JP7405705B2 - ship - Google Patents

ship Download PDF

Info

Publication number
JP7405705B2
JP7405705B2 JP2020105213A JP2020105213A JP7405705B2 JP 7405705 B2 JP7405705 B2 JP 7405705B2 JP 2020105213 A JP2020105213 A JP 2020105213A JP 2020105213 A JP2020105213 A JP 2020105213A JP 7405705 B2 JP7405705 B2 JP 7405705B2
Authority
JP
Japan
Prior art keywords
propeller
ship
speed
power
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020105213A
Other languages
Japanese (ja)
Other versions
JP2021195090A (en
Inventor
虎卓 山本
智 藤田
直也 松村
有祐 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui E&S Shipbuilding Co Ltd
Priority to JP2020105213A priority Critical patent/JP7405705B2/en
Publication of JP2021195090A publication Critical patent/JP2021195090A/en
Application granted granted Critical
Publication of JP7405705B2 publication Critical patent/JP7405705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は舶用二重反転プロペラを備える船舶に関する。 The present invention relates to a ship equipped with a contra-rotating marine propeller.

二重反転プロペラは2つのプロペラを前後に同軸配置し、相互に逆回転させるプロペラである。二重反転プロペラはカウンタートルクを相殺できることや、前方のプロペラのプロペラ後流の旋回流を後方のプロペラの推進に利用でき推進効率に優れることから、主に航空機に使用されている。 A counter-rotating propeller is a propeller in which two propellers are arranged coaxially in front and behind each other and rotate in opposite directions. Counter-rotating propellers are mainly used in aircraft because they can offset counter torque and have excellent propulsion efficiency because they can use the swirling flow behind the propeller in the front to propel the rear propeller.

一方で船舶への二重反転プロペラの適用は、航空機ほど進んでいない。これは、駆動機構が複雑になりやすく、機械的信頼性に問題があることが大きな理由である。
例えば公知の二重反転プロペラは、一方のプロペラを駆動する中空の駆動軸を他方のプロペラを駆動する駆動軸回りに設ける(特許文献1)。このような構造では駆動軸回りの構造が複雑になり維持管理の点で問題がある。また、一方の駆動軸が他方の中空軸の内部に配置されるため、何れかの駆動軸に偏心や撓み等の不具合が生じると、2つの駆動軸が互いに接触して2つのプロペラが同時に故障する恐れがある。そのため、特にプロペラが故障すると漂流、遭難になる可能性が高い外航船のような船舶に用いるには、冗長性の面でも別途対策が必要である。
On the other hand, the application of counter-rotating propellers to ships has not progressed as much as to aircraft. The main reason for this is that the drive mechanism tends to be complicated and there are problems with mechanical reliability.
For example, in a known counter-rotating propeller, a hollow drive shaft that drives one propeller is provided around a drive shaft that drives the other propeller (Patent Document 1). In such a structure, the structure around the drive shaft becomes complicated and there are problems in terms of maintenance and management. In addition, since one drive shaft is placed inside the other hollow shaft, if a problem such as eccentricity or deflection occurs in either drive shaft, the two drive shafts will come into contact with each other and both propellers will fail at the same time. There is a risk that Therefore, when used in ships such as ocean-going ships, where there is a high possibility of drifting or being lost if the propeller fails, additional measures must be taken in terms of redundancy.

これに対して、2つのプロペラの動力伝達機構を分離して冗長性を確保することで信頼性を向上させた二重反転プロペラもある。例えば船長方向後方の副プロペラをポッド推進器として主プロペラ後方に設けた構造がある(特許文献2)。船長方向後方の副プロペラを固定舵板の舵バルブに設け、舵バルブ内のモータで副プロペラを駆動する構造もある(特許文献3)。 On the other hand, there are counter-rotating propellers that improve reliability by separating the power transmission mechanisms of the two propellers to ensure redundancy. For example, there is a structure in which a sub-propeller at the rear in the ship's length direction is provided as a pod propulsion device at the rear of the main propeller (Patent Document 2). There is also a structure in which a sub-propeller at the rear in the vessel length direction is provided on a rudder valve of a fixed rudder plate, and the sub-propeller is driven by a motor inside the rudder valve (Patent Document 3).

特開2004-168222号公報Japanese Patent Application Publication No. 2004-168222 特開2011-025816号公報Japanese Patent Application Publication No. 2011-025816 特開2014-019199号公報Japanese Patent Application Publication No. 2014-019199

特許文献2、3の構造は2つのプロペラの動力伝達機構が分離されており、一方のプロペラが故障で動作しなくても、他方のプロペラで航行可能である点で冗長性に優れる。
しかしながら特許文献2、3で後方のプロペラの推力を、主機で駆動する他のプロペラと同程度にすると、従来のポッドや固定舵に搭載が困難な大型モータが必要になる。
そのため、モータを収納するポッドや舵も大型化する必要があり、大型化に伴う重量増に対応した補強構造が必要となり、構造が複雑化する。
よって、冗長性を確保するために動力伝達機構を分離しても、モータの大型化に対応するために結局は構造が複雑化し、維持管理の点で問題のある構造になっていた。また、大型化したモータを設置するスペースが無い場合は、二重反転プロペラを採用できなかった。
本発明は上記課題に鑑みてなされたものであり、従来よりも構造が単純で信頼性に優れた二重反転プロペラの提供を目的とする。
The structures of Patent Documents 2 and 3 have excellent redundancy in that the power transmission mechanisms of the two propellers are separated, and even if one propeller fails and does not operate, navigation is possible using the other propeller.
However, in Patent Documents 2 and 3, if the thrust of the rear propeller is made to be the same as that of other propellers driven by the main engine, a large motor that is difficult to mount on a conventional pod or fixed rudder is required.
Therefore, the pod that houses the motor and the rudder also need to be larger, and a reinforcing structure is required to cope with the increased weight that comes with the larger size, making the structure more complex.
Therefore, even if the power transmission mechanism is separated to ensure redundancy, the structure ends up becoming more complicated to accommodate the larger motor, resulting in a structure that poses problems in terms of maintenance and management. Additionally, if there was no space to install a larger motor, a counter-rotating propeller could not be used.
The present invention has been made in view of the above problems, and an object thereof is to provide a counter-rotating propeller that has a simpler structure and superior reliability than conventional propellers.

本発明の船舶は、船長方向を向く軸中心に回転可能に船舶の船尾に設けられ、主機の動力が伝達される主プロペラと、前記主プロペラの船長方向後方に同軸線上に配置され前記主プロペラと逆向きに回転する副プロペラを備える船舶用二重反転プロペラを備える船舶であって、前記副プロペラは、前記主プロペラの船長方向後方に配置された可動舵の舵バルブ内の電動モータで駆動され前記舵バルブの船長方向前端を構成する外形の副プロペラボスと、前記副プロペラボスの径方向に突設され、前記主プロペラのプロペラ翼の直径の50%以上、70%以下の直径を有する副プロペラ翼を備えていて、前記主機の動力軸に連結され、前記動力軸から動力が伝達されると回生駆動して発電して前記電動モータを駆動し、電力が供給されると力行して前記動力軸に動力を伝達することで前記主機の駆動を補助する回生モータと、前記主機以外の船内装置の駆動電源であり、かつ前記電動モータと前記回生モータに電力を供給する船内発電機と、前記主機、前記回生モータ、及び前記船内発電機の駆動を制御する制御部とを備えた船舶において、前記制御部は、前記回生モータを前記主機の動力で回生駆動させて、回生電力のみで前記電動モータを駆動する低速航行モードと、前記船内発電機の電力で前記回生モータを力行させて前記主機の駆動を補助させ、前記船内発電機の電力で前記電動モータを駆動する高速/荒天航行モードの何れか1つの航行モードを、航行に必要な出力の大小に応じて選択して前記副プロペラを駆動する制御を行うことを特徴とする。 The ship of the present invention includes a main propeller that is rotatably provided at the stern of the ship about an axis facing the ship's ship's ship's ship's ship's ship's ship's ship's ship's ship's stern direction, and to which the power of the main engine is transmitted; A ship equipped with a counter-rotating propeller for a ship, including a sub-propeller that rotates in the opposite direction to the main propeller, the sub-propeller being driven by an electric motor in a rudder valve of a movable rudder disposed behind the main propeller in the ship's direction. and a sub-propeller boss having an outer shape constituting the front end in the longitudinal direction of the rudder valve, and protruding in the radial direction of the sub-propeller boss, and having a diameter of 50% or more and 70% or less of the diameter of the propeller blade of the main propeller. It is equipped with a sub-propeller blade , is connected to the power shaft of the main engine, and when power is transmitted from the power shaft, it regenerates and generates electricity to drive the electric motor, and when the power is supplied, it starts powering. a regenerative motor that assists in driving the main engine by transmitting power to the power shaft; and an inboard generator that is a driving power source for inboard equipment other than the main engine and that supplies power to the electric motor and the regenerative motor. , a ship comprising the main engine, the regenerative motor, and a control unit that controls driving of the inboard generator, wherein the control unit regeneratively drives the regenerative motor with the power of the main engine, and uses only regenerative electric power. a low-speed sailing mode in which the electric motor is driven; and a high-speed/rough weather sailing mode in which the regenerative motor is powered by the power of the inboard generator to assist in driving the main engine, and the electric motor is driven by the power of the inboard generator. It is characterized in that one of the navigation modes is selected depending on the magnitude of the output necessary for navigation, and control is performed to drive the auxiliary propeller .

この構成では、二重反転プロペラの副プロペラを小径化して可動舵の舵バルブと一体化し、操舵に伴い旋回することで操舵に影響を与えずに主プロペラのプロペラ後流の旋回流の一部を利用して推進効率を高め、舵バルブとして推進効率を高める。
つまり、副プロペラは二重反転プロペラの片方のプロペラというよりは、主プロペラの補助として条件付きで逆回転する補助プロペラであり、2つのプロペラで同程度の推力を発生させる従来の二重反転プロペラとは全く構成も作用も異なる。
そのため、本発明の二重反転プロペラは副プロペラを駆動するモータを大型化する必要がなく、従来の舵バルブを備える船舶に適用が容易であり、構造が単純で信頼性に優れる。
In this configuration, the auxiliary propeller of the counter-rotating propeller is made smaller in diameter and integrated with the rudder valve of the movable rudder, and by turning with steering, a part of the swirling flow downstream of the propeller of the main propeller is generated without affecting the steering. This increases the propulsion efficiency by using it as a rudder valve.
In other words, the auxiliary propeller is not one of the propellers in a counter-rotating propeller, but rather an auxiliary propeller that conditionally rotates in the opposite direction to assist the main propeller, unlike a conventional counter-rotating propeller that generates the same amount of thrust with two propellers. It has a completely different structure and function.
Therefore, the counter-rotating propeller of the present invention does not need to increase the size of the motor that drives the auxiliary propeller, can be easily applied to ships equipped with conventional rudder valves, and has a simple structure and excellent reliability.

本発明によれば、従来よりも構造が単純で信頼性に優れた二重反転プロペラを提供できる。 According to the present invention, it is possible to provide a counter-rotating propeller that has a simpler structure and superior reliability than conventional propellers.

