JP6603867B2 - Ship regenerative braking mechanism and ship using the same - Google Patents

Ship regenerative braking mechanism and ship using the same Download PDF

Info

Publication number
JP6603867B2
JP6603867B2 JP2017231546A JP2017231546A JP6603867B2 JP 6603867 B2 JP6603867 B2 JP 6603867B2 JP 2017231546 A JP2017231546 A JP 2017231546A JP 2017231546 A JP2017231546 A JP 2017231546A JP 6603867 B2 JP6603867 B2 JP 6603867B2
Authority
JP
Japan
Prior art keywords
ship
braking
regenerative braking
rotor
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017231546A
Other languages
Japanese (ja)
Other versions
JP2019098905A (en
Inventor
剛慈 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENERGYFRONT INC
Original Assignee
ENERGYFRONT INC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENERGYFRONT INC filed Critical ENERGYFRONT INC
Priority to JP2017231546A priority Critical patent/JP6603867B2/en
Publication of JP2019098905A publication Critical patent/JP2019098905A/en
Application granted granted Critical
Publication of JP6603867B2 publication Critical patent/JP6603867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、船舶の制動を実現しつつ発電し蓄電池の充電を行う回生制動機構及びそれを活用した旋回機構に関するものである。   The present invention relates to a regenerative braking mechanism that generates electric power while charging a ship and charges a storage battery, and a turning mechanism that uses the regenerative braking mechanism.

ガソリン駆動の自動車の制動には摩擦力を用いるディスクブレーキや、エンジンの抵抗によって制動を行うエンジンブレーキが用いられている。電気自動車の普及の中で、駆動に用いるモーターを発電機として用いることで制動し、得られる電力で車載バッテリーの充電を行う回生ブレーキが利用されている。例えば、特許文献1に開示される技術がそれである。   Disc brakes that use frictional force and engine brakes that perform braking by engine resistance are used to brake gasoline-powered automobiles. In the widespread use of electric vehicles, regenerative brakes are used in which braking is performed by using a motor used for driving as a generator, and charging of an in-vehicle battery is performed with the obtained electric power. For example, this is the technique disclosed in Patent Document 1.

船舶においては水の抵抗による制動に加えてスクリューを逆回転することで制動の一助とすることが行われている。電気推進式船舶においても電気自動車と同様に、プロペラやサイドスラスタを回生ブレーキとして用いる技術が開示されている。例えば、特許文献2や3がそれである。   In a ship, in addition to braking by resistance of water, it is performed to assist braking by reversely rotating a screw. A technique using a propeller and a side thruster as a regenerative brake is also disclosed in an electric propulsion type ship, as in an electric vehicle. For example, Patent Documents 2 and 3 are examples thereof.

水中で回転して発電可能なプロペラ状のものとしては、特許文献4に開示されるプロペラ、特許文献5中に図示される潮流発電用ロータなどの翼型の断面形状を持つロータのほか、ギャロッピングの原理で回転する断面形状を持つロータが開示されている。   Examples of propellers that can generate power by rotating in water include a propeller disclosed in Patent Document 4, a rotor having a blade-shaped cross-sectional shape such as a tidal current power generator illustrated in Patent Document 5, and galloping A rotor having a cross-sectional shape rotating on the principle of the above is disclosed.

特開平5―176406号公報JP-A-5-176406 特開2014―129048号公報JP 2014-129048 A 特開2017―193224号公報JP 2017-193224 A 特開2015―214898号公報Japanese Patent Laid-Open No. 2015-214898 特開2013―508592号公報JP 2013-508592 A

化石燃料駆動の船舶の制動でプロペラを逆回転することが行われているが、それは水の抵抗による速度低下である程度減速してから行われる。一般的に、流線型に形成される船尾にあるプロペラの逆回転で大きな制動力を与えることは難しい。サイドスラスタも制動手段としては大きな寄与を期待できない。特許文献2や3に開示されるように電気推進船舶ではメインプロペラを回生ブレーキとして用いる技術はあるが、回生ブレーキの効率を考えると流れをより直接受ける船体前方や側部に回生制動機構をつけることが好ましい。   The propeller is rotated in reverse by braking a fossil fuel-driven ship, but this is done after the speed is reduced to some extent due to the drop in speed due to the resistance of water. Generally, it is difficult to apply a large braking force by reverse rotation of a propeller at the stern formed in a streamlined shape. Side thrusters cannot be expected to make a significant contribution as braking means. As disclosed in Patent Documents 2 and 3, there is a technology that uses a main propeller as a regenerative brake in an electric propulsion ship, but considering the efficiency of the regenerative brake, a regenerative braking mechanism is attached to the front or side of the hull that receives the flow more directly. It is preferable.

