WO2023171678A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2023171678A1
WO2023171678A1 PCT/JP2023/008618 JP2023008618W WO2023171678A1 WO 2023171678 A1 WO2023171678 A1 WO 2023171678A1 JP 2023008618 W JP2023008618 W JP 2023008618W WO 2023171678 A1 WO2023171678 A1 WO 2023171678A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion
ship
wind
propeller
hull
Prior art date
Application number
PCT/JP2023/008618
Other languages
French (fr)
Japanese (ja)
Inventor
健 青野
明彦 舛谷
Original Assignee
住友重機械マリンエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械マリンエンジニアリング株式会社 filed Critical 住友重機械マリンエンジニアリング株式会社
Publication of WO2023171678A1 publication Critical patent/WO2023171678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power

Definitions

  • This disclosure relates to ships.
  • the ship described in Patent Document 1 includes, in addition to a propulsion device using a propeller, a wind propulsion unit on the ship body that propels the ship body using wind power.
  • the present disclosure has been made to solve such problems, and aims to provide a ship that can improve energy efficiency.
  • a ship includes a hull, a plurality of first propulsion units that generate thrust for the hull using a propeller, and a second propulsion unit that propels the hull by wind power, and the second propulsion unit When the vehicle is moving, the first propulsion section is used for energy regeneration.
  • a ship includes a plurality of first propulsion units that mechanically generate thrust for the ship body using a propeller.
  • the ship also includes a second propulsion section that propels the ship using wind power. Therefore, the ship can sail by using the second propulsion section.
  • the vessel can perform regeneration using the first propulsion section.
  • the ship can navigate by mechanical thrust using the first propulsion section.
  • the ship can maneuver with better energy efficiency than when using one large first propulsion part.
  • the ship can reduce the fluid resistance caused by each first propulsion section that acts in a direction that hinders the propulsion of the ship.
  • each first propulsion section by making each first propulsion section smaller, the weight and moment of inertia of the propeller can be reduced. It is possible to perform regeneration that improves energy regeneration efficiency. With the above, energy efficiency can be improved.
  • the ship may use at least one of the plurality of first propulsion sections for regeneration, and may stop the other first propulsion sections. In this case, by stopping the first propulsion section that is not used for regeneration, it is possible to suppress the first propulsion section from acting as fluid resistance during sailing.
  • the plurality of first propulsion units may be configured by counter-rotating propellers.
  • the first propulsion section on the downstream side can generate propulsive force by effectively utilizing the rotational flow of the first propulsion section on the upstream side. Therefore, the ship can improve energy efficiency during maneuvering.
  • FIG. 1 is a schematic cross-sectional view showing an example of a ship according to an embodiment of the present disclosure.
  • (a) is a diagram explaining the principle of a rotor sail
  • (b) is a plan view of a ship.
  • FIG. 2 is a schematic side view of the structure on the stern side of the ship.
  • FIG. 2 is a diagram conceptually showing the energy efficiency of the arrangement of propellers.
  • FIG. 2 is a block diagram showing control details in a flight mode.
  • FIG. 3 is a block diagram showing control details in sailing mode.
  • FIG. 3 is a block diagram showing control details in the aircraft sailing mode. It is a graph showing the relationship between wind speed, thrust obtained by the wind propulsion unit, and electric power used to rotate the wind propulsion unit. It is a table showing control modes and the operating status of each device in each control mode. It is a graph for explaining the correlation between ship speed and output in the control system.
  • It is a schematic sectional view showing an example of a ship concerning
  • the words “front” and “rear” correspond to the direction of movement of the ship
  • the word “lateral” corresponds to the left and right (width) direction of the ship
  • the words “above” and “back” correspond to the direction of movement of the ship.
  • the word “bottom” corresponds to the vertical direction of the hull.
  • FIG. 1 is a schematic cross-sectional view showing an example of a ship according to an embodiment of the present disclosure.
  • the ship 1 is a ship that transports oil-based liquid cargo such as crude oil or liquid gas, and is, for example, an oil tanker.
  • the vessel is not limited to an oil tanker, and may be, for example, a bulk carrier or other various types of vessels.
  • the ship 1 includes a hull 11, a propulsion device 12 (first propulsion section), and a plurality of wind propulsion sections 10 (second propulsion section).
  • the hull 11 has a bow section 2, a stern section 3, an engine room 4, a pump room 5, and a cargo compartment 6.
  • An upper deck 19 is provided at the top of the hull 11 (or inside the ship).
  • the bow section 2 is located on the front side of the hull 11.
  • the stern section 3 is located on the rear side of the hull 11.
  • the bow portion 2 has a shape designed to reduce wave-making resistance, for example, in a fully loaded draft state.
  • the propulsion device 12 mechanically generates the thrust of the hull 11, and uses, for example, a propeller shaft.
  • the propulsion device 12 is installed below the waterline (water surface of the sea W) in the stern section 3 during propulsion. Further, below the waterline in the stern section 3, an azimuth propulsion device 15 is installed which also functions as a rudder for adjusting the propulsion direction.
  • the ship 1 includes a plurality of propulsors 12A and 12B.
  • the plural propulsors 12A, 12B are arranged to face each other in the front-rear direction.
  • the engine room 4 is provided at a position adjacent to the bow side of the stern section 3.
  • the engine room 4 is a compartment in which a main engine 16 for providing driving force to the propeller 12 (front propeller 12A) is disposed.
  • the pump room 5 is provided at a position adjacent to the engine room 4 on the bow side.
  • the pump chamber 5 is a section in which the pump 17 and the like are arranged.
  • the cargo compartment 6 is provided between the bow section 2 and the pump room 5.
  • the cargo hold 6 is a compartment for accommodating petroleum cargo.
  • the cargo compartment 6 is divided into a plurality of cargo oil tanks 26 and a plurality of ballast tanks 27 by adopting a double hull structure of an outer plate 20 and an inner bottom plate 21.
  • the cargo oil tank 26 loads petroleum cargo transported by the ship 1.
  • the ballast tank 27 accommodates an amount of ballast water depending on the size of the ship.
  • the wind propulsion unit 10 is a mechanism that propels the hull 11 using wind power.
  • a rotor type wind propulsion mechanism is employed as the wind propulsion unit 10.
  • a plurality (four in this case) of wind propulsion units 10 are provided on the upper deck 19 of the hull 11 so as to be lined up in the front-rear direction.
  • the wind propulsion unit 10 includes a cylindrical rotor sail 31 that extends in the vertical direction, and an electric motor 32 that rotates the rotor sail 31.
  • the rotor sail 31 which is the wind propulsion unit 10
  • the rotor sail 31, which is the wind propulsion unit 10 may be provided on the wall of the cargo compartment 6.
  • FIG. 3 is a schematic side view of the structure on the stern side of the ship 1.
  • the plurality of propulsors 12 of the ship 1 are configured by counter-rotating propellers 35.
  • the front propeller 12A has a front propeller 33 attached to the hull 11 and driven by the main engine 16.
  • the propulsion device 12A is connected to the main engine 16 in the engine room 4 via a shaft 34 extending forward from the front end.
  • an electric motor 36 is provided at an intermediate position of the shaft 34 to recover electric power from the rotational force of the shaft.
  • the rear propulsion device 12B has a rear propeller 37 that is rotatably attached to the outside of the hull 11, is arranged opposite to the front propeller 33, and is driven by an electric motor 38.
  • the rear propeller 37 is attached to the azimuth propeller 15, which also functions as a rudder.
  • an azimuth propeller is used, in which a rear propeller 37 is attached to a pod that can rotate 360 degrees in the horizontal direction.
  • the front propeller 33 and the rear propeller 37 rotate in opposite directions, and the rear propeller 37 recovers the energy of the rotational flow of the front propeller 33 and rectifies it into an axial flow, thereby converting the energy from the rotational flow into an axial flow. Energy efficiency can be improved by eliminating loss and leaving only axial flow behind.
  • a diesel generator 39 is provided in the engine room 4.
  • a battery 40 is provided in the stern section 3.
  • FIG. 4 is a diagram conceptually showing the energy efficiency of the propeller arrangement.
  • the energy during propulsion of a ship having a propulsion unit 12 having a large single-shaft propeller is set as a base.
  • FIGS. 4(b), 4(c), and 4(d) are set so that the same thrust as in FIG. 4(a) can be obtained.
  • the energy required for propulsion of a ship in which two propellers 12 having small propellers are arranged in parallel is increased by 5% compared to FIG. 4(a).
  • FIG. 4(a) the energy required for propulsion of a ship in which two propellers 12 having small propellers are arranged in parallel is increased by 5% compared to FIG. 4(a).
  • the energy required for propulsion of a ship in which three propellers 12 having small propellers are arranged in parallel is increased by 10% compared to FIG. 4(a).
  • the energy required for propulsion of a ship employing a counter-rotating propeller 35 can be reduced by about 10 to 15% compared to FIG. 4(a).
  • the control system 100 included in the ship 1 will be described with reference to FIGS. 5 to 7.
  • the control system 100 controls the wind propulsion unit 10 and the propellers 12A and 12B according to the situation of the wind power obtained. Further, the control system 100 uses the propulsion unit 12 for regeneration when the hull 11 is moving by the wind propulsion unit 10. In this embodiment, the control system 100 uses the rear thruster 12B for regeneration among the plurality of thrusters 12A and 12B, and stops the front thruster 12A. As shown in FIG.
