JP2019098905A - Regenerative braking mechanism for ship and ship using it - Google Patents

Regenerative braking mechanism for ship and ship using it Download PDF

Info

Publication number
JP2019098905A
JP2019098905A JP2017231546A JP2017231546A JP2019098905A JP 2019098905 A JP2019098905 A JP 2019098905A JP 2017231546 A JP2017231546 A JP 2017231546A JP 2017231546 A JP2017231546 A JP 2017231546A JP 2019098905 A JP2019098905 A JP 2019098905A
Authority
JP
Japan
Prior art keywords
rotor
ship
braking
regenerative braking
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017231546A
Other languages
Japanese (ja)
Other versions
JP6603867B2 (en
Inventor
剛慈 上田
Takeji Ueda
剛慈 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Front Co Ltd
Original Assignee
Energy Front Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Front Co Ltd filed Critical Energy Front Co Ltd
Priority to JP2017231546A priority Critical patent/JP6603867B2/en
Publication of JP2019098905A publication Critical patent/JP2019098905A/en
Application granted granted Critical
Publication of JP6603867B2 publication Critical patent/JP6603867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydraulic Turbines (AREA)
  • Braking Arrangements (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

To develop an effective regenerative braking mechanism for a ship to utilize effectively energy because there is few effective braking means for a ship and also to use this as an effective turning means of a ship.SOLUTION: A regenerative braking mechanism stores rotors connected to the electric generators underwater, or in the structure such as the hull or the fin which does not disturb streamlines during propulsion, and obtains a large braking effect by rotating the rotors underwater during braking. The regenerative braking mechanism is also provided on both sides of a ship and is utilized to turn the ship by braking only on one side.SELECTED DRAWING: Figure 6

Description

本発明は、船舶の制動を実現しつつ発電し蓄電池の充電を行う回生制動機構及びそれを活用した旋回機構に関するものである。   The present invention relates to a regenerative braking mechanism that generates electric power and charges a storage battery while realizing braking of a ship, and a turning mechanism that utilizes the regenerative braking mechanism.

ガソリン駆動の自動車の制動には摩擦力を用いるディスクブレーキや、エンジンの抵抗によって制動を行うエンジンブレーキが用いられている。電気自動車の普及の中で、駆動に用いるモーターを発電機として用いることで制動し、得られる電力で車載バッテリーの充電を行う回生ブレーキが利用されている。例えば、特許文献1に開示される技術がそれである。   Disc brakes that use frictional force and engine brakes that perform braking by resistance of the engine are used for braking gasoline-powered vehicles. Among the widespread use of electric vehicles, a regenerative brake is used which uses a motor used for driving as a generator to brake and charge the on-vehicle battery with the obtained electric power. For example, the technology disclosed in Patent Document 1 is that.

船舶においては水の抵抗による制動に加えてスクリューを逆回転することで制動の一助とすることが行われている。電気推進式船舶においても電気自動車と同様に、プロペラやサイドスラスタを回生ブレーキとして用いる技術が開示されている。例えば、特許文献2や3がそれである。   In ships, in addition to braking due to water resistance, reverse rotation of the screw is used to help braking. Also in the electric propulsion type ship, a technique using a propeller or a side thruster as a regenerative brake is disclosed as in the electric car. For example, patent documents 2 and 3 are it.

水中で回転して発電可能なプロペラ状のものとしては、特許文献4に開示されるプロペラ、特許文献5中に図示される潮流発電用ロータなどの翼型の断面形状を持つロータのほか、ギャロッピングの原理で回転する断面形状を持つロータが開示されている。   As propellers that can be rotated and generated in water, propellers disclosed in Patent Document 4 and rotors having a cross-sectional shape of an airfoil such as a rotor for tidal current power generation illustrated in Patent Document 5 as well as galloping A rotor having a cross-sectional shape that rotates on the principle of

特開平5―176406号公報JP-A-5-176406 特開2014―129048号公報Unexamined-Japanese-Patent No. 2014-129048 特開2017―193224号公報JP, 2017-193224, A 特開2015―214898号公報JP, 2015-214898, A 特開2013―508592号公報JP, 2013-508592, A

