜70モル%が好ましく、5〜40モル%がより好ましく、10〜30モル%が特に好ましい。また重合体A中の全モノマー単位に対する他のモノマー単位の割合は、30〜99モル%が好ましく、60〜95モル%がより好ましく、70〜90モル%が特に好ましい。   When the polymer A is a copolymer, the ratio of the monomer unit (A) to the total monomer units in the polymer A is 1 to 70 mol from the viewpoint of improving the solubility of the fluoropolymer described later, dimensional stability, and the like. % Is preferable, 5 to 40 mol% is more preferable, and 10 to 30 mol% is particularly preferable. Moreover, 30-99 mol% is preferable, as for the ratio of the other monomer unit with respect to all the monomer units in the polymer A, 60-95 mol% is more preferable, and 70-90 mol% is especially preferable.

他のモノマー単位は、フッ素原子を含んでいても含まなくてもよく、後述のフルオロポリマーの耐熱性、耐水性、耐溶剤性および耐久性の観点からはフッ素原子を含む他のモノマー単位が好ましく、成形加工性の観点からはフッ素原子を含まない他のモノマー単位が好ましい。   Other monomer units may or may not contain fluorine atoms, and other monomer units containing fluorine atoms are preferred from the viewpoint of heat resistance, water resistance, solvent resistance and durability of the fluoropolymer described below. From the viewpoint of moldability, other monomer units that do not contain a fluorine atom are preferred.

フッ素原子を含む他のモノマー単位としては、フッ素原子を含む他のモノマーの重合により形成されるモノマー単位が好ましい。フッ素原子を含む他のモノマーとしては、下記モノマー(m1)、下記モノマー(m2)または下記モノマー(m3)が好ましい。
CHZ=CZ (m1)、
CFZ=CZ (m2)、
CF=CFQCF=CF (m3)。
The other monomer unit containing a fluorine atom is preferably a monomer unit formed by polymerization of another monomer containing a fluorine atom. As the other monomer containing a fluorine atom, the following monomer (m1), the following monomer (m2) or the following monomer (m3) is preferable.
CHZ 1 = CZ 2 Z 3 (m1),
CFZ 4 = CZ 5 Z 6 (m2),
CF 2 = CFQCF = CF 2 ( m3).

ただし、式中の記号は下記の意味を示す。
、ZおよびZ:それぞれ独立に、水素原子、フッ素原子、塩素原子または炭素数1〜12のポリフルオロアルキル基であり、少なくとも1つはフッ素原子または炭素数1〜12のポルフルオロアルキル基である。
、ZおよびZ:それぞれ独立に、フッ素原子、塩素原子または炭素数1〜12のエーテル性酸素原子を有していてもよいペルフルオロアルキル基を示す。もしくはZ、ZおよびZから選ばれる2個の基が共同で2価含フッ素飽和有機基を形成し、かつ残余の1個の基がフッ素原子または1価含フッ素飽和有機基であってもよい。
Q:−CFCF−、−CFO−、−CFCFO−、−CF(CF)CFO−、または−CFCF(CF)O−。
However, the symbol in a formula shows the following meaning.
Z 1 , Z 2 and Z 3 : each independently a hydrogen atom, a fluorine atom, a chlorine atom or a polyfluoroalkyl group having 1 to 12 carbon atoms, at least one of which is a fluorine atom or a porfluoro having 1 to 12 carbon atoms It is an alkyl group.
Z 4 , Z 5 and Z 6 each independently represent a fluorine atom, a chlorine atom or a perfluoroalkyl group which may have a C 1-12 etheric oxygen atom. Or two groups selected from Z 4 , Z 5 and Z 6 together form a divalent fluorine-containing saturated organic group, and the remaining one group is a fluorine atom or a monovalent fluorine-containing saturated organic group. May be.
Q: -CF 2 CF 2 -, - CF 2 O -, - CF 2 CF 2 O -, - CF (CF 3) CF 2 O-, or -CF 2 CF (CF 3) O- .

モノマー(m1)としては、CH=CHF、CH=CF、CHF=CHFまたはCHF=CFが好ましい。
モノマー(m2)としては、CF=CF、CF=CFCl、CF=CF(CF)、下記化合物(m21)、下記化合物(m22)またはCF=CF(OCFCF(CF))O(CFFが好ましい(ただし、aは0〜3の整数を示す。bは1〜8の整数を示す。)。
Examples of the monomer (m1), CH 2 = CHF , CH 2 = CF 2, CHF = CHF or CHF = CF 2 is preferred.
As the monomer (m2), CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CF (CF 3 ), the following compound (m21), the following compound (m22) or CF 2 = CF (OCF 2 CF (CF 3) )) a O (CF 2) b F is preferred (where, a is .b represents an integer of 0 to 3 is an integer of 1-8.).

Figure 0004788267
Figure 0004788267

ただし、R11およびR12は、それぞれ独立に、フッ素原子または炭素数1〜6のペルフルオロアルキル基を示す。R21およびR22は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示す。R23はフッ素原子または炭素数1〜3のペルフルオロアルコキシ基を示す。 However, R < 11 > and R < 12 > shows a fluorine atom or a C1-C6 perfluoroalkyl group each independently. R 21 and R 22 each independently represent a fluorine atom or a C 1-3 perfluoroalkyl group. R 23 represents a fluorine atom or a perfluoroalkoxy group having 1 to 3 carbon atoms.

モノマー(m21)の具体例としては、下記の単位が挙げられる。   Specific examples of the monomer (m21) include the following units.

Figure 0004788267
Figure 0004788267

モノマー(m22)の具体例としては、下記の単位が挙げられる。   Specific examples of the monomer (m22) include the following units.

Figure 0004788267
Figure 0004788267

モノマー(m3)としては、CF=CFCFOCF=CF、CF=CFCF(CF)OCF=CF、CF=CFCFCFOCF=CF、CF=CFCF(CF)CFOCF=CFまたはCF=CFCFCF(CF)OCF=CFが好まし
い。
Monomer The (m3), CF 2 = CFCF 2 OCF = CF 2, CF 2 = CFCF (CF 3) OCF = CF 2, CF 2 = CFCF 2 CF 2 OCF = CF 2, CF 2 = CFCF (CF 3) CF 2 OCF═CF 2 or CF 2 ═CFCF 2 CF (CF 3 ) OCF═CF 2 is preferred.

共重合体である重合体Aから合成される後述のフルオロポリマーを燃料電池用の固体高分子電解質に用いる場合、フッ素原子を含む他のモノマーとしては、耐久性の観点からはCF=CFが好ましく、ガス透過性と軟化温度の観点からはモノマー(m21)、モノマー(m22)、またはモノマー(m3)が好ましい。また後述のフルオロポリマーをリチウムイオン電池用の材料に用いる場合の他のモノマーは、他の添加物との相溶性の観点からCH=CFが好ましい。 When the below-mentioned fluoropolymer synthesized from the polymer A, which is a copolymer, is used for a solid polymer electrolyte for a fuel cell, another monomer containing a fluorine atom is CF 2 = CF 2 from the viewpoint of durability. From the viewpoint of gas permeability and softening temperature, the monomer (m21), the monomer (m22), or the monomer (m3) is preferable. In addition, the other monomer when a fluoropolymer described later is used as a material for a lithium ion battery is preferably CH 2 = CF 2 from the viewpoint of compatibility with other additives.

重合体Aには、フッ素原子を含まない他のモノマーの重合により形成されるモノマー単位が含まれていてもよい。フッ素原子を含まない他のモノマーとしては、CH=CH、CH=CHCl、CH=CCl、ビニルエーテルまたはビニルエステルが好ましく、成形加工性の観点からCH=CHがより好ましい。 The polymer A may contain a monomer unit formed by polymerization of another monomer that does not contain a fluorine atom. Other monomers containing no fluorine atom, CH 2 = CH 2, CH 2 = CHCl, CH 2 = CCl 2, preferably vinyl ether or vinyl ester, more preferably CH 2 = CH 2 from the viewpoint of moldability.

重合体Aが共重合体である場合の他のモノマーおよび他のモノマーの組合せは、CF=CFのみ、CF=CFとCH=CH、CF=CFとCH=CF、CH=CFのみ、CH=CFとモノマー(m21)、CF=CFとモノマー(m21)またはCF=CFとモノマー(m22)が好ましく、CF=CFのみ、またはCF=CFとモノマー(m22)がより好ましい。 Other monomers and other monomer combinations where polymer A is a copolymer are CF 2 = CF 2 only, CF 2 = CF 2 and CH 2 = CH 2 , CF 2 = CF 2 and CH 2 = CF 2 , CH 2 = CF 2 only, CH 2 = CF 2 and monomer (m21), CF 2 = CF 2 and monomer (m21) or CF 2 = CF 2 and monomer (m22) are preferred, CF 2 = CF 2 Only, or CF 2 = CF 2 and the monomer (m22) are more preferred.

重合体Aの数平均分子量の下限は、機械的強度の観点から、好ましくは5000が好ましく、10000がより好ましく、20000が特に好ましい。重合体Aの数平均分子量の上限は、後述のフルオロポリマーの溶媒溶解性と成形加工性の観点から、500万が好ましく、200万がより好ましい。
また重合体Aの分子量を−SOFの1個あたりの分子量に換算した値は、後述のフルオロポリマーの耐水性、耐久性、寸法安定性等の観点から500〜1500であるのが好ましく、550〜1200であるのがより好ましく、600〜900であるのが特に好ましい。
From the viewpoint of mechanical strength, the lower limit of the number average molecular weight of the polymer A is preferably 5000, more preferably 10,000, and particularly preferably 20000. The upper limit of the number average molecular weight of the polymer A is preferably 5 million, and more preferably 2 million, from the viewpoint of solvent solubility and molding processability of the fluoropolymer described later.
In addition, the value obtained by converting the molecular weight of the polymer A into the molecular weight per —SO 2 F is preferably 500 to 1500 from the viewpoint of water resistance, durability, dimensional stability, and the like of the fluoropolymer described below. 550 to 1200 is more preferable, and 600 to 900 is particularly preferable.

重合体Aの製造は、化合物(a)を放射線(紫外線、γ線、電子線など。)の照射下に、重合させる方法、またはラジカル開始剤の存在下に重合させる方法によるのが好ましい。
ラジカル開始剤としては、過酸化物、アゾ化合物、過硫酸塩等が使用できる。重合開始剤としては耐久性に優れた重合体Aが得られる観点から、ペルフルオロジアシルペルオキサイドまたはペルフルオロジアルキルペルオキサイドを用いるのが好ましい。
重合の温度は、20℃〜150℃が好ましい。重合の圧力は、特に限定されない。重合の方法は、特に限定されず、バルク重合法、溶液重合法、懸濁重合法、乳化重合法などを採用できる。
The production of the polymer A is preferably performed by a method in which the compound (a) is polymerized in the presence of radiation (ultraviolet rays, γ rays, electron beams, etc.) or in the presence of a radical initiator.
As the radical initiator, peroxides, azo compounds, persulfates and the like can be used. As the polymerization initiator, it is preferable to use perfluorodiacyl peroxide or perfluorodialkyl peroxide from the viewpoint of obtaining polymer A having excellent durability.
The polymerization temperature is preferably 20 ° C to 150 ° C. The polymerization pressure is not particularly limited. The polymerization method is not particularly limited, and a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be employed.

溶液重合法に用いる溶媒の沸点は、20℃〜350℃が好ましく、40℃〜150℃が特に好ましく、1種または2種以上を用いうる。
溶媒の例としては、ポリフルオロトリアルキルアミン化合物、ペルフルオロアルカン、ハイドロフルオロアルカン、クロロフルオロアルカン、分子鎖末端に二重結合を有しないフルオロオレフィン、ポリフルオロシクロアルカン、ポリフルオロ環状エーテル化合物、ヒドロフルオロエーテル、t−ブタノール等が挙げられる。また溶媒として、超臨界二酸化炭素を用いてもよい。
The boiling point of the solvent used in the solution polymerization method is preferably 20 ° C to 350 ° C, particularly preferably 40 ° C to 150 ° C, and one or more types can be used.
Examples of the solvent include polyfluorotrialkylamine compounds, perfluoroalkanes, hydrofluoroalkanes, chlorofluoroalkanes, fluoroolefins having no double bond at the molecular chain end, polyfluorocycloalkanes, polyfluorocyclic ether compounds, hydrofluoro Examples include ether and t-butanol. Supercritical carbon dioxide may be used as a solvent.