  • the control system 100 includes the aforementioned wind propulsion section 10 (rotor sail 31, electric motor 32), front propeller 12A (main engine 16, electric motor 36, front propeller 33, shaft 34), rear side
  • the propeller 12B (electric motor 38, rear propeller 37), generator 39, and battery 40 are provided.
  • the control system 100 includes a management system 50 that performs energy management of each of the above-mentioned devices.
  • the management system 50 is a system that exchanges and distributes current within the control system 100. In FIGS. 5 to 7, among the lines connecting the management system 50 and each device, the solid line indicates the output current, the dashed line indicates the regenerative current, and the broken line indicates the disconnection of the current.
  • control system 100 can switch the control mode depending on the wind speed.
  • the control system 100 can switch the control mode in consideration of the relationship between the wind speed, the thrust obtained by the wind propulsion unit 10, the required power, etc., so as to obtain the optimal control mode as a whole.
  • the control system 100 has two modes: a "cruising mode” in which the wind propulsion unit 10 is not used and the propeller 12 is used alone; a “machine sailing mode” in which the wind propulsion unit 10 and the propeller 12 are used to sail; It has a “sailing mode” in which it sails only by the wind propulsion unit 10 without using the wind propulsion unit 12.
  • FIG. 8 is a graph showing the relationship between the wind speed, the thrust obtained by the wind propulsion unit 10, and the electric power used to rotate the wind propulsion unit 10.
  • the thrust obtained by the wind propulsion unit 10 is small in the region of wind speeds of 0 to 5 (m/s). Therefore, in this area, the control system 100 is set to flight mode. In the region of wind speeds of 5 to 10 (m/s), a certain amount of thrust can be obtained, but the thrust from the wind propulsion section 10 is not sufficient. Therefore, in this area, the control system 100 is set to the aircraft sailing mode. In the region of wind speeds of 10 to 20 (m/s), sufficient navigation can be performed using only the thrust from the wind propulsion unit 10. Therefore, in this region, the control system 100 is set to sailing mode.
  • FIG. 9 is a table showing control modes and the operating status of each device in each control mode.
  • FIG. 9 is a table showing control modes and the operating status of each device in each control mode.
  • FIG. 5 is a block diagram showing control details in the flight mode.
  • the wind speed in FIG. 5 is 0 (m/s). Note that although specific values of power output by each device are shown in FIGS. 5 to 7, this is merely an example for explanation and can be changed as appropriate. Also, for ease of understanding, the explanation will be given without taking into account energy loss.
  • control system 100 operates main engine 16.
  • the output of the main engine 16 at this time is "3200 kW”.
  • the electric motor 36 recovers a portion (1400 kW) of the output of the main engine 16 as regenerative current.
  • the front thruster 12A generates thrust with an output of "1800 kW".
  • the management system 50 supplies "1400 kW" of electric power regenerated by the electric motor 36 to the electric motor 38 of the rear propulsion device 12B.
  • the electric motor 38 rotates the rear propeller 37, and the rear propeller 12B generates thrust with an output of "1400 kW”.
  • the thrusters 12A and 12B generate thrust with a total output of "3200 kW”.
  • the control system 100 has stopped the wind propulsion section 10. Therefore, the thrust by the wind propulsion unit 10 is "0 kW".
  • FIG. 6 is a block diagram showing control details in sailing mode.
  • the wind speed in FIG. 6 is greater than 10 (m/s).
  • control system 100 stops main engine 16.
  • the front propeller 12A stops, and the electric power regenerated by the electric motor 36 also becomes “0 kW.”
  • the management system 50 supplies "4 x 100 kW" of power to the electric motors 32 of the four wind power propulsion units 10. Thereby, the wind propulsion unit 10 generates a thrust larger than "4000 kW".
  • the control system 100 leaves the rear propeller 37 of the rear propulsion unit 12B in a state where it can freely rotate.
  • the electric motor 38 recovers "400 kW" of power generated by the idle rotation of the rear propeller 37 as regenerative power.
  • the electric motor 38 outputs "400 kW" of power to the management system 50 due to regeneration of the rear propulsion unit 12B.
  • the management system 50 supplies "4 x 100 kW" of regenerated power to each electric motor 32 of the four wind power propulsion units 10. Thereby, the wind propulsion unit 10 can operate using the electric power regenerated by the rear propeller 12B.
  • the management system 50 stores power in the battery 40 when there is a surplus of regenerated power.
  • FIG. 7 is a block diagram showing the control contents in the sailing mode.
  • the wind speed in FIG. 7 is 5 (m/s).
  • control system 100 operates main engine 16.
  • the output of the main engine 16 at this time is "2680 kW”.
  • the electric motor 36 recovers a portion (1330 kW) of the output of the main engine 16 as regenerative current.
  • the front thruster 12A generates thrust with an output of "1350 kW".
  • the management system 50 supplies "1050 kW", which is a part of the "1330 kW” of electric power regenerated by the electric motor 36, to the electric motor 38 of the rear propulsion device 12B.
  • the electric motor 38 rotates the rear propeller 37, and the rear propeller 12B generates thrust with an output of "1050 kW”.
  • the thrusters 12A and 12B generate thrust with a total output of "2400 kW”.
  • the management system 50 supplies "4 ⁇ 70 kW", which is a part of the "1330 kW” of electric power regenerated by the electric motor 36, to each electric motor 32 of the four wind power propulsion units 10.
  • the wind propulsion unit 10 generates a thrust of "800 kW".
  • the hull 11 travels by the thrust generated by both the propulsors 12A, 12B and the wind propulsion unit 10.
  • the conversion efficiency of regeneration is If it is 50%, 800 kW will be added to the output required for propulsion, so the output for propulsion generated by the wind propulsion unit 10 will be "4000 kW", and the required wind speed at this time is 10 (m /s). In the example shown in FIG. 10, when operating at such an operating point, the wind speed and boat speed are balanced.
  • the ship 1 when optimizing the system at a certain ship speed (11 kts) and wind speed (10 m/s), if one propeller is used for propulsion, the propeller becomes too large for regeneration. In other words, there will be more resistance than necessary for regeneration, and the propeller itself will become too heavy to rotate.
  • the ship 1 according to this embodiment has two propulsors 12A and 12B, and uses the rear propulsor 12B for regeneration. Therefore, resistance during regeneration can be suppressed, and the propeller can be prevented from becoming too heavy and unable to rotate.
  • the ship 1 includes a plurality of propulsors 12 that mechanically generate thrust for the ship body 11 using propellers.
  • the ship 1 also includes a wind propulsion unit 10 that propels the ship body 11 using wind power. Therefore, the ship 1 can sail by using the wind propulsion section 10.
  • the ship 1 can perform regeneration using the propulsion device 12.
  • the ship 1 can travel by mechanical thrust using the propulsion device 12, such as when the wind force is weak.
  • the ship 1 can maneuver with better energy efficiency than when using one large propulsor.
  • the ship 1 can reduce the fluid resistance caused by each propeller that acts in a direction that hinders the propulsion of the ship by reducing the size of each propeller 12.
  • the weight and moment of inertia of the propeller can be reduced by making each propeller smaller than in the case of using one large propeller, so energy regeneration efficiency due to propeller free rotation is improved. Such regeneration can be performed. With the above, energy efficiency can be improved.
  • the ship 1 may use at least one propulsion device 12B among the plurality of propulsion devices 12 for regeneration, and may stop the other propulsion devices 12A. In this case, by stopping the propulsion device 12A that is not used for regeneration, it is possible to suppress the propulsion device 12A from acting as fluid resistance during sailing.
  • the plurality of propulsors 12 may be configured by counter-rotating propellers 35.
  • the contra-rotating propeller 35 allows the downstream propeller 12B to generate propulsive force by effectively utilizing the rotational flow of the upstream propeller 12A. Therefore, the ship 1 can improve energy efficiency during maneuvering. Furthermore, during regeneration, by devising the relationship between the front thruster 12A and the rear thruster 12B, it is possible to prevent the front thruster 12A, which does not perform regeneration, from interfering with regeneration. As a result, regeneration efficiency can also be improved.
  • the wind propulsion unit is not limited to a rotor sail, and is not particularly limited as long as it can propel the ship body by wind power, such as a normal sail or a kite.
  • the counter-rotating propeller 35 was described as an example of a plurality of propellers, but as long as a plurality of propellers are used, there are no particular limitations on how they are arranged.
  • the structure of the hull 11 is not limited to that shown in FIG. 1 either, and may be changed as appropriate depending on the purpose and the like.
  • a car carrier including a wind propulsion unit 10 and a propulsion device 12 may be adopted as the ship 1.
  • the configurations of the wind propulsion unit 10 and the propulsion unit 12 are the same as those of the ship 1 shown in FIG. 1 .
  • the hull 11 has a cargo compartment 56 in its upper region.
  • the cargo compartment 56 extends from the bow section 2 to the stern section 3 of the hull 11.
  • the cargo compartment 56 is a compartment for accommodating cargo such as automobiles.
  • the cargo hold 56 is configured to have a plurality of vehicle decks in the vertical direction. In the example shown in FIG. 11, the cargo hold 56 has a multi-level car deck.

