JP6602444B2 - Semiconductor device and semiconductor module - Google Patents

Semiconductor device and semiconductor module Download PDF

Info

Publication number
JP6602444B2
JP6602444B2 JP2018213635A JP2018213635A JP6602444B2 JP 6602444 B2 JP6602444 B2 JP 6602444B2 JP 2018213635 A JP2018213635 A JP 2018213635A JP 2018213635 A JP2018213635 A JP 2018213635A JP 6602444 B2 JP6602444 B2 JP 6602444B2
Authority
JP
Japan
Prior art keywords
region
semiconductor device
semiconductor
contact
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018213635A
Other languages
Japanese (ja)
Other versions
JP2019024131A (en
Inventor
浩之 中村
章 岡田
栄治 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018213635A priority Critical patent/JP6602444B2/en
Publication of JP2019024131A publication Critical patent/JP2019024131A/en
Application granted granted Critical
Publication of JP6602444B2 publication Critical patent/JP6602444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体装置および半導体モジュールに関し、特に、高耐圧半導体素子を有する半導体装置と、その半導体装置を適用した半導体モジュールとに関するものである。   The present invention relates to a semiconductor device and a semiconductor module, and more particularly to a semiconductor device having a high voltage semiconductor element and a semiconductor module to which the semiconductor device is applied.

半導体装置(被測定物)を、半導体ウェハまたは半導体チップの状態で電気的特性を評価する際には、まず、半導体装置を、半導体評価装置のチャックステージの表面に載置する。次に、真空吸着等によって、半導体装置をチャックステージに固定する。その後、半導体装置における所定の表面電極にコンタクトプローブを接触し、電気的な入出力を行うことで電気的特性が評価される。   When evaluating the electrical characteristics of a semiconductor device (object to be measured) in the state of a semiconductor wafer or a semiconductor chip, the semiconductor device is first placed on the surface of the chuck stage of the semiconductor evaluation device. Next, the semiconductor device is fixed to the chuck stage by vacuum suction or the like. Thereafter, the electrical characteristics are evaluated by bringing a contact probe into contact with a predetermined surface electrode in the semiconductor device and performing electrical input / output.

半導体装置の縦方向(厚さ方向)に大電流を流すことになる縦型の半導体装置の電気的特性を評価する際には、チャックステージの表面が電極になる。また、そのような大電流または高電圧を半導体装置に印加するために、コンタクトプローブの多ピン化が展開されている。   When evaluating the electrical characteristics of a vertical semiconductor device in which a large current flows in the vertical direction (thickness direction) of the semiconductor device, the surface of the chuck stage becomes an electrode. Further, in order to apply such a large current or high voltage to a semiconductor device, a multi-pin contact probe has been developed.

電気的特性を評価する際に大電流または高電圧を半導体装置に印加させる要求が高まる一方で、製造コストを削減するために、個々の半導体チップを小型化あるいは縮小化するための開発が進められており、半導体ウェハ1枚当たりの半導体チップの数を増やすことが行われている。   While the demand for applying large currents or high voltages to semiconductor devices is increasing when evaluating electrical characteristics, developments are underway to reduce or reduce individual semiconductor chips in order to reduce manufacturing costs. The number of semiconductor chips per semiconductor wafer is increased.

パワー半導体素子が形成される素子形成領域(活性領域)が狭められるのを回避しながら、半導体チップの小型化を図るには、素子形成領域を取り囲むように位置する終端領域を狭めることが有効とされる。そのような終端領域の占有面積を縮小する半導体装置を開示した特許文献の例として、特許文献1がある。   In order to reduce the size of the semiconductor chip while avoiding the narrowing of the element formation region (active region) in which the power semiconductor element is formed, it is effective to narrow the termination region located so as to surround the element formation region. Is done. Patent Document 1 discloses an example of a patent document that discloses a semiconductor device that reduces the area occupied by such a termination region.

特開2014−204038号公報JP 2014-204038 A

半導体装置の小型化に伴い、表面電極として形成される、たとえば、ゲート電極またはエミッタ電極等も縮小されることが多い。特に、ゲート電極については、半導体装置の小型化に関わらず、素子形成領域(活性領域)を拡大させることを理由として、ゲート電極の占有面積を縮小する場合もある。半導体装置を半導体モジュールとして組み込む際には、そのゲート電極等にはワイヤが接続される。ゲート電極等の占有面積を縮小させると、そのワイヤを接続させる際に問題が生じることになる。このことについて説明する。   With the miniaturization of semiconductor devices, for example, gate electrodes or emitter electrodes formed as surface electrodes are often reduced. In particular, regarding the gate electrode, the area occupied by the gate electrode may be reduced because the element formation region (active region) is enlarged regardless of the miniaturization of the semiconductor device. When a semiconductor device is incorporated as a semiconductor module, a wire is connected to the gate electrode and the like. If the occupied area of the gate electrode or the like is reduced, a problem occurs when the wires are connected. This will be described.

上述したように、半導体装置の電気的特性を評価する際には、コンタクトプローブがゲート電極等の電極の表面に接触する。コンタクトプローブの先端部分は、鋭利な針状に形成されている。このため、コンタクトプローブの先端部が電極の表面に接触することで、電極の表面が傷つけられて、電極の表面が荒れてしまったり、電極の表面に、コンタクトプローブの先端部に対応した凹凸が形成されることがある。   As described above, when evaluating the electrical characteristics of the semiconductor device, the contact probe contacts the surface of an electrode such as a gate electrode. The tip portion of the contact probe is formed in a sharp needle shape. For this reason, when the tip of the contact probe contacts the surface of the electrode, the surface of the electrode is damaged and the surface of the electrode is roughened, or unevenness corresponding to the tip of the contact probe is formed on the surface of the electrode. Sometimes formed.

ワイヤが接続される電極の表面が荒れたり、あるいは、凹凸が形成されると、ワイヤと電極との密着性が低下することになる。このため、電気的特性を評価する際に良品と判定された半導体装置であっても、半導体モジュールとして組み込まれた後において、ワイヤが外れてしまう等して、通電ができなくなる等の不具合が生じることがある。   If the surface of the electrode to which the wire is connected is rough or uneven, the adhesion between the wire and the electrode will be reduced. For this reason, even if it is a semiconductor device determined to be a non-defective product when evaluating the electrical characteristics, after it is incorporated as a semiconductor module, the wire is disconnected, and thus there is a problem such that energization cannot be performed. Sometimes.