本実施形態に係る船舶の概要を示す船尾付近の側面断面図である。FIG. 1 is a side sectional view of the stern and the vicinity showing an outline of the ship according to the present embodiment. 図1の機能ブロック図であって、実線は電力線を示し、破線は信号線を示す。FIG. 2 is a functional block diagram of FIG. 1, in which solid lines indicate power lines and broken lines indicate signal lines. 図1の二重反転プロペラ付近の拡大図である。2 is an enlarged view of the vicinity of the contra-rotating propeller in FIG. 1. FIG. 図1において、低速航行モード時の電力の供給を示す図である。In FIG. 1, it is a diagram showing the supply of electric power during a low-speed navigation mode. 図1において、中速航行モード時の電力の供給を示す図である。FIG. 2 is a diagram illustrating the supply of electric power during a medium-speed navigation mode in FIG. 1 . 図1において、高速/荒天航行モード時の電力の供給を示す図である。FIG. 2 is a diagram illustrating power supply during high-speed/rough weather navigation mode in FIG. 1 . 本実施形態に係る船舶の航行方法を示すフロー図である。FIG. 2 is a flow diagram showing a method for navigating a ship according to the present embodiment.

以下、図面に基づき本発明に好適な実施形態を詳細に説明する。
まず図1~図3を参照して本実施形態に係る船舶1の構成を説明する。
図1~図3に示すように船舶1は船体5、舵31、主機6、二重反転プロペラ3、電動モータ17、回生モータ11、船内発電機13、スイッチング回路15、及び制御部61を備える。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.
First, the configuration of a ship 1 according to this embodiment will be explained with reference to FIGS. 1 to 3.
As shown in FIGS. 1 to 3, the ship 1 includes a hull 5, a rudder 31, a main engine 6, a counter-rotating propeller 3, an electric motor 17, a regenerative motor 11, an inboard generator 13, a switching circuit 15, and a control section 61. .

船体5は船舶1の船殻となる構造体であり、船底、側壁、暴露甲板で船内を囲むように構成される。具体的な船形や船殻構造、あるいは水密隔壁の配置等は船舶1の用途に応じて適宜設計される。例えば図1では船尾構造としてトランサムスターンを例示しているが、クルーザースターンやカウンタースターンでもよい。 The hull 5 is a structure serving as the hull of the ship 1, and is configured to surround the inside of the ship with a bottom, side walls, and an exposed deck. The specific hull shape, hull structure, arrangement of watertight bulkheads, etc. are appropriately designed depending on the purpose of the ship 1. For example, in FIG. 1, a transom stern is illustrated as the stern structure, but a cruiser stern or a counterstern may also be used.

舵31は船舶1の針路を変更する際に鉛直方向であるZ方向を軸中心として回動する水中板である。図1では舵31としてマリナー型と呼ばれる構造を例示しているが、吊舵型や高揚力舵でもよい。舵31は固定舵33、可動舵35、及び舵バルブ37を備える。 The rudder 31 is an underwater board that rotates about the Z direction, which is a vertical direction, when changing the course of the ship 1 . In FIG. 1, a so-called mariner type structure is illustrated as the rudder 31, but a hanging rudder type or a high-lift rudder may also be used. The rudder 31 includes a fixed rudder 33, a movable rudder 35, and a rudder valve 37.

固定舵33は舵31を構成する他の部材を船体5に固定する部材であり、回動しない部材である。マリナー型の場合、固定舵33はラダーホーンとも呼ばれる。図1の固定舵33は船体5の船尾船底から下方に突設された板状部材であり、板の主面である側面が鉛直方向であるZ方向及び船長方向であるX方向に平行である。
固定舵33は船尾端から船尾方向に突設された固定部33a、33bを備える。固定部33a、33bは可動舵35を回動可能に保持する板状部材であり、回動軸であるラダーストック36が固定部33aをZ方向に挿通する。
The fixed rudder 33 is a member that fixes other members constituting the rudder 31 to the hull 5, and is a member that does not rotate. In the case of the Mariner type, the fixed rudder 33 is also called a rudder horn. The fixed rudder 33 in FIG. 1 is a plate-like member that projects downward from the stern bottom of the hull 5, and the side surface, which is the main surface of the plate, is parallel to the vertical Z direction and the ship's length direction, which is the X direction. .
The fixed rudder 33 includes fixed parts 33a and 33b that protrude from the stern end toward the stern. The fixed parts 33a and 33b are plate-shaped members that rotatably hold the movable rudder 35, and the rudder stock 36, which is a rotation shaft, is inserted through the fixed part 33a in the Z direction.

可動舵35は固定舵33の船首尾方向後端に設けられ、ラダーストック36の軸を中心に回動可能な板状部材である。
可動舵35の上端の船首方向前端には固定部33aと固定部33bの間に挿入される挿入板部35aが設けられ、挿入板部35aにはラダーストック36が挿通されて固定部33aと連結される。固定部33bは図示しないピントルでZ方向を中心軸に可動舵35が回動可能に挿入板部35aと連結される。
可動舵35はラダーストック36の動力が伝達されて回動する。
舵バルブ37は可動舵35の両側面及び前端から突出した膨出部であり、図1では側面視、つまり船幅方向であるY方向から見て紡錘形の外形を有する。具体的には舵バルブ37は船長方向であるX方向に延びる円筒状であり、両端が先細りの形状である。舵バルブ37はX方向から見ると円形である。舵バルブ37は二重反転プロペラ3に流入する水の流速を減速させて推進効率を向上させるために設けられる。舵バルブ37は推進効率を向上させることができ、かつ操舵の妨げにならない範囲で外形や寸法が設定される。
The movable rudder 35 is a plate-shaped member that is provided at the rear end of the fixed rudder 33 in the bow and stern direction and is rotatable about the axis of the rudder stock 36.
An insertion plate part 35a is provided at the front end of the upper end of the movable rudder 35 in the bow direction to be inserted between the fixed part 33a and the fixed part 33b, and the rudder stock 36 is inserted through the insertion plate part 35a and connected to the fixed part 33a. be done. The fixed part 33b is connected to the insertion plate part 35a by a pintle (not shown) so that the movable rudder 35 can rotate about the Z direction as a central axis.
The movable rudder 35 rotates as the power of the rudder stock 36 is transmitted.
The rudder valve 37 is a bulge protruding from both side surfaces and the front end of the movable rudder 35, and has a spindle-shaped outer shape when viewed from the side in FIG. 1, that is, from the Y direction, which is the width direction of the ship. Specifically, the rudder valve 37 has a cylindrical shape extending in the X direction, which is the ship's ship direction, and has a tapered shape at both ends. The rudder valve 37 is circular when viewed from the X direction. The rudder valve 37 is provided to reduce the flow rate of water flowing into the counter-rotating propeller 3 to improve propulsion efficiency. The outer shape and dimensions of the rudder valve 37 are set within a range that can improve propulsion efficiency and does not interfere with steering.

主機6は船舶1の推進力を発生させる機関であり、図1では二重反転プロペラ3の少なくとも一方を駆動する機関である。
主機6は図1では船尾近傍に配置されたディーゼル機関であるが、二重反転プロペラ3の少なくとも一方を駆動できるのであれば蒸気タービンでもよい。
図1の主機6は動力軸が2つあり、動力を2か所から取り出せる構造になっている。具体的には主機6は船尾側の端部に設けられた主プロペラ軸21と、船首側の端部に設けられた主機モータ軸25を備える。主プロペラ軸21と主機モータ軸25は動力が互いに伝達される構造になっている。
The main engine 6 is an engine that generates propulsive force for the ship 1, and in FIG. 1, it is an engine that drives at least one of the counter-rotating propellers 3.
Although the main engine 6 is a diesel engine located near the stern in FIG. 1, it may be a steam turbine as long as it can drive at least one of the counter-rotating propellers 3.
The main engine 6 in FIG. 1 has two power shafts, and has a structure in which power can be extracted from two places. Specifically, the main engine 6 includes a main propeller shaft 21 provided at the end on the stern side and a main motor shaft 25 provided at the end on the bow side. The main propeller shaft 21 and the main motor shaft 25 have a structure in which power is transmitted to each other.

二重反転プロペラ3は回転することで船舶1を推進させる推進器である。二重反転プロペラ3は主プロペラ7と副プロペラ9を備える。 The counter-rotating propeller 3 is a propulsion device that propels the ship 1 by rotating. The counter-rotating propeller 3 includes a main propeller 7 and a sub-propeller 9.

電動モータ17は船舶1において、副プロペラ9を駆動させるモータであり、舵バルブ37内に配置される。図3に示すように、電動モータ17の駆動軸である電動モータ軸17aは船長方向であるX方向の船首側に突設される。電動モータ17の定格は二重反転プロペラ3の出力に応じて設定される。電動モータ17の駆動方式は副プロペラ9を駆動させられるのであれば公知の方式を適宜使用できるが、回転数制御のし易さや効率を考慮すると、同期電動機が好ましく、永久磁石同期電動機(PM(Permanent Magnet)同期電動機)がより好ましい。 The electric motor 17 is a motor that drives the auxiliary propeller 9 in the ship 1, and is disposed within the rudder valve 37. As shown in FIG. 3, an electric motor shaft 17a, which is a drive shaft of the electric motor 17, is provided to protrude toward the bow side in the X direction, which is the ship's ship direction. The rating of the electric motor 17 is set according to the output of the counter-rotating propeller 3. As the drive method for the electric motor 17, any known method can be used as appropriate as long as it can drive the auxiliary propeller 9. However, in consideration of ease of controlling the rotation speed and efficiency, a synchronous motor is preferable, and a permanent magnet synchronous motor (PM) is preferable. Permanent magnet (synchronous motor) is more preferable.

回生モータ11は主機6の動力が伝達されることで回生発電し、電力が供給されると力行することで主機6の駆動を補助するモータである。
回生モータ11は主機6の動力軸である主機モータ軸25とギヤ27、29を介して主機6と連結されており、電力の供給が無い状態では、主機6が駆動すると主機6の動力が主機モータ軸25とギヤ27、29を介して伝達され、回生発電する。発電した電力は電動モータ17に供給されて電動モータ17を駆動させる。回生モータ11は電力が供給された状態では、力行することでギヤ27、29を介して主機モータ軸25に動力を伝達して主機6の駆動を補助する。
回生モータ11は回生及び力行が可能で、かつ主機6の駆動を補助できるのであれば公知の駆動方式を適宜使用できるが、電動モータ17と同様に同期電動機が好ましく、PM同期電動機がより好ましい。
The regenerative motor 11 is a motor that regenerates power when the power of the main engine 6 is transmitted, and assists the drive of the main engine 6 by running with power when the power is supplied.
The regenerative motor 11 is connected to the main engine 6 via the main engine motor shaft 25, which is the power shaft of the main engine 6, and gears 27, 29. When the main engine 6 is driven in the absence of power supply, the power of the main engine 6 is transferred to the main engine 6. The power is transmitted via the motor shaft 25 and gears 27 and 29 to generate regenerative power. The generated electric power is supplied to the electric motor 17 to drive the electric motor 17. When the regenerative motor 11 is powered, it transmits power to the main engine motor shaft 25 via the gears 27 and 29 to assist in driving the main engine 6.
As the regenerative motor 11, a known drive system can be used as appropriate as long as it is capable of regeneration and power running and can assist in driving the main engine 6, but like the electric motor 17, a synchronous motor is preferable, and a PM synchronous motor is more preferable.