Abstract

The present invention provides a ship including: a hull; a plurality of first propulsion sections that generate, by a propeller, thrust for the hull; and a second propulsion section that propels the hull by wind power, wherein the first propulsion section is used for regeneration of energy while the second propulsion section is moving the hull.

Description

船舶ship
 本開示は、船舶に関するものである。 This disclosure relates to ships.
 近年、CO等のGHGガスの削減のために、風力等の再生可能エネルギーを用いて推力を発生する船舶が知られている。例えば、特許文献1に記載された船舶は、プロペラによる推進器に加えて、船体上に、風力によって船体を推進させる風力推進部を備えている。 In recent years, ships that generate thrust using renewable energy such as wind power have become known in order to reduce GHG gases such as CO 2 . For example, the ship described in Patent Document 1 includes, in addition to a propulsion device using a propeller, a wind propulsion unit on the ship body that propels the ship body using wind power.
特開2020-45018号公報JP 2020-45018 Publication
 ここで、上述のような船舶は、強風時には、一つの大きなプロペラを回転させることで電動機を用いて発電している。弱風時には、貯めておいた電力でプロペラを回転させて推力を発生している。しかしながら、従来の船舶は、一つの大きなプロペラを用いているため流体抵抗が大きくなり、帆走時における船速低下等の問題を生じていた。従って、船舶全体のエネルギー効率を向上できる船舶が求められていた。 Here, in the case of strong winds, ships such as those described above generate electricity using an electric motor by rotating one large propeller. When the wind is weak, the stored electricity is used to rotate the propeller and generate thrust. However, since conventional ships use one large propeller, fluid resistance increases, causing problems such as a decrease in ship speed during sailing. Therefore, there has been a need for a ship that can improve the energy efficiency of the entire ship.
 本開示は、このような課題を解決するためになされたものであり、エネルギー効率を向上できる船舶を提供することを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a ship that can improve energy efficiency.
 本開示に係る船舶は、船体と、プロペラによって船体の推力を発生する複数の第1の推進部と、風力によって船体を推進させる第2の推進部と、を備え、第2の推進部によって船体が移動しているときは、第1の推進部をエネルギーの回生に用いる。 A ship according to the present disclosure includes a hull, a plurality of first propulsion units that generate thrust for the hull using a propeller, and a second propulsion unit that propels the hull by wind power, and the second propulsion unit When the vehicle is moving, the first propulsion section is used for energy regeneration.
 本開示に係る船舶は、プロペラによって船体の推力を機械的に発生する複数の第1の推進部を備える。また、船舶は、風力によって船体を推進させる第2の推進部を備える。従って、船舶は、第2の推進部を用いることで、帆走を行うことができる。このとき、船舶は、第1の推進部を用いて、回生を行うことができる。また、船舶は、風力が弱い場合など、第1の推進部を用いて機械的な推力によって航走することができる。ここで、船舶は、複数の第1の推進部を用いることで、一つの大きな第1の推進部を用いる場合に比して、エネルギー効率がよくなるような機走を行うことが可能となる。更に、回生時には、船舶は、一つあたりの第1の推進部を小さくすることで、船の推進を妨げる方向に作用する各第1の推進部による流体抵抗を小さくすることができる。さらに、船舶は、一つの大きな第1の推進部を用いる場合に比して一つあたりの第1の推進部を小さくすることでプロペラの重量や慣性モーメントを小さくできるので、プロペラの遊転によるエネルギー回生効率がよくなるような回生を行うことができる。以上により、エネルギー効率を向上することができる。 A ship according to the present disclosure includes a plurality of first propulsion units that mechanically generate thrust for the ship body using a propeller. The ship also includes a second propulsion section that propels the ship using wind power. Therefore, the ship can sail by using the second propulsion section. At this time, the vessel can perform regeneration using the first propulsion section. Furthermore, when the wind force is weak, the ship can navigate by mechanical thrust using the first propulsion section. Here, by using a plurality of first propulsion parts, the ship can maneuver with better energy efficiency than when using one large first propulsion part. Furthermore, during regeneration, by reducing the size of each first propulsion section, the ship can reduce the fluid resistance caused by each first propulsion section that acts in a direction that hinders the propulsion of the ship. Furthermore, compared to the case where a ship uses one large first propulsion section, by making each first propulsion section smaller, the weight and moment of inertia of the propeller can be reduced. It is possible to perform regeneration that improves energy regeneration efficiency. With the above, energy efficiency can be improved.
 船舶は、複数の第1の推進部のうち、少なくとも一つを回生に用い、他の第1の推進部を停止してよい。この場合、回生に用いない第1の推進部を停止しておくことで、当該第1の推進部が帆走時に流体抵抗として作用することを抑制できる。 The ship may use at least one of the plurality of first propulsion sections for regeneration, and may stop the other first propulsion sections. In this case, by stopping the first propulsion section that is not used for regeneration, it is possible to suppress the first propulsion section from acting as fluid resistance during sailing.
 複数の第1の推進部は、二重反転式プロペラによって構成されてよい。二重反転式プロペラは、下流側の第1の推進部が、上流側の第1の推進部の回転流れを有効に利用して推進力を発生することができる。従って、船舶は、機走時におけるエネルギー効率を向上することができる。 The plurality of first propulsion units may be configured by counter-rotating propellers. In the contra-rotating propeller, the first propulsion section on the downstream side can generate propulsive force by effectively utilizing the rotational flow of the first propulsion section on the upstream side. Therefore, the ship can improve energy efficiency during maneuvering.
 本開示によれば、船舶全体のエネルギー効率を向上できる船舶を提供できる。 According to the present disclosure, it is possible to provide a ship that can improve the energy efficiency of the entire ship.
本開示の実施形態に係る船舶の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a ship according to an embodiment of the present disclosure. (a)はロータ帆の原理について説明する図であり、(b)は船舶の平面図である。(a) is a diagram explaining the principle of a rotor sail, and (b) is a plan view of a ship. 船舶の船尾側の構造の概略側面図である。FIG. 2 is a schematic side view of the structure on the stern side of the ship. プロペラの配置態様のエネルギー効率を概念的に示した図である。FIG. 2 is a diagram conceptually showing the energy efficiency of the arrangement of propellers. 機走モードにおける制御内容を示すブロック図である。FIG. 2 is a block diagram showing control details in a flight mode. 帆走モードにおける制御内容を示すブロック図である。FIG. 3 is a block diagram showing control details in sailing mode. 機帆走モードにおける制御内容を示すブロック図である。FIG. 3 is a block diagram showing control details in the aircraft sailing mode. 風速と、風力推進部によって得られる推力と、風力推進部の回転に用いられる電力との関係を示すグラフである。It is a graph showing the relationship between wind speed, thrust obtained by the wind propulsion unit, and electric power used to rotate the wind propulsion unit. 制御モードと、各制御モードにおける各機器の動作状況を示す表である。It is a table showing control modes and the operating status of each device in each control mode. 制御システムにおける船速と出力の相関について説明するためのグラフである。It is a graph for explaining the correlation between ship speed and output in the control system. 変形例に係る船舶の一例を示す概略断面図である。It is a schematic sectional view showing an example of a ship concerning a modification.
 以下、本開示の好適な実施形態について図面を参照しながら説明する。なお、以下の説明において、「前」「後」の語は船体の進行方向に対応するものであり、「横」の語は船体の左右(幅)方向に対応するものであり、「上」「下」の語は船体の上下方向に対応するものである。 Hereinafter, preferred embodiments of the present disclosure will be described with reference to the drawings. In the following explanation, the words "front" and "rear" correspond to the direction of movement of the ship, the word "lateral" corresponds to the left and right (width) direction of the ship, and the words "above" and "back" correspond to the direction of movement of the ship. The word "bottom" corresponds to the vertical direction of the hull.