タンカーなど慣性の大きい船舶ではプロパラで逆回転を用いた場合でも最高速度から停止までに15分以上の時間を要し、その間に船舶は3キロメートル近く移動することが知られている。したがって、自動車と異なり船舶においては効果的な制動手段は装備されているとは言い難く、危険回避の観点では解決すべき問題である。   It is known that a ship with large inertia such as a tanker takes 15 minutes or more from the maximum speed to stop even if reverse rotation is used in the propeller, and the ship moves nearly 3 kilometers during that time. Therefore, unlike an automobile, it is difficult to say that an effective braking means is provided in a ship, and this is a problem to be solved from the viewpoint of danger avoidance.

船舶の前方に逆推進力を与える技術を導入することは可能であるが、単にこれらの機構を導入するだけではエネルギーの消費や推進時の抵抗を増やしてしまう。エネルギー有効利用の観点では推進時には抵抗とならず、制動時にエネルギーを回収し活用できる回生制動機構があることが好ましい。   Although it is possible to introduce a technology that gives a reverse propulsive force in front of a ship, simply introducing these mechanisms increases energy consumption and resistance during propulsion. From the viewpoint of effective energy utilization, it is preferable that there is a regenerative braking mechanism that does not become a resistance during propulsion but can recover and utilize energy during braking.

また、船の大きさによらず舵では最大舵角は35度であることが知られており。推進時には小回りが効きにくい。制動を活用することでエネルギーの浪費をせずに大きな舵角をとることができればより好ましい。   Moreover, it is known that the maximum rudder angle is 35 degrees for rudder regardless of the size of the ship. When propelling, small turns are not effective. It is more preferable if a large steering angle can be obtained without wasting energy by utilizing braking.

本発明の船舶用回生ブレーキは、メインプロペラを用いるのではなく、別途設置するものである。推進時には抵抗とならないが、制動時には流水の力を受けてロータが回転して速度を効果的に落としながら発電し、運動エネルギーを電気エネルギーとして回収し活用する。   The marine regenerative brake of the present invention is installed separately from the main propeller instead of using it. Although it does not become a resistance during propulsion, it receives power from flowing water during braking, and the rotor rotates to generate power while effectively reducing the speed, and kinetic energy is recovered and used as electrical energy.

このため請求項1に記載の本発明の船舶用回生制動機構では、船の水面上に保持または船体の水面下のフィンなどに流線を乱さない形でロータをつけた発電システムを設置し、制動時のみ流水抵抗を受けるようにする。これは可動式フィンスタビライザーと機能を兼ねることができる。またヨットで用いられているセンターボード、舵などの既存の船に装備されたフィン型構造、あるいは本発明のために新たに設けられたフィン型構造に取り付けたロータで発電することで回生制動する。   For this reason, in the regenerative braking mechanism for a ship according to the first aspect of the present invention, a power generation system in which a rotor is attached in a form that does not disturb a streamline is held on a water surface of a ship or a fin under the water surface of a ship body, Apply running water resistance only during braking. This can double as a movable fin stabilizer. Also, regenerative braking is performed by generating electricity with a fin-type structure installed in an existing ship such as a center board or rudder used in a yacht, or a fin-type structure newly provided for the present invention. .