重合により直接生成する重合体Aは、フッ素ガスと接触させる処理(以下、フッ素化処理という。)を行うのが好ましい。フッ素化処理によって重合体A中の不安定基(たとえば、ラジカル発生剤由来する末端基等。)が、ペルフルオロ化またはフッ素原子で置換され、重合体Aの耐久性が向上する。フッ素化処理におけるフッ素ガスは不活性ガスで希釈して、フッ素ガスの濃度は、0.1〜100体積%未満とするのが好ましい。不活性ガスとしては、窒素ガス、アルゴンガスが挙げられる。   The polymer A directly produced by the polymerization is preferably subjected to a treatment for contacting with fluorine gas (hereinafter referred to as fluorination treatment). The unstable group (for example, a terminal group derived from a radical generator) in the polymer A is replaced by perfluorination or a fluorine atom by the fluorination treatment, and the durability of the polymer A is improved. The fluorine gas in the fluorination treatment is preferably diluted with an inert gas, and the concentration of the fluorine gas is preferably set to less than 0.1 to 100% by volume. Examples of the inert gas include nitrogen gas and argon gas.

フッ素化処理に付する重合体Aは、バルクの状態であっても、溶媒中に分散または溶解させてもよい。該溶媒としてはフッ素化処理に通常用いられる含フッ素溶媒が使用できる。フッ素化処理の温度は、重合体A中の−SOFの脱離を抑制する観点から25〜300℃が好ましく、150〜200℃が特に好ましい。フッ素化処理におけるフッ素ガスと重合体Aの接触時間は、1分〜1週間が好ましく、1時間〜50時間が特に好ましい。 The polymer A subjected to the fluorination treatment may be in a bulk state or may be dispersed or dissolved in a solvent. As the solvent, a fluorine-containing solvent usually used for fluorination treatment can be used. The temperature of the fluorination treatment is preferably 25 to 300 ° C., and particularly preferably 150 to 200 ° C. from the viewpoint of suppressing the elimination of —SO 2 F in the polymer A. The contact time between the fluorine gas and the polymer A in the fluorination treatment is preferably 1 minute to 1 week, particularly preferably 1 hour to 50 hours.

本発明の化合物(a)は新規化合物である。該化合物(a)は下記化合物(a−1)を脱ハロゲン化剤の存在下に脱ハロゲン化反応させて製造するのが好ましい。   The compound (a) of the present invention is a novel compound. The compound (a) is preferably produced by dehalogenating the following compound (a-1) in the presence of a dehalogenating agent.

Figure 0004788267
Figure 0004788267

およびXは、塩素原子であるのが好ましい。 X 1 and X 2 are preferably chlorine atoms.

脱ハロゲン化反応におけるQは、炭素数3〜6のペルフルオロアルキレン基またはQF2であるのが好ましい。Qがこれらの基である化合物(a−1)を用いて脱ハロゲン化反応を行う場合、副生成物の生成が抑制され純度の高い化合物(a)が得られる。
脱ハロゲン化剤とは、化合物(a−1)のXおよびXを離脱せしめる反応剤であり、XおよびXが塩素原子である場合の脱ハロゲン化剤としては脱塩素化剤を用いる。脱ハロゲン化剤としては、Zn、Na、Mg、Sn、CuまたはFeが好ましく、低温反応が可能である観点からZnがより好ましい。脱ハロゲン化剤の量は、化合物(a−1)に対して1〜20倍モルが好ましく、2〜8倍モルがより好ましい。脱ハロゲン化反応の温度は、30℃〜100℃が好ましく、40℃〜70℃がより好ましい。
Q F in the dehalogenation reaction is preferably a C 3-6 perfluoroalkylene group or Q F 2 . When the dehalogenation reaction is performed using the compound (a-1) in which Q F is any of these groups, the production of by-products is suppressed, and the compound (a) having high purity is obtained.
The dehalogenating agent is a reagent that releases X 1 and X 2 of the compound (a-1). When X 1 and X 2 are chlorine atoms, the dehalogenating agent is a dechlorinating agent. Use. As the dehalogenating agent, Zn, Na, Mg, Sn, Cu, or Fe is preferable, and Zn is more preferable from the viewpoint that low temperature reaction is possible. 1-20 times mole is preferable with respect to compound (a-1), and, as for the quantity of a dehalogenating agent, 2-8 times mole is more preferable. The temperature of the dehalogenation reaction is preferably 30 ° C to 100 ° C, more preferably 40 ° C to 70 ° C.

脱ハロゲン化反応は極性溶媒中で行うのが好ましい。極性溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリジノン、N−メチルイミダゾリジン、1,4−ジオキサン、ジクライム、メタノール、エタノール、酢酸、無水酢酸、アセトニトリル、ジメチルスルホキシド等の有機極性溶媒または水が好ましい。また反応は、反応蒸留形式で行い蒸留精製された化合物(a)を得るのが好ましい。   The dehalogenation reaction is preferably performed in a polar solvent. As polar solvents, organic polarities such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidinone, N-methylimidazolidine, 1,4-dioxane, diclime, methanol, ethanol, acetic acid, acetic anhydride, acetonitrile, dimethyl sulfoxide, etc. A solvent or water is preferred. The reaction is preferably carried out in a reactive distillation format to obtain a distilled and purified compound (a).

およびXが塩素原子である化合物(a−1)の製造方法としては、下記化合物(a−3)を光照射下に塩素ガスと反応させて下記化合物(a−21)を得て、つぎに該化合物(a−21)を3フッ化アンチモンと5塩化アンチモンの存在下に反応させる方法が好ましい。 As a method for producing the compound (a-1) in which X 1 and X 2 are chlorine atoms, the following compound (a-3) is reacted with chlorine gas under light irradiation to obtain the following compound (a-21). Next, a method in which the compound (a-21) is reacted in the presence of antimony trifluoride and antimony pentachloride is preferable.

Figure 0004788267
Figure 0004788267

がフッ素原子以外の化合物(a−3)は、下記化合物(a−6)を酸素ガスの存在下に反応させて下記化合物(a−5)を得て、つぎに該化合物(a−5)をルイス酸の存在下に反応させて下記化合物(a−4)を得て、つぎに該化合物(a−4)とCH(OH)CH(Xは塩素原子または臭素原子を示す。以下同じ。)を反応させる方法を用いて製造できる。
FA−CF=CF−QSOF (a−6)、
The compound (a-3) in which R F is other than a fluorine atom is reacted with the following compound (a-6) in the presence of oxygen gas to obtain the following compound (a-5), and then the compound (a- 5) is reacted in the presence of a Lewis acid to obtain the following compound (a-4), and then the compound (a-4) and CH 2 (OH) CH 2 X 6 (X 6 is a chlorine atom or bromine). In the following, the same shall apply).
R FA -CF = CF-Q F SO 2 F (a-6),

Figure 0004788267
Figure 0004788267

FACFC(O)−QSOF (a−4)。
ただし、RFAは、RFACF−となった場合に化合物(a−3)におけるRと同一となる基であり、フッ素原子、炭素数1〜5のペルフルオロアルキル基、炭素数2〜5の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基が好ましい。
R FA CF 2 C (O) -Q F SO 2 F (a-4).
However, R FA is a group which is the same as R F in the compound (a-3) when it becomes R FA CF 2 —, and is a fluorine atom, a C 1-5 perfluoroalkyl group, a carbon number of 2 A perfluoroalkyl group containing an etheric oxygen atom between 5 carbon-carbon bonds is preferred.

ルイス酸としては、塩化アルミニウム、フッ化塩化アルミニウム等が挙げられる。
化合物(a−4)とCH(OH)CHの反応は、塩基性化合物の存在下に行うのが好ましい。また化合物(a−3)は、化合物(a−4)とエチレンオキサイドをLiXと水の存在下に反応させる方法を用いて製造してもよい。
Examples of the Lewis acid include aluminum chloride and aluminum fluoride chloride.
The reaction between compound (a-4) and CH 2 (OH) CH 2 X 6 is preferably carried out in the presence of a basic compound. Compound (a-3) may be produced by a method in which compound (a-4) and ethylene oxide are reacted in the presence of LiX 6 and water.

化合物(a−6)としては、下記の化合物が挙げられる。
CF=CFCFCFSOF、
CF=CFCFCFCFCFSOF、
CF=CFCFOCFCFSOF、
CF=CFCFCFOCFCFSOF。
As the compound (a-6), the following compounds may be mentioned.
CF 2 = CFCF 2 CF 2 SO 2 F,
CF 2 = CFCF 2 CF 2 CF 2 CF 2 SO 2 F,
CF 2 = CFCF 2 OCF 2 CF 2 SO 2 F,
CF 2 = CFCF 2 CF 2 OCF 2 CF 2 SO 2 F.

また化合物(a−3)のうち、下記化合物(a1−31)は下記方法1を用いて製造してもよく、下記化合物(a2−31)は下記方法2を用いて製造してもよい。   Among the compounds (a-3), the following compound (a1-31) may be produced using the following method 1, and the following compound (a2-31) may be produced using the following method 2.

Figure 0004788267
Figure 0004788267

方法1:化合物(a1−31)は、下記化合物(a1−71)、下記化合物(a1−6)およびCF=CFを反応させて下記化合物(a1−51)を得て、つぎに該化合物(a1−51)を塩素ガスと反応させて下記化合物(a1−41)を得て、つぎに該化合物(a1−41)をフッ素化剤の存在下にフッ素化反応させる化合物(a1−31)の製造方法。
a7 (a1−71)
F1C(O)OCHCHa6 (a1−61)
Method 1: Compound (a1-31) is obtained by reacting the following compound (a1-71), the following compound (a1-6) and CF 2 = CF 2 to obtain the following compound (a1-51), The compound (a1-51) is reacted with chlorine gas to obtain the following compound (a1-41), and then the compound (a1-31) is subjected to a fluorination reaction in the presence of a fluorinating agent. ) Manufacturing method.
R a7 S - M + (a1-71)
R F1 C (O) OCH 2 CH 2 X a6 (a1-61)

Figure 0004788267
Figure 0004788267

ただし、Xa6は塩素原子または臭素原子を示し、Ra7は炭素数1〜20の炭化水素基を示し炭素数1〜8の炭化水素基が好ましい。Ra7としては式(R71)(R72)(R73)C−で表される基またはベンジル基が好ましい。R71、R72およびR73は、同一の基であっても異なる基であってもよく、同一の基であるのが好ましく、メチル基であるのが特に好ましい。 However, Xa6 shows a chlorine atom or a bromine atom, Ra7 shows a C1-C20 hydrocarbon group and a C1-C8 hydrocarbon group is preferable. R a7 is preferably a group represented by the formula (R 71 ) (R 72 ) (R 73 ) C— or a benzyl group. R 71 , R 72 and R 73 may be the same group or different groups, are preferably the same group, and are particularly preferably a methyl group.

フッ素化反応におけるフッ素化剤としては、KF、KHF、NaHF、NaFまたはCsFが好ましく、KFまたはKHFがより好ましく、反応の簡便性の観点からKHFが特に好ましい。フッ素化反応における反応温度は、反応収率の観点から0〜70℃が好ましく、0〜50℃がより好ましく、0〜50℃が特に好ましい。 As the fluorinating agent in the fluorination reaction, KF, KHF 2 , NaHF 2 , NaF or CsF is preferable, KF or KHF 2 is more preferable, and KHF 2 is particularly preferable from the viewpoint of the simplicity of the reaction. The reaction temperature in the fluorination reaction is preferably 0 to 70 ° C, more preferably 0 to 50 ° C, and particularly preferably 0 to 50 ° C from the viewpoint of the reaction yield.

方法2:下記化合物(a2−8)と下記化合物(a2−7)を反応させて下記化合物(a2−6)を得て、つぎに該化合物(a2−6)をフッ素化反応させて下記化合物(a2−5)を得て、つぎに該化合物(a2−5)を金属フッ化物の存在下に熱分解反応させて下記化合物(a2−41)を得て、該化合物(a2−41)とCH(OH)CHを反応させる化合物(a2−31)の製造方法。 Method 2: The following compound (a2-8) and the following compound (a2-7) are reacted to obtain the following compound (a2-6), and then the compound (a2-6) is fluorinated to give the following compound (A2-5) was obtained, and then the compound (a2-5) was subjected to a thermal decomposition reaction in the presence of a metal fluoride to obtain the following compound (a2-41). method for producing a CH 2 (OH) compounds reacting CH 2 X 6 (a2-31).