化石燃料駆動の船舶の制動でプロペラを逆回転することが行われているが、それは水の抵抗による速度低下である程度減速してから行われる。一般的に、流線型に形成される船尾にあるプロペラの逆回転で大きな制動力を与えることは難しい。サイドスラスタも制動手段としては大きな寄与を期待できない。特許文献2や3に開示されるように電気推進船舶ではメインプロペラを回生ブレーキとして用いる技術はあるが、回生ブレーキの効率を考えると流れをより直接受ける船体前方や側部に回生制動機構をつけることが好ましい。   It is common practice to reverse the propeller by braking a fossil fuel-powered vessel, but only after some reduction in speed due to water resistance. In general, it is difficult to apply a large braking force by reverse rotation of a streamlined stern propeller. The side thrusters can not be expected to make a significant contribution as a braking means. As disclosed in Patent Documents 2 and 3, there is a technology that uses the main propeller as a regenerative brake in an electric propulsion ship, but considering the efficiency of the regenerative brake, a regenerative braking mechanism is attached to the forward and side of the hull which receives flow more directly Is preferred.

タンカーなど慣性の大きい船舶ではプロパラで逆回転を用いた場合でも最高速度から停止までに15分以上の時間を要し、その間に船舶は3キロメートル近く移動することが知られている。したがって、自動車と異なり船舶においては効果的な制動手段は装備されているとは言い難く、危険回避の観点では解決すべき問題である。   It is known that even in the case of using a reverse rotation at Pro Para in a large inertia ship such as a tanker, it takes more than 15 minutes from the maximum speed to a stop, during which time the ship moves approximately 3 kilometers. Therefore, unlike cars, it is difficult to say that effective braking means are equipped in ships, and this is a problem to be solved in terms of risk avoidance.

船舶の前方に逆推進力を与える技術を導入することは可能であるが、単にこれらの機構を導入するだけではエネルギーの消費や推進時の抵抗を増やしてしまう。エネルギー有効利用の観点では推進時には抵抗とならず、制動時にエネルギーを回収し活用できる回生制動機構があることが好ましい。   While it is possible to introduce technologies that give reverse propulsion to the front of the ship, simply introducing these mechanisms will increase energy consumption and resistance during propulsion. From the viewpoint of effective use of energy, it is preferable that there is a regenerative braking mechanism that does not become a resistance at the time of propulsion but recovers and uses the energy at the time of braking.

また、船の大きさによらず舵では最大舵角は35度であることが知られており。推進時には小回りが効きにくい。制動を活用することでエネルギーの浪費をせずに大きな舵角をとることができればより好ましい。   In addition, it is known that the maximum steering angle is 35 degrees in the rudder regardless of the size of the ship. It is difficult to make small turns at promotion. It is more preferable if braking can be used to achieve a large steering angle without wasting energy.

本発明の船舶用回生ブレーキは、メインプロペラを用いるのではなく、別途設置するものである。推進時には抵抗とならないが、制動時には流水の力を受けてロータが回転して速度を効果的に落としながら発電し、運動エネルギーを電気エネルギーとして回収し活用する。   The ship regenerative brake according to the present invention does not use a main propeller but is installed separately. At the time of propulsion, it does not become resistance, but at the time of braking, it receives power of flowing water, rotates the rotor and generates electric power while effectively reducing the speed, and recovers and utilizes kinetic energy as electric energy.

このため請求項1に記載の本発明の船舶用回生制動機構では、船の水面上に保持または船体の水面下のフィンなどに流線を乱さない形でロータをつけた発電システムを設置し、制動時のみ流水抵抗を受けるようにする。これは可動式フィンスタビライザーと機能を兼ねることができる。またヨットで用いられているセンターボード、舵などの既存の船に装備されたフィン型構造、あるいは本発明のために新たに設けられたフィン型構造に取り付けたロータで発電することで回生制動する。   Therefore, in the ship regenerative braking mechanism according to the first aspect of the present invention, a power generation system is installed with a rotor held on the water surface of the ship or without disturbing the streamlines on fins under the water surface of the ship. Make sure to receive water resistance only when braking. This can double as a movable fin stabilizer. In addition, regenerative braking is performed by generating electricity using a rotor mounted on a center board used in a yacht, a fin type structure provided on an existing ship such as a rudder, or a fin type structure newly provided for the present invention. .