本発明は、このような問題を解決するためになされたものであり、一つの目的は、電極にワイヤを確実に接続することができる半導体装置を提供することであり、他の目的は、そのような半導体装置を適用した半導体モジュールを提供することである。   The present invention has been made to solve such problems, and one object is to provide a semiconductor device capable of reliably connecting a wire to an electrode, and the other object is to provide the semiconductor device. A semiconductor module to which such a semiconductor device is applied is provided.

本発明に係る半導体装置は、半導体基板と素子形成領域と終端領域と第1主面側電極とを備えている。半導体基板は、互いに対向する第1主面および第2主面を有する。素子形成領域は、半導体基板の第1主面の側に規定されている。終端領域は、半導体基板の第1主面の側に規定され、素子形成領域を取り囲むように配置されている。第1主面側電極は、素子形成領域に形成され、第1領域および第2領域が配置された第1電極を含む。第1領域と第2領域とは、第1電極の表面に形成された仕切り部材によって区切られている。第1領域は、長辺と短辺とを有する矩形状に形成されている。第2領域は、第1領域の長辺側に配置されている。   The semiconductor device according to the present invention includes a semiconductor substrate, an element formation region, a termination region, and a first main surface side electrode. The semiconductor substrate has a first main surface and a second main surface that face each other. The element formation region is defined on the first main surface side of the semiconductor substrate. The termination region is defined on the first main surface side of the semiconductor substrate and is disposed so as to surround the element formation region. The first main surface side electrode is formed in the element formation region and includes a first electrode in which the first region and the second region are arranged. The first region and the second region are separated by a partition member formed on the surface of the first electrode. The first region is formed in a rectangular shape having a long side and a short side. The second region is arranged on the long side of the first region.

本発明に係る半導体モジュールは、上記半導体装置を適用した半導体モジュールであって、第1電極の第2領域にワイヤが接続されている。   A semiconductor module according to the present invention is a semiconductor module to which the above semiconductor device is applied, and a wire is connected to the second region of the first electrode.

本発明に係る半導体装置によれば、第1主面側電極が、コンタクトプローブが接触する第1領域およびワイヤが接続されることになる第2領域が配置された第1電極を含むことで、第1電極にワイヤを確実に接続することができる。   According to the semiconductor device of the present invention, the first main surface side electrode includes the first electrode in which the first region in contact with the contact probe and the second region to which the wire is to be connected are arranged. A wire can be reliably connected to the first electrode.

本発明に係る半導体モジュールによれば、第2領域に接続されたワイヤが外れてしまう等して、半導体モジュールとして、通電ができなくなる等の不具合を防止することができる。   According to the semiconductor module of the present invention, it is possible to prevent problems such as the inability to energize the semiconductor module because the wire connected to the second region is disconnected.

本発明の実施の形態に係る半導体装置を示す部分平面図である。It is a fragmentary top view which shows the semiconductor device which concerns on embodiment of this invention. 同実施の形態において、図1に示すゲート電極とその周辺を示す部分拡大平面図である。FIG. 2 is a partially enlarged plan view showing the gate electrode and its periphery shown in FIG. 1 in the same embodiment. 同実施の形態において、図2に示す断面線III−IIIにおける部分拡大断面図である。FIG. 3 is a partial enlarged cross-sectional view taken along a cross-sectional line III-III shown in FIG. 2 in the same embodiment. 同実施の形態において、半導体装置の電気的な評価を行うための半導体評価装置の構成を模式的に示す側面図である。In the embodiment, it is a side view which shows typically the structure of the semiconductor evaluation apparatus for performing electrical evaluation of a semiconductor device. 同実施の形態において、プローブ基体の構成を模式的に示す側面図である。In the same embodiment, it is a side view showing typically the composition of a probe base. 同実施の形態において、半導体評価装置においてコンタクトプローブが半導体装置に接触した状態を示す側面図である。In the same embodiment, it is a side view showing the state where the contact probe contacted the semiconductor device in the semiconductor evaluation device. 同実施の形態において、コンタクトプローブが半導体装置に接触した状態を示す部分拡大側面図である。4 is a partially enlarged side view showing a state where a contact probe is in contact with a semiconductor device in the embodiment. FIG. 同実施の形態において、電気的特性が評価された後のゲート電極とその周辺の状態を示す部分拡大平面図である。In the same embodiment, it is the elements on larger scale which show the state of the gate electrode and its periphery after electrical property was evaluated. 同実施の形態において、図8に示す断面線IX−IXにおける部分拡大断面図である。FIG. 9 is a partially enlarged cross-sectional view taken along a cross-sectional line IX-IX shown in FIG. 8 in the same embodiment. 同実施の形態において、電気的特性が評価された後のエミッタ電極とその周辺の状態を示す部分平面図である。FIG. 4 is a partial plan view showing an emitter electrode and its peripheral state after electrical characteristics are evaluated in the same embodiment. 同実施の形態において、第1変形例に係る半導体装置を示す部分平面図である。In the same embodiment, it is a fragmentary top view which shows the semiconductor device which concerns on a 1st modification. 同実施の形態において、第2変形例に係る半導体装置を示す部分平面図である。In the same embodiment, it is a fragmentary top view which shows the semiconductor device which concerns on a 2nd modification. 同実施の形態において、半導体装置を適用した半導体モジュールの概念を模式的に示す平面図である。In the same embodiment, it is a top view showing typically the concept of the semiconductor module to which a semiconductor device is applied.