船内発電機13は二重反転プロペラ3以外の船舶1内の船内装置23を駆動させる電力を生成する発電機であり、ディーゼル発電機を例示できる。船内装置23としては、船内の照明や空調、あるいは船舶1が貨物船の場合、船体5に固定されて貨物の船積/陸揚の際に用いられるクレーンが挙げられる。
ただし本実施形態の船内発電機13は、二重反転プロペラ3の推進力の補助として電力の一部を用いる構成となっている。そのため、船内発電機13の電力線は電動モータ17に接続されており、電動モータ17の駆動電源となる場合がある。また船内発電機13の電力線は回生モータ11にも接続されており、回生モータ11が力行する際の駆動電源になる場合もある。
The inboard generator 13 is a generator that generates electric power for driving the inboard devices 23 in the ship 1 other than the counter-rotating propeller 3, and can be exemplified by a diesel generator. Examples of the onboard equipment 23 include lighting and air conditioning inside the ship, or, if the ship 1 is a cargo ship, a crane fixed to the ship's hull 5 and used for loading/unloading cargo.
However, the inboard generator 13 of this embodiment is configured to use part of the electric power to supplement the propulsive force of the counter-rotating propeller 3. Therefore, the power line of the inboard generator 13 is connected to the electric motor 17 and may serve as a driving power source for the electric motor 17. Further, the power line of the inboard generator 13 is also connected to the regenerative motor 11, and may serve as a driving power source when the regenerative motor 11 runs under power.

スイッチング回路15は船内発電機13や回生モータ11で生成された電力を電動モータ17に供給する際に電圧や周波数を調整するインバータ装置である。スイッチング回路15は船内発電機13で生成された電力を回生モータ11に供給する際に電圧や周波数を調整するインバータ装置でもある。スイッチング回路15は船内発電機13や回生モータ11と電動モータ17を結ぶ電力線の中途、及び船内発電機13と回生モータ11を結ぶ電力線の中途に設けられる。スイッチング回路15は電動モータ17や回生モータ11に供給する電力の電圧や周波数を所望の範囲に制御できるのであれば公知のインバータを用いることができる。例えば電動モータ17や回生モータ11がPM同期電動機の場合、スイッチング回路15は可変電圧可変周波数(VVVF、Variable Voltage Variable Frequency)制御インバータが用いられる。 The switching circuit 15 is an inverter device that adjusts the voltage and frequency when supplying electric power generated by the inboard generator 13 and regenerative motor 11 to the electric motor 17. The switching circuit 15 is also an inverter device that adjusts the voltage and frequency when supplying the electric power generated by the inboard generator 13 to the regenerative motor 11. The switching circuit 15 is provided in the middle of the power line connecting the inboard generator 13 or the regenerative motor 11 and the electric motor 17, and in the middle of the power line connecting the inboard generator 13 and the regenerative motor 11. As the switching circuit 15, a known inverter can be used as long as it can control the voltage and frequency of the electric power supplied to the electric motor 17 and the regenerative motor 11 within a desired range. For example, when the electric motor 17 and the regenerative motor 11 are PM synchronous motors, the switching circuit 15 uses a variable voltage variable frequency (VVVF) controlled inverter.

主プロペラ7は主機6の動力が直接伝達されるプロペラであり、船長方向であるX方向を向く軸中心に船舶1の船体5の船尾に回転可能に設けられ、主プロペラ軸21の船尾端に連結される。図3に示すように主プロペラ7は主プロペラボス41及び主プロペラ翼43を備える。 The main propeller 7 is a propeller to which the power of the main engine 6 is directly transmitted. Concatenated. As shown in FIG. 3, the main propeller 7 includes a main propeller boss 41 and main propeller blades 43.

主プロペラボス41は主プロペラ7の外筒部分であり、主プロペラ軸21の船尾側の端部が図示しないキー等で連結、固定されて動力が伝達され、伝達された動力で軸中心に回転する。
主プロペラ翼43は主プロペラボス41の外周から径方向に突設された複数の羽根状の板材である。主プロペラ翼43の数及び直径D1は、主プロペラ7に必要とされる推力や設置スペースに応じて適宜設定される。なお、ここでいう「主プロペラ翼43の直径」とは回転軸である主プロペラ軸21の回転中心Cから主プロペラ翼43の径方向先端までの径方向距離の2倍の値を意味する。
The main propeller boss 41 is an outer cylindrical part of the main propeller 7, and the stern end of the main propeller shaft 21 is connected and fixed with a key (not shown) to transmit power, and rotates around the axis by the transmitted power. do.
The main propeller blades 43 are a plurality of blade-shaped plates protruding from the outer periphery of the main propeller boss 41 in the radial direction. The number and diameter D1 of the main propeller blades 43 are appropriately set according to the thrust required for the main propeller 7 and the installation space. Note that the "diameter of the main propeller blade 43" herein means twice the radial distance from the rotation center C of the main propeller shaft 21, which is the rotation axis, to the radial tip of the main propeller blade 43.

副プロペラ9は主プロペラ7の船長方向後方に同軸線上に配置され、主プロペラ7と逆向きに回転するプロペラである。ここでいう船長方向後方とは、船長方向において、副プロペラ9が主プロペラ7よりも船首から遠い位置にあることを意味する。
副プロペラ9は主プロペラ7のプロペラ後流の旋回流を推進力として利用することで、推進効率を向上させるとともに、主プロペラ7と逆向きに回転することで主プロペラ7の回転のカウンタートルクを相殺する作用を有する。
図3に示すように副プロペラ9は、副プロペラボス51及び副プロペラ翼53を備える。
The auxiliary propeller 9 is a propeller that is arranged coaxially behind the main propeller 7 in the longitudinal direction and rotates in the opposite direction to the main propeller 7. The term "aft in the ship's direction" as used herein means that the auxiliary propeller 9 is located further from the bow than the main propeller 7 in the ship's ship direction.
The secondary propeller 9 improves propulsion efficiency by using the swirling flow after the propeller of the main propeller 7 as a propulsion force, and also counter-torques the rotation of the main propeller 7 by rotating in the opposite direction to the main propeller 7. It has a countervailing effect.
As shown in FIG. 3, the sub-propeller 9 includes a sub-propeller boss 51 and a sub-propeller blade 53.

副プロペラボス51は副プロペラ9の外筒部分であり、電動モータ17の駆動軸である電動モータ軸17aの船首側の端部が図示しないキー等で連結、固定されて動力が伝達され、伝達された動力で軸中心に回転する。 The auxiliary propeller boss 51 is an outer cylindrical portion of the auxiliary propeller 9, and the end of the bow side of the electric motor shaft 17a, which is the drive shaft of the electric motor 17, is connected and fixed with a key (not shown) to transmit power. It rotates around its axis with the power generated.

この構造では主プロペラ7の駆動軸である主プロペラ軸21と副プロペラ9の駆動軸である電動モータ軸17aは互いに分離されており、軸方向に離間して対向するが、径方向には対向しない。よって主プロペラ軸21と電動モータ軸17aは互いに干渉しないので、一方に偏心や撓み等の不具合が生じても、他方に接触して主プロペラ7と副プロペラ9が同時に故障する可能性は低い。 In this structure, the main propeller shaft 21, which is the drive shaft of the main propeller 7, and the electric motor shaft 17a, which is the drive shaft of the auxiliary propeller 9, are separated from each other and are spaced apart from each other in the axial direction and face each other, but they are opposed to each other in the radial direction. do not. Therefore, the main propeller shaft 21 and the electric motor shaft 17a do not interfere with each other, so even if a problem such as eccentricity or deflection occurs in one, there is a low possibility that the main propeller 7 and the auxiliary propeller 9 will fail at the same time due to contact with the other.

また、この構造では副プロペラ9が可動舵35に設けられる。固定舵33に副プロペラ9を設けると、その分、固定舵33が大きくなり、可動舵35の面積が小さくなる一方で、この構造では副プロペラ9が可動舵35と一体となるので、固定舵33を大きくすることなく、可動舵35の面積を確保しやすい。そのため、旋回性能等の運動性に副プロペラ9が悪影響を与えにくい。 Further, in this structure, the sub-propeller 9 is provided on the movable rudder 35. Providing the secondary propeller 9 on the fixed rudder 33 increases the size of the fixed rudder 33 and reduces the area of the movable rudder 35. However, in this structure, the secondary propeller 9 is integrated with the movable rudder 35, so the fixed rudder It is easy to secure the area of the movable rudder 35 without increasing the size of the rudder 33. Therefore, the auxiliary propeller 9 is unlikely to have an adverse effect on maneuverability such as turning performance.

さらに図3に示すように副プロペラボス51は舵バルブ37の一部を構成する外形である。具体的には、舵バルブ37は側面視でX方向に延びる円筒形状であって、両端が先細りの形状である。図3の副プロペラボス51は舵バルブ37の船長方向前端を構成するため、船尾側から船首側に向けて先細りの円錐形状を有する。ここでいう船長方向前端とは、船長方向において船首側の端部のことを意味する。
このように副プロペラボス51を舵バルブ37の一部とすることで、副プロペラ9を舵バルブ37としても機能させることができ、推進効率の点で益々有利である。
Furthermore, as shown in FIG. 3, the sub-propeller boss 51 has an external shape that constitutes a part of the rudder valve 37. Specifically, the rudder valve 37 has a cylindrical shape extending in the X direction when viewed from the side, and has a tapered shape at both ends. The sub-propeller boss 51 in FIG. 3 constitutes the front end of the rudder valve 37 in the longitudinal direction, and therefore has a conical shape that tapers from the stern side to the bow side. The front end in the ship's ship direction means the end on the bow side in the ship's ship direction.
By making the sub-propeller boss 51 a part of the rudder valve 37 in this way, the sub-propeller 9 can also function as the rudder valve 37, which is even more advantageous in terms of propulsion efficiency.

副プロペラ翼53は副プロペラボス51の外周から径方向に突設された複数の羽根状の板材である。副プロペラ翼53の数は要求される推進力に応じて適宜設定する。ただし副プロペラ翼53の直径D2は、主プロペラ7の主プロペラ翼43の直径D1よりも短い。ここでいう「副プロペラ翼53の直径」とは回転軸である電動モータ軸17aの回転中心Cから副プロペラ翼53の先端までの径方向距離の2倍の値を意味する。
このように、副プロペラ翼53の直径D2を、主プロペラ7の主プロペラ翼43の直径D1よりも短くする理由について説明する。
The auxiliary propeller blades 53 are a plurality of blade-shaped plates that protrude from the outer periphery of the auxiliary propeller boss 51 in the radial direction. The number of sub-propeller blades 53 is appropriately set depending on the required propulsive force. However, the diameter D2 of the auxiliary propeller blade 53 is shorter than the diameter D1 of the main propeller blade 43 of the main propeller 7. The "diameter of the auxiliary propeller blade 53" herein means twice the radial distance from the rotation center C of the electric motor shaft 17a, which is the rotating shaft, to the tip of the auxiliary propeller blade 53.
The reason why the diameter D2 of the auxiliary propeller blade 53 is made shorter than the diameter D1 of the main propeller blade 43 of the main propeller 7 will be explained.