請求項2に示されるように、推進時に抵抗を増やさないが制動時には大きな減速を可能にするためには、フィン型構造に一体化するようにロータの形状は2回回転対称(すなわち棒状に近い)2枚羽となることが望ましい。推進時にはフィン構造の面や断面輪郭線に近い位置にロータ外形が収まることにより流線を乱さないが、制動時にはフィン面や断面輪郭線を超えて回転動作してしっかり回生制動できるようになる。   As shown in claim 2, in order not to increase the resistance during propulsion but to allow a large deceleration during braking, the shape of the rotor is twice rotational symmetric (i.e. close to a rod) so as to be integrated into the fin type structure It is desirable to be two wings. At the time of propulsion, the outer shape of the rotor fits in a position close to the surface of the fin structure or the cross-sectional outline, but the streamlines are not disturbed at the time of braking.

ロータのブレード断面は、プロペラや潮流発電ロータに見られる翼型でその目的を果たすことはできこれは逆推進力を得る場合には有効である。しかし、制動のみを効果的に行うためには請求項3に記載されるとおり、より減速能力の高いギャロッピングの原理で回転する断面形状(以下ギャロッピング型と記述する)を持つロータの活用が好適である。   The blade cross section of the rotor can serve its purpose in the form of an airfoil found on propellers and tidal power generation rotors, which is useful for obtaining reverse thrust. However, to effectively perform only braking, it is preferable to use a rotor having a cross-sectional shape (hereinafter referred to as a galloping type) that rotates on the principle of galloping with higher speed reduction capability as described in claim 3 is there.

請求項4に示されるように、船の左舷と右舷に上記の回生制動機構をつけることにより、双方で流れを受けて回生制動しするほか、一方のみで流れを受けてエネルギーのロスを少なく船体の旋回を行うことが可能となる。   As shown in claim 4, by attaching the above-mentioned regenerative braking mechanism to the port side and the starboard side of the ship, both sides receive flow and perform regenerative braking, while receiving flow only with one side and reducing energy loss the hull It is possible to make a turn of

また、請求項5に示されるように、両舷の回生制動で得た電力を船舶のプロペラや未使用の他の回生制動ロータの逆推進方向の回転に用いることにより、制動をさらに効果的に行うことができる。旋回においても、片方の舷の回生制動で得た電力で反対側の舷のロータを推進方向に回転させることで旋回はさらに効果的に行うことができる。   In addition, as shown in claim 5, by using the electric power obtained by the regenerative braking of the both sides for the propeller of the ship and the rotation in the reverse propulsion direction of other unused regenerative braking rotors, the braking can be made more effective. It can be carried out. Also in turning, turning can be performed more effectively by rotating the rotor of the other side in the propulsion direction with the power obtained by regenerative braking of one side.

本発明によれば、推進時には抵抗とならないが、制動時には流水の力を受けてロータが回転して速度を効果的に落としながら発電し、運動エネルギーを電気エネルギーとして回収することが可能になる。また、両舷に同制動機構を設置することにより、旋回を効果的に行うことが可能となる。   According to the present invention, although it does not become a resistance at the time of propulsion, it becomes possible to receive power of flowing water at the time of braking and generate power while effectively reducing the speed by recovering the kinetic energy as electrical energy. In addition, by installing the same braking mechanism on both sides, it becomes possible to perform turning effectively.

第1実施形態の船舶用回生機構を備えた船舶の図である。It is a figure of the ship provided with the ship regeneration mechanism of a 1st embodiment. フィン構造に一体化するロータの(a)側面図 (b)背面図である。(A) Side view of the rotor integrated with a fin structure (b) It is a rear view. 第2実施形態の船舶用回生機構を備えた船舶の図である。It is a figure of the ship provided with the ship regeneration mechanism of a 2nd embodiment. 第3実施形態のフィン一体型回生機構を備えた船舶の図である。It is a figure of the ship provided with the fin integrated type regeneration mechanism of 3rd Embodiment. ロータの断面(a)翼型と(b)ギャロッピング型を示す図である。Fig. 2 shows a cross section of the rotor (a) an airfoil and (b) a galloping die. 船舶の推進・制動・旋回の動作図である。It is an operation view of propulsion / braking / turning of a ship.

以下、本発明に係る船舶用回生制動機構についての実施実態を挙げ、添付の図面を基に説明する。   Hereinafter, the actual condition of the ship's regenerative braking mechanism according to the present invention will be listed and explained based on the attached drawings.