Figure 0004788267
Figure 0004788267

FSOCFC(O)OCH(R)CHOCFCFSOF (a2−6)、
FSOCFC(O)OCF(RF2)CFOCFCFSOF(a2−5)、
F2C(O)CFOCFCFSOF (a2−41)。
ただしRは、RF2と同一の基またはRF2に対応する炭素原子配列を有するフッ素化されてRF2に変換される基を示す。Rは水素原子または炭素数1〜6のアルキル基が好ましい。
FSO 2 CF 2 C (O) OCH (R 2) CH 2 OCF 2 CF 2 SO 2 F (a2-6),
FSO 2 CF 2 C (O) OCF (R F2 ) CF 2 OCF 2 CF 2 SO 2 F (a2-5),
R F2 C (O) CF 2 OCF 2 CF 2 SO 2 F (a2-41).
However R 2 represents a group fluorinated carbon atoms sequence corresponding to R F2 and identical radicals or R F2 is converted to R F2. R 2 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

下記化合物(a2−8)と下記化合物(a2−7)の反応は、化合物(a2−8)に対して化合物(a2−7)の2〜5倍モルを用いて行うのが好ましい。
該反応は、金属フッ化物の存在下に行うのが好ましい。金属フッ化物としては、KF、KHF、NaHF、NaFまたはCsFが好ましい。該反応は、溶媒の存在下に行っても無溶媒下に行ってもよく、極性溶媒の存在下に行うのが好ましい。極性溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、1,4−ジオキサン、ジクライム、メタノール等の有機極性溶媒が好ましい。
It is preferable to perform reaction of the following compound (a2-8) and the following compound (a2-7) using 2-5 times mole of compound (a2-7) with respect to compound (a2-8).
The reaction is preferably performed in the presence of a metal fluoride. As the metal fluoride, KF, KHF 2 , NaHF 2 , NaF or CsF is preferable. The reaction may be performed in the presence of a solvent or in the absence of a solvent, and is preferably performed in the presence of a polar solvent. As the polar solvent, organic polar solvents such as dimethylformamide, dimethylacetamide, 1,4-dioxane, diclime, and methanol are preferable.

化合物(a2−6)のフッ素化反応は、電気化学的フッ素化法(ECF法)、コバルトフッ素化法、気相フッ素化法、または液相フッ素化法を用いるのが好ましく、反応収率の観点から液相フッ素化法を用いるのが特に好ましい。液相フッ素化法は、溶媒中の化合物(a2−6)とフッ素とを反応せしめる方法によって実施できる。
化合物(a2−5)の熱分解反応は、公知の手法を用いることができる。
The fluorination reaction of the compound (a2-6) is preferably performed using an electrochemical fluorination method (ECF method), a cobalt fluorination method, a gas phase fluorination method, or a liquid phase fluorination method. It is particularly preferable to use the liquid phase fluorination method from the viewpoint. The liquid phase fluorination method can be carried out by a method of reacting the compound (a2-6) and fluorine in a solvent.
A known method can be used for the thermal decomposition reaction of the compound (a2-5).

化合物(a2−7)の具体例としては、下記の化合物が挙げられる。なお化合物(a2−7s)は、化合物(a2−8)とエピクロルヒドリンをAgFの存在下に反応させる方法を用いて製造するのが好ましい。   Specific examples of the compound (a2-7) include the following compounds. Compound (a2-7s) is preferably produced using a method in which compound (a2-8) and epichlorohydrin are reacted in the presence of AgF.

Figure 0004788267
Figure 0004788267

本発明の重合体は−SOF基を必須とする重合体であり、−SOF基の一部または全部(好ましくは全部。)を−SO(SO基(ただし、式中の記号は前記と同じ意味を示す。以下同じ。)に化学変換することによりイオン伝導性に優れるフルオロポリマーに化学変換するのが好ましい。
本発明は、下記モノマー単位(B)を含むフルオロポリマー(以下、単にフルオロポリマーという。)を提供する。
The polymer of the present invention is a polymer essentially containing -SO 2 F groups, some or all of the -SO 2 F groups (preferably all.) The -SO 2 Y - (SO 2 R f) s M Chemical conversion to a fluoropolymer having excellent ionic conductivity is preferred by chemical conversion to a + group (wherein the symbols in the formula have the same meaning as described above, the same shall apply hereinafter).
The present invention provides a fluoropolymer (hereinafter simply referred to as a fluoropolymer) containing the following monomer unit (B).

Figure 0004788267
Figure 0004788267

式−(SO(SO)M基(以下、単にイオン性基という。)で表される基は、Yが酸素原子でありsが0である−SO 、Yが窒素原子でありsが1である−(SOSO)M、またはYが炭素原子でありsが2である−(SO(SO)Mが好ましい。
としては、H、アルカリ金属カチオンまたは式N(Rで表されるアンモニウム(ただし、式中の4つのRは同一であっても異なっていてもよく、それぞれ独立に、水素原子または炭素数1〜6のアルキル基を示す。)が好ましく、H、リチウムイオン、ナトリウムイオン、カリウムイオン、NH 、N(CH またはN(CHCHCHCH がより好ましい。
としては、炭素数1〜6のペルフルオロアルキル基が好ましく、−CFまたは−CFCFがより好ましい。
Formula - (SO 2 Y - (SO 2 R f) s) M + group group represented by (. Hereinafter, simply referred to as ionic groups), -SO 3 Y is an oxygen atom s is 0 - M +, Y is is s is 1 nitrogen atom - (SO 2 N - SO 2 R f) M +, or Y is and s is 2 carbon atoms - (SO 2 C - (SO 2 R f ) 2 ) M + is preferred.
The M +, H +, alkali metal cations or ammonium of formula N + (R B) 4 (provided that four R B in the formula may be the same or different and each independently Represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.), H + , lithium ion, sodium ion, potassium ion, NH 4 + , N (CH 3 ) 4 + or N (CH 2 CH 2 CH 2 CH 3 ) 4 + is more preferred.
R f is preferably a C 1-6 perfluoroalkyl group, more preferably —CF 3 or —CF 2 CF 3 .

フルオロポリマーは、重合体Aを公知の手法を用いて処理することにより製造できる。
イオン性基のYが酸素原子であるフルオロポリマーのうち−SO (ただし、M はアルカリ金属イオンを示す。)を有するフルオロポリマーは、重合体Aをアルカリ金属水酸化物を含有する水溶液中で処理する方法により製造できる。アルカリ金属水酸化物としては、水酸化ナトリウムまたは水酸化カリウムが好ましい。
The fluoropolymer can be produced by treating the polymer A using a known method.
Among the fluoropolymers in which Y of the ionic group is an oxygen atom, a fluoropolymer having —SO 3 M 1 + (wherein M 1 + represents an alkali metal ion) represents polymer A as an alkali metal hydroxide. It can manufacture by the method of processing in the aqueous solution containing this. As the alkali metal hydroxide, sodium hydroxide or potassium hydroxide is preferable.

イオン性基が−SOHであるフルオロポリマーは、前記方法によって得たイオン性基が−SO であるフルオロポリマーを、さらに酸性水溶液中で処理する方法により製造できる。酸性水溶液としては、硫酸水溶液または塩酸溶液が好ましい。
イオン性基が−SO (Rであるフルオロポリマーは、イオン性基が−SO または−SOHであるフルオロポリマーを式N(Rで表される化合物を含む水溶液中で処理する方法により製造できる。
イオン性基のYが窒素原子であるフルオロポリマーのうち−(SO(SO))Mを有するフルオロポリマーは、重合体Aと(RSONH)を、アルカリ金属炭酸塩またはアルカリ金属フッ化物の存在下に反応させる方法により製造できる。アルカリ金属炭酸塩としてはNaCO、KCOが挙げられる。アルカリ金属フッ化物としてはNaF、KFが挙げられる。
Fluoropolymers ionic group is -SO 3 H, the ionic group was obtained by the method -SO 3 - fluoropolymer is M 1 +, can be prepared by methods further treated with an acid aqueous solution. As the acidic aqueous solution, a sulfuric acid aqueous solution or a hydrochloric acid solution is preferable.
-SO 3 ionic groups - N + (R B) fluoropolymer is 4, the ionic groups are -SO 3 - in M 1 + or -SO 3 H in which the fluoropolymer of formula N (R B) 3 It can manufacture by the method of processing in the aqueous solution containing the compound represented.
Among fluoropolymers Y ionizable group is a nitrogen atom - (SO 2 N - (SO 2 R f)) fluoropolymer having a M + is a polymer A (R f SO 2 NH 2 ), alkali It can be produced by a method of reacting in the presence of a metal carbonate or an alkali metal fluoride. Examples of the alkali metal carbonate include Na 2 CO 3 and K 2 CO 3 . Examples of the alkali metal fluoride include NaF and KF.

フルオロポリマーを固体高分子電解質(特に燃料電池用の固体高分子電解質。)の材料として使用する場合、フルオロポリマーのイオン性基は−SOH基が好ましい。またフルオロポリマーの軟化温度は、90℃以上が好ましく、100℃以上がより好ましく、120℃以上が特に好ましい。フルオロポリマーの数平均分子量の下限は、機械的強度の観点から、好ましくは5000が好ましく、10000がより好ましく、20000が特に好ましい。フルオロポリマーの数平均分子量の上限は、溶媒溶解性と成形加工性の観点から、500万が好ましく、200万がより好ましい。 When the fluoropolymer is used as a material for a solid polymer electrolyte (particularly a solid polymer electrolyte for a fuel cell), the ionic group of the fluoropolymer is preferably a —SO 3 H group. The softening temperature of the fluoropolymer is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. From the viewpoint of mechanical strength, the lower limit of the number average molecular weight of the fluoropolymer is preferably 5000, more preferably 10,000, and particularly preferably 20000. The upper limit of the number average molecular weight of the fluoropolymer is preferably 5 million and more preferably 2 million from the viewpoints of solvent solubility and moldability.

本発明のフルオロポリマーは高い軟化温度を有するスルホン酸ポリマーであり、固体高分子電解質、特に燃料電池用の固体高分子電解質として有用である。本発明のフルオロポリマーを有効成分とする固体高分子電解質からなる固体高分子型の燃料電池は、高温で運転(たとえば、120℃での運転。)が可能である。   The fluoropolymer of the present invention is a sulfonic acid polymer having a high softening temperature, and is useful as a solid polymer electrolyte, particularly a solid polymer electrolyte for a fuel cell. A solid polymer fuel cell comprising a solid polymer electrolyte containing the fluoropolymer of the present invention as an active ingredient can be operated at a high temperature (for example, operation at 120 ° C.).

以下に本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。
実施例においては、CF=CFをTFEと、CF=CFOCFCF(CF)OCFCFSOFをPSVEと、((CHCHOC(O)O)をIPPと、アゾビスイソブチロニトリルをAIBNと、CClFCFCHClFをR−225cbと、N,N−ジメチルスルホキシドをDMSOと、CFCFCFOCF(CF)CFOCF(CF)COFを(HFPO)と、それぞれ略記する。圧力は、特に記載しない限りゲージ圧で示す。
軟化温度は、動的粘弾性測定法にしたがいフルオロポリマーを酸処理して得られるフィルムの貯蔵弾性率を1Hzの動的粘弾性測定および2℃/minの昇温速度の条件にて測定し50℃における接線と貯蔵弾性率5×10Paにおける接線の交点より求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
In an embodiment, CF 2 = CF 2 is TFE, CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F is PSVE, and ((CH 3 ) 2 CHOC (O) O) 2 is IPP. Azobisisobutyronitrile AIBN, CClF 2 CF 2 CHClF R-225cb, N, N-dimethyl sulfoxide DMSO, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF is abbreviated as (HFPO) 3 respectively. The pressure is indicated by gauge pressure unless otherwise specified.
The softening temperature is determined by measuring the storage elastic modulus of a film obtained by acid treatment of a fluoropolymer according to a dynamic viscoelasticity measurement method under the conditions of dynamic viscoelasticity measurement of 1 Hz and a temperature increase rate of 2 ° C./min. It calculated | required from the intersection of the tangent in ° C and the tangent in storage elastic modulus 5x10 7 Pa.

[例1]化合物(a11)の製造例   [Example 1] Production Example of Compound (a11)

Figure 0004788267
Figure 0004788267

[例1−1]化合物(a11−5)の製造例
(CHCSNa(100g)、CFC(O)OCHCHCl(166g)、および1,4−ジオキサン(1500mL)をオートクレーブ(内容積2500mL)に仕込み、凍結脱気を行った。オートクレーブの内温を20〜30℃に保持しながらTFE(200g)をオートクレーブに供給した。オートクレーブ内を20℃にして3時間撹拌し、さらに50℃にして2時間撹拌して反応を行った。つぎにオートクレーブを冷却しTFEを開放して反応を終了した。
[Example 1-1] Production of Compound (a11-5) (CH 3) 3 CS - Na + (100g), CF 3 C (O) OCH 2 CH 2 Cl (166g), and 1,4-dioxane ( (1500 mL) was charged into an autoclave (internal volume 2500 mL), and freeze deaeration was performed. TFE (200 g) was supplied to the autoclave while maintaining the internal temperature of the autoclave at 20 to 30 ° C. The reaction was carried out by bringing the inside of the autoclave to 20 ° C. and stirring for 3 hours and further to 50 ° C. and stirring for 2 hours. Next, the autoclave was cooled and TFE was released to complete the reaction.