(半導体装置)
はじめに、実施の形態に係る半導体装置について説明する。半導体装置は、特に、電力変換装置等に使用される高耐圧半導体素子を有する半導体装置が対象とされる。図1に示すように、半導体装置1では、半導体基板3の表面(第1主面)側における領域に、電流を制御する半導体素子が形成された素子形成領域5(活性領域)が配置されている。その素子形成領域5を取り囲むように終端領域7が配置されている。終端領域7は、電気的耐圧を確保するための領域であり、たとえば、ガードリング構造、リサーフ構造またはVLD(Variation of Lateral Doping)構造等が採用されている。
(Semiconductor device)
First, the semiconductor device according to the embodiment will be described. The semiconductor device is particularly intended for a semiconductor device having a high voltage semiconductor element used in a power conversion device or the like. As shown in FIG. 1, in the semiconductor device 1, an element formation region 5 (active region) in which a semiconductor element for controlling current is formed is arranged in a region on the surface (first main surface) side of the semiconductor substrate 3. Yes. A termination region 7 is arranged so as to surround the element formation region 5. The termination region 7 is a region for securing an electric withstand voltage, and for example, a guard ring structure, a RESURF structure, a VLD (Variation of Lateral Doping) structure, or the like is adopted.

ここでは、素子形成領域に形成される高耐圧半導体素子の一例として、IGBT(Insulated Gate Bipolar Transistor)を例に挙げる。素子形成領域5には、ゲート電極9とエミッタ電極11が配置されている。ゲート電極9は、終端領域7に隣り合うように、終端領域7の近傍の領域に配置されている。IGBTの場合、半導体基板3の裏面(第2主面)側には、コレクタ電極25(図3参照)が形成されている。   Here, an IGBT (Insulated Gate Bipolar Transistor) is taken as an example as a high voltage semiconductor element formed in the element formation region. In the element formation region 5, a gate electrode 9 and an emitter electrode 11 are disposed. The gate electrode 9 is disposed in a region near the termination region 7 so as to be adjacent to the termination region 7. In the case of an IGBT, a collector electrode 25 (see FIG. 3) is formed on the back surface (second main surface) side of the semiconductor substrate 3.

図2および図3に示すように、ゲート電極9では、針当て領域13とワイヤ領域15とが配置されている。針当て領域13とワイヤ領域15とは、ゲート電極9の表面に形成された絶縁体17によって区切られている。針当て領域13の表面とワイヤ領域15の表面とは、同じ高さに位置している。   As shown in FIGS. 2 and 3, the gate electrode 9 includes a needle contact area 13 and a wire area 15. The needle contact area 13 and the wire area 15 are separated by an insulator 17 formed on the surface of the gate electrode 9. The surface of the needle contact area 13 and the surface of the wire area 15 are located at the same height.

後述するように、針当て領域13には、コンタクトプローブが接触することになる。また、ワイヤ領域15には、ワイヤが接続されることになる。そのワイヤ領域15には、ワイヤを接続する際の目印となる認識マーク19が形成されている。   As will be described later, the contact probe comes into contact with the needle contact area 13. In addition, a wire is connected to the wire region 15. In the wire region 15, a recognition mark 19 is formed as a mark when connecting wires.

針当て領域13の平面形状は、長辺と短辺を有する長方形(矩形)とされる。長方形の針当て領域13の長辺側に、ワイヤ領域15が配置されている。ワイヤ領域15の面積は、針当て領域13の面積よりも大きく設定されている。これは、半導体装置を半導体モジュールとして製品化する際に、半導体装置(ゲート電極)とワイヤとの電気的な接続を長期間にわたって安定させるためである。   The planar shape of the needle pad area 13 is a rectangle (rectangle) having a long side and a short side. A wire region 15 is disposed on the long side of the rectangular needle contact region 13. The area of the wire region 15 is set larger than the area of the needle contact region 13. This is to stabilize the electrical connection between the semiconductor device (gate electrode) and the wire for a long time when the semiconductor device is commercialized as a semiconductor module.

また、コンタクトプローブが針当て領域13に接触する際には、コンタクトプローブの先端部が針当て領域の表面を滑る(スライドする)ことになる。このため、長方形の針当て領域13は、長手方向がコンタクトプローブの先端部が滑る方向に沿うように配置される。これが、針当て領域13を長方形とする理由の一つであるが、もう一つの理由としては、ゲート電極のそのものの面積を縮小するためでもある。ゲート電極の面積を縮小することで、その分、IGBT等が形成される素子形成領域を拡大させることができる。半導体装置1の電気的特性を評価する際には、絶縁体17を目標にして、コンタクトプローブを針当て領域13に接触させればよい。   When the contact probe contacts the needle contact area 13, the tip of the contact probe slides (slides) on the surface of the needle contact area. For this reason, the rectangular needle contact area 13 is arranged so that the longitudinal direction thereof follows the direction in which the tip of the contact probe slides. This is one of the reasons why the needle contact region 13 is rectangular. Another reason is to reduce the area of the gate electrode itself. By reducing the area of the gate electrode, the element formation region where the IGBT or the like is formed can be expanded accordingly. When evaluating the electrical characteristics of the semiconductor device 1, the contact probe may be brought into contact with the needle contact region 13 with the insulator 17 as a target.

針当て領域13とワイヤ領域15と区切る絶縁体17と、ワイヤ領域15に形成される認識マーク19とは、針当て領域13およびワイヤ領域15等を覆うように形成された絶縁膜をパターニングすることによって同時に形成されており、絶縁体17と認識マーク19とは同じ高さを有する。   The insulator 17 separating the needle contact area 13 and the wire area 15 and the recognition mark 19 formed on the wire area 15 are formed by patterning an insulating film formed so as to cover the needle contact area 13 and the wire area 15. The insulator 17 and the recognition mark 19 have the same height.

なお、この半導体装置1では、絶縁体17は、針当て領域13とワイヤ領域15と区切るだけではなく、ゲート電極9を他の領域と区切るように、ゲート電極9の周囲に沿って形成されている。また、図3では、ゲート電極9を構成する電極部材21が示されている。その電極部材21としては、たとえば、アルミニウム(Al)が挙げられるが、これに限られるものではなく、半導体プロセスに適合する導電性に優れた材料が選択される。   In this semiconductor device 1, the insulator 17 is not only separated from the needle contact region 13 and the wire region 15 but is formed along the periphery of the gate electrode 9 so as to separate the gate electrode 9 from other regions. Yes. In FIG. 3, an electrode member 21 constituting the gate electrode 9 is shown. Examples of the electrode member 21 include aluminum (Al). However, the electrode member 21 is not limited to this, and a material excellent in conductivity suitable for a semiconductor process is selected.