請求項2に示されるように、推進時に抵抗を増やさないが制動時には大きな減速を可能にするためには、フィン型構造に一体化するようにロータの形状は2回回転対称(すなわち棒状に近い)2枚羽となることが望ましい。推進時にはフィン構造の面や断面輪郭線に近い位置にロータ外形が収まることにより流線を乱さないが、制動時にはフィン面や断面輪郭線を超えて回転動作してしっかり回生制動できるようになる。   As shown in claim 2, in order not to increase resistance during propulsion but to allow large deceleration during braking, the shape of the rotor is two-fold rotationally symmetric (ie, close to a rod shape) so as to be integrated into the fin-type structure. ) It is desirable to have two feathers. During propulsion, the outer shape of the rotor is close to the surface of the fin structure and the cross-sectional contour line, so that the streamline is not disturbed. However, during braking, the rotor moves beyond the fin surface and cross-sectional contour line, and the regenerative braking can be performed firmly.

ロータのブレード断面は、プロペラや潮流発電ロータに見られる翼型でその目的を果たすことはできこれは逆推進力を得る場合には有効である。しかし、制動のみを効果的に行うためには請求項3に記載されるとおり、より減速能力の高いギャロッピングの原理で回転する断面形状(以下ギャロッピング型と記述する)を持つロータの活用が好適である。   The blade cross-section of the rotor can serve its purpose with the airfoil found in propellers and tidal power generator rotors, which is effective when obtaining reverse thrust. However, in order to effectively perform only braking, as described in claim 3, it is preferable to use a rotor having a cross-sectional shape (hereinafter referred to as a galloping type) that rotates on the principle of galloping with higher deceleration capability. is there.

請求項4に示されるように、船の左舷と右舷に上記の回生制動機構をつけることにより、双方で流れを受けて回生制動しするほか、一方のみで流れを受けてエネルギーのロスを少なく船体の旋回を行うことが可能となる。   As shown in claim 4, by attaching the above regenerative braking mechanism to the port and starboard of the ship, both sides receive the flow and regenerative braking, and only one side receives the flow and less energy loss. Can be turned.

また、請求項5に示されるように、両舷の回生制動で得た電力を船舶のプロペラや未使用の他の回生制動ロータの逆推進方向の回転に用いることにより、制動をさらに効果的に行うことができる。旋回においても、片方の舷の回生制動で得た電力で反対側の舷のロータを推進方向に回転させることで旋回はさらに効果的に行うことができる。   Further, as shown in claim 5, the electric power obtained by the regenerative braking of both sides is used for the rotation in the reverse propulsion direction of the propeller of the ship or other unused regenerative braking rotor, thereby further effectively braking. It can be carried out. Also in turning, the turning can be performed more effectively by rotating the opposite side rotor in the propulsion direction with the electric power obtained by the regenerative braking of one side.

本発明によれば、推進時には抵抗とならないが、制動時には流水の力を受けてロータが回転して速度を効果的に落としながら発電し、運動エネルギーを電気エネルギーとして回収することが可能になる。また、両舷に同制動機構を設置することにより、旋回を効果的に行うことが可能となる。   According to the present invention, although resistance does not occur during propulsion, it is possible to recover kinetic energy as electric energy by generating power while effectively reducing the speed by receiving the force of flowing water during braking. Moreover, it becomes possible to turn effectively by installing the same braking mechanism on both sides.

第1実施形態の船舶用回生機構を備えた船舶の図である。It is a figure of the ship provided with the regenerative mechanism for ships of 1st Embodiment. フィン構造に一体化するロータの(a)側面図 (b)背面図である。It is the (a) side view of the rotor integrated in a fin structure, (b) It is a rear view. 第2実施形態の船舶用回生機構を備えた船舶の図である。It is a figure of the ship provided with the regeneration mechanism for ships of 2nd Embodiment. 第3実施形態のフィン一体型回生機構を備えた船舶の図である。It is a figure of the ship provided with the fin integrated regeneration mechanism of 3rd Embodiment. ロータの断面(a)翼型と(b)ギャロッピング型を示す図である。It is a figure which shows the cross section (a) airfoil type and (b) galloping type | mold of a rotor. 船舶の推進・制動・旋回の動作図である。It is an operation diagram of propulsion / braking / turning of a ship.

以下、本発明に係る船舶用回生制動機構についての実施実態を挙げ、添付の図面を基に説明する。   Hereinafter, the actual condition of the regenerative braking mechanism for ships according to the present invention will be described and described with reference to the accompanying drawings.