船舶1は二重反転プロペラ3を設けることによる推進機構の構造の複雑化と信頼性低下を回避するため、副プロペラ9を可動舵35に設け、可動舵35内の電動モータ17で駆動することで、主プロペラ7と副プロペラ9の駆動軸を分離している。
一方で、従来の二重反転プロペラ3は主プロペラ7と副プロペラ9の直径は同程度であり、推進力も同程度である。そのため、船舶1の構造で主プロペラ7と副プロペラ9の直径を同程度で推進力も同程度にすると、電動モータ17が大型化し、舵31も大型化して重量増となり、舵31の重量を支持する構造等が複雑化する。
主プロペラ7と副プロペラ9の駆動軸を分離した構造自体は公知なのに既存船舶への二重反転プロペラの適用が消極的な理由は、このように、冗長性を確保するため駆動軸を分離すると装置の大型化の問題が生じ、結局は構造が複雑となるためである。
In order to avoid complicating the structure of the propulsion mechanism and reducing reliability due to the provision of the contra-rotating propeller 3, the ship 1 is provided with an auxiliary propeller 9 on the movable rudder 35, and driven by an electric motor 17 within the movable rudder 35. The drive shafts of the main propeller 7 and the sub-propeller 9 are separated.
On the other hand, in the conventional counter-rotating propeller 3, the diameters of the main propeller 7 and the sub-propeller 9 are approximately the same, and the propulsive force is also approximately the same. Therefore, in the structure of the ship 1, if the main propeller 7 and the sub-propeller 9 are made to have the same diameter and the same propulsive force, the electric motor 17 will become larger, and the rudder 31 will also become larger and heavier, which will support the weight of the rudder 31. The structure etc. to be used becomes complicated.
Although the structure in which the drive shafts of the main propeller 7 and the auxiliary propeller 9 are separated is well known, the reason why counter-rotating propellers are reluctant to be applied to existing ships is because the drive shafts are separated to ensure redundancy. This is because the problem of increasing the size of the device arises, and the structure becomes complicated.

これに対して本発明者は、船舶用の二重反転プロペラでは、2つのプロペラが同程度の推進力を発生させる必要がないと考えた。理由は以下の通りである。まず航空機用の二重反転プロペラはカウンタートルクの相殺が重要である。これは、航空機は針路変更の際にロール運動を行うため、カウンタートルクを考慮しないと常に一方にロール運動を続け、針路を固定し難いためである。一方で船舶は水による推進抵抗が空気よりも極端に大きいため、カウンタートルクの相殺が航空機ほど重要ではない。 In contrast, the present inventor considered that in a counter-rotating propeller for a ship, it is not necessary for two propellers to generate the same level of propulsive force. The reason is as follows. First of all, it is important for counter-rotating propellers for aircraft to offset counter torque. This is because an aircraft performs a roll motion when changing course, and unless counter torque is taken into consideration, the aircraft will always continue to roll in one direction, making it difficult to fix the course. On the other hand, for ships, the propulsion resistance due to water is much greater than that from air, so counter torque offset is not as important as for aircraft.

また、二重反転プロペラは進行方向前方のプロペラである主プロペラ7の後流の旋回流のエネルギーを、進行方向後方のプロペラである副プロペラ9が回収することで推進効率を高める。そのため、旋回流のエネルギーを完全に回収しなくても、一部を回収するだけでも推進効率は高められる。 In addition, the contra-rotating propeller improves propulsion efficiency by recovering the energy of the swirling flow behind the main propeller 7, which is the propeller in the front of the propeller, by the auxiliary propeller 9, which is the propeller in the rear of the propeller. Therefore, even if the energy of the swirling flow is not completely recovered, propulsion efficiency can be increased even if only a portion of it is recovered.

さらに、電動モータ17を舵バルブ37の内部に設け、副プロペラ9が舵バルブ37として作用する外形にすれば、旋回流のエネルギーを完全に回収しなくても舵バルブ37として推進効率を高められる。
また、旋回流のエネルギーの一部を回収するだけであれば、副プロペラ9を主プロペラ7と常に同軸線上に配置する必要がないため、副プロペラ9を可動舵35に設けて、舵31を切った場合に旋回しても構わない。この場合は舵角によっては副プロペラ9が主プロペラ7に接触する可能性があるが、主プロペラ7と副プロペラ9の軸方向の距離を離すことで、接触を防止できる。
さらに副プロペラ9を主プロペラ7と常に同軸線上に配置する必要がないのであれば、従来技術のように、一方のプロペラを駆動する中空の駆動軸を他方のプロペラを駆動する駆動軸回りに設ける必要がない。そのため主プロペラ7と副プロペラ9の駆動軸を分離して冗長性を確保できる。
Furthermore, if the electric motor 17 is provided inside the rudder valve 37 and the sub-propeller 9 has an external shape that acts as the rudder valve 37, the propulsion efficiency can be increased as the rudder valve 37 even if the energy of the swirling flow is not completely recovered. .
Further, if only a part of the energy of the swirling flow is recovered, it is not necessary to always arrange the sub-propeller 9 on the same axis as the main propeller 7, so the sub-propeller 9 is provided on the movable rudder 35 and the rudder 31 is It doesn't matter if it turns when cut. In this case, depending on the steering angle, the auxiliary propeller 9 may come into contact with the main propeller 7, but by increasing the distance between the main propeller 7 and the auxiliary propeller 9 in the axial direction, contact can be prevented.
Furthermore, if it is not necessary to always arrange the auxiliary propeller 9 on the same axis as the main propeller 7, a hollow drive shaft for driving one propeller is provided around the drive shaft for driving the other propeller, as in the prior art. There's no need. Therefore, the drive shafts of the main propeller 7 and the sub-propeller 9 can be separated to ensure redundancy.

以上の知見から、本発明者は副プロペラ9の駆動軸を主プロペラ7と分離した上で、小径化して舵バルブ37と一体化することで、プロペラ後流の旋回流のエネルギーの一部のみを回収する場合でも推進効率を十分に高められることが分かった。
これにより、電動モータ17を大型化しなくても推進効率を高められ、従来よりも構造が単純で信頼性に優れた船舶用二重反転プロペラを実現できることを見出した。
なお、この構造では主プロペラ7と副プロペラ9の駆動軸が分離されているので、一方のプロペラが停止しただけでは、もう一方のプロペラは停止しない。この点において、一方のプロペラを駆動する中空の駆動軸を他方のプロペラを駆動する駆動軸回りに設ける従来の二重反転プロペラよりも高い冗長性を有する。
さらに、この構造では大半の推力を負担するのは主プロペラ7であり、主プロペラ7の推力のみでも、船舶1は通常の航行が可能であるが、その主プロペラ7は、二重反転プロペラではない公知の1軸船のプロペラと同じ構造にできる。この場合は故障によって通常の航行が不可能になる可能性は、公知の1軸船と同程度で極めて低い。
以上が副プロペラ翼53の直径D2を主プロペラ7の主プロペラ翼43の直径D1よりも短くする理由の説明である。
Based on the above findings, the inventor of the present invention separated the drive shaft of the auxiliary propeller 9 from the main propeller 7, made it smaller in diameter, and integrated it with the rudder valve 37, thereby absorbing only a portion of the energy of the swirling flow downstream of the propeller. It was found that propulsion efficiency can be sufficiently increased even when recovering
It has been found that this makes it possible to increase propulsion efficiency without increasing the size of the electric motor 17, and to realize a counter-rotating propeller for ships that has a simpler structure and superior reliability than before.
Note that in this structure, the drive shafts of the main propeller 7 and the auxiliary propeller 9 are separated, so even if one propeller stops, the other propeller does not stop. In this respect, it has greater redundancy than conventional counter-rotating propellers in which a hollow drive shaft driving one propeller is arranged around a drive shaft driving the other propeller.
Furthermore, in this structure, the main propeller 7 bears most of the thrust, and the ship 1 can sail normally with just the thrust of the main propeller 7, but the main propeller 7 is not a counter-rotating propeller. It can have the same structure as the propeller of a known single-shaft ship. In this case, the possibility that normal navigation will become impossible due to a malfunction is extremely low, as is the case with known single-shaft ships.
The above is an explanation of the reason why the diameter D2 of the auxiliary propeller blade 53 is made shorter than the diameter D1 of the main propeller blade 43 of the main propeller 7.

ただし、直径D2が直径D1の50%未満になると副プロペラ9で回収できる旋回流のエネルギーが著しく小さくなり、推進効率が向上する効果が得られない。よって副プロペラ翼53の直径D2を主プロペラ7の主プロペラ翼43の直径D1の50%以上とする。回収できるエネルギーを確保する観点からは直径D2が直径D1の55%以上であるのが好ましく、58%以上がより好ましい。 However, if the diameter D2 is less than 50% of the diameter D1, the energy of the swirling flow that can be recovered by the auxiliary propeller 9 will be significantly reduced, and the effect of improving the propulsion efficiency will not be obtained. Therefore, the diameter D2 of the auxiliary propeller blade 53 is set to be 50% or more of the diameter D1 of the main propeller blade 43 of the main propeller 7. From the viewpoint of ensuring recoverable energy, the diameter D2 is preferably at least 55% of the diameter D1, more preferably at least 58%.

また、直径D2が直径D1の70%を超えると、舵バルブ37に収納できる寸法の電動モータ17では副プロペラ翼53を回転させる出力が不足するため、重量が増加するだけで推進効率が向上しなくなる。
よって、副プロペラ翼53の直径D2を主プロペラ翼43の直径D1の70%以下とする。
また、副プロペラ9の重量増を抑制する観点からは直径D2が直径D1の65%以下であるのが好ましく、62%以下がより好ましい。
Furthermore, if the diameter D2 exceeds 70% of the diameter D1, the electric motor 17 that is large enough to be housed in the rudder valve 37 will not have enough power to rotate the secondary propeller blades 53, so the propulsion efficiency will improve even though the weight increases. It disappears.
Therefore, the diameter D2 of the auxiliary propeller blade 53 is set to 70% or less of the diameter D1 of the main propeller blade 43.
Further, from the viewpoint of suppressing an increase in the weight of the auxiliary propeller 9, the diameter D2 is preferably 65% or less of the diameter D1, and more preferably 62% or less.

このように、二重反転プロペラ3は副プロペラ翼53を小径化して可動舵35の舵バルブ37と一体化して舵バルブ37内の電動モータ17で独立駆動させている。
この構成では、二重反転プロペラ3の副プロペラ9を小径化して可動舵35の舵バルブ37と一体化し、操舵に伴い旋回することで操舵に影響を与えず主プロペラ7の旋回流の一部を利用して推進効率を高め、舵バルブ37として推進効率を高める。
つまり、副プロペラ9は二重反転プロペラ3の片方のプロペラというよりは、主プロペラ7の補助として条件付きで逆回転する補助プロペラである。
そのため、二重反転プロペラ3は従来よりも構造が単純で信頼性に優れる。
In this way, the contra-rotating propeller 3 has the sub-propeller blade 53 reduced in diameter, is integrated with the rudder valve 37 of the movable rudder 35, and is independently driven by the electric motor 17 within the rudder valve 37.
In this configuration, the auxiliary propeller 9 of the counter-rotating propeller 3 is made smaller in diameter and integrated with the rudder valve 37 of the movable rudder 35, so that it rotates with the steering so that it is part of the swirling flow of the main propeller 7 without affecting the steering. The rudder valve 37 increases the propulsion efficiency.
In other words, the auxiliary propeller 9 is not one of the propellers of the counter-rotating propeller 3, but rather an auxiliary propeller that rotates in the opposite direction conditionally to assist the main propeller 7.
Therefore, the counter-rotating propeller 3 has a simpler structure and superior reliability than the conventional propeller.

図3に示すように副プロペラ翼53は後退翼であるのが好ましい。ここでいう後退翼とは、突出方向が径方向だけでなく船長方向後方を向いている翼形状を意味する。
副プロペラ翼53を後退翼とすることで、舵31を切った場合に舵角が後退角以内であれば、副プロペラ翼53が主プロペラ翼43と接触しない。また、副プロペラ翼53を後退翼にしない場合と比べて副プロペラ翼53と主プロペラ翼43の間隔を保った状態で主プロペラボス41と副プロペラボス51の軸方向の離間距離を短くできる。
As shown in FIG. 3, the secondary propeller blades 53 are preferably swept-back blades. The swept wing here means a wing shape in which the protruding direction faces not only the radial direction but also the rear in the longitudinal direction.
By making the auxiliary propeller blade 53 a swept blade, when the rudder 31 is turned, the auxiliary propeller blade 53 does not come into contact with the main propeller blade 43 if the rudder angle is within the swept angle. Furthermore, the axial separation distance between the main propeller boss 41 and the auxiliary propeller boss 51 can be shortened while maintaining the distance between the auxiliary propeller blade 53 and the main propeller blade 43 compared to the case where the auxiliary propeller blade 53 is not a swept-back blade.