また、絶縁体17の材料としては、たとえば、半絶縁性シリコン窒化膜(SInSiN(Semi-Insulating Silicon Nitride)膜)が挙げられるが、これに限られるものではな
い。半絶縁性シリコン窒化膜の場合、終端領域7をも覆うように形成することで、終端領域7の電位分布を安定にすることができる。
Examples of the material of the insulator 17 include a semi-insulating silicon nitride film (SInSiN (Semi-Insulating Silicon Nitride) film), but are not limited thereto. In the case of a semi-insulating silicon nitride film, the potential distribution in the termination region 7 can be stabilized by forming the semi-insulating silicon nitride film so as to also cover the termination region 7.

さらに、上述した半導体装置1では、半導体基板3の表面側と裏面側との間で電流を流す縦型半導体装置を例に挙げたが、これに限られるものではなく、半導体基板の一方の表面において入出力を行う横型半導体装置についても適用することができる。   Furthermore, in the semiconductor device 1 described above, the vertical semiconductor device in which current flows between the front surface side and the back surface side of the semiconductor substrate 3 is taken as an example. However, the present invention is not limited to this, and one surface of the semiconductor substrate is used. The present invention can also be applied to a horizontal semiconductor device that performs input / output in FIG.

(半導体装置の電気的特性の評価)
次に、上述した半導体装置の電気的特性の評価について説明する。まず、半導体評価装置について説明する。
(Evaluation of electrical characteristics of semiconductor devices)
Next, evaluation of electrical characteristics of the semiconductor device described above will be described. First, a semiconductor evaluation apparatus will be described.

図4に示すように、半導体評価装置51は、主として、プローブ基体53、チャックステージ55および評価部57を備えている。特に、プローブ基体53は、コンタクトプローブ69、絶縁性基体63および接続部65aから構成されている。   As shown in FIG. 4, the semiconductor evaluation apparatus 51 mainly includes a probe base 53, a chuck stage 55, and an evaluation unit 57. In particular, the probe base 53 includes a contact probe 69, an insulating base 63, and a connection portion 65a.

半導体評価装置51では、半導体装置の電気的特性を評価する際に、一対の電極を介して半導体装置と電気的に接続される。一対の電極のうち、一方の電極はコンタクトプローブ69であり、他方の電極はチャックステージ55の表面である。たとえば、IGBTが形成された半導体装置の場合には、コンタクトプローブ69は、ゲート電極の表面とエミッタ電極の表面とに接触し、チャックステージ55の表面は、コレクタ電極に接触することになる。   The semiconductor evaluation device 51 is electrically connected to the semiconductor device through a pair of electrodes when evaluating the electrical characteristics of the semiconductor device. Of the pair of electrodes, one electrode is the contact probe 69 and the other electrode is the surface of the chuck stage 55. For example, in the case of a semiconductor device in which an IGBT is formed, the contact probe 69 is in contact with the surface of the gate electrode and the surface of the emitter electrode, and the surface of the chuck stage 55 is in contact with the collector electrode.

図4および図5に示すように、コンタクトプローブ69は、カンチレバー式のコンタクトプローブである。カンチレバー式のコンタクトプローブ69には、針状に絞り加工を施すことによって先端部73が形成されている。その先端部73には、表面電極と接する部分にコンタクト部71が形成されている。なお、コンタクトプローブ69では、この先端部73のみに傾斜をつけた構造としたが、多段式にクランク状の構造にしてもよい。   As shown in FIGS. 4 and 5, the contact probe 69 is a cantilever-type contact probe. The cantilever-type contact probe 69 has a tip 73 formed by drawing into a needle shape. A contact portion 71 is formed at the tip portion 73 at a portion in contact with the surface electrode. In the contact probe 69, only the tip 73 is inclined. However, a multi-stage crank structure may be used.

コンタクトプローブ69は、たとえば、タングステン(W)、ベリリウム銅(BeCu)等の金属材料によって作製されているが、金属材料としては、これらの金属に限られるものではない。特に、コンタクトプローブ69の先端部73またはコンタクト部71には、導電性を向上させたり、耐久性を向上させる等の観点から、たとえば、金(Au)、パラジウム(Pd)、タンタル(Ta)、プラチナ(Pt)等を被覆してもよい。   The contact probe 69 is made of, for example, a metal material such as tungsten (W) or beryllium copper (BeCu), but the metal material is not limited to these metals. In particular, the distal end portion 73 or the contact portion 71 of the contact probe 69 may be made of, for example, gold (Au), palladium (Pd), tantalum (Ta), or the like from the viewpoint of improving conductivity or improving durability. Platinum (Pt) or the like may be coated.

コンタクトプローブ69の本体部分には撓み部75が設けられており、コンタクト部71が表面電極に接触する際には、この撓み部75が撓むことになる。なお、図5では、図面の簡略化のために、コンタクトプローブ69として、互いに向かい合った2本のコンタクトプローブ69だけが示されているが、実際には、さらに多くのコンタクトプローブを備えている。   A bending portion 75 is provided in the main body portion of the contact probe 69, and when the contact portion 71 contacts the surface electrode, the bending portion 75 is bent. In FIG. 5, only two contact probes 69 facing each other are shown as contact probes 69 for simplification of the drawing, but actually, more contact probes are provided.

コンタクトプローブ69には設置部77が設けられており、その設置部77がプローブ基体53の基台を成す絶縁性基体63に機械的に固定されている。コンタクトプローブ69は、絶縁性基体63に形成された接続部65aおよび信号線61aを介して、評価部57に電気的に接続されている。チャックステージ55の表面は、チャックステージ55の側部に設けた接続部65bおよび信号線61bを介して、評価部57に電気的に接続されている。   The contact probe 69 is provided with an installation portion 77, and the installation portion 77 is mechanically fixed to an insulating base 63 that forms the base of the probe base 53. The contact probe 69 is electrically connected to the evaluation unit 57 via a connection part 65a and a signal line 61a formed on the insulating base 63. The surface of the chuck stage 55 is electrically connected to the evaluation unit 57 via a connection part 65 b and a signal line 61 b provided on the side part of the chuck stage 55.