(第1実施形態)
図1に、第1実施形態に係る船舶用回生制動機構を活用した水中翼船を示す。水中翼船である船舶1は船体下に水中翼を持ち、推進速度の上昇とともに水中翼の揚力で船体が水上に引き上げられ、より小さい抵抗で推進することができる。高速推進時には水面3下には水中翼の一部または全部のみが存在する。
First Embodiment
FIG. 1 shows a hydrofoil vessel utilizing the ship's regenerative braking mechanism according to the first embodiment. The vessel 1, which is a hydrofoil, has a hydrofoil below the hull, and can be propelled with less resistance by raising the hull by the lift of the hydrofoil as the propulsion speed increases. At high speed propulsion, only part or all of the hydrofoil is present under the water surface 3.

この水中翼で持ち上げられた船体下の空間に本発明の回生制動機構2を設置すると、高速推進時には水上に保たれ、制動時には水中で作動する請求項第一に記載の発明が実現される。   When the regenerative braking mechanism 2 of the present invention is installed in the space under the hull lifted by the hydrofoil, the invention according to the first embodiment is realized which is kept on water at high speed propulsion and operates in water at braking.

この時、発電機に伝達機構で結ばれたロータの形状や羽の枚数は利用可能な技術、たとえば特許文献4や5など、のいずれを用いても良い。また、発電機の種類、生成された電力の制御系、蓄電方法も公知の多様な技術を用いることが可能である。   At this time, any of the available technologies such as Patent Documents 4 and 5 may be used for the shape of the rotor and the number of blades connected to the generator by the transmission mechanism. In addition, it is possible to use various known techniques for the type of generator, the control system of the generated power, and the storage method.

ロータのピッチ角を変えて、あるいはロータの向きを変えて、あるいは羽の形状を工夫して回転方向によらず作動するようにして、発電機に電力を供給して推進用補助プロペラとして活用するようにすれば、低速推進状態で当該回生制動機構は推進の障害とはならない。    Power is supplied to the generator and used as a propulsion auxiliary propeller by changing the pitch angle of the rotor, changing the direction of the rotor, or devising the shape of the wing to operate regardless of the direction of rotation. If so, the regenerative braking mechanism does not become an obstacle to propulsion in the low speed propulsion state.

船体下の回生制動機構に昇降機構を設け、高速推進時から制動を発揮させることも可能である。水中翼線に限らず、双胴船のように船体下に空間を持つ船舶の制動でも同様に活用可能である。   It is also possible to provide a lift mechanism to the regenerative braking mechanism below the hull and to exert braking from high speed propulsion. Not limited to the hydrofoil, it can be similarly applied to braking of a ship having a space under the hull, such as a catamaran.

上記水中翼構造(支持柱および/または水中翼)に本発明の請求項2に記載のフィン型構造に一体化するロータを適用することで、推進時には妨げとならず制動時には直ちに高い回生制動を実現することが可能であるのでこれについて説明する。   By applying the rotor integrated with the fin-type structure according to claim 2 of the present invention to the hydrofoil structure (support column and / or hydrofoil), high regenerative braking can be achieved immediately upon braking without hindrance during propulsion. Since it is possible to realize, this will be described.

図2にフィン構造に一体化するロータの(a)側面図と(b)背面図を示す。ロータの形状は2回回転対称(すなわち直線状の)2枚羽とすることにより、推進時には図中でロータを描かれた角度に固定すれば流線を乱さないようにすることができる(これを以降、フィン一体型回生制動機構と呼ぶ)。制動時には回転を許すことによりロータはフィンの断面積を大きく超えて(b)の点線円の軌道で動くので水の流れのエネルギーを大きく受ける。これによって推進と制動を効果的に切り替えることができる。   FIG. 2 shows (a) a side view and (b) a rear view of a rotor integrated into a fin structure. By setting the shape of the rotor to two-fold rotational symmetry (that is, linear) two wings, it is possible to prevent the streamline from being disturbed by fixing the rotor at the angle drawn in the figure at the time of propulsion (this Is referred to as a fin-integrated regenerative braking mechanism hereinafter). By allowing rotation at the time of braking, the rotor moves in the trajectory of the dotted circle of (b) far beyond the cross-sectional area of the fin, and therefore receives a large amount of water flow energy. This enables effective switching between propulsion and braking.