(第1実施形態)
図1に、第1実施形態に係る船舶用回生制動機構を活用した水中翼船を示す。水中翼船である船舶1は船体下に水中翼を持ち、推進速度の上昇とともに水中翼の揚力で船体が水上に引き上げられ、より小さい抵抗で推進することができる。高速推進時には水面3下には水中翼の一部または全部のみが存在する。
(First embodiment)
FIG. 1 shows a hydrofoil ship using the marine regenerative braking mechanism according to the first embodiment. The ship 1 which is a hydrofoil ship has hydrofoil under the hull, and as the propulsion speed increases, the hull is pulled up by the lift of the hydrofoil and can be propelled with less resistance. During high-speed propulsion, only a part or all of the hydrofoil exists below the water surface 3.

この水中翼で持ち上げられた船体下の空間に本発明の回生制動機構2を設置すると、高速推進時には水上に保たれ、制動時には水中で作動する請求項第一に記載の発明が実現される。   When the regenerative braking mechanism 2 of the present invention is installed in the space under the hull lifted by the hydrofoil, the invention according to the first aspect is realized, which is kept on the water during high-speed propulsion and operates in water during braking.

この時、発電機に伝達機構で結ばれたロータの形状や羽の枚数は利用可能な技術、たとえば特許文献4や5など、のいずれを用いても良い。また、発電機の種類、生成された電力の制御系、蓄電方法も公知の多様な技術を用いることが可能である。   At this time, any of available technologies such as Patent Documents 4 and 5 may be used for the shape of the rotor and the number of wings connected to the generator by the transmission mechanism. Various known techniques can also be used for the type of generator, the control system for the generated power, and the storage method.

ロータのピッチ角を変えて、あるいはロータの向きを変えて、あるいは羽の形状を工夫してロータを制動のみでなく推進にも使える状態にし、発電機に電力を供給して推進用補助プロペラとして活用するようにすれば、当該回生制動機構は推進にも役立つChange the rotor pitch angle, change the rotor orientation, or devise the wing shape to make the rotor usable not only for braking but also for propulsion, supplying power to the generator as an auxiliary propeller for propulsion If used, the regenerative braking mechanism is also useful for propulsion.

船体下の回生制動機構に昇降機構を設け、水上から水中へローターを着水し、制動を発揮させることも可能である。すなわち水中翼線に限らず、双胴船のように船体下に空間を持つ船舶の制動でも同様に活用可能である。


It is also possible to provide an elevating mechanism in the regenerative braking mechanism under the hull so that the rotor is landed from the surface of the water to the water to exert the braking. In other words, the present invention can be used not only for hydrofoil but also for braking a ship having a space under the hull like a catamaran.


上記水中翼構造(支持柱および/または水中翼)に本発明の請求項2に記載のフィン型構造に一体化するロータを適用することで、推進時には妨げとならず制動時には直ちに高い回生制動を実現することが可能であるのでこれについて説明する。   By applying the rotor integrated with the fin type structure according to claim 2 of the present invention to the hydrofoil structure (support column and / or hydrofoil), high regenerative braking is immediately performed at the time of braking without being disturbed during propulsion. Since this is possible, this will be described.

図2にフィン構造に一体化するロータの(a)側面図と(b)背面図を示す。ロータの形状は2回回転対称(すなわち直線状の)2枚羽とすることにより、推進時には図中でロータを描かれた角度に固定すれば流線を乱さないようにすることができる(これを以降、フィン一体型回生制動機構と呼ぶ)。制動時には回転を許すことによりロータはフィンの断面積を大きく超えて(b)の点線円の軌道で動くので水の流れのエネルギーを大きく受ける。これによって推進と制動を効果的に切り替えることができる。   FIG. 2 shows a (a) side view and (b) rear view of a rotor integrated into a fin structure. The rotor shape is two-fold rotationally symmetric (that is, linear), so that the streamline can be prevented from being disturbed if the rotor is fixed at the angle depicted in the figure during propulsion (this) Is hereinafter referred to as a fin-integrated regenerative braking mechanism). By allowing the rotation during braking, the rotor greatly exceeds the cross-sectional area of the fin and moves in the trajectory of the dotted circle in (b), so that it receives a large amount of water flow energy. This effectively switches between propulsion and braking.