後退翼の後退角は、ここでは図3に示すように電動モータ軸17aの径方向に平行な仮想線Lに対する副プロペラ翼53のなす角のうちの鋭角αである。後退角は船舶1が必要とする舵角の最大角度以上であるのが好ましい。これにより、舵31を切った場合に副プロペラ翼53が主プロペラ翼43と接触しない舵角を確保できる。 Here, the swept angle of the swept blades is an acute angle α of the angles formed by the sub propeller blades 53 with respect to an imaginary line L parallel to the radial direction of the electric motor shaft 17a, as shown in FIG. It is preferable that the sweepback angle is greater than or equal to the maximum rudder angle required by the vessel 1. Thereby, when the rudder 31 is turned, it is possible to secure a rudder angle at which the auxiliary propeller blade 53 does not come into contact with the main propeller blade 43.

副プロペラ9は主プロペラ7の旋回流の一部を回収できればよいので、電動モータ17の出力は主機6の出力よりも小さくてよい。よって副プロペラ9の出力負担率は50%未満でよい。ここでいう出力負担率とは、電動モータ17の出力を、主機6の出力と電動モータ17の出力の和で割った値に100を乗じたものである。
副プロペラ9の小径化に見合った出力負担率としては25%以下が好ましく、22%以下がより好ましい。
また、副プロペラ9を設けたことによる推進効率向上の効果を十分に得るためには出力負担率は5%以上が好ましく、8%以上がより好ましい。
The output of the electric motor 17 may be smaller than the output of the main engine 6 since the sub propeller 9 only needs to be able to recover a part of the swirling flow of the main propeller 7. Therefore, the output burden rate of the sub-propeller 9 may be less than 50%. The output load rate here is the value obtained by dividing the output of the electric motor 17 by the sum of the output of the main engine 6 and the output of the electric motor 17, multiplied by 100.
The output burden rate commensurate with the reduction in the diameter of the secondary propeller 9 is preferably 25% or less, more preferably 22% or less.
In addition, in order to fully obtain the effect of improving propulsion efficiency by providing the sub-propeller 9, the output load ratio is preferably 5% or more, more preferably 8% or more.

電動モータ17の出力負担率は船速によって変動してもよい。
例えば電動モータ17の定格を、船舶1の最大船速未満の予め定められた所定の船速における出力負担率に対応した値としてもよい。
具体的には、最大船速未満の所定の船速Vにおける出力負担率が5%以上、25%以下となる定格とすればよい。この場合、船速Vを超える船速で船舶1が航行した場合、推進のために、より大きい出力が必要になるが、電動モータ17は定格以上の出力を出せない。そのため、船速Vを超える船速では電動モータ17の出力は定格で固定され、不足分の出力は主プロペラ7側の出力を上昇させることで補う。そのため、船速Vを超える船速では電動モータ17の出力負担率が船速の上昇とともに低下する。
The output burden rate of the electric motor 17 may vary depending on the ship speed.
For example, the rating of the electric motor 17 may be set to a value corresponding to the output load rate at a predetermined speed less than the maximum speed of the ship 1.
Specifically, the rating may be such that the output burden rate at a predetermined ship speed V below the maximum ship speed is 5% or more and 25% or less. In this case, when the ship 1 travels at a speed exceeding the ship speed V, a larger output is required for propulsion, but the electric motor 17 cannot output more than the rated output. Therefore, at a boat speed exceeding the boat speed V, the output of the electric motor 17 is fixed at the rated value, and the insufficient output is compensated for by increasing the output of the main propeller 7 side. Therefore, at a ship speed exceeding ship speed V, the output burden rate of the electric motor 17 decreases as the ship speed increases.

このように出力負担率に基づく電動モータ17の出力が定格以上の場合は定格で駆動し、主機6の出力負担率を大きくすることで推進効率を大きく下げずに電動モータ17を小型化できる。 In this way, when the output of the electric motor 17 based on the output load rate is equal to or higher than the rated value, the electric motor 17 is driven at the rated value, and by increasing the output load rate of the main engine 6, the electric motor 17 can be downsized without greatly reducing the propulsion efficiency.

図2に示すように制御部61は主機6、電動モータ17、スイッチング回路15、船内発電機13の動作を制御するコンピュータであり、主機6及びスイッチング回路15に電気的に接続される。
具体的には制御部61は、船舶1の航行に要する出力の大小に応じて、低速航行モード、中速航行モード、及び高速航行モードの3つの航行モードの何れか1つの航行モードを選択して、航行する制御を行う。以下、3つの航行モードについて説明する。
As shown in FIG. 2, the control unit 61 is a computer that controls the operations of the main engine 6, the electric motor 17, the switching circuit 15, and the inboard generator 13, and is electrically connected to the main engine 6 and the switching circuit 15.
Specifically, the control unit 61 selects one of three navigation modes: a low-speed navigation mode, a medium-speed navigation mode, and a high-speed navigation mode, depending on the magnitude of the output required for navigation of the ship 1. control the navigation. The three navigation modes will be explained below.

低速航行モードは、航行に要する出力が最も小さい出力域で用いられる航行モードであり、具体的には晴天時の低速航行時に用いられる。図4に示すように低速航行モードでは、回生モータ11を主機6の動力で回生駆動させて、回生電力のみで電動モータ17を駆動する。具体的には制御部61は回生モータ11に駆動電力を供給せず、主機6の動力が主機モータ軸25を介して回生モータ11に伝達されるように図示しないクラッチ等を制御し、ギヤ27、29を介して主機モータ軸25と回生モータ11を連結する。 The low-speed navigation mode is a navigation mode used in an output range where the output required for navigation is the smallest, and specifically used during low-speed navigation on a clear day. As shown in FIG. 4, in the low-speed navigation mode, the regenerative motor 11 is regeneratively driven by the power of the main engine 6, and the electric motor 17 is driven only by the regenerated power. Specifically, the control unit 61 does not supply driving power to the regenerative motor 11 , but controls a clutch (not shown) or the like so that the power of the main engine 6 is transmitted to the regenerative motor 11 via the main engine motor shaft 25 , and controls the gear 27 . , 29 connect the main engine motor shaft 25 and the regenerative motor 11.

この状態では回生モータ11は電力の供給がないので力行せず、主機6の動力で回生発電を行い、発電した電力をスイッチング回路15に送電する。スイッチング回路15は制御部61の制御に基づき、送電された電力を電動モータ17の駆動に必要な周波数と電圧に変換して電動モータ17に供給し、副プロペラ9を回転させる。
なお、主プロペラ7は主プロペラ軸21を介して主機6に伝達された駆動力で回転する。主機6の出力は制御部61が制御する。
低速航行モードは主機6が主プロペラ7と副プロペラ9の動力源を兼ねる。そのため、高出力を要しない低速航行で有利である。
In this state, the regenerative motor 11 does not power because there is no power supply, but performs regenerative power generation using the power of the main engine 6, and transmits the generated power to the switching circuit 15. Under the control of the control unit 61, the switching circuit 15 converts the transmitted power into a frequency and voltage necessary for driving the electric motor 17, supplies the converted electric power to the electric motor 17, and rotates the auxiliary propeller 9.
Note that the main propeller 7 is rotated by the driving force transmitted to the main engine 6 via the main propeller shaft 21. The output of the main engine 6 is controlled by a control section 61.
In the low-speed navigation mode, the main engine 6 also serves as the power source for the main propeller 7 and the auxiliary propeller 9. Therefore, it is advantageous for low-speed navigation that does not require high power.

中速航行モードは低速航行モードより高出力が求められる場合に用いられる航行モードであり、具体的には低速航行モードよりも高速だが、最大船速よりは、かなり遅い船速で晴天時に航行する航行モードである。
図5に示すように中速航行モードは、回生モータ11を主機6の動力で回生駆動させる点は低速航行モードと同じである。ただし、回生電力だけでなく船内発電機13の電力も電動モータ17を駆動する電力に用いる点が低速航行モードと異なる。
Medium-speed sailing mode is a sailing mode used when higher output is required than slow-speed sailing mode. Specifically, it is faster than slow-speed sailing mode, but sails at a much slower speed than the maximum ship speed on clear skies. It is in navigation mode.
As shown in FIG. 5, the medium-speed cruise mode is the same as the low-speed cruise mode in that the regenerative motor 11 is regeneratively driven by the power of the main engine 6. However, this differs from the low-speed cruise mode in that not only the regenerated power but also the power of the inboard generator 13 is used to drive the electric motor 17.

具体的には制御部61は低速航行モードと同様に回生モータ11に駆動電力を供給せず、主機6の動力で回生発電を行わせ、発電した電力をスイッチング回路15に送電させる。さらに制御部61は船内発電機13の電力の一部をスイッチング回路15に送電させる。スイッチング回路15は制御部61の制御に基づき、送電された電力を電動モータ17の駆動に必要な周波数と電圧の電力に変換して電動モータ17に供給し、副プロペラ9を回転させる。
なお、主プロペラ7は低速航行モードと同様に主プロペラ軸21を介して主機6に伝達された駆動力で回転する。主機6の出力は制御部61が制御する。
中速航行モードは主機6だけでなく船内発電機13を副プロペラ9の動力源に用いる。そのため、低速航行モードよりも高出力を要する航行で有利である。
Specifically, the control unit 61 does not supply drive power to the regenerative motor 11 as in the low-speed cruise mode, causes the main engine 6 to generate regenerative power, and transmits the generated power to the switching circuit 15. Furthermore, the control unit 61 causes a part of the electric power from the inboard generator 13 to be transmitted to the switching circuit 15 . Under the control of the control unit 61, the switching circuit 15 converts the transmitted power into power having a frequency and voltage necessary for driving the electric motor 17, supplies the converted electric power to the electric motor 17, and rotates the auxiliary propeller 9.
Note that the main propeller 7 is rotated by the driving force transmitted to the main engine 6 via the main propeller shaft 21 similarly to the low-speed cruise mode. The output of the main engine 6 is controlled by a control section 61.
In the medium-speed navigation mode, not only the main engine 6 but also the inboard generator 13 are used as the power source for the auxiliary propeller 9. Therefore, it is more advantageous in navigation that requires high power than in low-speed navigation mode.