ここで用いられる発電機は公知のいかなるものを用いても良い。発電機はフィン内に設置してもよく、ギアやベルト、チェーン、油圧・水圧などの公知の変換伝達機構を適切に選んで船体内の発電機に伝達することも可能である。 ロータを推進時には所定の角度に戻して固定必要があるため、発電機をモーターとして用いるようにすることが望ましい。また、推進時には積極的に駆動方向に回転させ推進補助としても良い。なお、所定角度で保持するためにはロック機構を設けることが望ましい。   The generator used here may be any known generator. The generator may be installed in the fin, and it is also possible to appropriately select and transfer known conversion transmission mechanisms such as gears, belts, chains, hydraulics and hydraulics to the generator in the ship. It is desirable to use a generator as a motor, since it is necessary to return the rotor to a predetermined angle and fix it during propulsion. In addition, at the time of propulsion, it may be positively rotated in the driving direction as propulsion assistance. In addition, in order to hold | maintain at a predetermined angle, it is desirable to provide a lock mechanism.

フィンの形状は多様であって良い。上記水中翼構造に上記フィン一体型回生制動機構を適用する場合、水中翼の支持部や水中翼の一部または全部を形成するようにしても良い。複雑になるがフィンを3回回転対称にして3枚羽を収めるなども必要に応じて可能である。利用材料、制御系は目的に沿った如何なる技術を用いても良い。   The shape of the fins may vary. When the fin-integrated regenerative braking mechanism is applied to the hydrofoil structure, part or all of the hydrofoil support portion or hydrofoil may be formed. Although it is complicated, it is also possible to make the fins three times rotational symmetric and fit three wings if necessary. The materials used and the control system may use any technique in accordance with the purpose.

(第2実施形態)
図3に、第2実施形態に係るアームを用いて船舶用回生制動機構を使用/不使用を切り替える船舶を示す。推進時には水上に回生機構を保持し、制動時には水面下に回生制動機構を浸水させる。水上に保持する方法としてのアーム等の構造は強度と高さ調整が可能な機構であれば任意に選ぶことができる。水上の空間または水上の船体内に保持する方法も自由度がある。また、アームによって船体の水中部から格納されていた回生制動機構を展開しても良い。
Second Embodiment
FIG. 3 shows a ship that switches use / nonuse of the ship regenerative braking mechanism using the arm according to the second embodiment. At the time of propulsion, the regenerative mechanism is held above the water, and at the time of braking, the regenerative braking mechanism is submerged below the water surface. The structure of an arm or the like as a method of holding on water can be arbitrarily selected as long as it is a mechanism capable of adjusting strength and height. There is also flexibility in the way it is held in the space above the water or in the hull above the water. Further, the regenerative braking mechanism stored from the underwater part of the hull by the arm may be deployed.

図2を用いて説明された上記のフィン一体型回生発電機構を用いることも可能である。フィンの浸水による第一段階の制動、ロータ回転を用いた第二段階の制動を有効に活用することが可能になる。   It is also possible to use the above-described fin-integrated regenerative power generation mechanism described with reference to FIG. It is possible to make effective use of first stage braking by immersion of fins and second stage braking using rotor rotation.

上記第2実施形態においても、発電機構、伝達機構、利用材料、制御系は目的に沿った如何なる技術を用いても良い。   Also in the second embodiment, any technology according to the purpose may be used for the power generation mechanism, the transmission mechanism, the used material, and the control system.

(第3実施形態)
図4にフィン一体型回生制動機構を積極的に既存の船体構造と一致させた実施形態として示す。図4の(a)は可動式/固定式フィンスタビライザーの一部を形成するように用いている。(b)ではヨット等で用いられるセンターボードの一部として用いている。既存構造に一体化させると、従来の推進上工夫された流体的な設計を妨げずに導入ができ、かつ制動や後述するように旋回性能向上が可能になる。
Third Embodiment
FIG. 4 shows an embodiment in which the fin integrated regenerative braking mechanism is positively matched with the existing hull structure. FIG. 4a is used to form part of a moveable / fixed fin stabilizer. In (b), it is used as part of a center board used in yachts and the like. When integrated into the existing structure, it can be introduced without interfering with the conventional fluidic design devised for propulsion, and braking and improvement of turning performance as will be described later become possible.