ここで用いられる発電機は公知のいかなるものを用いても良い。発電機はフィン内に設置してもよく、ギアやベルト、チェーン、油圧・水圧などの公知の変換伝達機構を適切に選んで船体内の発電機に伝達することも可能である。 ロータを推進時には所定の角度に戻して固定必要があるため、発電機をモーターとして用いるようにすることが望ましい。また、推進時には積極的に駆動方向に回転させ推進補助としても良い。なお、所定角度で保持するためにはロック機構を設けることが望ましい。   Any known generator may be used here. The generator may be installed in the fin, and a known conversion transmission mechanism such as a gear, a belt, a chain, hydraulic pressure or water pressure may be appropriately selected and transmitted to the generator in the hull. Since the rotor needs to be returned to a predetermined angle and fixed when propelled, it is desirable to use a generator as a motor. Further, during propulsion, it may be positively rotated in the driving direction to provide propulsion assistance. It is desirable to provide a lock mechanism in order to hold at a predetermined angle.

フィンの形状は多様であって良い。上記水中翼構造に上記フィン一体型回生制動機構を適用する場合、水中翼の支持部や水中翼の一部または全部を形成するようにしても良い。複雑になるがフィンを3回回転対称にして3枚羽を収めるなども必要に応じて可能である。利用材料、制御系は目的に沿った如何なる技術を用いても良い。   The shape of the fin may vary. When the fin-integrated regenerative braking mechanism is applied to the hydrofoil structure, part or all of the hydrofoil support part and hydrofoil may be formed. Although it is complicated, it is possible to make the fins rotationally symmetric three times and contain three wings as necessary. For the material to be used and the control system, any technique in accordance with the purpose may be used.

(第2実施形態)
図3に、第2実施形態に係るアームを用いて船舶用回生制動機構を使用/不使用を切り替える船舶を示す。推進時には水上に回生機構を保持し、制動時には水面下に回生制動機構を浸水させる。水上に保持する方法としてのアーム等の構造は強度と高さ調整が可能な機構であれば任意に選ぶことができる。水上の空間または水上の船体内に保持する方法も自由度がある。また、アームによって船体の水中部から格納されていた回生制動機構を展開しても良い。
(Second Embodiment)
FIG. 3 shows a ship that switches use / non-use of the ship regenerative braking mechanism using the arm according to the second embodiment. The regenerative braking mechanism is held on the water during propulsion, and the regenerative braking mechanism is submerged under the water during braking. The structure of the arm or the like as a method of holding on the water can be arbitrarily selected as long as the mechanism can adjust the strength and height. There is also a degree of freedom in how to hold it in the water space or in the water hull. Further, the regenerative braking mechanism stored from the underwater part of the hull may be developed by the arm.

図2を用いて説明された上記のフィン一体型回生発電機構を用いることも可能である。フィンの浸水による第一段階の制動、ロータ回転を用いた第二段階の制動を有効に活用することが可能になる。   The fin-integrated regenerative power generation mechanism described with reference to FIG. 2 can also be used. It is possible to effectively utilize the first-stage braking by fin water immersion and the second-stage braking using rotor rotation.

上記第2実施形態においても、発電機構、伝達機構、利用材料、制御系は目的に沿った如何なる技術を用いても良い。   Also in the second embodiment, any technology that meets the purpose may be used for the power generation mechanism, the transmission mechanism, the material used, and the control system.

(第3実施形態)
図4にフィン一体型回生制動機構を積極的に既存の船体構造と一致させた実施形態として示す。図4の(a)は可動式/固定式フィンスタビライザーの一部を形成するように用いている。(b)ではヨット等で用いられるセンターボードの一部として用いている。既存構造に一体化させると、従来の推進上工夫された流体的な設計を妨げずに導入ができ、かつ制動や後述するように旋回性能向上が可能になる。
(Third embodiment)
FIG. 4 shows an embodiment in which the fin-integrated regenerative braking mechanism is positively matched with the existing hull structure. FIG. 4 (a) is used to form part of a movable / fixed fin stabilizer. In (b), it is used as part of the center board used in yachts. If it is integrated with the existing structure, it can be introduced without hindering the conventional fluid design devised for propulsion, and the braking performance can be improved as described later.