高速/荒天航行モードは船舶1の航行時に最も高出力が求められる場合の航行モードであり、具体的には最大船速近傍での航行、又は荒天時の航行モードである。
図6に示すように高速/荒天航行モードは船内発電機13の電力で回生モータ11を力行させて主機6の駆動を補助させ、船内発電機13の電力で電動モータ17を駆動する。
具体的には制御部61は船内発電機13の電力の一部をスイッチング回路15に送電させ、さらに、スイッチング回路15を制御して船内発電機13の電力の一部を電動モータ17と回生モータ11に供給させる。スイッチング回路15は船内発電機13から供給された電力の一部を電動モータ17の駆動に必要な周波数と電圧の電力に変換して電動モータ17に供給し、副プロペラ9を回転させる。さらに船内発電機13から供給された電力の一部を回生モータ11の力行に必要な周波数と電圧の電力に変換して回生モータ11に供給し、回生モータ11を力行させる。力行した回生モータ11がギヤ27、29を介して主機モータ軸25を回転させることで、主プロペラ軸21に動力を伝達し、主機6による主プロペラ7の駆動を補助する。なお高速/荒天航行モードで主機6は電動モータ17を駆動せず、主プロペラ7のみを駆動する。
The high-speed/rough weather navigation mode is a navigation mode when the highest output is required when the ship 1 is navigating, and specifically, it is a navigation mode when the ship 1 is navigating near the maximum speed or in rough weather.
As shown in FIG. 6, in the high speed/rough weather navigation mode, the regenerative motor 11 is powered by the power of the inboard generator 13 to assist in driving the main engine 6, and the electric motor 17 is driven by the power of the inboard generator 13.
Specifically, the control unit 61 transmits a portion of the electric power of the inboard generator 13 to the switching circuit 15, and further controls the switching circuit 15 to send a portion of the electric power of the inboard generator 13 to the electric motor 17 and the regenerative motor. 11 is supplied. The switching circuit 15 converts a part of the electric power supplied from the inboard generator 13 into electric power with a frequency and voltage necessary for driving the electric motor 17 and supplies the converted electric power to the electric motor 17 to rotate the auxiliary propeller 9. Further, a part of the electric power supplied from the inboard generator 13 is converted into electric power having a frequency and voltage necessary for powering the regenerative motor 11, and is supplied to the regenerative motor 11, thereby causing the regenerative motor 11 to power. The powered regenerative motor 11 rotates the main engine motor shaft 25 via the gears 27 and 29, thereby transmitting power to the main propeller shaft 21 and assisting the main engine 6 to drive the main propeller 7. Note that in the high speed/rough weather navigation mode, the main engine 6 does not drive the electric motor 17, but only drives the main propeller 7.

高速/荒天航行モードは船内発電機13のみを副プロペラ9の電源に用いる。また回生モータ11を主プロペラ7の駆動の補助に用いる。そのため、他の航行モードと比べて主プロペラ7及び副プロペラ9の出力が最も大きくなる。そのため、中速航行モードよりも高出力を要する航行で有利である。 In the high-speed/rough weather navigation mode, only the inboard generator 13 is used as a power source for the auxiliary propeller 9. Further, the regenerative motor 11 is used to assist in driving the main propeller 7. Therefore, the output of the main propeller 7 and the auxiliary propeller 9 is the largest compared to other navigation modes. Therefore, it is more advantageous in navigation that requires higher power than the medium-speed navigation mode.

制御部61は、3つの航行モードの何れか1つの航行モードを出力の大小に応じて選択して副プロペラ9を駆動する制御を行う。具体的には、まず船舶1の航行に必要な出力の最小値から最大値までの出力域を3つに区分して制御部61の図示しない記憶部に予め記憶させる。次に制御部61は船舶1の航行時に記憶部を参照し、航行に必要な出力が最小の出力域の場合に低速航行モードを選択し、2番目に小さい出力域の場合に中速航行モードを選択し、最も大きい出力域の場合に高速/荒天航行モードを選択する。
この構成では、航行時に必要な出力が最小の出力域では低速航行モードで主機6が回生モータ11を駆動することで得られた回生電力のみで副プロペラ9を駆動する。2番目に小さい出力域では中速航行モードで船内発電機13の電力も副プロペラ9の駆動に使用する。最も大きい出力域では高速/荒天航行モードで船内発電機13が回生モータ11を力行させて主機6を補助する。
The control unit 61 controls driving the sub propeller 9 by selecting one of the three navigation modes depending on the magnitude of the output. Specifically, first, the output range from the minimum value to the maximum value of the output necessary for navigation of the ship 1 is divided into three parts and stored in advance in a storage part (not shown) of the control part 61. Next, the control unit 61 refers to the storage unit when the ship 1 is navigating, and selects the low-speed navigation mode when the output required for navigation is in the minimum output range, and selects the medium-speed navigation mode when the output required for navigation is in the second smallest output range. and select high speed/rough weather navigation mode for the largest power range.
In this configuration, in the output range where the output required during navigation is minimum, the sub-propeller 9 is driven only by the regenerative power obtained by the main engine 6 driving the regenerative motor 11 in the low-speed navigation mode. In the second smallest output range, the power of the inboard generator 13 is also used to drive the auxiliary propeller 9 in medium speed navigation mode. In the largest output range, the inboard generator 13 powers the regenerative motor 11 to assist the main engine 6 in high speed/rough weather navigation mode.

このように、航行に必要な出力に応じて船内発電機13及び回生モータ11を航行用の動力源として用いることで、副プロペラ9を小型化した場合でも航行に必要な推力を維持できる。また、航行に必要な電力の一部を船内発電機13が供給するため、主機6を小型化できる。 In this way, by using the inboard generator 13 and the regenerative motor 11 as a power source for navigation according to the output required for navigation, the thrust necessary for navigation can be maintained even when the auxiliary propeller 9 is downsized. Furthermore, since the inboard generator 13 supplies part of the electric power necessary for navigation, the main engine 6 can be made smaller.

航行モードの選択は船速、波高、風速の大小を参照して選択してもよい。
例えば制御部61は、3つの航行モードに対応する3つの船速域、つまり3つの出力域で各々航行可能な速度域を求め、船舶1の船速を遅い順に低速域、中速域、高速域の3つの船速域に区分すればよい。この場合、航行時の船速が低速域の場合に低速航行モードを選択し、中速域の場合に中速航行モードを選択し、高速域の場合に高速/荒天航行モードを選択すればよい。船速は実測してよいし、制御部61が設定する目標船速をそのまま船速としてもよい。
ただし、船速のみを参照して航行モードを選択すると、荒天時のように、波浪による抵抗が大きくなり、低速でも高出力が求められる場合に出力が不足する可能性がある。
そこで、荒天時、具体的には波高及び風速が予め定められた所定の値を超える場合は船速によらず高速/荒天航行モードを選択するのが好ましい。波高や風速は実測してもよいし、気象観測台からの情報を取得してもよい。
この構成では船速が速くなるほど高出力となる航行モードを選択し、荒天の場合は船速によらず最大出力を発揮できる航行モードを選択する。
そのため、船速や気象条件に応じて航行に必要十分な出力を維持できる最適な航行モードを選択できる。
The navigation mode may be selected with reference to the ship speed, wave height, and wind speed.
For example, the control unit 61 determines the speed ranges in which the ship 1 can navigate in three speed ranges corresponding to the three navigation modes, that is, three power ranges, and sets the ship speed of the ship 1 in descending order of low speed range, medium speed range, and high speed range. The speed range can be divided into three speed ranges. In this case, if the ship speed during navigation is in the low speed range, select the low speed sailing mode, if the ship speed is in the medium speed range, select the medium speed sailing mode, and if the ship speed is in the high speed range, select the high speed/rough weather sailing mode. . The ship speed may be actually measured, or the target ship speed set by the control unit 61 may be used as the ship speed.
However, if you select a navigation mode based only on the ship's speed, the resistance from waves will increase, such as during rough weather, and there is a possibility that the output will be insufficient when high output is required even at low speeds.
Therefore, when the weather is rough, specifically when the wave height and wind speed exceed predetermined values, it is preferable to select the high speed/rough weather navigation mode regardless of the ship speed. Wave height and wind speed may be measured, or information may be obtained from a weather observatory.
In this configuration, the faster the boat speed is, the higher the output is selected, and in the case of rough weather, the sailing mode is selected that provides the maximum output regardless of the boat speed.
Therefore, it is possible to select the optimal navigation mode that maintains the necessary and sufficient output for navigation depending on the ship's speed and weather conditions.

航行モードは必ずしも3つある必要はない。2つでもよい。例えば制御部61は航行モードとして低速航行モードと高速/荒天航行モードの2つのみを用意して、何れか1つの航行モードを、航行に必要な出力の大小に応じて選択してもよい。
具体的には制御部61は、船舶1の航行に必要な出力があらかじめ定められた境界出力以下の場合に低速航行モードを選択し、境界出力を超える場合に高速/荒天航行モードを選択してもよい。
あるいは制御部61は、船舶1の船速があらかじめ定められた境界船速以下の場合に低速航行モードを選択し、境界船速を超える場合に、高速/荒天航行モードを選択してもよい。この場合、波高及び風速が予め定められた所定の値を超える場合は船速によらず高速/荒天航行モードを選択してもよい。
There does not necessarily have to be three navigation modes. Two is fine. For example, the control unit 61 may prepare only two navigation modes, a low-speed navigation mode and a high-speed/rough weather navigation mode, and select one of the navigation modes depending on the magnitude of the output required for navigation.
Specifically, the control unit 61 selects the low-speed navigation mode when the output required for navigation of the vessel 1 is below a predetermined boundary output, and selects the high-speed/rough weather navigation mode when the output exceeds the boundary output. Good too.
Alternatively, the control unit 61 may select the low-speed navigation mode when the speed of the ship 1 is less than or equal to a predetermined boundary speed, and select the high-speed/rough weather navigation mode when the speed exceeds the threshold speed. In this case, if the wave height and wind speed exceed predetermined values, the high speed/rough weather navigation mode may be selected regardless of the ship speed.

制御部61は同じ航行モードでも、要求される出力が大きくなるほど電動モータ17に供給する電力を大きくしてもよい。
具体的には同じ航行モードで船速が速くなるほど電動モータ17に供給する電力を大きくしてもよい。理由は以下の通りである。
例えば同じ低速航行モードで同じ出力で航行を続けた場合、中速航行モードとの境界付近の船速では出力不足になる可能性がある。出力不足にならないように、中速航行モードとの境界付近の船速に応じた出力に低速航行モードの出力を固定すると、逆に中速航行モードとの境界よりも遅い船速では出力が過剰となる。
このような場合に同じ航行モードでも、船速が速くなるほど副プロペラ9の駆動に要する電力を多くすることで、異なる航行モードの境界近傍の船速の場合に副プロペラ9の駆動に要する出力の不足や過多を防止できる。
Even in the same navigation mode, the control unit 61 may increase the power supplied to the electric motor 17 as the required output increases.
Specifically, the power supplied to the electric motor 17 may be increased as the boat speed increases in the same navigation mode. The reason is as follows.
For example, if the ship continues to sail with the same power in the same low-speed sailing mode, there is a possibility that the ship's power will be insufficient at a ship speed near the boundary with the medium-speed sailing mode. In order to avoid insufficient power, if the output in low-speed navigation mode is fixed to the output corresponding to the ship speed near the boundary with medium-speed navigation mode, the output will be excessive at ship speeds slower than the boundary with medium-speed navigation mode. becomes.
In such a case, even in the same sailing mode, as the ship speed increases, the power required to drive the sub-propeller 9 increases, thereby reducing the output required to drive the sub-propeller 9 when the ship speed is near the boundary between different sailing modes. It can prevent shortages and excesses.