 図1は、本開示の実施形態に係る船舶の一例を示す概略断面図である。船舶1は、例えば原油や液体ガス等の石油系液体貨物を運搬する船舶であり、例えば、オイルタンカーである。なお、船舶は、オイルタンカーに限定されず、例えば、バルクキャリア、その他、様々な種類の船舶であってよい。 FIG. 1 is a schematic cross-sectional view showing an example of a ship according to an embodiment of the present disclosure. The ship 1 is a ship that transports oil-based liquid cargo such as crude oil or liquid gas, and is, for example, an oil tanker. Note that the vessel is not limited to an oil tanker, and may be, for example, a bulk carrier or other various types of vessels.
 船舶1は、図1に示すように、船体11と、推進器12(第1の推進部)と、複数の風力推進部10(第2の推進部)と、を備えている。船体11は、船首部2と、船尾部3と、機関室4と、ポンプ室5と、貨物室6と、を有している。船体11の上部には(または船内には)上甲板19が設けられている。船首部2は、船体11の前方側に位置している。船尾部3は、船体11の後方側に位置している。 As shown in FIG. 1, the ship 1 includes a hull 11, a propulsion device 12 (first propulsion section), and a plurality of wind propulsion sections 10 (second propulsion section). The hull 11 has a bow section 2, a stern section 3, an engine room 4, a pump room 5, and a cargo compartment 6. An upper deck 19 is provided at the top of the hull 11 (or inside the ship). The bow section 2 is located on the front side of the hull 11. The stern section 3 is located on the rear side of the hull 11.
 船首部2は、例えば満載喫水状態における造波抵抗の低減が図られた形状を有している。推進器12は、船体11の推力を機械的に発生させるものであり、例えばプロペラシャフトが用いられている。推進器12は、推進時に船尾部3における喫水線(海Wの水面)よりも下方に設置される。また、船尾部3における喫水線よりも下方には、推進方向を調整するための舵の機能を兼ねたアジマス推進器15が設置されている。図1に示す例では、船舶1は、複数の推進器12A,12Bを備える。複数の推進器12A,12Bは、前後方向に互いに対向するように配置されている。 The bow portion 2 has a shape designed to reduce wave-making resistance, for example, in a fully loaded draft state. The propulsion device 12 mechanically generates the thrust of the hull 11, and uses, for example, a propeller shaft. The propulsion device 12 is installed below the waterline (water surface of the sea W) in the stern section 3 during propulsion. Further, below the waterline in the stern section 3, an azimuth propulsion device 15 is installed which also functions as a rudder for adjusting the propulsion direction. In the example shown in FIG. 1, the ship 1 includes a plurality of propulsors 12A and 12B. The plural propulsors 12A, 12B are arranged to face each other in the front-rear direction.
 機関室4は、船尾部3の船首側に隣り合う位置に設けられている。機関室4は、推進器12(前側の推進器12A)に駆動力を付与するためのメインエンジン16を配置するための区画である。上甲板19上には、機関室4の上方に居住区22、及び排気用の煙突23が設けられる。ポンプ室5は、機関室4の船首側に隣り合う位置に設けられている。ポンプ室5は、ポンプ17等が配置される区画である。貨物室6は、船首部2とポンプ室5との間に設けられている。貨物室6は、石油系貨物を収容するための区画である。貨物室6は、外板20と内底板21の二重船殻構造を採用することによって、複数のカーゴオイルタンク26と複数のバラストタンク27とに区画されている。カーゴオイルタンク26は、船舶1によって運搬される石油系貨物を積載する。バラストタンク27は、船の大きさ等に応じた量のバラスト水を収容する。 The engine room 4 is provided at a position adjacent to the bow side of the stern section 3. The engine room 4 is a compartment in which a main engine 16 for providing driving force to the propeller 12 (front propeller 12A) is disposed. On the upper deck 19, a living area 22 and an exhaust chimney 23 are provided above the engine room 4. The pump room 5 is provided at a position adjacent to the engine room 4 on the bow side. The pump chamber 5 is a section in which the pump 17 and the like are arranged. The cargo compartment 6 is provided between the bow section 2 and the pump room 5. The cargo hold 6 is a compartment for accommodating petroleum cargo. The cargo compartment 6 is divided into a plurality of cargo oil tanks 26 and a plurality of ballast tanks 27 by adopting a double hull structure of an outer plate 20 and an inner bottom plate 21. The cargo oil tank 26 loads petroleum cargo transported by the ship 1. The ballast tank 27 accommodates an amount of ballast water depending on the size of the ship.
 風力推進部10は、風力によって船体11を推進させる機構である。本実施形態では、風力推進部10としてロータ式の風力推進機構が採用されている。風力推進部10は、船体11の上甲板19上に前後方向に並ぶように複数(ここでは四個)設けられている。図2(a)に示すように、風力推進部10は、上下方向に延びる円柱状のロータ帆31と、ロータ帆31を回転させる電動機32と、を備える。ロータ帆31に対して横側から風WDが吹き込むと、後側ではロータ帆31の回転方向と風WDの向きが互いに反対となり、前側ではロータ帆31の回転方向と風WDの向きが一致する。これによって、ロータ帆31の前後で圧力差が発生することで、前側へ向かう推力PFが発生する(マグナス効果)。図2(b)に示すように、船体11に対して横側から風WDが吹くことで、各風力推進部10の推力PFにより、船体11は前方へ進む。図1に示す通り、風力推進部10であるロータ帆31は、貨物室6の壁部の上に設けてよい。これによって、ロータ帆31のような重量の大きい構造物を支持する場合でも貨物室6の壁部の上に設けることでロータ帆を支持する補強部材としての役割を果たすことができる。 The wind propulsion unit 10 is a mechanism that propels the hull 11 using wind power. In this embodiment, a rotor type wind propulsion mechanism is employed as the wind propulsion unit 10. A plurality (four in this case) of wind propulsion units 10 are provided on the upper deck 19 of the hull 11 so as to be lined up in the front-rear direction. As shown in FIG. 2A, the wind propulsion unit 10 includes a cylindrical rotor sail 31 that extends in the vertical direction, and an electric motor 32 that rotates the rotor sail 31. When wind WD blows into the rotor sail 31 from the side, the direction of rotation of the rotor sail 31 and the direction of the wind WD are opposite to each other on the rear side, and the direction of rotation of the rotor sail 31 and the direction of the wind WD match on the front side. . As a result, a pressure difference is generated before and after the rotor sail 31, and a forward thrust PF is generated (Magnus effect). As shown in FIG. 2(b), when the wind WD blows from the side of the hull 11, the hull 11 moves forward due to the thrust PF of each wind power propulsion unit 10. As shown in FIG. 1, the rotor sail 31, which is the wind propulsion unit 10, may be provided on the wall of the cargo compartment 6. Thereby, even when supporting a heavy structure such as the rotor sail 31, by providing it on the wall of the cargo compartment 6, it can serve as a reinforcing member for supporting the rotor sail.
 図3を参照して、船舶1の船尾側の構造について詳細に説明する。図3は、船舶1の船尾側の構造の概略側面図である。船舶1の複数の推進器12は、二重反転式プロペラ35によって構成される。前側の推進器12Aは、船体11に取り付けられてメインエンジン16で駆動される前プロペラ33を有する。推進器12Aは、前端部から前方へ延びるシャフト34を介して、機関室4内のメインエンジン16に接続される。なお、シャフト34の中途位置には、当該シャフトの回転力から電力を回収する電動機36が設けられている。後側の推進器12Bは、船体11外に旋回自在に取り付けられて前プロペラ33と対向配置され、電動機38によって駆動される後プロペラ37を有する。後プロペラ37は、舵の機能も兼ねたアジマス推進器15に取り付けられている。後側の推進器12Bとして、水平方向に360°回転可能なポッドに後プロペラ37を取り付けたアジマス推進器が採用されている。二重反転式プロペラ35は、前プロペラ33と後プロペラ37の回転方向が逆であり、前プロペラ33の回転流のエネルギーを後プロペラ37で回収して軸方向流に整流し、回転流によるエネルギー損失を無くして後方には軸方向流のみを残し、エネルギー効率を向上させることができる。なお、機関室4には、ディーゼル式の発電機39が設けられる。例えば 船尾部3には、バッテリー40が設けられる。 With reference to FIG. 3, the structure of the stern side of the ship 1 will be described in detail. FIG. 3 is a schematic side view of the structure on the stern side of the ship 1. As shown in FIG. The plurality of propulsors 12 of the ship 1 are configured by counter-rotating propellers 35. The front propeller 12A has a front propeller 33 attached to the hull 11 and driven by the main engine 16. The propulsion device 12A is connected to the main engine 16 in the engine room 4 via a shaft 34 extending forward from the front end. Note that an electric motor 36 is provided at an intermediate position of the shaft 34 to recover electric power from the rotational force of the shaft. The rear propulsion device 12B has a rear propeller 37 that is rotatably attached to the outside of the hull 11, is arranged opposite to the front propeller 33, and is driven by an electric motor 38. The rear propeller 37 is attached to the azimuth propeller 15, which also functions as a rudder. As the rear propeller 12B, an azimuth propeller is used, in which a rear propeller 37 is attached to a pod that can rotate 360 degrees in the horizontal direction. In the contra-rotating propeller 35, the front propeller 33 and the rear propeller 37 rotate in opposite directions, and the rear propeller 37 recovers the energy of the rotational flow of the front propeller 33 and rectifies it into an axial flow, thereby converting the energy from the rotational flow into an axial flow. Energy efficiency can be improved by eliminating loss and leaving only axial flow behind. Note that a diesel generator 39 is provided in the engine room 4. For example, a battery 40 is provided in the stern section 3.