上記に限定されず、既存の船舶構造には舵の他に、竜骨の張り出した構造など既存のフィン状構造に組み込むほか、回生制動のために新たに導入しても良い。   The present invention is not limited to the above, and in addition to the rudder, the existing ship structure may be incorporated into an existing fin-like structure such as an overhanging structure of a keel, or may be newly introduced for regenerative braking.

上記第3実施形態においても、発電機構、伝達機構、利用材料、制御系は目的に沿った如何なる技術を用いても良い。   Also in the third embodiment, any technique suitable for the purpose may be used for the power generation mechanism, the transmission mechanism, the used material, and the control system.

上記のいずれの実施形態においても、ブレードの形状をより制動能力の高いものにすることが可能である。特に、請求項3に記載されるギャロッピング型ロータ(図5の(b))はその効果が高い。ギャロピング型は水流の上流側に凹面または平面を持ち、流れの剥離効果を活用しながら回転する。発明者の検討によれば、発電力には大きな差がないが、より大きな効力を受けるので制動に適している。   In any of the above-described embodiments, the shape of the blade can be made higher in braking ability. In particular, the galloping-type rotor (FIG. 5 (b)) described in claim 3 is highly effective. The galloping type has a concave or flat surface upstream of the water flow and rotates while taking advantage of the flow separation effect. According to the inventor's examination, although there is no big difference in the power generation capacity, it is suitable for braking since it receives a larger effect.

ギャロッピング型は構造が簡単でフィン一体型回生制動機構にもより流れを乱さない状態からより大きな抗力を受ける状態に変換できるので本発明の目的に適している。ただし、電力を与えたときの推進プロペラとしての能力はピッチ角を持ち翼型断面を持つプロペラ型(a)の方が優れているので、これらを組み合わせて推進力と制動力の両方を得ることも可能である。   The galloping type is suitable for the purpose of the present invention because the structure is simple and the integrated fin type regenerative braking mechanism can convert the flow from the undisturbed state to the state of receiving more drag. However, since the propeller type (a) with a pitch angle and wing-shaped cross section is superior in ability as a propelling propeller when power is applied, combining these to obtain both propulsive force and braking force Is also possible.

図6は本発明の回生制動機構を制動だけでなく旋回にも活用できることを説明するものである。図6ではフィン一体型回生制動機構を用いた図4(a)に近い構造で示しているが他の実施形態でも同様である。   FIG. 6 illustrates that the regenerative braking mechanism of the present invention can be utilized not only for braking but also for turning. Although FIG. 6 shows a structure close to that of FIG. 4A using the fin integrated regenerative braking mechanism, the same applies to the other embodiments.

船体の左舷と右舷両方に本発明の回生制動機構を設置することにより、図6(a)のように推進時には抵抗が少なく、(b)のように制動時にはしっかりと回生制動を行うことができる。さらに、請求項4および図6(c)に示されるように型舷の制動のみを活用することで、旋回を有利に行うことができる。片側に抵抗があり、反対側は抵抗がない状態により、制動側を軸にした回転力が生じる。   By installing the regenerative braking mechanism of the present invention on both the port and the starboard of the hull, resistance is small at the time of propulsion as shown in FIG. 6 (a), and regenerative braking can be performed firmly at the time of braking as shown in (b). . Furthermore, as shown in claim 4 and FIG. 6 (c), turning can be advantageously performed by utilizing only the braking of the mold. With resistance on one side and no resistance on the other side, a torque is generated about the braking side.

旋回を有効に行うためには、船体の左右の回生制動機構は船体中心よりなるべく離れている方が好ましい。図6(c)のように二軸ある片舷の推進プロペラも旋回の一助とする場合、これらも中心より距離が離れている方が有利である。   In order to effectively turn, it is preferable that the left and right regenerative braking mechanisms of the hull be as far as possible from the center of the hull. As shown in FIG. 6 (c), in the case where a two-pronged propeller having a single shaft is also used as a turning aid, it is advantageous that the distance between the two is also greater than the center.