なお、制御部61は低速域での航行時のみ副プロペラ9を回転させてもよい。具体的には船速が予め定められた所定の下限船速以下で、波高及び風速が予め定められた所定の値を超えない場合のみ回生モータ11又は船内発電機13から電動モータ17に電力を供給し、中速域、高速域、及び荒天時は電力を供給しなくてもよい。下限船速とは例えば低速域の船速上限である。波高及び風速が予め定められた所定の値を超えない場合とは、荒天時でない場合である。
この場合、中速域、高速域、及び荒天時は主プロペラ7のみが駆動し、副プロペラ9は舵バルブ37としてのみ機能するので、二重反転プロペラとしての推進効率向上効果は低速域での航行時しか得られない。ただし、電動モータ17、主機6、船内発電機13等の動力源や動力伝達機構を小型化できる。また、回生モータ11又は船内発電機13の一方のみが電動モータ17の動力源であればよいので送電機構や動力伝達機構を簡素化でき、機械的信頼性も向上する。よって低速航行モードでの航行が主体の船舶では有利である。なお、低速域での航行時のみ副プロペラ9を回転させる場合、副プロペラ9に電力を供給する電源は、回生モータ11ではなく船内発電機13でもよい。
Note that the control unit 61 may rotate the auxiliary propeller 9 only during navigation in a low speed range. Specifically, power is supplied from the regenerative motor 11 or the inboard generator 13 to the electric motor 17 only when the ship speed is below a predetermined lower limit ship speed and the wave height and wind speed do not exceed predetermined values. However, it is not necessary to supply power in the medium speed range, high speed range, or in stormy weather. The lower limit ship speed is, for example, the upper limit of ship speed in a low speed range. The case where the wave height and wind speed do not exceed predetermined values is the case when the weather is not stormy.
In this case, only the main propeller 7 is driven in the medium-speed range, high-speed range, and in rough weather, and the sub-propeller 9 only functions as the rudder valve 37, so the propulsive efficiency improvement effect as a counter-rotating propeller is less effective in the low-speed range. Can only be obtained while sailing. However, the power sources and power transmission mechanisms such as the electric motor 17, the main engine 6, and the inboard generator 13 can be downsized. Further, since only one of the regenerative motor 11 and the inboard generator 13 needs to be the power source for the electric motor 17, the power transmission mechanism and the power transmission mechanism can be simplified, and mechanical reliability is also improved. Therefore, it is advantageous for ships that mainly navigate in low-speed navigation mode. Note that when the sub-propeller 9 is rotated only during navigation in a low-speed range, the power supply that supplies power to the sub-propeller 9 may be the inboard generator 13 instead of the regenerative motor 11.

このように本実施形態における副プロペラ9は航行条件によっては回転しない場合がある。よって副プロペラ9は二重反転プロペラの片方というよりは、主プロペラ7の補助として条件付きで逆回転する補助プロペラである。この点からも、本実施形態の二重反転プロペラ3は、従来のように、2つのプロペラを等価な構造とする二重反転プロペラとは全く異なる構造であることがわかる。
以上が本実施形態における二重反転プロペラ3を備える船舶1の構造の説明である。
As described above, the sub-propeller 9 in this embodiment may not rotate depending on the navigation conditions. Therefore, the auxiliary propeller 9 is an auxiliary propeller that conditionally rotates in the opposite direction to assist the main propeller 7, rather than one side of a counter-rotating propeller. From this point as well, it can be seen that the counter-rotating propeller 3 of this embodiment has a completely different structure from a conventional counter-rotating propeller in which two propellers have an equivalent structure.
The above is the description of the structure of the ship 1 including the counter-rotating propeller 3 in this embodiment.

次に図7を参照して本実施形態に係る船舶1の航行の手順の一例を説明する。
まず制御部61は船舶1の航行時の波高、風速、船速を取得する(図7のS1)。
次に制御部61は波高及び風速から、荒天時か否かを判断し、荒天時でない場合はS3に進み、荒天時の場合はS4に進む(図7のS2)。具体的には波高及び風速と、航行に必要な出力との関係を予め求めて制御部61に記憶しておき、高速/荒天航行モードでの航行が必要な出力を要求する波高及び風速の場合に荒天時と判断すればよい。
Next, an example of the navigation procedure of the ship 1 according to the present embodiment will be explained with reference to FIG.
First, the control unit 61 acquires the wave height, wind speed, and ship speed when the ship 1 is sailing (S1 in FIG. 7).
Next, the control unit 61 determines whether or not it is stormy weather based on the wave height and wind speed, and if it is not stormy weather, the process proceeds to S3, and if it is stormy weather, the process proceeds to S4 (S2 in FIG. 7). Specifically, the relationship between wave height and wind speed and the output necessary for navigation is determined in advance and stored in the control unit 61, and in the case of wave height and wind speed that require the output required for navigation in high-speed/rough weather navigation mode. It can be determined that the weather is stormy.

S3で荒天時でないと判断した場合、制御部61は船速が3つの船速域のうち、どの船速域に属するかを判断する。高速域の場合にはS4に進み、中速域の場合はS5に進み、低速域の場合はS6に進む(図7のS3)。
S2で荒天時と判断した場合、及びS3で船速が高速域と判断した場合、制御部61は高速/荒天航行モードを選択して船舶1の航行を行う(図7のS4)。
S3で船速が中速域と判断した場合、制御部61は中速航行モードを選択して船舶1の航行を行う(図7のS5)。
S3で船速が低速域と判断した場合、制御部61は低速航行モードを選択して船舶1の航行を行う(図7のS6)。
以上が本実施形態に係る船舶1の航行の手順の一例の説明である。
If it is determined in S3 that the weather is not rough, the control unit 61 determines which of the three ship speed ranges the ship speed belongs to. In the case of a high speed range, the process proceeds to S4, in the case of a medium speed area, the process proceeds to S5, and in the case of a low speed area, the process proceeds to S6 (S3 in FIG. 7).
If it is determined in S2 that the weather is rough, and if it is determined that the ship speed is in the high speed range in S3, the control unit 61 selects the high speed/rough weather navigation mode and navigates the ship 1 (S4 in FIG. 7).
If it is determined in S3 that the ship speed is in the medium speed range, the control unit 61 selects the medium speed navigation mode and navigates the ship 1 (S5 in FIG. 7).
If it is determined in S3 that the ship speed is in the low speed range, the control unit 61 selects the low speed navigation mode and navigates the ship 1 (S6 in FIG. 7).
The above is an explanation of an example of the navigation procedure of the ship 1 according to the present embodiment.

このように本実施形態は、二重反転プロペラ3の副プロペラ9を小径化して可動舵35の舵バルブ37と一体化して操舵時の旋回を許容しつつ、主プロペラ7の旋回流の一部を利用して推進効率を高め、舵バルブ37として推進効率を高める。
そのため、副プロペラ9を駆動する電動モータ17を大型化する必要がなく、従来の舵バルブを備える船舶に適用が容易であり、構造が単純で信頼性に優れる。
In this way, the present embodiment reduces the diameter of the auxiliary propeller 9 of the counter-rotating propeller 3 and integrates it with the rudder valve 37 of the movable rudder 35 to allow turning during steering while also controlling part of the swirling flow of the main propeller 7. The rudder valve 37 increases the propulsion efficiency.
Therefore, there is no need to increase the size of the electric motor 17 that drives the auxiliary propeller 9, and the present invention can be easily applied to a ship equipped with a conventional rudder valve, and has a simple structure and excellent reliability.

以上、実施形態を参照して本発明を説明したが、本発明は実施形態に限定されない。当業者であれば、本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the embodiments. It is natural for those skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present invention, and these are also included in the present invention.

1 :船舶
3 :二重反転プロペラ
5 :船体
6 :主機
7 :主プロペラ
9 :副プロペラ
11 :回生モータ
13 :船内発電機
15 :スイッチング回路
17 :電動モータ
17a :電動モータ軸
21 :主プロペラ軸
23 :船内装置
25 :主機モータ軸
27、29 :ギヤ
31 :舵
33 :固定舵
33a、33b :固定部
35 :可動舵
35a :挿入板部
36 :ラダーストック
37 :舵バルブ
41 :主プロペラボス
43 :主プロペラ翼
51 :副プロペラボス
53 :副プロペラ翼
61 :制御部
1: Ship 3: Counter-rotating propeller 5: Hull 6: Main engine 7: Main propeller 9: Sub-propeller 11: Regenerative motor 13: Inboard generator 15: Switching circuit 17: Electric motor 17a: Electric motor shaft 21: Main propeller shaft 23: Inboard equipment 25: Main engine motor shaft 27, 29: Gear 31: Rudder 33: Fixed rudder 33a, 33b: Fixed part 35: Movable rudder 35a: Insertion plate part 36: Rudder stock 37: Rudder valve 41: Main propeller boss 43 : Main propeller blade 51 : Sub-propeller boss 53 : Sub-propeller blade 61 : Control section

Claims (8)