オートクレーブ内容物を水中に投入して得られた2層分離液の下層の液を回収した。同様の反応と回収を計2回行って得た下層の液を、水洗し硫酸マグネシウムで乾燥してから減圧蒸留して、(80〜85)℃/(267〜400)Paの留分(253g)を得た。留分を分析した結果、上記化合物(a11−5)の生成を確認した。   The lower layer liquid of the two-layer separated liquid obtained by putting the autoclave contents into water was recovered. The lower layer liquid obtained by performing the same reaction and recovery twice in total was washed with water, dried over magnesium sulfate, and then distilled under reduced pressure to obtain a fraction (253 g) at (80 to 85) ° C./(267 to 400) Pa. ) As a result of analyzing the fraction, the production of the compound (a11-5) was confirmed.

化合物(a11−5)のH−NMR(300.4MHz、溶媒:CDCl、基準:Si(CH)δ(ppm):1.53ppm(9H)、4.20〜4.35ppm(4H)。
化合物(a11−5)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−79.45ppm(3F)、−84.30ppm(2F)、−118.80ppm(2F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: Si (CH 3 ) 4 ) δ (ppm): 1.53 ppm (9H), 4.20 to 4.35 ppm of compound (a11-5) 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm) of compound (a11-5): −79.45 ppm (3F), −84.30 ppm (2F), −118. 80 ppm (2F).

[例1−2]化合物(a11−3)の製造例
30℃以下に保持した75体積%のアセトニトリル水溶液(1L)中に、塩素ガスを導入しながら例1−1で得た化合物(a11−5)(105g)を含むアセトニトリル(200mL)を滴下した。滴下終了後、塩素ガスの導入を停止してからアセトニトリル水溶液中の塩素をパージした。つぎにアセトニトリル水溶液を過剰の水中に加えて得た2層分離液の下層の液(211g)を回収した。
[Example 1-2] Production Example of Compound (a11-3) Compound (a11-) obtained in Example 1-1 while introducing chlorine gas into a 75 vol% acetonitrile aqueous solution (1 L) kept at 30 ° C or lower. 5) Acetonitrile (200 mL) containing (105 g) was added dropwise. After completion of dropping, the introduction of chlorine gas was stopped, and then chlorine in the acetonitrile aqueous solution was purged. Next, the lower layer liquid (211 g) of the two-layer separated liquid obtained by adding an aqueous acetonitrile solution to excess water was recovered.

つぎに下層の液(100g)に、アセトニトリル(200g)と水(150g)を加えてからKHF(40g)を加えて25℃にて48時間撹拌した。つぎに水を加えて得られた2層分離液の下層の液を回収した。さらに下層の液を水洗し硫酸マグネシウムで乾燥してから減圧蒸留して、(53〜54)℃/(533〜667)Paの留分(41g)を得た。留分を分析した結果、上記化合物(a11−3)の生成を確認した。 Next, acetonitrile (200 g) and water (150 g) were added to the lower layer liquid (100 g), KHF 2 (40 g) was added, and the mixture was stirred at 25 ° C. for 48 hours. Next, the lower layer liquid of the two-layer separated liquid obtained by adding water was recovered. Further, the lower layer liquid was washed with water, dried over magnesium sulfate, and distilled under reduced pressure to obtain a fraction (41 g) at (53 to 54) ° C./(533 to 667) Pa. As a result of analyzing the fraction, the production of the compound (a11-3) was confirmed.

化合物(a11−3)のH−NMR(300.4MHz、溶媒:CDCl、基準:Si(CH)δ(ppm):4.34ppm(4H)。
化合物(a11−3)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):44.55ppm(1F)、−79.53ppm(3F)、−107.00ppm(2F)、−118.05ppm(2F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: Si (CH 3 ) 4 ) δ (ppm) of compound (a11-3): 4.34 ppm (4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 44.55 ppm (1F), −79.53 ppm (3F), −107.00 ppm of compound (a11-3) (2F), -118.05 ppm (2F).

[例1−3]化合物(a11−1)の製造例
水銀UVランプの照射下、40〜50℃にて例1−2と同様の方法で得た留分(106g)に塩素ガスをバブリングしてから、過剰の塩素ガスをパージしてから粗生成物を得た。粗生成物を減圧蒸留して、(74〜76)℃/(267〜400)Paの留分(133g)を得た。留分をガスクロマトグラフィー分析とH−NMRを用いた分析した結果、上記化合物(a11−2)の生成を確認した。
[Example 1-3] Production example of compound (a11-1) Under irradiation with a mercury UV lamp, chlorine gas was bubbled into a fraction (106 g) obtained in the same manner as in Example 1-2 at 40 to 50 ° C. Then, after purging excess chlorine gas, a crude product was obtained. The crude product was distilled under reduced pressure to obtain a fraction (133 g) of (74 to 76) ° C./(267 to 400) Pa. As a result of analyzing the fraction using gas chromatography analysis and 1 H-NMR, it was confirmed that the compound (a11-2) was produced.

還流器を備えた反応器に、留分(132g)、5塩化アンチモン(17g)および3フッ化アンチモン(51g)を加えて、150℃にて4時間、加熱還流した。つぎに反応器内を減圧留去して得た粗生成物を、水で2回の洗浄し、さらに飽和炭酸水素ナトリウム水溶液で1回の洗浄してから硫酸マグネシウムで乾燥した。粗生成物を減圧蒸留して、62℃/2133Paの留分(110g)を得た。留分を分析した結果、上記化合物(a11−1)の生成を確認した。   A fraction (132 g), antimony pentachloride (17 g) and antimony trifluoride (51 g) were added to a reactor equipped with a refluxer, and the mixture was heated to reflux at 150 ° C. for 4 hours. Next, the crude product obtained by distilling off the inside of the reactor under reduced pressure was washed twice with water, further washed once with a saturated aqueous sodium hydrogen carbonate solution and then dried over magnesium sulfate. The crude product was distilled under reduced pressure to obtain a fraction (110 g) of 62 ° C./2133 Pa. As a result of analyzing the fraction, the production of the compound (a11-1) was confirmed.

化合物(a11−1)の19F−NMRデータ(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.20(1F)、−49.5〜−57.5ppm(2F)、−78.7〜−79.5ppm(3F)、−107.46ppm(2F)、−117.7〜−118.7ppm(2F)。 19 F-NMR data (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.20 (1F), −49.5 to −57.5 ppm (2F) of compound (a11-1) ), −78.7 to −79.5 ppm (3F), −107.46 ppm (2F), −117.7 to −118.7 ppm (2F).

[例1−4]化合物(a11)の製造例
塩酸水溶液を用いて活性化した乾燥亜鉛(28g)とN,N−ジメチルホルムアミド(90mL)を反応器に加え、反応器の内温を50℃に保持しながらジブロモエタン(4g)を反応器に除々に滴下した。滴下終了後、反応器の内温を60℃に保持しながら反応器の内圧を3.6kPaまで減圧し、例1−3で得た留分(30g)を反応器に滴下した。
[Example 1-4] Production Example of Compound (a11) Dry zinc (28 g) activated with an aqueous hydrochloric acid solution and N, N-dimethylformamide (90 mL) were added to the reactor, and the internal temperature of the reactor was 50 ° C. Dibromoethane (4 g) was gradually added dropwise to the reactor. After completion of the dropwise addition, the internal pressure of the reactor was reduced to 3.6 kPa while maintaining the internal temperature of the reactor at 60 ° C., and the fraction (30 g) obtained in Example 1-3 was dropped into the reactor.

反応器から留出する液体の留出が停止するまで留出液を補集した。さらに内圧を2kPaまで減圧し留出する液体を該留出液と併せて補集して反応粗液を得た。反応粗液を水洗し硫酸マグネシウムで乾燥してから反応液を得た。同様の反応を繰り返し行い、併せて315gの反応液を得た。   The distillate was collected until the distillation of the liquid distilling from the reactor stopped. Further, the internal pressure was reduced to 2 kPa, and the liquid distilled was collected together with the distillate to obtain a reaction crude liquid. The reaction crude liquid was washed with water and dried over magnesium sulfate to obtain a reaction liquid. The same reaction was repeated to obtain 315 g of a reaction solution.

反応液(80g)を、スピニングバンド型蒸留機を用いて減圧蒸留して(38〜39)℃/4kPaの留分(15g)を得た。留分を分析した結果、上記化合物(a11)の生成を確認した。   The reaction liquid (80 g) was distilled under reduced pressure using a spinning band distiller (38 to 39) to obtain a fraction (15 g) at 4 ° C./4 kPa. As a result of analyzing the fraction, formation of the compound (a11) was confirmed.

化合物(a11)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.07(1F)、−82.08ppm(3F)、−108.12ppm(2F)、−120.89(2F)、−158.02(2F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.07 (1F), −82.08 ppm (3F), −108.12 ppm (2F) of compound (a11) ), -120.89 (2F), -158.02 (2F).

[例2]化合物(a21)の製造例   [Example 2] Production example of compound (a21)

Figure 0004788267
Figure 0004788267

[例2−1]化合物(a21−6)の製造例
乾燥した粉末状フッ化カリウム(58g)とジグライム(465g)を冷却したフラスコに加えてから、サルトン(1800g)をさらにフラスコに加えた。得られたフラスコ内容物とプロピレンオキサイド(290g)をオートクレーブに加え、内温を90℃に保持して5時間、撹拌して反応を行った。
Example 2-1 Production Example of Compound (a21-6) Dry powdered potassium fluoride (58 g) and diglyme (465 g) were added to a cooled flask, and then sultone (1800 g) was further added to the flask. The obtained flask contents and propylene oxide (290 g) were added to an autoclave, and the reaction was carried out with stirring for 5 hours while maintaining the internal temperature at 90 ° C.

オートクレーブの内温を25℃にしてからオートクレーブ内容物を回収し、ろ過してろ液を得た。ろ液を分析した結果、上記化合物(a21−6)とFSOCFCFOCH(CH)CHOC(O)CFSOFの生成を確認した。ろ液を水洗し硫酸マグネシウムで乾燥してから減圧蒸留して、(61〜63)℃/(17.7〜35.5)kPaの留分(1200g)を得た。留分を分析した結果、留分は上記化合物(a21−6)とFSOCFCFOCH(CH)CHOC(O)CFSOFを、約1:1(質量比)の比で含む混合物であることを確認した。 After the internal temperature of the autoclave was set to 25 ° C., the contents of the autoclave were collected and filtered to obtain a filtrate. As a result of analyzing the filtrate, it was confirmed that the compound (a21-6) and FSO 2 CF 2 CF 2 OCH (CH 3 ) CH 2 OC (O) CF 2 SO 2 F were formed. The filtrate was washed with water, dried over magnesium sulfate, and distilled under reduced pressure to obtain a fraction (1200 g) at (61-63) ° C./(17.7-35.5) kPa. As a result of analyzing the fraction, the fraction was about 1: 1 (mass ratio) of the above compound (a21-6) and FSO 2 CF 2 CF 2 OCH (CH 3 ) CH 2 OC (O) CF 2 SO 2 F. It was confirmed that the mixture contained at a ratio of

留分の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):40.6〜44.0ppm(2F)、−82.0〜−85.0ppm(2F)、−103.5〜−104.5ppm(2F)、−111.7ppm(2F)。 19 F-NMR of fraction (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 40.6-44.0 ppm (2F), -82.0--85.0 ppm (2F) -103.5 to -104.5 ppm (2F), -111.7 ppm (2F).

[例2−2]化合物(a21−5)の製造例
オートクレーブ(内容積3000mL、ステンレス鋼製)に、(HFPO)(4200g)を加えて撹拌した。オートクレーブのガス出口には、熱交換器、NaFペレット充填層、および凝集した液体をオートクレーブに戻す液体返送ラインを直列に配置された循環路を設置した。さらに300L/時間の能力を有するベローズポンプを使用してオートクレーブ内の(HFPO)を循環させてオートクレーブの内温を10℃に保持した。
[Example 2-2] Production Example of Compound (a21-5) (HFPO) 3 (4200 g) was added to an autoclave (internal volume 3000 mL, made of stainless steel) and stirred. At the gas outlet of the autoclave, a heat exchanger, a NaF pellet packed bed, and a circulation path arranged in series with a liquid return line for returning the condensed liquid to the autoclave were installed. Further, (HFPO) 3 in the autoclave was circulated using a bellows pump having a capacity of 300 L / hour to maintain the internal temperature of the autoclave at 10 ° C.

窒素ガスで20%に希釈したフッ素ガス(以下、20%希釈フッ素ガスと記す)を循環路に設置したイジェクタ(ステンレス製)から88.5L/時間の流速で連続的に供給し1時間循環させた。   Fluorine gas diluted to 20% with nitrogen gas (hereinafter referred to as 20% diluted fluorine gas) is continuously supplied from an ejector (stainless steel) installed in the circulation path at a flow rate of 88.5 L / hour and circulated for 1 hour. It was.