 図4は、プロペラの配置態様のエネルギー効率を概念的に示した図である。図4(a)に示すように、一機一軸の大型のプロペラを有する推進器12を有する船舶の推進時のエネルギーを基準(Base)とする。図4(b)(c)(d)は、図4(a)と同じ推力を得ることができるように設定されている。この場合、図4(c)に示すように小型のプロペラを有する推進器12を二つ並列に並べた船舶の推進時のエネルギーは、図4(a)に対して5%の増加となる。図4(d)に示すように小型のプロペラを有する推進器12を三つ並列に並べた船舶の推進時のエネルギーは、図4(a)に対して10%の増加となる。一方、図4(b)に示すように二重反転式プロペラ35を採用した船舶の推進時のエネルギーは、図4(a)に対して10~15%程度減少させることができる。 FIG. 4 is a diagram conceptually showing the energy efficiency of the propeller arrangement. As shown in FIG. 4(a), the energy during propulsion of a ship having a propulsion unit 12 having a large single-shaft propeller is set as a base. FIGS. 4(b), 4(c), and 4(d) are set so that the same thrust as in FIG. 4(a) can be obtained. In this case, as shown in FIG. 4(c), the energy required for propulsion of a ship in which two propellers 12 having small propellers are arranged in parallel is increased by 5% compared to FIG. 4(a). As shown in FIG. 4(d), the energy required for propulsion of a ship in which three propellers 12 having small propellers are arranged in parallel is increased by 10% compared to FIG. 4(a). On the other hand, as shown in FIG. 4(b), the energy required for propulsion of a ship employing a counter-rotating propeller 35 can be reduced by about 10 to 15% compared to FIG. 4(a).
 図5~図7を参照して、船舶1が有する制御システム100について説明する。制御システム100は、得られる風力の状況に応じて、風力推進部10及び推進器12A,12Bを制御する。また、制御システム100は、風力推進部10によって船体11が移動しているときは、推進器12を回生に用いる。本実施形態では、制御システム100は、複数の推進器12A,12Bのうち、後側の推進器12Bを回生に用い、前側の推進器12Aを停止する。図5に示すように、制御システム100は、前述の風力推進部10(ロータ帆31、電動機32)、前側の推進器12A(メインエンジン16、電動機36、前プロペラ33、シャフト34)、後側の推進器12B(電動機38、後プロペラ37)、発電機39、バッテリー40、を備える。また、制御システム100は、上述の各機器のエネルギー管理を行う管理システム50を有する。管理システム50は、制御システム100内における電流のやり取りや分配を行うシステムである。なお、図5~図7において、管理システム50と各機器を接続する線のうち、実線は出力電流を示し、一点鎖線は回生電流を示し、破線は電流の切断を示す。 The control system 100 included in the ship 1 will be described with reference to FIGS. 5 to 7. The control system 100 controls the wind propulsion unit 10 and the propellers 12A and 12B according to the situation of the wind power obtained. Further, the control system 100 uses the propulsion unit 12 for regeneration when the hull 11 is moving by the wind propulsion unit 10. In this embodiment, the control system 100 uses the rear thruster 12B for regeneration among the plurality of thrusters 12A and 12B, and stops the front thruster 12A. As shown in FIG. 5, the control system 100 includes the aforementioned wind propulsion section 10 (rotor sail 31, electric motor 32), front propeller 12A (main engine 16, electric motor 36, front propeller 33, shaft 34), rear side The propeller 12B (electric motor 38, rear propeller 37), generator 39, and battery 40 are provided. Further, the control system 100 includes a management system 50 that performs energy management of each of the above-mentioned devices. The management system 50 is a system that exchanges and distributes current within the control system 100. In FIGS. 5 to 7, among the lines connecting the management system 50 and each device, the solid line indicates the output current, the dashed line indicates the regenerative current, and the broken line indicates the disconnection of the current.
 ここで、制御システム100は、風速に応じて、制御モードを切り替えることができる。制御システム100は、風速と風力推進部10で得られる推力や必要電力などとの関係を考慮して、全体として最適な制御モードとなるように、制御モードを切り替えることができる。制御システム100は、風力推進部10を用いず推進器12のみによって航走する「機走モード」と、風力推進部10及び推進器12を用いて航走する「機帆走モード」と、推進器12を用いず風力推進部10のみによって航走する「帆走モード」とを有する。 Here, the control system 100 can switch the control mode depending on the wind speed. The control system 100 can switch the control mode in consideration of the relationship between the wind speed, the thrust obtained by the wind propulsion unit 10, the required power, etc., so as to obtain the optimal control mode as a whole. The control system 100 has two modes: a "cruising mode" in which the wind propulsion unit 10 is not used and the propeller 12 is used alone; a "machine sailing mode" in which the wind propulsion unit 10 and the propeller 12 are used to sail; It has a "sailing mode" in which it sails only by the wind propulsion unit 10 without using the wind propulsion unit 12.
 図8は、風速と、風力推進部10によって得られる推力と、風力推進部10の回転に用いられる電力との関係を示すグラフである。図9に示すように、風速0~5(m/s)の領域では、風力推進部10によって得られる推力が小さい。そのため、当該領域では、制御システム100は機走モードに設定する。風速5~10(m/s)の領域では、それなりの推力は得られるが風力推進部10による推力では十分ではない。そのため、当該領域では、制御システム100は機帆走モードに設定する。風速10~20(m/s)の領域では、風力推進部10による推力のみで十分な運航が行える。そのため、当該領域では、制御システム100は帆走モードに設定する。風速20(m/s)以上の領域では、風が強すぎることによる問題が生じるため、制御システム100は、機走モードに設定する。図9は、制御モードと、各制御モードにおける各機器の動作状況を示す表である。図9は、制御モードと、各制御モードにおける各機器の動作状況を示す表である。 FIG. 8 is a graph showing the relationship between the wind speed, the thrust obtained by the wind propulsion unit 10, and the electric power used to rotate the wind propulsion unit 10. As shown in FIG. 9, the thrust obtained by the wind propulsion unit 10 is small in the region of wind speeds of 0 to 5 (m/s). Therefore, in this area, the control system 100 is set to flight mode. In the region of wind speeds of 5 to 10 (m/s), a certain amount of thrust can be obtained, but the thrust from the wind propulsion section 10 is not sufficient. Therefore, in this area, the control system 100 is set to the aircraft sailing mode. In the region of wind speeds of 10 to 20 (m/s), sufficient navigation can be performed using only the thrust from the wind propulsion unit 10. Therefore, in this region, the control system 100 is set to sailing mode. In a region where the wind speed is 20 (m/s) or more, a problem occurs due to the wind being too strong, so the control system 100 is set to flight mode. FIG. 9 is a table showing control modes and the operating status of each device in each control mode. FIG. 9 is a table showing control modes and the operating status of each device in each control mode.
 図5は、機走モードにおける制御内容を示すブロック図である。図5における風速は0(m/s)である。なお、図5~図7では、各機器が出力する電力の具体的な値が示されているが、あくまでも説明のための一例であるため、適宜変更可能である。また理解を容易とするために、エネルギーロスなどは考慮せずに説明する。図5に示すように、制御システム100は、メインエンジン16を動作させる。このときのメインエンジン16の出力は「3200kW」である。電動機36は、メインエンジン16の出力の一部(1400kW)を回生電流として回収する。これにより、前側の推進器12Aは、「1800kW」の出力にて推力を発生する。 FIG. 5 is a block diagram showing control details in the flight mode. The wind speed in FIG. 5 is 0 (m/s). Note that although specific values of power output by each device are shown in FIGS. 5 to 7, this is merely an example for explanation and can be changed as appropriate. Also, for ease of understanding, the explanation will be given without taking into account energy loss. As shown in FIG. 5, control system 100 operates main engine 16. The output of the main engine 16 at this time is "3200 kW". The electric motor 36 recovers a portion (1400 kW) of the output of the main engine 16 as regenerative current. As a result, the front thruster 12A generates thrust with an output of "1800 kW".