船長方向を向く軸中心に回転可能に船舶の船尾に設けられ、主機の動力が伝達される主プロペラと、前記主プロペラの船長方向後方に同軸線上に配置され前記主プロペラと逆向きに回転する副プロペラを備える船舶用二重反転プロペラを備える船舶であって、
前記副プロペラは、前記主プロペラの船長方向後方に配置された可動舵の舵バルブ内の電動モータで駆動され前記舵バルブの船長方向前端を構成する外形の副プロペラボスと、前記副プロペラボスの径方向に突設され、前記主プロペラのプロペラ翼の直径の50%以上、70%以下の直径を有する副プロペラ翼を備えていて、
前記主機の動力軸に連結され、前記動力軸から動力が伝達されると回生駆動して発電して前記電動モータを駆動し、電力が供給されると力行して前記動力軸に動力を伝達することで前記主機の駆動を補助する回生モータと、
前記主機以外の船内装置の駆動電源であり、かつ前記電動モータと前記回生モータに電力を供給する船内発電機と、
前記主機、前記回生モータ、及び前記船内発電機の駆動を制御する制御部とを備えた船舶において、
前記制御部は、
前記回生モータを前記主機の動力で回生駆動させて、回生電力のみで前記電動モータを駆動する低速航行モードと、
前記船内発電機の電力で前記回生モータを力行させて前記主機の駆動を補助させ、前記船内発電機の電力で前記電動モータを駆動する高速/荒天航行モードの何れか1つの航行モードを、航行に必要な出力の大小に応じて選択して前記副プロペラを駆動する制御を行うことを特徴とする舶。
A main propeller, which is rotatably provided at the stern of the ship around an axis facing the ship's ship's ship's direction, and to which the power of the main engine is transmitted; and a main propeller, which is placed coaxially behind the main propeller in the ship's ship's direction and rotates in the opposite direction to the main propeller. A ship equipped with a counter-rotating propeller for ships equipped with an auxiliary propeller,
The auxiliary propeller is driven by an electric motor in a rudder valve of a movable rudder disposed rearward in the longitudinal direction of the main propeller, and has a auxiliary propeller boss having an external shape that constitutes a front end in the longitudinal direction of the rudder valve, and A sub-propeller blade is provided that protrudes in the radial direction and has a diameter of 50% or more and 70% or less of the diameter of the propeller blade of the main propeller,
It is connected to the power shaft of the main engine, and when power is transmitted from the power shaft, it regenerates and generates electricity to drive the electric motor, and when power is supplied, it runs and transmits power to the power shaft. a regenerative motor that assists in driving the main engine;
an inboard generator that is a driving power source for inboard equipment other than the main engine and supplies power to the electric motor and the regenerative motor;
A ship comprising the main engine, the regenerative motor, and a control unit that controls driving of the inboard generator,
The control unit includes:
a low-speed navigation mode in which the regenerative motor is regeneratively driven by the power of the main engine and the electric motor is driven only with the regenerated power;
Sailing in any one of a high-speed sailing mode and a rough-weather sailing mode in which the regenerative motor is powered by the power of the inboard generator to assist in driving the main engine, and the electric motor is driven by the power of the inboard generator. 1. A ship characterized in that the auxiliary propeller is controlled to be selectively driven depending on the magnitude of the output required for the auxiliary propeller.
前記制御部は、
前記船舶の航行に必要な出力があらかじめ定められた境界出力以下の場合に前記低速航行モードを選択し、前記境界出力を超える場合に前記高速/荒天航行モードを選択する請求項1に記載の船舶。
The control unit includes:
The vessel according to claim 1, wherein the low-speed navigation mode is selected when the output required for navigation of the vessel is below a predetermined boundary output, and the high-speed/rough weather navigation mode is selected when the output exceeds the boundary output. .
前記制御部は、
前記船舶の船速があらかじめ定められた境界船速以下の場合に前記低速航行モードを選択し、前記境界船速を超える場合に、前記高速/荒天航行モードを選択し、
波高及び風速が予め定められた所定の値を超える場合は船速によらず前記高速/荒天航行モードを選択する請求項1に記載の船舶。
The control unit includes:
Selecting the low-speed navigation mode when the ship speed of the ship is below a predetermined boundary ship speed, and selecting the high-speed/rough weather navigation mode when the ship speed exceeds the boundary ship speed,
The ship according to claim 1, wherein the high speed/rough weather navigation mode is selected regardless of ship speed when wave height and wind speed exceed predetermined values.
船長方向を向く軸中心に回転可能に船舶の船尾に設けられ、主機の動力が伝達される主プロペラと、前記主プロペラの船長方向後方に同軸線上に配置され前記主プロペラと逆向きに回転する副プロペラを備える船舶用二重反転プロペラを備える船舶であって、
前記副プロペラは、前記主プロペラの船長方向後方に配置された可動舵の舵バルブ内の電動モータで駆動され前記舵バルブの船長方向前端を構成する外形の副プロペラボスと、前記副プロペラボスの径方向に突設され、前記主プロペラのプロペラ翼の直径の50%以上、70%以下の直径を有する副プロペラ翼を備えていて、
前記主機の動力軸に連結され、前記動力軸から動力が伝達されると回生駆動して発電して前記電動モータを駆動し、電力が供給されると力行して前記動力軸に動力を伝達することで前記主機の駆動を補助する回生モータと、
前記主機以外の船内装置の駆動電源であり、かつ前記電動モータと前記回生モータに電力を供給する船内発電機と、
前記主機、前記回生モータ、及び前記船内発電機の駆動を制御する制御部とを備えた船舶において、
前記制御部は、
前記回生モータを前記主機の動力で回生駆動させて、回生電力のみで前記電動モータを駆動する低速航行モードと、
前記回生モータを前記主機の動力で回生駆動させ、前記回生電力及び前記船内発電機の電力で前記電動モータを駆動する中速航行モードと、
前記船内発電機の電力で前記回生モータを力行させて前記主機の駆動を補助させ、前記船内発電機の電力で前記電動モータを駆動する高速/荒天航行モードの何れか1つの航行モードを、航行に必要な出力の大小に応じて選択して前記副プロペラを駆動する制御を行うことを特徴とする舶。
A main propeller, which is rotatably provided at the stern of the ship around an axis facing the ship's ship's ship's direction, and to which the power of the main engine is transmitted; and a main propeller, which is placed coaxially behind the main propeller in the ship's ship's direction and rotates in the opposite direction to the main propeller. A ship equipped with a counter-rotating propeller for ships equipped with an auxiliary propeller,
The auxiliary propeller is driven by an electric motor in a rudder valve of a movable rudder disposed rearward in the longitudinal direction of the main propeller, and has a auxiliary propeller boss having an external shape that constitutes a front end in the longitudinal direction of the rudder valve, and A sub-propeller blade is provided that protrudes in the radial direction and has a diameter of 50% or more and 70% or less of the diameter of the propeller blade of the main propeller,
It is connected to the power shaft of the main engine, and when power is transmitted from the power shaft, it regenerates and generates electricity to drive the electric motor, and when power is supplied, it runs and transmits power to the power shaft. a regenerative motor that assists in driving the main engine;
an inboard generator that is a driving power source for inboard equipment other than the main engine and supplies power to the electric motor and the regenerative motor;
A ship comprising the main engine, the regenerative motor, and a control unit that controls driving of the inboard generator,
The control unit includes:
a low-speed navigation mode in which the regenerative motor is regeneratively driven by the power of the main engine and the electric motor is driven only with the regenerated power;
a medium-speed navigation mode in which the regenerative motor is regeneratively driven by the power of the main engine, and the electric motor is driven by the regenerative power and the power of the inboard generator;
Sailing in any one of a high-speed sailing mode and a rough-weather sailing mode in which the regenerative motor is powered by the power of the inboard generator to assist in driving the main engine, and the electric motor is driven by the power of the inboard generator. 1. A ship characterized in that the auxiliary propeller is controlled to be selectively driven depending on the magnitude of the output required for the auxiliary propeller.
前記制御部は、
前記船舶の航行に必要な出力の最小値から最大値までの出力域を3つに区分し、航行中の前記船舶が必要とする出力が最小の出力域の場合に前記低速航行モードを選択し、2番目に小さい出力域の場合に前記中速航行モードを選択し、最も大きい出力域の場合に前記高速/荒天航行モードを選択する請求項4に記載の船舶。
The control unit includes:
The output range from the minimum value to the maximum value of the output required for navigation of the vessel is divided into three, and the low speed navigation mode is selected when the output required by the vessel during navigation is in the minimum output range. 5. The ship according to claim 4 , wherein the medium-speed sailing mode is selected in the case of the second smallest power range, and the high-speed/rough weather sailing mode is selected in the case of the largest power range.
前記制御部は、
前記船舶の船速を遅い順に低速域、中速域、高速域の3つの船速域に区分し、
船速が前記低速域の場合に前記低速航行モードを選択し、前記中速域の場合に前記中速航行モードを選択し、前記高速域の場合に前記高速/荒天航行モードを選択し、
波高及び風速が予め定められた所定の値を超える場合は船速によらず前記高速/荒天航行モードを選択する請求項4に記載の船舶。
The control unit includes:
The speed of the ship is divided into three speed ranges: a low speed range, a medium speed range, and a high speed range, in descending order of speed,
Selecting the low speed navigation mode when the ship speed is in the low speed range, selecting the medium speed sailing mode when the ship speed is in the medium speed range, and selecting the high speed/rough weather sailing mode when the ship speed is in the high speed range,
The ship according to claim 4 , wherein the high speed/rough weather navigation mode is selected regardless of ship speed when wave height and wind speed exceed predetermined values.
前記制御部は、同じ航行モードでは、船速が速くなるほど前記電動モータに供給する電力を大きくする請求項1~6の何れか一項に記載の船舶。 The marine vessel according to any one of claims 1 to 6, wherein the control unit increases the electric power supplied to the electric motor as the vessel speed increases in the same navigation mode. 船長方向を向く軸中心に回転可能に船舶の船尾に設けられ、主機の動力が伝達される主プロペラと、前記主プロペラの船長方向後方に同軸線上に配置され前記主プロペラと逆向きに回転する副プロペラを備える船舶用二重反転プロペラを備える船舶であって、
前記副プロペラは、前記主プロペラの船長方向後方に配置された可動舵の舵バルブ内の電動モータで駆動され前記舵バルブの船長方向前端を構成する外形の副プロペラボスと、前記副プロペラボスの径方向に突設され、前記主プロペラのプロペラ翼の直径の50%以上、70%以下の直径を有する副プロペラ翼を備える船舶において、
前記船舶の船速が予め定められた所定の下限船速以下で、かつ波高及び風速が予め定められた所定の値を超えない場合のみ前記副プロペラを駆動する制御部を備える船舶。
A main propeller, which is rotatably provided at the stern of the ship around an axis facing the ship's ship's ship's direction, and to which the power of the main engine is transmitted; and a main propeller, which is placed coaxially behind the main propeller in the ship's ship's direction and rotates in the opposite direction to the main propeller. A ship equipped with a counter-rotating propeller for ships equipped with an auxiliary propeller,
The auxiliary propeller is driven by an electric motor in a rudder valve of a movable rudder disposed rearward in the longitudinal direction of the main propeller, and has a auxiliary propeller boss having an external shape that constitutes a front end in the longitudinal direction of the rudder valve, and In a ship equipped with a sub-propeller blade that protrudes in the radial direction and has a diameter of 50% or more and 70% or less of the diameter of the propeller blade of the main propeller,
A ship comprising a control unit that drives the sub-propeller only when the speed of the ship is below a predetermined lower limit ship speed and the wave height and wind speed do not exceed predetermined values.
JP2020105213A 2020-06-18 2020-06-18 ship Active JP7405705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020105213A JP7405705B2 (en) 2020-06-18 2020-06-18 ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020105213A JP7405705B2 (en) 2020-06-18 2020-06-18 ship

Publications (2)

Publication Number Publication Date
JP2021195090A JP2021195090A (en) 2021-12-27
JP7405705B2 true JP7405705B2 (en) 2023-12-26

Family

ID=79197038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020105213A Active JP7405705B2 (en) 2020-06-18 2020-06-18 ship

Country Status (1)

Country Link
JP (1) JP7405705B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501201A (en) 2010-12-31 2014-01-20 エービービー・オーワイ Propulsion system
CN104443333A (en) 2014-11-28 2015-03-25 中国船舶重工集团公司第七○二研究所 Rudder ball type contra-rotating propeller
JP2016153259A (en) 2015-02-20 2016-08-25 三菱重工業株式会社 Ship propulsion system, ship and ship propulsion method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501201A (en) 2010-12-31 2014-01-20 エービービー・オーワイ Propulsion system
CN104443333A (en) 2014-11-28 2015-03-25 中国船舶重工集团公司第七○二研究所 Rudder ball type contra-rotating propeller
JP2016153259A (en) 2015-02-20 2016-08-25 三菱重工業株式会社 Ship propulsion system, ship and ship propulsion method

Also Published As

Publication number Publication date
JP2021195090A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
EP1817225B1 (en) Propulsion system of marine vessel
JP4253636B2 (en) Marine vessel propulsion structure and operation method thereof
JP2004530588A (en) Drives for marine objects
CN102256868A (en) Lateral thruster for a vessel
US9457880B2 (en) Propulsor arrangement for a marine vessel and a marine vessel constructed with this type of propulsor arrangement
EP1013544A2 (en) Azimuth propeller apparatus and ship equipped with the apparatus
CN107207085B (en) Ship propulsion system, ship, and ship propulsion method
CN102056793B (en) A method of providing a ship with a large diameter screw propeller and a ship having a large diameter screw propeller
US10703453B2 (en) Marine vessel
JP7405705B2 (en) ship
EP1472135A1 (en) An arrangement for steering a water-craft
JP6026161B2 (en) Ship
CN213566416U (en) Contra-rotating pod propeller with propellers on same side
US7316194B1 (en) Rudders for high-speed ships
JP3975090B2 (en) Ship
WO2023171678A1 (en) Ship
CN116691981B (en) Distributed power system of catamaran and catamaran
CN218431692U (en) Low-speed main propulsion system and ship
CN213083461U (en) Diesel-driven ship
KR20230132689A (en) Ship
CN212423430U (en) Combined type contra-rotating propeller electric propulsion system
CN213974414U (en) Natural gas driven ship
CN111661293A (en) Combined type contra-rotating propeller electric propulsion system
EP2276662A1 (en) Ship comprising wind power stations for manoeuvring and powering the ship and a method for manoeuvring such a ship
EP2897858A1 (en) Counter rotating pod with flap

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7405705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150