半導体装置に対して大電流(たとえば、5A以上)を印加することを想定して、複数のコンタクトプローブ69が半導体装置に接触するように、各コンタクトプローブ69が絶縁性基体63に支持されている。また、各コンタクトプローブ69を流れる電流の密度がほぼ同じ密度になるように、接続部65aからコンタクトプローブ69、半導体装置1およびチャックステージ55を経て接続部65bに至る距離が、いずれのコンタクトプローブについてもほぼ同じ距離になるように、接続部65aと接続部65bとが配置されている。   Assuming that a large current (for example, 5 A or more) is applied to the semiconductor device, each contact probe 69 is supported by the insulating base 63 so that the plurality of contact probes 69 are in contact with the semiconductor device. . In addition, the distance from the connection portion 65a to the connection portion 65b via the contact probe 69, the semiconductor device 1, and the chuck stage 55 is such that the current flowing through each contact probe 69 has substantially the same density. Also, the connection portion 65a and the connection portion 65b are arranged so that the distances are substantially the same.

ここでは、絶縁性基体63(または、チャックステージ55)を上から平面視的に見た場合に、チャックステージ55に載置される半導体装置を挟んで接続部65aと接続部65bとが互いに対向する位置関係に配置されている。なお、各コンタクトプローブ69と接続部65aとは、絶縁性基体63に設けられた電気的接続部79および信号線61によって電気的に接続されている。   Here, when the insulating base 63 (or the chuck stage 55) is viewed from above, the connecting portion 65a and the connecting portion 65b face each other across the semiconductor device placed on the chuck stage 55. Are arranged in a positional relationship. Each contact probe 69 and the connection portion 65 a are electrically connected by an electrical connection portion 79 and a signal line 61 provided on the insulating base 63.

プローブ基体53は、移動アーム67によって任意の位置へ移動可能とされる。なお、ここでは、プローブ基体53を一つの移動アーム67によって支持する構造を例に挙げているが、これに限られるものではなく、複数の移動アームによって、より安定的にプローブ基体53を支持してもよい。また、プローブ基体53を移動させる代わりに、チャックステージ55を移動させるようにしてもよい。   The probe base 53 can be moved to an arbitrary position by a moving arm 67. Here, the structure in which the probe base 53 is supported by one moving arm 67 is described as an example. However, the structure is not limited to this, and the probe base 53 is more stably supported by a plurality of moving arms. May be. Further, instead of moving the probe base 53, the chuck stage 55 may be moved.

チャックステージ55は、半導体装置1または半導体ウェハが載置されて、半導体装置1等が固定される台座となる。半導体装置1等は真空吸着によってチャックステージ55に固定される。チャックステージ55の表面には吸着溝(図示せず)が形成され、その吸着溝の一部の底面には、吸着孔が形成されている。半導体評価装置51の主要部分は、上記のように構成される。   The chuck stage 55 is a pedestal on which the semiconductor device 1 or the semiconductor wafer is placed and the semiconductor device 1 and the like are fixed. The semiconductor device 1 and the like are fixed to the chuck stage 55 by vacuum suction. An adsorption groove (not shown) is formed on the surface of the chuck stage 55, and an adsorption hole is formed on a part of the bottom surface of the adsorption groove. The main part of the semiconductor evaluation apparatus 51 is configured as described above.

次に、半導体評価装置51を用いた半導体装置の電気的評価の評価手順について説明する。まず、半導体装置1または半導体装置1を集積化した半導体ウェハ59を、搬送機構(図示せず)によってチャックステージ55に載置する。次に、真空吸着によって、半導体装置1等をチャックステージ55に固定する。次に、図6に示すように、移動アーム67を移動させることによって、複数のコンタクトプローブ69のそれぞれを、半導体装置1等に形成された対応する表面電極に接触させる。次に、複数のコンタクトプローブ69を対応する表面電極に接触させた状態で、所望の電気的特性に関する評価を行う。   Next, an evaluation procedure for electrical evaluation of a semiconductor device using the semiconductor evaluation device 51 will be described. First, the semiconductor device 1 or the semiconductor wafer 59 on which the semiconductor device 1 is integrated is placed on the chuck stage 55 by a transport mechanism (not shown). Next, the semiconductor device 1 and the like are fixed to the chuck stage 55 by vacuum suction. Next, as shown in FIG. 6, each of the plurality of contact probes 69 is brought into contact with a corresponding surface electrode formed in the semiconductor device 1 or the like by moving the moving arm 67. Next, evaluation with respect to desired electrical characteristics is performed in a state where the plurality of contact probes 69 are in contact with the corresponding surface electrodes.

ここでは、半導体装置に形成されたIGBTのゲート電極9の針当て領域13に一つのコンタクトプローブ69を接触させ、エミッタ電極11に複数のコンタクトプローブ69を接触させる場合を想定する。このとき、図7に示すように、コンタクトプローブ69が撓むことによって、表面電極の表面にはプローブ痕が生じる。このプローブ痕については、後述する。   Here, it is assumed that one contact probe 69 is brought into contact with the needle contact region 13 of the gate electrode 9 of the IGBT formed in the semiconductor device, and a plurality of contact probes 69 are brought into contact with the emitter electrode 11. At this time, as shown in FIG. 7, when the contact probe 69 is bent, a probe mark is generated on the surface of the surface electrode. This probe mark will be described later.

プローブ基体53では、一方側と他方側とからプローブ基体53の中央に向かってコンタクトプローブ69が配置されていることで、向かい合ったコンタクトプローブ69の間隔を保持しながら、複数のコンタクトプローブ69を表面電極に接触させることができる。コンタクトプローブ69の間隔を保持するのは、放電を抑制するためである。   In the probe base 53, the contact probes 69 are arranged from one side and the other side toward the center of the probe base 53, so that a plurality of contact probes 69 are attached to the surface while maintaining the distance between the contact probes 69 facing each other. The electrode can be contacted. The reason why the distance between the contact probes 69 is maintained is to suppress discharge.

電気的評価が終了した後、コンタクトプローブ69を表面電極から離す。半導体ウェハ59の場合には、半導体ウェハ59に形成されたすべての半導体装置1について電気的評価を行った後、半導体ウェハ59をチャックステージ55から他へ移動させる。その後、新たな半導体装置または半導体ウェハをチャックステージに載置し、同様の手順によって電気的特性を評価する。   After the electrical evaluation is completed, the contact probe 69 is separated from the surface electrode. In the case of the semiconductor wafer 59, after all the semiconductor devices 1 formed on the semiconductor wafer 59 are electrically evaluated, the semiconductor wafer 59 is moved from the chuck stage 55 to the other. Thereafter, a new semiconductor device or semiconductor wafer is mounted on the chuck stage, and the electrical characteristics are evaluated by the same procedure.