 管理システム50は、電動機36で回生した「1400kW」の電力を後側の推進器12Bの電動機38へ供給する。これにより、電動機38は後プロペラ37を回転させ、後側の推進器12Bは、「1400kW」の出力にて推力を発生する。これにより、推進器12A,12Bは合計で「3200kW」の出力にて推力を発生する。一方、制御システム100は、風力推進部10を停止している。そのため、風力推進部10による推力は「0kW」である。 The management system 50 supplies "1400 kW" of electric power regenerated by the electric motor 36 to the electric motor 38 of the rear propulsion device 12B. As a result, the electric motor 38 rotates the rear propeller 37, and the rear propeller 12B generates thrust with an output of "1400 kW". As a result, the thrusters 12A and 12B generate thrust with a total output of "3200 kW". On the other hand, the control system 100 has stopped the wind propulsion section 10. Therefore, the thrust by the wind propulsion unit 10 is "0 kW".
 図6は、帆走モードにおける制御内容を示すブロック図である。図6における風速は10(m/s)より大きい。図6に示すように、制御システム100は、メインエンジン16を停止する。これにより、前側の推進器12Aは停止し、電動機36で回生される電力も「0kw」となる。管理システム50は、四個の風力推進部10の電動機32へ「4×100kw」の電力を供給する。これにより、風力推進部10は、「4000kw」より大きい推力を発生する。 FIG. 6 is a block diagram showing control details in sailing mode. The wind speed in FIG. 6 is greater than 10 (m/s). As shown in FIG. 6, control system 100 stops main engine 16. As a result, the front propeller 12A stops, and the electric power regenerated by the electric motor 36 also becomes "0 kW." The management system 50 supplies "4 x 100 kW" of power to the electric motors 32 of the four wind power propulsion units 10. Thereby, the wind propulsion unit 10 generates a thrust larger than "4000 kW".
 このとき、制御システム100は、後側の推進器12Bの後プロペラ37を遊転可能な状態としておく。これにより、船体11が帆走することに伴い、後プロペラ37が遊転する。電動機38は、後プロペラ37の遊転によって発生する「400kW」の電力を回生電力として回収する。電動機38は、後側の推進器12Bの回生による「400kW」の電力を管理システム50へ出力する。管理システム50は、回生による「4×100kW」の電力を四個の風力推進部10の各電動機32へ供給する。これにより、風力推進部10は、後側の推進器12Bで回生した電力を用いて動作することができる。なお、管理システム50は、回生した電力に余剰が発生した場合はバッテリー40にて蓄電する。 At this time, the control system 100 leaves the rear propeller 37 of the rear propulsion unit 12B in a state where it can freely rotate. As a result, the rear propeller 37 freely rotates as the hull 11 sails. The electric motor 38 recovers "400 kW" of power generated by the idle rotation of the rear propeller 37 as regenerative power. The electric motor 38 outputs "400 kW" of power to the management system 50 due to regeneration of the rear propulsion unit 12B. The management system 50 supplies "4 x 100 kW" of regenerated power to each electric motor 32 of the four wind power propulsion units 10. Thereby, the wind propulsion unit 10 can operate using the electric power regenerated by the rear propeller 12B. Note that the management system 50 stores power in the battery 40 when there is a surplus of regenerated power.
 図7は、機帆走ードにおける制御内容を示すブロック図である。図7における風速は5(m/s)である。図7に示すように、制御システム100は、メインエンジン16を動作させる。このときのメインエンジン16の出力は「2680kW」である。電動機36は、メインエンジン16の出力の一部(1330kW)を回生電流として回収する。これにより、前側の推進器12Aは、「1350kW」の出力にて推力を発生する。 FIG. 7 is a block diagram showing the control contents in the sailing mode. The wind speed in FIG. 7 is 5 (m/s). As shown in FIG. 7, control system 100 operates main engine 16. The output of the main engine 16 at this time is "2680 kW". The electric motor 36 recovers a portion (1330 kW) of the output of the main engine 16 as regenerative current. As a result, the front thruster 12A generates thrust with an output of "1350 kW".
 管理システム50は、電動機36で回生した「1330kW」の電力の一部である「1050kW」を後側の推進器12Bの電動機38へ供給する。これにより、電動機38は後プロペラ37を回転させ、後側の推進器12Bは、「1050kW」の出力にて推力を発生する。これにより、推進器12A,12Bは合計で「2400kW」の出力にて推力を発生する。 The management system 50 supplies "1050 kW", which is a part of the "1330 kW" of electric power regenerated by the electric motor 36, to the electric motor 38 of the rear propulsion device 12B. As a result, the electric motor 38 rotates the rear propeller 37, and the rear propeller 12B generates thrust with an output of "1050 kW". As a result, the thrusters 12A and 12B generate thrust with a total output of "2400 kW".
 管理システム50は、電動機36で回生した「1330kW」の電力の一部である「4×70kW」を四個の風力推進部10の各電動機32へ供給する。これにより、風力推進部10は、「800kW」の推力を発生する。以上より、船体11は、推進器12A,12B及び風力推進部10の両方による推力によって航走する。 The management system 50 supplies "4×70 kW", which is a part of the "1330 kW" of electric power regenerated by the electric motor 36, to each electric motor 32 of the four wind power propulsion units 10. As a result, the wind propulsion unit 10 generates a thrust of "800 kW". As described above, the hull 11 travels by the thrust generated by both the propulsors 12A, 12B and the wind propulsion unit 10.
 (各モードの補足)
 次に図9の動作モードの過渡的な制御の一例について説明する。
(Supplementary information for each mode)
Next, an example of transient control of the operation mode shown in FIG. 9 will be described.
 (1)帆走モードから機帆走モードへの過渡的な制御は、メインエンジン16をOFFからOnの状態とする。これによって、前プロペラ33もOffから推進モードとなる。後プロペラ37も回生モードから推進モードとなることで、帆走から機帆走時における船舶1の推力を維持することが可能となる。 (1) In transitional control from sailing mode to aircraft sailing mode, the main engine 16 is turned on from OFF. As a result, the front propeller 33 also changes from OFF to propulsion mode. By changing the rear propeller 37 from the regeneration mode to the propulsion mode, it becomes possible to maintain the thrust of the ship 1 from sailing to machine sailing.
 (2)次に、機走モードから機帆走モードへは、ロータ帆31をOffからOnとすることで徐々に帆走への準備を行う。 (2) Next, from the plane mode to the plane sailing mode, preparations for sailing are gradually made by turning the rotor sail 31 from Off to On.
 (3)機帆走モードから帆走モードへは、メインエンジン16をOffとすれば良いが、風速が10m/sec以上となる時間が所定時間以上見込まれる場合に帆走モードへ移行することが好ましい。所定時間以上見込まれない場合、再度機帆走モードに戻り、メインエンジン16を再びOnにしなければならず、起動時の燃料噴射量が多くなり燃料消費量としては悪化するためである。 (3) To change from the aircraft sailing mode to the sailing mode, it is sufficient to turn off the main engine 16, but it is preferable to switch to the sailing mode when the wind speed is expected to be 10 m/sec or more for a predetermined time or more. This is because if the predetermined time or longer is not expected, it is necessary to return to the sailing mode and turn on the main engine 16 again, which increases the amount of fuel injected at startup and deteriorates the fuel consumption.
 (4)同様に、帆走モードから機帆走モードへは、メインエンジン16をOnとすればよいが、風速が10m/secより下回る時間が所定時間以上見込まれる場合に、機帆走モードへ移行することが好ましい。こちらも(3)同様メインエンジン16の起動と停止を繰り返すことによる燃料消費量の悪化を抑制することができる。 (4) Similarly, to switch from sailing mode to machine sailing mode, it is sufficient to turn on the main engine 16, but if the wind speed is expected to be lower than 10 m/sec for a predetermined period of time or more, the machine sailing mode can be changed. is preferred. Similarly to (3), it is possible to suppress deterioration in fuel consumption due to repeated starting and stopping of the main engine 16.