つぎに20%希釈フッ素ガスの供給を継続しながら、例2−1で得た混合物(200g)をR−113(1000g)に希釈した原料溶液を循環路に設置した原料供給管から85g/時間の流速で連続的に供給しながら、オートクレーブ内容物の液体体積を一定に保持するためにオートクレーブ内容物を連続的に抜き出した。原料溶液の供給後、さらに20%希釈フッ素ガスを同じ流量で16時間、供給した。   Next, while continuing the supply of 20% diluted fluorine gas, a raw material solution obtained by diluting the mixture (200 g) obtained in Example 2-1 to R-113 (1000 g) was supplied from a raw material supply pipe installed in a circulation path to 85 g / hour. The autoclave contents were continuously withdrawn in order to keep the liquid volume of the autoclave contents constant while continuously feeding at a flow rate of. After supplying the raw material solution, 20% diluted fluorine gas was further supplied at the same flow rate for 16 hours.

窒素ガスをオートクレーブに3時間、吹き込んでからオートクレーブ内容液を抜き出して反応液を得た。反応液を19F−NMRを用いて分析した結果、上記化合物(a21−5)とFSOCFCFOCF(CF)CFOC(O)CFCFSOFの生成を確認した。 Nitrogen gas was blown into the autoclave for 3 hours, and then the content of the autoclave was withdrawn to obtain a reaction solution. As a result of analyzing the reaction solution using 19 F-NMR, it was confirmed that the compound (a21-5) and FSO 2 CF 2 CF 2 OCF (CF 3 ) CF 2 OC (O) CF 2 CF 2 SO 2 F were formed. did.

[例2−3]化合物(a21−4)の製造例
例2−2と同様の方法で得た反応液(1200g)中の(HFPO)を留去した反応液とフッ化カリウム(7g)を還流器を備えたフラスコに加えてから、内温を80℃に保持して3時間、加熱した。つぎにフラスコの内圧を除々に減圧しフラスコの内温を昇温させて、(70〜82)℃/(13〜35)kPaの留分(360g)を得た。留分を分析した結果、留分は上記化合物(a21−4)とFSOCFCFOCF(CF)COFを8:2(質量比)の比で含む混合物であることを確認した。
[Example 2-3] Production example of compound (a21-4) Reaction solution obtained by distilling off (HFPO) 3 in the reaction solution (1200 g) obtained in the same manner as in Example 2-2, and potassium fluoride (7 g) Was added to a flask equipped with a reflux, and then heated for 3 hours while maintaining the internal temperature at 80 ° C. Next, the internal pressure of the flask was gradually reduced to raise the internal temperature of the flask to obtain a fraction (360 g) of (70 to 82) ° C./(13 to 35) kPa. As a result of analyzing the fraction, it was confirmed that the fraction was a mixture containing the compound (a21-4) and FSO 2 CF 2 CF 2 OCF (CF 3 ) COF in a ratio of 8: 2 (mass ratio).

[例2−4]化合物(a21−3)の製造例
例2−3で得た留分(350g)とNaF(130g)をフラスコに加え、フラスコ内を撹拌しながらCH(OH)CHBr(258g)を滴下した。滴下終了後、フラスコの内温を25℃に保持して、さらに3時間、フラスコ内を撹拌した。つぎにフラスコ内容物をろ過して得たろ液を水洗してから硫酸マグネシウムで乾燥して反応粗液(500g)を得た。
[Example 2-4] Production example of compound (a21-3) The fraction (350 g) obtained in Example 2-3 and NaF (130 g) were added to a flask, and CH 2 (OH) CH 2 was stirred while the flask was stirred. Br (258 g) was added dropwise. After completion of the dropwise addition, the temperature inside the flask was kept at 25 ° C., and the inside of the flask was further stirred for 3 hours. Next, the filtrate obtained by filtering the contents of the flask was washed with water and dried over magnesium sulfate to obtain a reaction crude liquid (500 g).

反応粗液(250g)、炭酸水素カリウム(210g)およびアセトニトリル(465g)をフラスコに加えてフラスコ内を撹拌しながら、25℃にて3時間、撹拌した。フラスコ内溶液をろ過したろ液を過剰の水中に投入して得られた2層分離液の下層の液を分離した。同様の反応を計2回行って得た下層の液と下層の液を併せた液を、水洗し硫酸マグネシウムで乾燥してから減圧蒸留して、(52〜55)℃/(400〜530)Paの留分(160g)を得た。留分を分析した結果、上記化合物(a21−3)の生成を確認した。   The reaction crude liquid (250 g), potassium hydrogen carbonate (210 g) and acetonitrile (465 g) were added to the flask, and the mixture was stirred at 25 ° C. for 3 hours while stirring. The filtrate obtained by filtering the solution in the flask was poured into excess water, and the lower layer liquid of the two-layer separated liquid obtained was separated. A solution obtained by combining the lower layer solution and the lower layer solution obtained by performing the same reaction twice in total was washed with water, dried over magnesium sulfate, and distilled under reduced pressure to obtain (52 to 55) ° C./(400 to 530). A fraction of Pa (160 g) was obtained. As a result of analyzing the fraction, the production of the compound (a21-3) was confirmed.

化合物(a21−3)のH−NMR(300.4MHz、溶媒CDCl、基準:Si(CH)δ(ppm):4.31ppm(4H)。
化合物(a21−3)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):45.18ppm(1F)、−79.96ppm(3F)、−82.30ppm(2F)、−82.65ppm(2F)、−112.31ppm(2F)。
1 H-NMR (300.4 MHz, solvent CDCl 3 , standard: Si (CH 3 ) 4 ) δ (ppm) of compound (a21-3): 4.31 ppm (4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 45.18 ppm (1F), −79.96 ppm (3F), −82.30 ppm of the compound (a21-3) (2F), -82.65 ppm (2F), -112.31 ppm (2F).

[例2−5]化合物(a21−1)の製造例
例2−4で得た留分を用いる以外は、例1−3と同様の方法で反応を行って上記化合物(a21−1)を得た。
化合物(a21−1)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):45.65ppm(1F)、−49.8〜−58.1ppm(2F)、−79.1〜−80.0ppm(3F)、−81.5〜−83.2ppm(4F)、−112.2〜−112.8ppm(2F)。
[Example 2-5] Production example of compound (a21-1) Except for using the fraction obtained in Example 2-4, the reaction was carried out in the same manner as in Example 1-3 to give the compound (a21-1). Obtained.
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 45.65 ppm (1F), −49.8 to −58.1 ppm (2F) of compound (a21-1) -79.1 to -80.0 ppm (3F), -81.5 to -83.2 ppm (4F), -112.2 to -112.8 ppm (2F).

[例2−6]化合物(a21)の製造例
例2−5で得た化合物(a21−1)を用いる以外は、例1−4と同様の方法で反応を行って上記化合物(a21)を得た。
化合物(a21)の19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):45.20ppm(1F)、−82.20ppm(3F)、−82.45ppm(2F)、−85.08ppm(2F)、−112.63ppm(2F)、−158.43ppm(2F)。
[Example 2-6] Production Example of Compound (a21) The compound (a21) was reacted in the same manner as in Example 1-4 except that the compound (a21-1) obtained in Example 2-5 was used. Obtained.
19 F-NMR of compound (a21) (282.7 MHz, solvent CDCl 3 , standard: CFCl 3 ) δ (ppm): 45.20 ppm (1F), −82.20 ppm (3F), −82.45 ppm (2F) -85.08 ppm (2F), -112.63 ppm (2F), -158.43 ppm (2F).

[例3]重合体(A11−1)の製造例
オートクレーブ(内容積30mL)に、化合物(a11)(3.6g)、R−225cb(27g)、およびIPP(15mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を40℃に保持し、オートクレーブ内を撹拌しながら内圧が0.15MPaになるまでTFEを導入した。つづいて、内圧を0.15MPaに保持するようにTFEを連続的に導入しながら7時間、反応を行った。
[Example 3] Production example of polymer (A11-1) Compound (a11) (3.6 g), R-225cb (27 g), and IPP (15 mg) were charged into an autoclave (internal volume 30 mL), and freeze deaeration was performed. Went. Next, the internal temperature of the autoclave was kept at 40 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 0.15 MPa. Subsequently, the reaction was carried out for 7 hours while continuously introducing TFE so as to maintain the internal pressure at 0.15 MPa.

つぎにオートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収しヘキサンで3回洗浄してから、80℃にて12時間、真空乾燥して重合体(以下、単に重合体(A11−1)という。)(3.4g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were collected and washed three times with hexane, and then vacuum-dried at 80 ° C. for 12 hours to obtain a polymer (hereinafter simply referred to as polymer (A11-1)) (3.4 g). Obtained.

重合体(A11−1)を19F−NMR(基準:ヘキサフルオロベンゼン)とIRにより解析した結果、全モノマー単位に対する下記モノマー単位(A11)の割合は26.4モル%であり、−CFCF−単位の割合は73.6モル%であった。重合体(A11−1)中の−SOFの1個あたりの分子量は637であった。 As a result of analyzing the polymer (A11-1) by 19 F-NMR (standard: hexafluorobenzene) and IR, the ratio of the following monomer unit (A11) to all monomer units is 26.4 mol%, and —CF 2 The proportion of CF 2 -units was 73.6 mol%. The molecular weight of each of —SO 2 F in the polymer (A11-1) was 637.

Figure 0004788267
Figure 0004788267

[例4]重合体(A11−1N)の製造例
重合体(A11−1)を熱プレス法により膜厚100μmのフィルムに加工し、フィルムをKOH/HO/DMSO=30/65/5(質量比)の割合で混合した水溶液に90℃にて17時間、浸漬させた。つぎに25℃にて、水で3回洗浄し2mol/Lの硫酸水溶液に2時間、浸漬させた。水洗と硫酸浸漬を3回ずつ繰り返し、さらに3回、水洗を行った。
Example 4 Production Example of Polymer (A11-1N) The polymer (A11-1) was processed into a film having a thickness of 100 μm by a hot press method, and the film was KOH / H 2 O / DMSO = 30/65/5. It was immersed in an aqueous solution mixed at a ratio of (mass ratio) at 90 ° C. for 17 hours. Next, it was washed with water three times at 25 ° C. and immersed in a 2 mol / L sulfuric acid aqueous solution for 2 hours. Washing with water and sulfuric acid immersion were repeated three times, and further three times with water.

つづいてフィルムを80℃にて16時間風乾し、さらに真空乾燥して淡褐色の乾燥フィルムを得た。動的粘弾性測定によるフィルムの軟化温度は152℃であった。また乾燥フィルムをIRを用いて分析した結果、フィルムにはカルボキシル基に起因するスペクトルが観測された。   Subsequently, the film was air-dried at 80 ° C. for 16 hours and further vacuum-dried to obtain a light brown dry film. The softening temperature of the film as measured by dynamic viscoelasticity was 152 ° C. Further, as a result of analyzing the dried film using IR, a spectrum due to the carboxyl group was observed in the film.

恒温恒湿(80℃、95%RH)下の交流(10kHz、1ボルト)条件にて、5mm間隔で電極が配置された基盤に乾燥フィルム(5mm幅)を密着させる4端子法を用いて乾燥フィルム(5mm幅)の比抵抗を測定した結果、3.3Ω・cmであった。   Dry using a four-terminal method in which a dry film (5 mm width) is adhered to a substrate on which electrodes are arranged at intervals of 5 mm under conditions of alternating current (10 kHz, 1 volt) under constant temperature and humidity (80 ° C., 95% RH). The specific resistance of the film (5 mm wide) was measured and found to be 3.3 Ω · cm.

[例5]重合体(A11−1F)の製造例
オートクレーブ(ハステロイ製)に重合体(A11−1)を入れ、オートクレーブ内雰囲気を脱気した。つぎにオートクレーブに窒素ガスで20体積%に希釈したフッ素ガスを内圧が0.3MPaになるまで導入し、内温を180℃に保持して4時間、フッ素化処理を行い重合体(以下、単に重合体(A11−1F)という。)を得た。重合体(A11−1F)を、例4と同様の方法を用いて処理して得たフィルムには着色は観察されなかった。またフィルムを、IRを用いて分析した結果、フィルムにはカルボキシル基の吸収が認められなかった。
[Example 5] Production example of polymer (A11-1F) The polymer (A11-1) was put into an autoclave (manufactured by Hastelloy), and the atmosphere inside the autoclave was deaerated. Next, fluorine gas diluted to 20% by volume with nitrogen gas was introduced into the autoclave until the internal pressure became 0.3 MPa, and the polymer was subjected to fluorination treatment for 4 hours while maintaining the internal temperature at 180 ° C. A polymer (referred to as A11-1F) was obtained. Coloring was not observed in the film obtained by treating the polymer (A11-1F) using the same method as in Example 4. Moreover, as a result of analyzing a film using IR, absorption of the carboxyl group was not recognized by the film.