上記に限定されず、既存の船舶構造には舵の他に、竜骨の張り出した構造など既存のフィン状構造に組み込むほか、回生制動のために新たに導入しても良い。   The present invention is not limited to the above, and in addition to the rudder, the existing ship structure may be incorporated into an existing fin-like structure such as a keel projecting structure, or may be newly introduced for regenerative braking.

上記第3実施形態においても、発電機構、伝達機構、利用材料、制御系は目的に沿った如何なる技術を用いても良い。   Also in the third embodiment, any technology that meets the purpose may be used for the power generation mechanism, the transmission mechanism, the material used, and the control system.

上記のいずれの実施形態においても、ブレードの形状をより制動能力の高いものにすることが可能である。特に、請求項3に記載されるギャロッピング型ロータ(図5の(b))はその効果が高い。ギャロピング型は水流の上流側に凹面または平面を持ち、流れの剥離効果を活用しながら回転する。発明者の検討によれば、発電力には大きな差がないが、より大きな効力を受けるので制動に適している。   In any of the above embodiments, the shape of the blade can be made higher in braking ability. In particular, the galloping rotor described in claim 3 (FIG. 5B) is highly effective. The galloping type has a concave surface or a flat surface on the upstream side of the water flow, and rotates while utilizing the separation effect of the flow. According to the inventor's study, there is no great difference in the generated power, but it is more effective and is suitable for braking.

ギャロッピング型は構造が簡単でフィン一体型回生制動機構にもより流れを乱さない状態からより大きな抗力を受ける状態に変換できるので本発明の目的に適している。ただし、電力を与えたときの推進プロペラとしての能力はピッチ角を持ち翼型断面を持つプロペラ型(a)の方が優れているので、これらを組み合わせて推進力と制動力の両方を得ることも可能である。   The galloping type is suitable for the purpose of the present invention because the structure is simple and the fin-integrated regenerative braking mechanism can be converted from a state in which the flow is not disturbed to a state in which a larger drag is received. However, the propeller type (a) with a pitch angle and a wing-shaped cross section is superior in terms of propulsion propeller capacity when electric power is applied, so that both propulsive force and braking force can be obtained by combining them. Is also possible.

図6は本発明の回生制動機構を制動だけでなく旋回にも活用できることを説明するものである。図6ではフィン一体型回生制動機構を用いた図4(a)に近い構造で示しているが他の実施形態でも同様である。   FIG. 6 explains that the regenerative braking mechanism of the present invention can be used not only for braking but also for turning. Although FIG. 6 shows a structure close to FIG. 4A using a fin-integrated regenerative braking mechanism, the same applies to other embodiments.

船体の左舷と右舷両方に本発明の回生制動機構を設置することにより、図6(a)のように推進時には抵抗が少なく、(b)のように制動時にはしっかりと回生制動を行うことができる。さらに、請求項4および図6(c)に示されるように型舷の制動のみを活用することで、旋回を有利に行うことができる。片側に抵抗があり、反対側は抵抗がない状態により、制動側を軸にした回転力が生じる。   By installing the regenerative braking mechanism of the present invention on both the port side and starboard side of the hull, resistance is low during propulsion as shown in FIG. 6 (a), and regenerative braking can be performed firmly during braking as shown in (b). . Furthermore, as shown in claim 4 and FIG. 6 (c), the turning can be advantageously performed by utilizing only the braking of the mold. Due to the resistance on one side and the resistance on the other side, there is a rotational force around the braking side.

旋回を有効に行うためには、船体の左右の回生制動機構は船体中心よりなるべく離れている方が好ましい。図6(c)のように二軸ある片舷の推進プロペラも旋回の一助とする場合、これらも中心より距離が離れている方が有利である。   In order to perform turning effectively, it is preferable that the left and right regenerative braking mechanisms of the hull be as far as possible from the center of the hull. As shown in FIG. 6 (c), when the two-axis propulsion propeller is also aided in turning, it is advantageous that these are further away from the center.