 次に、図10を参照して、制御システム100における船速と出力の相関について説明する。図10に示すように船速を11kts(5.8m/s)とするときの船速分の推進に必要な出力は、グラフG1から、「3200kW」となる。一方、船速11kts(5.8m/s)を風力で推進するときの風力推進部10を駆動するための出力を400kWとし、駆動に必要な出力を回生電力で得るとき、回生の変換効率を50%とすると800kWが推進に必要な出力に加わるので、風力推進部10が発生する推進用の出力は「4000kW」となり、このときの必要風速は、帆発生推力のグラフG2から、10(m/s)となる。図10の例では、このような運転点で運転を行うと、風速と船速が釣り合う。すなわち、ある程度の船速(11kts)且つ、風速(10m/s)でシステムの最適化をする場合、推進用のプロペラを一個にすると、回生用としてはプロペラが大きくなりすぎる。すなわち、回生を行う上で必要以上の抵抗となってしまったり、プロペラ自体が重くなり回らなくなってしまう。これに対し、本実施形態に係る船舶1は、二つの推進器12A,12Bを有しており、後側の推進器12Bを回生用として用いている。そのため、回生時における抵抗を抑制し、且つプロペラが重くなりすぎて回らなくなることを抑制できる。 Next, with reference to FIG. 10, the correlation between ship speed and output in the control system 100 will be explained. As shown in FIG. 10, when the ship speed is 11 kts (5.8 m/s), the output required for propulsion corresponding to the ship speed is "3200 kW" from graph G1. On the other hand, when the output for driving the wind propulsion unit 10 when propelling the ship at a speed of 11 kts (5.8 m/s) with wind power is 400 kW, and the output necessary for driving is obtained by regenerative power, the conversion efficiency of regeneration is If it is 50%, 800 kW will be added to the output required for propulsion, so the output for propulsion generated by the wind propulsion unit 10 will be "4000 kW", and the required wind speed at this time is 10 (m /s). In the example shown in FIG. 10, when operating at such an operating point, the wind speed and boat speed are balanced. That is, when optimizing the system at a certain ship speed (11 kts) and wind speed (10 m/s), if one propeller is used for propulsion, the propeller becomes too large for regeneration. In other words, there will be more resistance than necessary for regeneration, and the propeller itself will become too heavy to rotate. On the other hand, the ship 1 according to this embodiment has two propulsors 12A and 12B, and uses the rear propulsor 12B for regeneration. Therefore, resistance during regeneration can be suppressed, and the propeller can be prevented from becoming too heavy and unable to rotate.
 次に、本実施形態に係る船舶1の作用・効果について説明する。 Next, the functions and effects of the ship 1 according to this embodiment will be explained.
 本実施形態に係る船舶1は、プロペラによって船体11の推力を機械的に発生する複数の推進器12を備える。また、船舶1は、風力によって船体11を推進させる風力推進部10を備える。従って、船舶1は、風力推進部10を用いることで、帆走を行うことができる。このとき、船舶1は、推進器12を用いて、回生を行うことができる。また、船舶1は、風力が弱い場合など、推進器12を用いて機械的な推力によって航走することができる。ここで、船舶1は、複数の推進器12を用いることで、一つの大きな推進器を用いる場合に比して、エネルギー効率がよくなるような機走を行うことが可能となる。更に、回生時には、船舶1は、一つあたりの推進器12を小さくすることで、船の推進を妨げる方向に作用する各推進器による流体抵抗を小さくすることができる。さらに、船舶1は、一つの大きな推進器を用いる場合に比して一つあたりの推進器を小さくすることでプロペラの重量や慣性モーメントを小さくできるので、プロペラの遊転によるエネルギー回生効率がよくなるような回生を行うことができる。以上により、エネルギー効率を向上することができる。 The ship 1 according to the present embodiment includes a plurality of propulsors 12 that mechanically generate thrust for the ship body 11 using propellers. The ship 1 also includes a wind propulsion unit 10 that propels the ship body 11 using wind power. Therefore, the ship 1 can sail by using the wind propulsion section 10. At this time, the ship 1 can perform regeneration using the propulsion device 12. Further, the ship 1 can travel by mechanical thrust using the propulsion device 12, such as when the wind force is weak. Here, by using a plurality of propulsors 12, the ship 1 can maneuver with better energy efficiency than when using one large propulsor. Furthermore, during regeneration, the ship 1 can reduce the fluid resistance caused by each propeller that acts in a direction that hinders the propulsion of the ship by reducing the size of each propeller 12. Furthermore, in the ship 1, the weight and moment of inertia of the propeller can be reduced by making each propeller smaller than in the case of using one large propeller, so energy regeneration efficiency due to propeller free rotation is improved. Such regeneration can be performed. With the above, energy efficiency can be improved.
 船舶1は、複数の推進器12のうち、少なくとも一つである推進器12Bを回生に用い、他の推進器12Aを停止してよい。この場合、回生に用いない推進器12Aを停止しておくことで、当該推進器12Aが帆走時に流体抵抗として作用することを抑制できる。 The ship 1 may use at least one propulsion device 12B among the plurality of propulsion devices 12 for regeneration, and may stop the other propulsion devices 12A. In this case, by stopping the propulsion device 12A that is not used for regeneration, it is possible to suppress the propulsion device 12A from acting as fluid resistance during sailing.
 複数の推進器12は、二重反転式プロペラ35によって構成されてよい。二重反転式プロペラ35は、下流側の推進器12Bが、上流側の推進器12Aの回転流れを有効に利用して推進力を発生することができる。従って、船舶1は、機走時におけるエネルギー効率を向上することができる。また、回生時において、前側の推進器12Aと後側の推進器12Bとの関係性を工夫することで、回生を行わない前側の推進器12Aが回生の邪魔となることを抑制できる。その結果、回生効率を向上することもできる。 The plurality of propulsors 12 may be configured by counter-rotating propellers 35. The contra-rotating propeller 35 allows the downstream propeller 12B to generate propulsive force by effectively utilizing the rotational flow of the upstream propeller 12A. Therefore, the ship 1 can improve energy efficiency during maneuvering. Furthermore, during regeneration, by devising the relationship between the front thruster 12A and the rear thruster 12B, it is possible to prevent the front thruster 12A, which does not perform regeneration, from interfering with regeneration. As a result, regeneration efficiency can also be improved.
 本開示は、上述の実施形態に限定されない。 The present disclosure is not limited to the embodiments described above.
 例えば、風力推進部の数や配置など、船体に対してどのように設けるかなどは特に限定されない。風力推進部は、ロータ帆に限定されず、通常の帆や凧など、風力によって船体を推進させることができるものであれば特に限定されない。 For example, there are no particular limitations on the number of wind propulsion units, their arrangement, or how they are provided on the hull. The wind propulsion unit is not limited to a rotor sail, and is not particularly limited as long as it can propel the ship body by wind power, such as a normal sail or a kite.
 上述の実施形態では、複数の推進器の一例として、二重反転式プロペラ35について説明したが、複数の推進器を用いるものであれば、どのような態様で並べるかは特に限定されない。 In the above embodiment, the counter-rotating propeller 35 was described as an example of a plurality of propellers, but as long as a plurality of propellers are used, there are no particular limitations on how they are arranged.
 船体11の構造も図1に示すものに限定されず、用途等に応じて適宜変更してよい。例えば、図11に示すように、船舶1として、風力推進部10及び推進器12を備える自動車運搬船を採用してもよい。風力推進部10及び推進器12の構成は、図1に示す船舶1と同趣旨である。船体11は、上側の領域に貨物室56を備える。貨物室56は、船体11の船首部2から船尾部3まで及んでいる。貨物室56は、自動車などの貨物を収容するための区画である。貨物室56は、上下方向に複数階の自動車デッキを有するように構成される。図11に示す例では、貨物室56は、複数階層の自動車デッキを有する。又、図1で示すタンカーや図11で示す自動車運搬船の他に、石炭や木材チップなどを運搬するばら積み船やLNGを輸送するLNG船、フェリーなどの旅客船等の他の船舶に風力推進部10及び推進器12を備えても良い。 The structure of the hull 11 is not limited to that shown in FIG. 1 either, and may be changed as appropriate depending on the purpose and the like. For example, as shown in FIG. 11, a car carrier including a wind propulsion unit 10 and a propulsion device 12 may be adopted as the ship 1. The configurations of the wind propulsion unit 10 and the propulsion unit 12 are the same as those of the ship 1 shown in FIG. 1 . The hull 11 has a cargo compartment 56 in its upper region. The cargo compartment 56 extends from the bow section 2 to the stern section 3 of the hull 11. The cargo compartment 56 is a compartment for accommodating cargo such as automobiles. The cargo hold 56 is configured to have a plurality of vehicle decks in the vertical direction. In the example shown in FIG. 11, the cargo hold 56 has a multi-level car deck. In addition to the tanker shown in FIG. 1 and the car carrier shown in FIG. and a propulsion device 12.
 1…船舶、11…船体、12,12A,12B…推進器(第1の推進部)、10…風力推進部(第2の推進部)、35…二重反転式プロペラ。 1... Ship, 11... Hull, 12, 12A, 12B... Propulsion unit (first propulsion unit), 10... Wind propulsion unit (second propulsion unit), 35... Counter-rotating propeller.