[例6]重合体(A11−2)の製造例
オートクレーブ(内容積30mL)に、化合物(a11)(3.6g)、R−225cb(27g)、IPP(15mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を40℃に保持し、オートクレーブ内を撹拌しながら内圧が0.16MPaになるまでTFEを導入した。つづいて、内圧を0.16MPaに保持するようにTFEを連続的に導入して4時間、反応を行った。
[Example 6] Production example of polymer (A11-2) Compound (a11) (3.6 g), R-225cb (27 g) and IPP (15 mg) were charged into an autoclave (internal volume 30 mL), and freeze deaeration was performed. went. Next, the internal temperature of the autoclave was maintained at 40 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 0.16 MPa. Subsequently, TFE was continuously introduced so as to maintain the internal pressure at 0.16 MPa, and the reaction was performed for 4 hours.

つぎにオートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収しヘキサンで3回洗浄してから、80℃にて12時間の真空乾燥を行い、重合体(以下、単に重合体(A11−2)という。)(1.8g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were collected and washed three times with hexane, and then vacuum dried at 80 ° C. for 12 hours to obtain a polymer (hereinafter simply referred to as polymer (A11-2)) (1.8 g). Got.

重合体(A11−2)を19F−NMR(基準:ヘキサフルオロベンゼン)とIRにより解析した結果、全モノマー単位に対するモノマー単位(A11)の割合は22.2モル%であり、−CFCF−単位の割合は77.8モル%であった。重合体(A11−2)中の−SOFの1個あたりの分子量は708であった。 As a result of analyzing the polymer (A11-2) by 19 F-NMR (standard: hexafluorobenzene) and IR, the ratio of the monomer unit (A11) to the total monomer units was 22.2 mol%, and —CF 2 CF The proportion of 2 -units was 77.8 mol%. The molecular weight per —SO 2 F in the polymer (A11-2) was 708.

[例7]重合体(A11−2N)の製造例
重合体(A11−2)を熱プレス法により膜厚100μmのフィルムに加工し、フィルムをKOH/HO/DMSO=30/65/5(質量比)の割合で混合した水溶液に90℃にて17時間、浸漬させた。つぎに25℃にて、水で3回洗浄してから、2mol/Lの硫酸水溶液に2時間、浸漬させた。水洗と硫酸浸漬を3回ずつ繰り返し、さらに3回、水洗を行った。
[Example 7] Production example of polymer (A11-2N) The polymer (A11-2) was processed into a film having a thickness of 100 µm by a hot press method, and the film was KOH / H 2 O / DMSO = 30/65/5. It was immersed in an aqueous solution mixed at a ratio of (mass ratio) at 90 ° C. for 17 hours. Next, it was washed with water three times at 25 ° C. and then immersed in a 2 mol / L sulfuric acid aqueous solution for 2 hours. Washing with water and sulfuric acid immersion were repeated three times, and further three times with water.

つづいてフィルムを80℃にて16時間風乾してから、真空乾燥して淡褐色の乾燥フィルムを得た。動的粘弾性測定による乾燥フィルムの軟化温度は148℃であり、例4と同様の方法を用いて測定した乾燥フィルムの比抵抗は3.4Ω・cmであった。   Subsequently, the film was air-dried at 80 ° C. for 16 hours and then vacuum-dried to obtain a light brown dry film. The softening temperature of the dry film by dynamic viscoelasticity measurement was 148 ° C., and the specific resistance of the dry film measured using the same method as in Example 4 was 3.4 Ω · cm.

[例8]重合体(A11−3)の製造例
オートクレーブ(内容積30mL)に、化合物(a11)(6.3g)、R−225cb(8.9g)、AIBN(1.5mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を70℃に保持し、オートクレーブ内を撹拌しながら内圧が0.5MPaになるまでTFEを導入した。つづいて、内圧を0.5MPaに保持するようにTFEを連続的に導入して9.5時間、反応を行った。
[Example 8] Production example of polymer (A11-3) Compound (a11) (6.3 g), R-225cb (8.9 g) and AIBN (1.5 mg) were charged into an autoclave (internal volume 30 mL). Freeze deaeration was performed. Next, the internal temperature of the autoclave was maintained at 70 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 0.5 MPa. Subsequently, TFE was continuously introduced so as to maintain the internal pressure at 0.5 MPa, and the reaction was performed for 9.5 hours.

つぎにオートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収し、ヘキサンで3回洗浄してから、80℃にて12時間、真空乾燥して重合体(以下、単に重合体(A11−3)という。)(3.1g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were collected, washed with hexane three times, and then vacuum-dried at 80 ° C. for 12 hours to give a polymer (hereinafter simply referred to as polymer (A11-3)) (3.1 g). Got.

重合体(A11−3)の19F−NMR(基準:ヘキサフルオロベンゼン)とIRにより解析した結果、全モノマー単位に対するモノマー単位(A11)の割合は33.8モル%であり、−CFCF−単位の割合は66.2モル%であった。重合体(A11−3)の−SOF基の1個あたりの分子量は554であった。重合体(A11−3)の分子量をGPC(展開溶媒:R−225cb、標準試料:ポリメタクリル酸メチル)を用いて測定した結果、重量平均分子量は31万であり数平均分子量は18万であった。 The polymer (A11-3) was analyzed by 19 F-NMR (standard: hexafluorobenzene) and IR. As a result, the ratio of the monomer unit (A11) to the total monomer units was 33.8 mol%, and —CF 2 CF The proportion of 2 -units was 66.2 mol%. The molecular weight per one -SO 2 F group of the polymer (A11-3) was 554. As a result of measuring the molecular weight of the polymer (A11-3) using GPC (developing solvent: R-225cb, standard sample: polymethyl methacrylate), the weight average molecular weight was 310,000 and the number average molecular weight was 180,000. It was.

[例9]重合体(A11−4)の製造例
オートクレーブ(内容積30mL)に、化合物(a11)(7.2g)、R−225cb(10.2g)、AIBN(8.7mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を70℃に保持し、オートクレーブ内を撹拌しながら内圧が1.4MPaになるまでTFEを導入した。つづいて内圧が1.4MPaに保持する条件でTFEを連続的に導入し、2時間の反応を行った。
[Example 9] Production example of polymer (A11-4) Compound (a11) (7.2 g), R-225cb (10.2 g), AIBN (8.7 mg) were charged into an autoclave (internal volume 30 mL). Freeze deaeration was performed. Next, the internal temperature of the autoclave was maintained at 70 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 1.4 MPa. Subsequently, TFE was continuously introduced under the condition that the internal pressure was maintained at 1.4 MPa, and the reaction was performed for 2 hours.

つぎにオートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収し、ヘキサンで3回洗浄してから、80℃にて12時間、真空乾燥して重合体(以下、単に重合体(A11−4)という。)(9.0g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were collected, washed with hexane three times, and then vacuum dried at 80 ° C. for 12 hours to give a polymer (hereinafter simply referred to as polymer (A11-4)) (9.0 g). Got.

重合体(A11−4)を熱プレス法により膜厚100μmのフィルムに加工した。該フィルムの表面反射IRを測定した結果、−SOFに起因する1470cm−1の吸収と1,3−ジオキソラン構造を形成するCF構造に起因する1140cm−1の吸収とが確認された。2つの吸収と重合体(A11−1)で確認された吸収を比較した結果、重合体(A11−4)の全モノマー単位に対するモノマー単位(A11)は18モル%であり、−CFCF−単位の割合は82モル%であった。重合体(A11−4)の−SOF基あたりの分子量は814であった。 The polymer (A11-4) was processed into a film having a thickness of 100 μm by a hot press method. As a result of measuring the surface reflection IR of the film, and the absorption of 1140 cm -1 attributable to CF structure forming the absorption and 1,3-dioxolane structure of 1470 cm -1 attributable to the -SO 2 F was confirmed. As a result of comparing the two absorptions and the absorption confirmed by the polymer (A11-1), the monomer unit (A11) was 18 mol% relative to the total monomer units of the polymer (A11-4), and —CF 2 CF 2 The proportion of units was 82 mol%. The molecular weight per —SO 2 F group of the polymer (A11-4) was 814.

[例10]重合体(A11−4N)の製造例
重合体(A11−4)を熱プレス法により膜厚100μmのフィルムに加工し、フィルムをKOH/HO/DMSO=30/65/5(質量比)の割合で混合した水溶液に90℃にて17時間、浸漬させた。つぎにフィルムを25℃にて、水で3回洗浄し、2mol/Lの硫酸水溶液に2時間、浸漬させた。水洗と硫酸浸漬を3回ずつ繰り返し、さらに3回、水洗を行った。つづいてフィルムを80℃にて16時間風乾してから、真空乾燥して乾燥フィルムを得た。例4と同様の方法を用いて測定した乾燥フィルムの比抵抗は5.3Ω・cmであった。
[Example 10] Production example of polymer (A11-4N) The polymer (A11-4) was processed into a film having a thickness of 100 µm by a hot press method, and the film was KOH / H 2 O / DMSO = 30/65/5. It was immersed in an aqueous solution mixed at a ratio of (mass ratio) at 90 ° C. for 17 hours. Next, the film was washed three times with water at 25 ° C. and immersed in a 2 mol / L sulfuric acid aqueous solution for 2 hours. Washing with water and sulfuric acid immersion were repeated three times, and further three times with water. Subsequently, the film was air-dried at 80 ° C. for 16 hours and then vacuum-dried to obtain a dry film. The specific resistance of the dry film measured using the same method as in Example 4 was 5.3 Ω · cm.

[例11]重合体(A21−1)の製造例
オートクレーブ(内容積30mL)に、化合物(a21)(4.0g)、R−225cb(9.6g)、AIBN(3.3mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を70℃に保持し、オートクレーブ内を撹拌しながら内圧が1.0MPaになるまでTFEを導入した。つづいて内圧が1.0MPaに保持する条件でTFEを連続的に導入し、5時間の反応を行った。
[Example 11] Production example of polymer (A21-1) Compound (a21) (4.0 g), R-225cb (9.6 g), AIBN (3.3 mg) were charged into an autoclave (internal volume 30 mL), Freeze deaeration was performed. Next, the internal temperature of the autoclave was maintained at 70 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 1.0 MPa. Subsequently, TFE was continuously introduced under the condition that the internal pressure was maintained at 1.0 MPa, and the reaction was performed for 5 hours.

つぎにオートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収し、ヘキサンで3回洗浄してから、80℃にて12時間、真空乾燥して重合体(以下、単に重合体(A21−1)という。)(1.8g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were collected, washed three times with hexane, and then vacuum-dried at 80 ° C. for 12 hours to give a polymer (hereinafter simply referred to as polymer (A21-1)) (1.8 g). Got.

重合体(A21−1)を19F−NMRにより解析した結果、全モノマー単位に対する下記モノマー単位(A21)は30モル%であり、−CFCF−単位の割合は70モル%であった。重合体(A21−1)中の−SOFの1個あたりの分子量は657であった。重合体(A21−1)の分子量をGPC(展開溶媒:R−225cb、標準試料:ポリメタクリル酸メチル)を用いて測定した結果、重量平均分子量は25万、数平均分子量は14万であった。 As a result of analyzing the polymer (A21-1) by 19 F-NMR, the following monomer unit (A21) with respect to all monomer units was 30 mol%, and the ratio of —CF 2 CF 2 — units was 70 mol%. . The molecular weight of each of —SO 2 F in the polymer (A21-1) was 657. As a result of measuring the molecular weight of the polymer (A21-1) using GPC (developing solvent: R-225cb, standard sample: polymethyl methacrylate), the weight average molecular weight was 250,000 and the number average molecular weight was 140,000. .

Figure 0004788267
Figure 0004788267

[例12]重合体(A21−1N)の製造例
重合体(A21−1)を熱プレス法により膜厚100μmのフィルムに加工し、フィルムをKOH/HO/DMSO=30/65/5(質量比)の割合で混合した水溶液に90℃にて17時間、浸漬させた。つぎにフィルムを25℃にて、水で3回洗浄し、2mol/Lの硫酸水溶液に2時間、浸漬させた。水洗と硫酸浸漬を3回ずつ繰り返し、さらに3回、水洗を行った。
[Example 12] Production example of polymer (A21-1N) The polymer (A21-1) was processed into a film having a thickness of 100 µm by a hot press method, and the film was KOH / H 2 O / DMSO = 30/65/5. It was immersed in an aqueous solution mixed at a ratio of (mass ratio) at 90 ° C. for 17 hours. Next, the film was washed three times with water at 25 ° C. and immersed in a 2 mol / L sulfuric acid aqueous solution for 2 hours. Washing with water and sulfuric acid immersion were repeated three times, and further three times with water.

つづいて80℃にて、フィルムを16時間風乾してから、真空乾燥して乾燥フィルムを得た。動的粘弾性測定による乾燥フィルムの軟化温度は125℃であった。例4と同様の方法を用いて測定した乾燥フィルムの比抵抗は2.2Ω・cmであった。   Subsequently, the film was air-dried at 80 ° C. for 16 hours and then vacuum-dried to obtain a dry film. The softening temperature of the dried film as measured by dynamic viscoelasticity was 125 ° C. The specific resistance of the dry film measured using the same method as in Example 4 was 2.2 Ω · cm.