請求項5に記載されるように、本発明の回生制動装置を左右両舷に複数設け、一部の回生制動で得た電力を他の非制動状態にあるロータの推進回転/逆推進回転に用いて制動/旋回を有効に活用することが可能である。これは請求項4に記載の制動や旋回の能力を高めるものであり、制動の場合は進行方向に対して均等に制動力が生じるようにバランスを取り、また旋回の場合は偏りを強化与えることで旋回力を生じるようにする。   As described in claim 5, a plurality of regenerative braking devices according to the present invention are provided on the left and right sides, and the power obtained by a part of the regenerative braking is used for propulsion rotation / reverse propulsion rotation of the rotor in another non-braking state. It is possible to utilize braking / turning effectively. This is to enhance the braking and turning ability according to claim 4, and in the case of braking, balancing is performed so that the braking force is evenly generated in the traveling direction, and in the case of turning, strengthening of the bias is given. To generate a turning force.

以上、本発明の実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   While the embodiments of the present invention have been described in detail, it should be understood that modifications, variations and changes may be made without departing from the scope of the claims.

1 船舶
2 船舶用回生制動機構
3 水面
4 フィン
5 回転軸
6 フィンと一体化した回生制動機構
1 ship 2 ship's regenerative braking mechanism 3 water surface 4 fins 5 rotating shaft 6 regenerative braking mechanism integrated with fins

ロータのピッチ角を変えて、あるいはロータの向きを変えて、あるいは羽の形状を工夫してロータを制動のみでなく推進にも使える状態にし、発電機に電力を供給して推進用補助プロペラとして活用するようにすれば、当該回生制動機構は推進にも役立つBy changing the pitch angle of the rotor, changing the direction of the rotor, or devising the shape of the wing, the rotor can be used not only for braking but also for propulsion, and power is supplied to the generator to be used as an auxiliary propeller for propulsion. If utilized, the regenerative braking mechanism is also useful for propulsion.

船体下の回生制動機構に昇降機構を設け、水上から水中へローターを着水し、制動を発揮させることも可能である。すなわち水中翼線に限らず、双胴船のように船体下に空間を持つ船舶の制動でも同様に活用可能である。


It is also possible to provide a lift mechanism to the regenerative braking mechanism under the hull, to land the rotor from the water to the water, and to exert braking. That is, the invention is not limited to the hydrofoil, but can be similarly applied to the braking of a ship having a space under the hull like a twin-barre.


Claims (5)

発電機に伝達機構でつながったロータを、船舶の推進時には、水上に保持、または船体の水面下にある可動式フィンスタビライザーやアーム等に固定して格納、あるいは水面下の格納されないフィンスタビライザーやセンターボードや舵などの船体のフィン型構造に固定し、船舶の制動時には、前記水上ロータを着水、または水面下より前記ロータを結合したフィンスタビライザーやアーム等を格納状態から展開して回転を許すこと、または水面下の前記フィン型構造に固定されていた状態から前記ロータの回転を許すことにより、発電しつつ船体を減速させることを特徴とする船舶用回生制動機構。   The rotor connected to the generator by the transmission mechanism is held on the water when the ship is propelled, or fixed to a movable fin stabilizer or arm under the water surface of the hull, etc. or stored or not stored under the water surface It is fixed to the fin type structure of the hull such as a board or a rudder, and when braking the ship, the above water rotor is landed, or a fin stabilizer or an arm etc. connecting the rotor from under the water surface is deployed from the stored state to allow rotation. The ship's regenerative braking mechanism is characterized in that the ship is decelerated while generating power by allowing rotation of the rotor from a state fixed to the fin type structure below the water surface. 前記格納式/固定式フィンスタビライザーやセンターボードや舵などのプロペラ以外のフィン型構造に支持されるロータは2回回転対称な2枚羽ロータであり、前記フィン型構造の上流側あるいは下流側あるいはそれらの中間位置のいずれかに一つあるいはそれらの組み合わせの位置に複数支持され、前記ロータの回転軸が前記フィン型構造内にあり、推進時には前記ロータの2枚羽が前記フィン構造の面や断面輪郭線に近い位置に収まる形で固定されることにより流線を乱さないが、制動時には前記面や輪郭線を超えて回転動作して流れのエネルギーをしっかり受けることを特徴とする請求項1に記載の船舶用回生制動機構。   The rotor supported by the retractable / fixed fin stabilizer or a fin type structure other than a propeller such as a center board or a rudder is a two-rotary symmetrical two-bladed rotor, and the upstream side or downstream side of the fin type structure or The rotor is supported at one or a combination of these at one of these intermediate positions, and the rotary shaft of the rotor is in the fin type structure, and the two wings of the rotor at the time of propulsion are faces of the fin structure or It is characterized in that the flow line is not disturbed by being fixed so as to be fitted in a position close to the cross-sectional contour line, but it is rotationally operated beyond the surface and the contour line during braking to firmly receive flow energy. The regenerative braking mechanism for ships according to claim 1. 前記ロータがギャロッピングの原理で回転する断面形状を持つロータであることを特徴とする請求項1または2のいずれか一つに記載の船舶用回生制動機構。   The marine vessel regenerative braking mechanism according to any one of claims 1 and 2, wherein the rotor is a rotor having a cross-sectional shape that rotates on the galloping principle. 請求項1から3のいずれか一つあるいはそれらを組み合わせた船舶回生制動機構が少なくとも船舶の左右両舷に設けられ、制動時には両舷で同時に回生制動動作させて効果的な減速を行う、および/または、右舷または左舷一方のみの制動動作を行うことで旋回を有効に行うことを特徴とする船舶。   4. A ship regenerative braking mechanism according to any one of claims 1 to 3 or a combination thereof is provided at least on the left and right sides of the ship, and at the time of braking, regenerative braking operation is simultaneously performed by both sides to perform effective deceleration. Alternatively, the vessel is characterized in that turning is effectively performed by braking only one of the starboard side or the port side. 請求項1から3のいずれか一つあるいはそれらを組み合わせた複数の船舶用回生制動機構を少なくとも左右両舷に複数有し、一部の回生制動動作で得られた電力を他の非制動状態にあるロータの逆推進回転に用いて制動を効果的に行う、かつ/または片舷の回生制動動作で得られた電力を他の舷の非制動状態にあるロータの推進回転に用いて旋回を効果的に行うことを特徴とする船舶。   A plurality of marine vessel regenerative braking mechanisms combining at least one of claims 1 to 3 or 4 are provided at least on both the left and right sides, and the electric power obtained in a part of the regenerative braking operation is put into another non-braking state Effectively use braking for reverse propulsion rotation of one rotor and / or use the electric power obtained by regenerative braking operation of one side for propulsive rotation of a rotor in the non-braking state of another side to effect turning A ship characterized by being
JP2017231546A 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same Active JP6603867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231546A JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231546A JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Publications (2)