Claims (3)

  1.  船体と、
     プロペラによって前記船体の推力を発生する複数の第1の推進部と、
     風力によって前記船体を推進させる第2の推進部と、を備え、
     前記第2の推進部によって前記船体が移動しているときは、前記第1の推進部を回生に用いる、船舶。
    The hull and
    a plurality of first propulsion units that generate thrust for the hull by a propeller;
    a second propulsion unit that propels the hull by wind power,
    A marine vessel, wherein the first propulsion section is used for regeneration when the hull is moving by the second propulsion section.
  2.  複数の前記第1の推進部のうち、少なくとも一つを回生に用い、他の第1の推進部を停止する、請求項1に記載の船舶。 The ship according to claim 1, wherein at least one of the plurality of first propulsion sections is used for regeneration, and the other first propulsion sections are stopped.
  3.  複数の前記第1の推進部は、二重反転式プロペラによって構成される、請求項1又は2に記載の船舶。
     
     
    The marine vessel according to claim 1 or 2, wherein the plurality of first propulsion units are configured by counter-rotating propellers.

PCT/JP2023/008618 2022-03-09 2023-03-07 Ship WO2023171678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022036372 2022-03-09
JP2022-036372 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171678A1 true WO2023171678A1 (en) 2023-09-14

Family

ID=87935107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008618 WO2023171678A1 (en) 2022-03-09 2023-03-07 Ship

Country Status (1)

Country Link
WO (1) WO2023171678A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270496A (en) * 2000-03-28 2001-10-02 Yanmar Diesel Engine Co Ltd Propulsion device for ship
JP2008126830A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
CN110001906A (en) * 2019-04-29 2019-07-12 达器船用推进器(江苏)有限公司 The more power supply complicated utilization systems of the full electric propulsion of ship and method of supplying power to

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270496A (en) * 2000-03-28 2001-10-02 Yanmar Diesel Engine Co Ltd Propulsion device for ship
JP2008126830A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
CN110001906A (en) * 2019-04-29 2019-07-12 达器船用推进器(江苏)有限公司 The more power supply complicated utilization systems of the full electric propulsion of ship and method of supplying power to

Similar Documents

Publication Publication Date Title
JP4319410B2 (en) Drive for marine related objects
KR101485875B1 (en) Ship, in particular freight ship, with a magnus rotor
GB2515699A (en) Device for propelling and turning hull
JP4253636B2 (en) Marine vessel propulsion structure and operation method thereof
CN101198516A (en) Ship
US7040244B1 (en) Watercraft having plural narrow hulls and having submerged passive flotation devices
JP4206339B2 (en) Ship steering structure
JP2003252294A (en) Propulsion device for hybrid type ship
WO2023171678A1 (en) Ship
Ueda et al. The first hybrid CRP-POD driven fast ROPAX ferry in the world
US7537500B2 (en) Ship driven by inboard engines and water jets
US20240025527A1 (en) A propulsion system for vessel and a vessel comprising the propulsion system
JP4253496B2 (en) Counter-rotating propeller device
CA2373462A1 (en) Course-holding, high-speed, sea-going vessel having a hull which is optimized for a rudder propeller
TW541264B (en) Ship propulsion device
JP2023131548A (en) ship
JP7405705B2 (en) ship
AU2020329624A1 (en) Device for moving a watercraft
CN213083461U (en) Diesel-driven ship
JP3119959U (en) Small vessels equipped with fuel cells and solar cells (business boats, pleasure boats, fishing boats, etc.)
JP2023152465A (en) Vessel
CN213974414U (en) Natural gas driven ship
US11591056B2 (en) Marine vessel
US20230286613A1 (en) Marine propulsion system and marine vessel comprising a marine propulsion system
JP3162354U (en) Small vessels equipped with fuel cells and solar cells (business boats, pleasure boats, fishing boats, etc.)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766854

Country of ref document: EP

Kind code of ref document: A1