[例13]重合体(A21−2)の製造例
オートクレーブ(内容積30mL)に、化合物(a21)(4.0g)、R−225cb(9.6g)、AIBN(3.3mg)を仕込み、凍結脱気を行った。つぎにオートクレーブの内温を70℃に保持し、オートクレーブ内を撹拌しながら内圧が1.2MPaになるまでTFEを導入した。つづいて内圧が1.2MPaに保持する条件でTFEを連続的に導入し、3.6時間の反応を行った。
[Example 13] Production example of polymer (A21-2) Compound (a21) (4.0 g), R-225cb (9.6 g), AIBN (3.3 mg) were charged into an autoclave (internal volume 30 mL). Freeze deaeration was performed. Next, the internal temperature of the autoclave was maintained at 70 ° C., and TFE was introduced while stirring the autoclave until the internal pressure reached 1.2 MPa. Subsequently, TFE was continuously introduced under the condition that the internal pressure was maintained at 1.2 MPa, and the reaction was performed for 3.6 hours.

つぎに、オートクレーブを冷却して内圧を開放し、直ちにオートクレーブにヘキサンを投入した。凝集したオートクレーブ内容物を回収し、ヘキサンで3回洗浄してから、80℃にて12時間、真空乾燥して重合体(以下、単に重合体(A21−2)という。)(2.0g)を得た。   Next, the autoclave was cooled to release the internal pressure, and hexane was immediately charged into the autoclave. The agglomerated autoclave contents were recovered, washed with hexane three times, and then vacuum-dried at 80 ° C. for 12 hours to give a polymer (hereinafter simply referred to as polymer (A21-2)) (2.0 g). Got.

重合体(A21−2)を19F−NMRにより解析した結果、全モノマー単位に対するモノマー単位(A21)は23モル%であり、−CFCF−単位の割合は77モル%であり、重合体(A21−2)中の−SOFの1個あたりの分子量は746であった。 As a result of analyzing the polymer (A21-2) by 19 F-NMR, the monomer unit (A21) was 23 mol% with respect to the total monomer units, and the ratio of —CF 2 CF 2 — units was 77 mol%. The molecular weight per —SO 2 F in the combined (A21-2) was 746.

[例14]固体型高分子型の燃料電池の製造例
耐圧オートクレーブ(ハステロイC合金製)に、−SOFの1個あたりの分子量が910のTFE/PSVE共重合体を例4と同様の方法で処理して得た−SOFが−SOHに変換された重合体(1部)とエタノール(9部)を耐圧オートクレーブ(ハステロイC合金製)に加えて分散液(以下、単に電解質液という。)を得た。
[Example 14] solid-state polymer type fuel cell of preparation pressure autoclave (Hastelloy C alloy), the molecular weight per one -SO 2 F are similar to TFE / PSVE copolymer 910 and Example 4 The polymer (1 part) in which —SO 2 F obtained by the method is converted to —SO 3 H and ethanol (9 parts) are added to a pressure-resistant autoclave (manufactured by Hastelloy C alloy), and a dispersion (hereinafter, simply referred to as “Solvent C”). The electrolyte solution was obtained.

白金を50質量%担持したカーボンブラック粉末(20g)に水(126g)を添加して超音波を10分かけて得た分散液を電解質液(80g)に添加して、さらにエタノール(54g)を添加してカソード触媒層作製用の塗工液を得た。該塗工液をETFE基材フィルム上に塗布乾燥し、白金量が0.5mg/cmのカソード触媒層を作製した。 A dispersion obtained by adding water (126 g) to carbon black powder (20 g) carrying 50% by mass of platinum and applying ultrasonic waves for 10 minutes was added to the electrolyte solution (80 g), and ethanol (54 g) was further added. This was added to obtain a coating solution for preparing the cathode catalyst layer. The coating solution was applied onto an ETFE substrate film and dried to prepare a cathode catalyst layer having a platinum amount of 0.5 mg / cm 2 .

また、白金とルテニウムからなる合金(白金/ルテニウム比=30/23)を53質量%(白金/ルテニウム比=30/23)担持したカーボンブラック粉末(20g)に水124gを添加して超音波を10分かけて得た分散液を電解質液(75g)に添加して、さらにエタノール(56g)を添加してアノード触媒層作製用の塗工液とした。該塗工液をETFE基材フィルム上に塗布乾燥し、白金量が0.35mg/cmのアノード触媒層を作製した。カソード触媒層作製用塗工液、アノード触媒層作製用塗工液共に使用した水は比抵抗値は、18MΩ・cmでありTOCは10ppbであった。 Further, 124 g of water was added to carbon black powder (20 g) carrying 53 mass% (platinum / ruthenium ratio = 30/23) of an alloy composed of platinum and ruthenium (platinum / ruthenium ratio = 30/23), and ultrasonic waves were applied. The dispersion obtained over 10 minutes was added to the electrolyte solution (75 g), and ethanol (56 g) was further added to prepare a coating solution for preparing the anode catalyst layer. The coating solution was applied onto an ETFE substrate film and dried to prepare an anode catalyst layer having a platinum amount of 0.35 mg / cm 2 . The specific resistance of the water used for the cathode catalyst layer preparation coating solution and the anode catalyst layer preparation coating solution was 18 MΩ · cm, and the TOC was 10 ppb.

重合体(A11−1)を熱プレス法により平均膜厚55μmのフィルムに加工してから例4と同様の方法で処理して酸型フィルム(以下、酸型フィルム(A11)という。)を得た。重合体(A21−1N)を同様に加工、処理して酸型フィルム(以下、酸型フィルム(A21)という。)を得た。   The polymer (A11-1) is processed into a film having an average film thickness of 55 μm by a hot press method and then treated in the same manner as in Example 4 to obtain an acid type film (hereinafter referred to as acid type film (A11)). It was. The polymer (A21-1N) was processed and processed in the same manner to obtain an acid type film (hereinafter referred to as acid type film (A21)).

該カソード触媒層と該アノード触媒層の間に酸型フィルム(A11)を挟み加熱プレス法(120℃、2分、3MPa)を用いて接合させて膜−触媒層接合体(電極面積:25cm)を得た。 The acid-type film (A11) is sandwiched between the cathode catalyst layer and the anode catalyst layer and bonded using a hot press method (120 ° C., 2 minutes, 3 MPa) to form a membrane-catalyst layer assembly (electrode area: 25 cm 2). )

片側表面にカーボンとポリテトラフルオロエチレンからなる層を有する2枚のカーボンペーパーからなるガス拡散層の該層側に膜−触媒層接合体の電極側を挟み込んで、膜−電極接合体を作成し発電用セルに組み込んだ。発電用セル内のアノード側に0.2MPaにて水素ガス(75mL/分)、カソード側に露点が100℃の加湿した空気(178mL/分)を供給し、セル内の温度を120℃、電流密度を0.2A/cmに保持して連続的に発電を行った結果、0.73Vの電圧が得られた。 A membrane-electrode assembly was prepared by sandwiching the electrode side of the membrane-catalyst layer assembly between the gas diffusion layer composed of two carbon papers having a layer composed of carbon and polytetrafluoroethylene on one surface. It was incorporated into a power generation cell. Hydrogen gas (75 mL / min) at 0.2 MPa is supplied to the anode side in the power generation cell, and humidified air (178 mL / min) with a dew point of 100 ° C. is supplied to the cathode side. As a result of continuously generating power while maintaining the density at 0.2 A / cm 2 , a voltage of 0.73 V was obtained.

また重合体(A11−1)を重合体(A21−1)とする以外は、同様に方法を用いて得られる膜−触媒層接合体を用いて発電を行った結果、0.73Vの電圧が得られる。   Moreover, as a result of generating electricity using the membrane-catalyst layer assembly obtained by using the same method except that the polymer (A11-1) was changed to the polymer (A21-1), a voltage of 0.73 V was obtained. can get.

本発明の重合体を化学処理して得られるフルオロポリマーは軟化温度の高いスルホン酸ポリマーであり、高温領域での高い機械的強度が保持される。本発明のフルオロポリマーは固体高分子電解質として特に燃料電池用の固体高分子電解質として、たとえば100℃以上の高温運転されセル内が加圧される燃料電池の固体高分子電解質として有用である。本発明のフルオロポリマーを固体高分子電解質(たとえば膜−電極接合体。)として用いた燃料電池は、水素/酸素型の燃料電池、直接メタノール型の燃料電池に適用できる。
The fluoropolymer obtained by chemically treating the polymer of the present invention is a sulfonic acid polymer having a high softening temperature, and maintains a high mechanical strength in a high temperature region. The fluoropolymer of the present invention is useful as a solid polymer electrolyte, particularly as a solid polymer electrolyte for a fuel cell, for example, as a solid polymer electrolyte of a fuel cell operated at a high temperature of 100 ° C. or higher and pressurized in the cell. A fuel cell using the fluoropolymer of the present invention as a solid polymer electrolyte (for example, a membrane-electrode assembly) can be applied to a hydrogen / oxygen type fuel cell and a direct methanol type fuel cell.

Claims (19)