上述したコンタクトプローブによる電気的特性の評価では、図8に示すように、電気的評価が行われた後の半導体装置1のゲート電極9の針当て領域13には、コンタクトプローブ(1本)が接触することによってプローブ痕23が生じている。   In the evaluation of the electrical characteristics using the contact probe described above, as shown in FIG. 8, a contact probe (one) is provided in the needle contact region 13 of the gate electrode 9 of the semiconductor device 1 after the electrical evaluation is performed. The probe mark 23 is generated by the contact.

カンチレバー式のコンタクトプローブ69では、コンタクトプローブ69の先端部73をゲート電極9(表面電極)に確実に接触させるために、図7に示すように、コンタクトプローブ69の撓み部75が撓むように、プローブ基体53を半導体装置1(半導体ウェハ59)に接近させる。コンタクトプローブ69が撓む際に、先端部73におけるコンタクト部71は、針当て領域13の表面を滑り、針当て領域13の表面には、プローブ痕23が形成されることになる。プローブ痕23の大きさは、コンタクト部71の移動量とコンタクト部71そのものの大きさによって決定される。この場合、プローブ痕23の範囲は長さLRであり、コンタクト部71の中心間の距離は長さLCである。   In the cantilever-type contact probe 69, in order to ensure that the tip 73 of the contact probe 69 is in contact with the gate electrode 9 (surface electrode), the probe 75 is bent so that the bending portion 75 of the contact probe 69 is bent as shown in FIG. The base 53 is brought close to the semiconductor device 1 (semiconductor wafer 59). When the contact probe 69 bends, the contact portion 71 at the distal end portion 73 slides on the surface of the needle contact area 13, and the probe mark 23 is formed on the surface of the needle contact area 13. The size of the probe mark 23 is determined by the amount of movement of the contact portion 71 and the size of the contact portion 71 itself. In this case, the range of the probe mark 23 is the length LR, and the distance between the centers of the contact portions 71 is the length LC.

また、コンタクトプローブ69の材料としては、耐久性の観点から、表面電極(ゲート電極等)の材料よりも硬い材料を選択する場合が多い。そのため、図9に示すように、コンタクト部71が滑る領域が周囲に比べて窪んだ窪み13aがされて、針当て領域13に凹凸が生じることになる。実施の形態に係る半導体装置1では、凹凸が生じた針当て領域13へワイヤが接続されるのを回避するために、ワイヤが接続されるワイヤ領域15と針当て領域13とが区切られている。   In addition, as a material of the contact probe 69, a material harder than the material of the surface electrode (gate electrode or the like) is often selected from the viewpoint of durability. Therefore, as shown in FIG. 9, the region where the contact portion 71 slides is formed with a recess 13 a that is recessed as compared with the surroundings, and the needle contact region 13 is uneven. In the semiconductor device 1 according to the embodiment, the wire region 15 to which the wire is connected and the needle contact region 13 are separated in order to prevent the wire from being connected to the needle contact region 13 having the unevenness. .

ワイヤ領域15が針当て領域13とは区切られていることで、プローブ痕が生じていない平坦なゲート電極9の部分(ワイヤ領域15)の表面に、確実にワイヤを密着させて接続することができる。これにより、半導体モジュールとして組み込まれた後において、ワイヤが外れてしまう等に起因して、通電ができなくなる等の不具合が生じるのを確実に阻止することができる。   By separating the wire region 15 from the needle contact region 13, it is possible to securely connect the wire to the surface of the flat gate electrode 9 portion (wire region 15) where no probe mark is generated. it can. As a result, it is possible to reliably prevent problems such as the inability to energize due to the wires being disconnected after being incorporated as a semiconductor module.

なお、ここでは、ゲート電極9に針当て領域13を配置する場合について説明したが、エミッタ電極についても、針当て領域を特定するようにしてもよい。図10に示すように、エミッタ電極11に、たとえば、Y方向に互いに間隔を隔てるとともに、それぞれX方向に間隔を隔てて針当て領域13を配置してもよい。針当て領域13以外の領域にワイヤ領域を配置することで、ワイヤが外れてしまう等に起因して、通電ができなくなる等の不具合が生じるのを確実に阻止することができる。こうして、電気的特性の評価が終了した半導体装置1では、針当て領域13には、接触したコンタクトプローブの本数に相当する分のプローブ痕が形成されることになる。   Here, the case where the needle contact area 13 is arranged in the gate electrode 9 has been described, but the needle contact area may be specified also for the emitter electrode. As shown in FIG. 10, for example, the needle contact region 13 may be arranged on the emitter electrode 11 with a space in the Y direction and a space in the X direction. By arranging the wire region in a region other than the needle contact region 13, it is possible to reliably prevent the occurrence of problems such as the inability to energize due to the wire being disconnected. Thus, in the semiconductor device 1 for which the evaluation of the electrical characteristics has been completed, probe traces corresponding to the number of contact probes in contact are formed in the needle contact area 13.

上述した半導体装置では、ゲート電極9が素子形成領域5における一辺(短辺)の中央付近の終端領域7と隣り合う位置に配置されている場合を例に挙げて説明した。次に、素子形成領域におけるゲート電極の配置のバリエーションについて説明する。   In the semiconductor device described above, the case where the gate electrode 9 is disposed at a position adjacent to the termination region 7 near the center of one side (short side) in the element formation region 5 has been described as an example. Next, variations of the arrangement of the gate electrode in the element formation region will be described.

(第1変形例)
図11に示すように、第1変形例に係る半導体装置1では、ゲート電極9は、素子形成領域5の角部の終端領域7と隣り合う位置に配置されている。なお、これ以外の構成については、図1等に示す半導体装置1と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
(First modification)
As shown in FIG. 11, in the semiconductor device 1 according to the first modification, the gate electrode 9 is disposed at a position adjacent to the end region 7 at the corner of the element formation region 5. Since other configurations are the same as those of the semiconductor device 1 shown in FIG. 1 and the like, the same members are denoted by the same reference numerals, and description thereof will not be repeated unless necessary.