Publication Number Publication Date
JP2019098905A true JP2019098905A (en) 2019-06-24
JP6603867B2 JP6603867B2 (en) 2019-11-13

Family

ID=66975446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231546A Active JP6603867B2 (en) 2017-12-01 2017-12-01 Ship regenerative braking mechanism and ship using the same

Country Status (1)

Country Link
JP (1) JP6603867B2 (en)

Also Published As

Publication number Publication date
JP6603867B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP4789953B2 (en) Ship propulsion system
US7517263B1 (en) Advanced blade sections for high speed propellers
US20150027125A1 (en) Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed
FI115128B (en) Watercraft Propulsion System and Method for Using a Watercraft Propulsion System
WO2014030697A1 (en) Contra-rotating propeller propulsion-type ship
EP1013544A2 (en) Azimuth propeller apparatus and ship equipped with the apparatus
KR20050115229A (en) Steering and propulsion arrangement for ship
JP2019112054A (en) Ocean vessel
GB2525049A (en) Water-borne vessel
JP4206339B2 (en) Ship steering structure
CN102056793A (en) A method of providing a ship with a large diameter screw propeller and a ship having a large diameter screw propeller
JP6603867B2 (en) Ship regenerative braking mechanism and ship using the same
US7316194B1 (en) Rudders for high-speed ships
JP2011240806A (en) Energy saving ship
CN104760679A (en) Technology for converting water flow energy into electric power through electrically-driven adjustable propeller system during sailing voyage and storing electric power
CA2373462A1 (en) Course-holding, high-speed, sea-going vessel having a hull which is optimized for a rudder propeller
JP2001001991A (en) Azimuth propeller device with fin
US2242642A (en) Shoal draft vessel propulsion
JP7405705B2 (en) ship
KR20100005903U (en) Turning device of a ship
CN205131617U (en) Pnematic ship of amphibian
CN205418040U (en) Advancing device is under water used to boats and ships
CN205221065U (en) Take linear electric motor's annular flat plate blade boats and ships
CN116691981B (en) Distributed power system of catamaran and catamaran
JP2002293294A (en) High-lift twin rudder system for marine vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6603867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250