請求項5に記載されるように、本発明の回生制動装置を左右両舷に複数設け、一部の回生制動で得た電力を他の非制動状態にあるロータの推進回転/逆推進回転に用いて制動/旋回を有効に活用することが可能である。これは請求項4に記載の制動や旋回の能力を高めるものであり、制動の場合は進行方向に対して均等に制動力が生じるようにバランスを取り、また旋回の場合は偏りを強化与えることで旋回力を生じるようにする。   According to a fifth aspect of the present invention, a plurality of regenerative braking devices of the present invention are provided on both the left and right sides, and electric power obtained by a part of the regenerative braking is used for propulsion rotation / reverse propulsion rotation of a rotor in another non-braking state. It is possible to use braking / turning effectively. This enhances the braking and turning ability according to claim 4, and in the case of braking, it is balanced so that the braking force is evenly generated in the traveling direction, and in the case of turning, the bias is strengthened. To produce a turning force.

以上、本発明の実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   Although the embodiments of the present invention have been described in detail above, it should be understood that modifications, variations, and changes can be made without departing from the scope of the claims.

1 船舶
2 船舶用回生制動機構
3 水面
4 フィン
5 回転軸
6 フィンと一体化した回生制動機構
DESCRIPTION OF SYMBOLS 1 Ship 2 Regenerative braking mechanism for ships 3 Water surface 4 Fin 5 Rotating shaft 6 Regenerative braking mechanism integrated with fin

Claims (1)

発電機に伝達機構でつながったロータを有する水中翼船において、前記水中翼船の推進 時には、船底または水中翼構造の支持柱に設置された前記ロータを水中翼の揚力で浮上させることで水上に保持し、前記水中翼船の制動時には、前記ロータを着水して流水の抵抗によりその回転を許すことにより、発電しつつ船体を減速させることを特徴とする船舶用回生制動機構。
In a hydrofoil ship with a rotor connected to a generator by a transmission mechanism, when the hydrofoil ship is propelled, the rotor installed on the bottom of the ship or the support pillar of the hydrofoil structure is levitated by the lift of the hydrofoil and put on the water. A marine regenerative braking mechanism that holds and decelerates the hull while generating electricity by landing the rotor and allowing its rotation by resistance of running water when braking the hydrofoil.
JP2017231546A 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same Active JP6603867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231546A JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231546A JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Publications (2)

Publication Number Publication Date
JP2019098905A JP2019098905A (en) 2019-06-24
JP6603867B2 true JP6603867B2 (en) 2019-11-13

Family

ID=66975446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231546A Active JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Country Status (1)

Country Link
JP (1) JP6603867B2 (en)

Also Published As

Publication number Publication date
JP2019098905A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US7517263B1 (en) Advanced blade sections for high speed propellers
EP2535261B1 (en) Paddle wheel yacht
JP5972711B2 (en) Counter-rotating propeller propulsion type ship
CN103786853A (en) Torque self-balancing combination propeller of underwater navigation body
US10661868B2 (en) Vessel propulsion apparatus and vessel including the same
US20100009578A1 (en) System and method for dynamic energy recovery in marine propulsion
CN102056793B (en) A method of providing a ship with a large diameter screw propeller and a ship having a large diameter screw propeller
JP6603867B2 (en) Ship regenerative braking mechanism and ship using the same
JP2019112054A (en) Ocean vessel
JP4206339B2 (en) Ship steering structure
US7537500B2 (en) Ship driven by inboard engines and water jets
US11738842B2 (en) Process for maximizing speed of marine vessels propelled by natural renewable energy by managing the harvesting, storage and re-use of natural energy
US7316194B1 (en) Rudders for high-speed ships
CA2373462A1 (en) Course-holding, high-speed, sea-going vessel having a hull which is optimized for a rudder propeller
CN103640445A (en) Amphibious unmanned vehicle with front-mounted double bodies on inclined sides and three bodies on water surface
JP2001001991A (en) Azimuth propeller device with fin
JP2011088540A (en) Ship equipped with hydrofoil
CN205131617U (en) Pnematic ship of amphibian
CN110682749A (en) Wheel integrated with wheel and paddle and amphibious carrier
JP7405705B2 (en) ship
CN116691981B (en) Distributed power system of catamaran and catamaran
KR20100005903U (en) Turning device of a ship
KR20160065392A (en) Outboard propulsion apparatus using a bldc motor
CN106516058A (en) Airship
CN116890982A (en) ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6603867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250