上述した半導体装置では、針当て領域13とワイヤ領域15とが区切られていることによる効果に加えて、次のような効果を得ることができる。   In the above-described semiconductor device, the following effects can be obtained in addition to the effects obtained by dividing the needle contact area 13 and the wire area 15.

第1変形例に係る半導体装置1では、ゲート電極9は素子形成領域5の角部に配置されており、ゲート電極9と素子形成領域5およびエミッタ電極11との境界部分として、矩形状のゲート電極9の4辺のうちの2辺分に境界部分が設けられている。これにより、矩形状のゲート電極9の4辺のうちの3辺分に境界部分が設けられている図1等に示される半導体装置1の場合と比較すると、同じ半導体基板3における領域(面積)に対して、素子形成領域5をより広く確保することができる。   In the semiconductor device 1 according to the first modification, the gate electrode 9 is arranged at the corner of the element formation region 5, and a rectangular gate is used as a boundary portion between the gate electrode 9, the element formation region 5, and the emitter electrode 11. A boundary portion is provided on two of the four sides of the electrode 9. Thereby, compared with the case of the semiconductor device 1 shown in FIG. 1 etc. in which the boundary portions are provided on three sides of the four sides of the rectangular gate electrode 9, the region (area) in the same semiconductor substrate 3 is compared. On the other hand, the element formation region 5 can be secured more widely.

(第2変形例)
図12に示すように、第2変形例に係る半導体装置1では、ゲート電極9は、終端領域7から距離を隔てられた、素子形成領域5における中央に配置されている。なお、これ以外の構成については、図1等に示す半導体装置1と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
(Second modification)
As shown in FIG. 12, in the semiconductor device 1 according to the second modification, the gate electrode 9 is disposed at the center in the element formation region 5 that is spaced from the termination region 7. Since other configurations are the same as those of the semiconductor device 1 shown in FIG. 1 and the like, the same members are denoted by the same reference numerals, and description thereof will not be repeated unless necessary.

上述した半導体装置では、針当て領域13とワイヤ領域15とが区切られていることによる効果に加えて、次のような効果を得ることができる。   In the above-described semiconductor device, the following effects can be obtained in addition to the effects obtained by dividing the needle contact area 13 and the wire area 15.

第2変形例に係る半導体装置1では、ゲート電極9は、素子形成領域5における中央に配置されている。これにより、ゲートのターンオン時の素子形成領域において、チャネルがオンする領域を素子形成領域5の中央から周囲に向かってほぼ均等に広がることになり、半導体素子としての電気的特性をより安定化させることができる。また、ワイヤを接続させる際に、素子形成領域5の端部に荷重が集中するのを抑制することができる。   In the semiconductor device 1 according to the second modification, the gate electrode 9 is disposed at the center in the element formation region 5. As a result, in the element formation region when the gate is turned on, the region where the channel is turned on is spread almost uniformly from the center of the element formation region 5 to the periphery, thereby further stabilizing the electrical characteristics as a semiconductor element. be able to. Further, when the wires are connected, it is possible to suppress the load from being concentrated on the end portion of the element formation region 5.

以上説明したように、第1変形例および第2変形例を含む実施の形態に係る半導体装置におけるゲート電極9等の表面電極では、針当て領域13とワイヤ領域15とが配置されて、その針当て領域13とワイヤ領域15とが絶縁体17によって区切られている。これにより、半導体装置1を半導体モジュールとして組み立てる際に、電気的特性を評価する際に凹凸が形成された針当て領域13に、ワイヤが接続されるのを回避することがき、図13に示すように、ワイヤ33をワイヤ領域15に確実に接続させることができる。その結果、ワイヤが外れてしまう等に起因して通電ができなくなる等の、半導体モジュール31としての不具合が生じるのを確実に阻止することができる。   As described above, in the surface electrode such as the gate electrode 9 in the semiconductor device according to the embodiment including the first modification and the second modification, the needle contact region 13 and the wire region 15 are arranged, and the needle The contact area 13 and the wire area 15 are separated by an insulator 17. Thereby, when assembling the semiconductor device 1 as a semiconductor module, it is possible to avoid a wire from being connected to the needle contact region 13 in which unevenness is formed when evaluating the electrical characteristics, as shown in FIG. In addition, the wire 33 can be reliably connected to the wire region 15. As a result, it is possible to reliably prevent problems as the semiconductor module 31 such as failure to energize due to disconnection of the wire.

なお、上述した半導体装置では、素子形成領域5に形成される半導体素子としてIGBTを例に挙げた。半導体素子としては、IGBTに限られるものではなく、電力変換等に使用される高耐圧半導体素子であればよく、たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはダイオード等であってもよい。また、実施
の形態において説明した半導体装置の構造については、必要に応じて種々組み合わせることが可能である。
In the semiconductor device described above, the IGBT is taken as an example of the semiconductor element formed in the element formation region 5. The semiconductor element is not limited to the IGBT, and may be any high voltage semiconductor element used for power conversion or the like, and may be, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or a diode. In addition, the structures of the semiconductor devices described in the embodiments can be combined in various ways as necessary.

今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is an example, and the present invention is not limited to this. The present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、高耐圧半導体素子を備えた半導体装置と、その半導体装置を適用した半導体モジュールとに有効に利用される。   The present invention is effectively used for a semiconductor device including a high voltage semiconductor element and a semiconductor module to which the semiconductor device is applied.

1 半導体装置、3 半導体基板、5 素子形成領域、7 終端領域、9 ゲート電極、11 エミッタ電極、13 針当て領域、13a 窪み、15 ワイヤ領域、17 絶縁体、19 認識マーク、21 電極部材、23 プローブ痕、25 コレクタ電極、31 半導体モジュール、33 ワイヤ、LC、LR 長さ、51 半導体評価装置、53 プローブ基体、55 チャックステージ、57 評価部、59 半導体ウェハ、61a、61b 信号線、63 絶縁性基体、65 接続部、67 移動アーム、69 コンタクトプローブ、71 コンタクト部、73 先端部、75 撓み部、77 設置部、79 電気的接続部。   DESCRIPTION OF SYMBOLS 1 Semiconductor device, 3 Semiconductor substrate, 5 Element formation area, 7 Termination area | region, 9 Gate electrode, 11 Emitter electrode, 13 Needle contact area | region, 13a hollow, 15 Wire area | region, 17 Insulator, 19 Recognition mark, 21 Electrode member, 23 Probe trace, 25 collector electrode, 31 semiconductor module, 33 wire, LC, LR length, 51 semiconductor evaluation device, 53 probe base, 55 chuck stage, 57 evaluation unit, 59 semiconductor wafer, 61a, 61b signal line, 63 insulation Base body, 65 connection part, 67 moving arm, 69 contact probe, 71 contact part, 73 tip part, 75 bending part, 77 installation part, 79 electrical connection part.