下式(A)で表されるモノマー単位を含む重合体。
Figure 0004788267
ただし、Rはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
The polymer containing the monomer unit represented by the following Formula (A).
Figure 0004788267
Where R F represents a fluorine atom, a C 1-6 perfluoroalkyl group, a C 2-6 carbon-carbon bond-containing perfluoroalkyl group containing an etheric oxygen atom, or —Q F SO 2 F; F represents a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
下式(A2)で表されるモノマー単位を含む重合体。
Figure 0004788267
ただし、RF2はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QF2SOFを示し、QF2は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
The polymer containing the monomer unit represented by the following Formula (A2) .
Figure 0004788267
However, R F2 represents a fluorine atom, a C 1-6 perfluoroalkyl group or —Q F 2 SO 2 F, and Q F 2 is a perfluoroalkylene containing an etheric oxygen atom between C 2 -C 6 carbon-carbon bonds. Indicates a group.
数平均分子量が、5000〜5000000である請求項1または2に記載の重合体。   The polymer according to claim 1 or 2, wherein the number average molecular weight is 5,000 to 5,000,000. 固体高分子電解質の製造に用いられる請求項1〜3のいずれか1項に記載の重合体。The polymer of any one of Claims 1-3 used for manufacture of a solid polymer electrolyte. 下式(a)で表される化合物を重合させることを特徴とする下式(A)で表されるモノマー単位を含む重合体の製造方法。
Figure 0004788267
ただし、Rはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
The manufacturing method of the polymer containing the monomer unit represented by the following Formula (A) characterized by polymerizing the compound represented by the following formula (a).
Figure 0004788267
Where R F represents a fluorine atom, a C 1-6 perfluoroalkyl group, a C 2-6 carbon-carbon bond-containing perfluoroalkyl group containing an etheric oxygen atom, or —Q F SO 2 F; F represents a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
下式(a2)で表される化合物を重合させることを特徴とする下式(A2)で表されるモノマー単位を含む重合体の製造方法。  The manufacturing method of the polymer containing the monomer unit represented by the following Formula (A2) characterized by polymerizing the compound represented by the following formula (a2).
Figure 0004788267
Figure 0004788267
ただし、R  However, R F2F2 はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QIs a fluorine atom, a C 1-6 perfluoroalkyl group or -Q F2F2 SOSO 2 Fを示し、QF and Q F2F2 は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。Represents a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
固体高分子電解質の製造に用いられる重合体の製造方法であって、請求項5または6に記載の重合体の製造方法。It is a manufacturing method of the polymer used for manufacture of a solid polymer electrolyte, Comprising: The manufacturing method of the polymer of Claim 5 or 6. 下式(a−1)で表される化合物を脱ハロゲン化剤の存在下に脱ハロゲン化反応させることを特徴とする下式(a)で表される化合物の製造方法。
Figure 0004788267
ただし、XおよびXはそれぞれ独立に塩素原子または臭素原子を示し、Rはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
A process for producing a compound represented by the following formula (a), which comprises dehalogenating a compound represented by the following formula (a-1) in the presence of a dehalogenating agent.
Figure 0004788267
However, X < 1 > and X < 2 > show a chlorine atom or a bromine atom each independently, R <F > is etheric oxygen between a fluorine atom, a C1-C6 perfluoroalkyl group, and a C2-C6 carbon-carbon bond. shows a perfluoroalkyl group or a -Q F SO 2 F includes atoms, Q F is a carbon of 2-6 perfluoroalkylene group carbon atoms or 1 to 6 carbon atoms - perfluoroalkylene group containing an etheric oxygen atom between carbon bond Indicates.
下式(a−12)で表される化合物を脱ハロゲン化剤の存在下に脱ハロゲン化反応させることを特徴とする下式(a2)で表される化合物の製造方法。  A process for producing a compound represented by the following formula (a2), which comprises dehalogenating a compound represented by the following formula (a-12) in the presence of a dehalogenating agent.
Figure 0004788267
Figure 0004788267
ただし、X  However, X 1 およびXAnd X 2 はそれぞれ独立に塩素原子または臭素原子を示し、REach independently represents a chlorine atom or a bromine atom, and R F2F2 はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QIs a fluorine atom, a C 1-6 perfluoroalkyl group or -Q F2F2 SOSO 2 Fを示し、QF and Q F2F2 は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。Represents a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
固体高分子電解質の製造に用いられる化合物の製造方法であって、請求項8または9に記載の化合物の製造方法。It is a manufacturing method of the compound used for manufacture of a solid polymer electrolyte, Comprising: The manufacturing method of the compound of Claim 8 or 9. 下式(a−1)で表される化合物。
Figure 0004788267
ただし、XおよびXはそれぞれ独立に塩素原子または臭素原子を示し、Rは、フッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QSOFを示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
A compound represented by the following formula (a-1).
Figure 0004788267
However, X < 1 > and X < 2 > show a chlorine atom or a bromine atom each independently, and R <F > is ether property between a fluorine atom, a C1-C6 perfluoroalkyl group, and a C2-C6 carbon-carbon bond. A perfluoroalkyl group containing an oxygen atom or —Q F SO 2 F, wherein Q F is a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroalkylene containing an etheric oxygen atom between carbon and carbon bonds having 2 to 6 carbon atoms Indicates a group.
下式(a−12)で表される化合物。  The compound represented by the following formula (a-12).
Figure 0004788267
Figure 0004788267
ただし、X  However, X 1 およびXAnd X 2 はそれぞれ独立に塩素原子または臭素原子を示し、REach independently represents a chlorine atom or a bromine atom, and R F2F2 はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QIs a fluorine atom, a C 1-6 perfluoroalkyl group or -Q F2F2 SOSO 2 Fを示し、QF and Q F2F2 は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。Represents a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
固体高分子電解質の製造に用いられる請求項11または12に記載の化合物。The compound of Claim 11 or 12 used for manufacture of a solid polymer electrolyte. 下式(a)で表される化合物。A compound represented by the following formula (a).
Figure 0004788267
Figure 0004788267
ただし、R  However, R F はフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基または−QIs a fluorine atom, a C1-C6 perfluoroalkyl group, a C2-C6 carbon-carbon bond containing an etheric oxygen atom or -Q F SOSO 2 Fを示し、QF and Q F は炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。Represents a perfluoroalkylene group having 1 to 6 carbon atoms or a perfluoroalkylene group containing an etheric oxygen atom between carbon-carbon bonds having 2 to 6 carbon atoms.
下式(a2)で表される化合物。
Figure 0004788267
ただし、RF2はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QF2SOFを示し、QF2は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
A compound represented by the following formula (a2).
Figure 0004788267
However, R F2 represents a fluorine atom, a C 1-6 perfluoroalkyl group or —Q F 2 SO 2 F, and Q F 2 is a perfluoroalkylene containing an etheric oxygen atom between C 2 -C 6 carbon-carbon bonds. Indicates a group.
固体高分子電解質の製造に用いられる請求項14または15に記載の化合物。The compound according to claim 14 or 15, which is used for producing a solid polymer electrolyte. 下式(B)で表されるモノマー単位を含むフルオロポリマー。
Figure 0004788267
ただし、RFBはフッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキル基、または−Q(SO(SO)M基を示し、Qは炭素数1〜6のペルフルオロアルキレン基または炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示し、Yは酸素原子、窒素原子、または炭素原子を示し、Rはエーテル性酸素原子を含んでいてもよいペルフルオロアルキル基を示し、sはYに対応し、Yが酸素原子である場合には0、Yが窒素原子である場合には1、Yが炭素原子である場合には2を示し、Mは、H、1価の金属カチオン、または1以上の水素原子が炭化水素基で置換されていてもよいアンモニウムを示す。
A fluoropolymer containing a monomer unit represented by the following formula (B).
Figure 0004788267
However, R FB is a fluorine atom, a C 1-6 perfluoroalkyl group, a C 2-6 perfluoroalkyl group containing an etheric oxygen atom between carbon-carbon bonds, or —Q F (SO 2 Y ( SO 2 R f ) s ) M + group, Q F represents a C 1-6 perfluoroalkylene group or a C 2-6 carbon-carbon bond-containing perfluoroalkylene group containing an etheric oxygen atom, Y represents an oxygen atom, a nitrogen atom or a carbon atom, R f represents a perfluoroalkyl group which may contain an etheric oxygen atom, s corresponds to Y, and 0 when Y is an oxygen atom , 1 when Y is a nitrogen atom, 2 when Y is a carbon atom, M + is H + , a monovalent metal cation, or one or more hydrogen atoms are replaced by hydrocarbon groups Have been Also good ammonium.
下式(B2)で表されるモノマー単位を含むフルオロポリマー。  A fluoropolymer containing a monomer unit represented by the following formula (B2).
Figure 0004788267
Figure 0004788267
ただし、R  However, R F2F2 はフッ素原子、炭素数1〜6のペルフルオロアルキル基または−QIs a fluorine atom, a C 1-6 perfluoroalkyl group or -Q F2F2 SOSO 2 Fを示し、QF and Q F2F2 は炭素数2〜6の炭素−炭素結合間にエーテル性酸素原子を含むペルフルオロアルキレン基を示し、Yは酸素原子、窒素原子、または炭素原子を示し、RRepresents a perfluoroalkylene group containing an etheric oxygen atom between a carbon-carbon bond having 2 to 6 carbon atoms, Y represents an oxygen atom, a nitrogen atom or a carbon atom, R f はエーテル性酸素原子を含んでいてもよいペルフルオロアルキル基を示し、sはYに対応し、Yが酸素原子である場合には0、Yが窒素原子である場合には1、Yが炭素原子である場合には2を示し、MRepresents a perfluoroalkyl group which may contain an etheric oxygen atom, s corresponds to Y, 0 when Y is an oxygen atom, 1 when Y is a nitrogen atom, and Y is a carbon atom Indicates 2 and M + は、HIs H + 、1価の金属カチオン、または1以上の水素原子が炭化水素基で置換されていてもよいアンモニウムを示す。A monovalent metal cation or ammonium in which one or more hydrogen atoms may be substituted with a hydrocarbon group.
請求項17または18に記載のフルオロポリマーからなる固体高分子電解質用材料。A solid polymer electrolyte material comprising the fluoropolymer according to claim 17 or 18.
JP2005281724A 2004-10-26 2005-09-28 Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof Active JP4788267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281724A JP4788267B2 (en) 2004-10-26 2005-09-28 Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004311191 2004-10-26
JP2004311191 2004-10-26
JP2005281724A JP4788267B2 (en) 2004-10-26 2005-09-28 Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof

Publications (3)

Publication Number Publication Date
JP2006152249A JP2006152249A (en) 2006-06-15
JP2006152249A5 JP2006152249A5 (en) 2008-10-09
JP4788267B2 true JP4788267B2 (en) 2011-10-05

Family

ID=36630910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281724A Active JP4788267B2 (en) 2004-10-26 2005-09-28 Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof

Country Status (1)

Country Link
JP (1) JP4788267B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867843B2 (en) * 2007-08-09 2012-02-01 旭硝子株式会社 Fluorosulfonyl group-containing monomer and polymer thereof, and sulfonic acid group-containing polymer
US20110027687A1 (en) * 2009-07-31 2011-02-03 Asahi Glass Company, Limited Electrolyte material, liquid composition and membrane/electrode assembly for polymer electrolyte fuel cell
JP2011140605A (en) * 2010-01-08 2011-07-21 Toyota Central R&D Labs Inc High oxygen-permeable electrolyte, method for producing the same, and sulfonimide monomer
JP5402796B2 (en) * 2010-04-06 2014-01-29 トヨタ自動車株式会社 Method for producing membrane electrode assembly having diffusion layer integrated catalyst layer
CN104093486A (en) 2012-01-31 2014-10-08 旭硝子株式会社 Method for producing fluorinated ion exchange resin solution
CN107108907B (en) * 2014-12-25 2019-06-28 Agc株式会社 The manufacturing method of fluoropolymer particles
EP3795598A4 (en) 2018-05-18 2022-03-02 Agc Inc. Method for producing fluorine-containing polymer and method for producing fluorine-containing ion-exchange polymer
CN113273006A (en) 2019-01-08 2021-08-17 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly
EP4084156A1 (en) 2019-12-27 2022-11-02 Agc Inc. Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly
CN116348505A (en) 2020-10-09 2023-06-27 Agc株式会社 Membrane electrode assembly and solid polymer fuel cell
JP7284776B2 (en) 2021-03-30 2023-05-31 株式会社豊田中央研究所 Mesoporous carbon, electrode catalyst and catalyst layer for fuel cell
CN115991816B (en) * 2021-10-18 2024-01-23 山东东岳未来氢能材料股份有限公司 High-temperature-resistant proton exchange membrane and preparation method thereof
CN114213569A (en) * 2021-11-22 2022-03-22 浙江巨化技术中心有限公司 Suspension polymerization preparation method of perfluorosulfonic acid resin
CN114085309A (en) * 2021-11-22 2022-02-25 浙江巨化技术中心有限公司 Solution polymerization preparation method of perfluorosulfonic acid resin
CN114276482A (en) * 2021-11-22 2022-04-05 浙江巨化技术中心有限公司 Emulsion polymerization preparation method of perfluorosulfonic acid resin
CN114085310A (en) * 2021-11-22 2022-02-25 浙江巨化技术中心有限公司 Bulk polymerization preparation method of perfluorosulfonic acid resin
JP2023137120A (en) 2022-03-17 2023-09-29 株式会社豊田中央研究所 Mesoporous carbon, electrode catalyst, and catalyst layer for fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429143A (en) * 1981-09-28 1984-01-31 E. I. Du Pont De Nemours & Co. Cyclic monomers derived from trifluoropyruvate esters
US4810806A (en) * 1987-07-31 1989-03-07 E. I. Du Pont De Nemours And Company Halogenated 1,3-dioxolanes and derivatives
DE60224554T2 (en) * 2001-10-30 2009-01-08 Asahi Glass Co., Ltd. FLUOROSULFONYL COMPOUNDS AND METHOD FOR PRODUCING DIRECTLY DERIVED COMPOUNDS
WO2004066426A1 (en) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited Process for production of electrolyte material for solid polymer fuel cells and membrane electrode assembly for solid polymer fuel cells
WO2004097851A1 (en) * 2003-04-28 2004-11-11 Asahi Glass Company Limited Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell

Also Published As

Publication number Publication date
JP2006152249A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4788267B2 (en) Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof
JP4997968B2 (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly
JP5141251B2 (en) Fluorosulfonyl group-containing compound, production method thereof and polymer thereof
JP6941604B2 (en) How to Make a Tetrafluoroethylene Copolymer with a Sulfonyl Pendant Group
JP5217708B2 (en) Polymer, production method thereof, electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JPS60156631A (en) Vinyl chloride ethers, copolymers thereof and precursors therefor
JP2010523617A (en) Process for preparing carbonyl perfluoropolyether
JP7148787B2 (en) New fluorine-containing compound
US20090227749A1 (en) Process for producing perfluorocarbon polymer
KR20170100482A (en) Electrolyte material, liquid composition, and membrane-electrode assembly for solid polymer fuel cell
CN102958962B (en) For the processing method of sulfuryl fluoride polymer
US7473748B2 (en) Vinyl monomer with superacid ester group and polymer of the same
JPWO2020116645A1 (en) Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, polymer electrolyte fuel cell
JP7355037B2 (en) Acid-type sulfonic acid group-containing polymers, liquid compositions, solid polymer electrolyte membranes, membrane electrode assemblies, polymer electrolyte fuel cells, and ion exchange membranes for water electrolysis
JP4946009B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER TYPE FUEL CELL, METHOD FOR PRODUCING MEMBRANE / ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL
US7414102B2 (en) Polymer electrolyte of high durability and a production process thereof
JP4334375B2 (en) Vinyl monomer containing N-alkylbissulfonylimide group
JP4815672B2 (en) Method for producing fluorine-containing sulfonimide polymer
US8933264B2 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group
JPS60156632A (en) Manufacture of vinyl chloride ether monomer and intermediate
KR102587558B1 (en) A crosslinked fluorinated copolymer and the preparation method thereof
WO2005037879A1 (en) Method for producing perfluorocarbon polymer
JP7339573B2 (en) New fluorine-containing compound
JP4437407B2 (en) Method for producing fluorinated sulfonic acid polymer
TW200932764A (en) Crosslinkable trifluorostyrene polymers and membranes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4788267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250