Claims (12)

互いに対向する第1主面および第2主面を有する半導体基板と、
前記半導体基板の前記第1主面の側に規定された素子形成領域と、
前記半導体基板の前記第1主面の側に規定され、前記素子形成領域を取り囲むように配置された終端領域と、
前記素子形成領域に形成されたエミッタ電極と、
前記素子形成領域に形成され、第1領域および第2領域が配置されたゲート電極と、
前記ゲート電極の前記第1領域と前記第2領域とを区切り、かつ、前記ゲート電極を他の領域と区切る仕切り部材と
を有し、
前記第1領域は、コンタクトプローブの先端部がスライドする方向に沿う長辺と前記長辺と交差する短辺とを有する矩形状に形成され、
前記第2領域は、前記第1領域の前記長辺側に配置された、半導体装置。
A semiconductor substrate having a first main surface and a second main surface facing each other;
An element formation region defined on the first main surface side of the semiconductor substrate;
A termination region defined on the first main surface side of the semiconductor substrate and disposed so as to surround the element formation region;
An emitter electrode formed in the element formation region;
A gate electrode formed in the element formation region, wherein the first region and the second region are disposed;
A partition member that separates the first region and the second region of the gate electrode and separates the gate electrode from other regions;
The first region is formed in a rectangular shape having a long side along a direction in which the tip of the contact probe slides and a short side intersecting the long side,
The semiconductor device, wherein the second region is disposed on the long side of the first region.
前記仕切り部材は絶縁体からなる、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the partition member is made of an insulator. 前記第2領域は、前記コンタクトプローブの先端部がスライドする方向に交差する方向に長辺を有する矩形状に形成された、請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the second region is formed in a rectangular shape having a long side in a direction intersecting a direction in which a tip portion of the contact probe slides. 前記第1領域の面積は、前記第2領域の面積よりも小さい、請求項1〜3のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein an area of the first region is smaller than an area of the second region. 前記第2領域の表面には、認識マークが形成された、請求項1〜4のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein a recognition mark is formed on a surface of the second region. 前記ゲート電極は、前記素子形成領域における、前記終端領域と隣り合う位置に配置された、請求項1〜5のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the gate electrode is disposed at a position adjacent to the termination region in the element formation region. 前記ゲート電極は、前記素子形成領域における、前記終端領域と隣り合う角部に配置された、請求項1〜5のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the gate electrode is disposed in a corner portion adjacent to the termination region in the element formation region. 前記ゲート電極は、前記終端領域から距離を隔てられた、前記素子形成領域における中央に配置された、請求項1〜5のいずれか1項に記載の半導体装置。   6. The semiconductor device according to claim 1, wherein the gate electrode is disposed at a center in the element formation region that is separated from the termination region. 7. 前記第1領域は、前記終端領域側に配置され、
前記第2領域は、前記第1領域を挟んで前記終端領域とは反対側に配置された、請求項1〜6のいずれか1項に記載の半導体装置。
The first region is disposed on the terminal region side,
The semiconductor device according to claim 1, wherein the second region is disposed on a side opposite to the termination region across the first region.
前記仕切り部材は、半絶縁性シリコン窒化膜からなる、請求項1〜9のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the partition member is made of a semi-insulating silicon nitride film. 前記終端領域が、前記半絶縁性シリコン窒化膜によって覆われている、請求項10に記載の半導体装置。   The semiconductor device according to claim 10, wherein the termination region is covered with the semi-insulating silicon nitride film. 請求項1〜11のいずれか1項に記載された半導体装置を適用した半導体モジュールであって、
前記ゲート電極の前記第2領域にワイヤが接続された、半導体モジュール。
A semiconductor module to which the semiconductor device according to any one of claims 1 to 11 is applied,
A semiconductor module, wherein a wire is connected to the second region of the gate electrode.
JP2018213635A 2018-11-14 2018-11-14 Semiconductor device and semiconductor module Active JP6602444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018213635A JP6602444B2 (en) 2018-11-14 2018-11-14 Semiconductor device and semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213635A JP6602444B2 (en) 2018-11-14 2018-11-14 Semiconductor device and semiconductor module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015028540A Division JP6476000B2 (en) 2015-02-17 2015-02-17 Semiconductor device and semiconductor module

Publications (2)

Publication Number Publication Date
JP2019024131A JP2019024131A (en) 2019-02-14
JP6602444B2 true JP6602444B2 (en) 2019-11-06

Family

ID=65368623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213635A Active JP6602444B2 (en) 2018-11-14 2018-11-14 Semiconductor device and semiconductor module

Country Status (1)

Country Link
JP (1) JP6602444B2 (en)

Also Published As

Publication number Publication date
JP2019024131A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US20200395344A1 (en) Semiconductor device
US9431376B2 (en) Substrate for mounting multiple power transistors thereon and power semiconductor module
CN107873080B (en) Tool for evaluating semiconductor device, semiconductor device evaluation device, and semiconductor device evaluation method
US9373566B2 (en) High power electronic component with multiple leadframes
JP6476000B2 (en) Semiconductor device and semiconductor module
JP2015010980A (en) Probe device
JP6602444B2 (en) Semiconductor device and semiconductor module
KR20050042724A (en) Semiconductor apparatus
US10366964B2 (en) Semiconductor device having switching elements to prevent overcurrent damage
US9337167B2 (en) Wire bonding method employing two scrub settings
JP2018006473A (en) Semiconductor device
EP3364194B1 (en) Kelvin test probe, kelvin test probe module, and manufacturing method therefor
JP7055534B2 (en) Manufacturing method of semiconductor device
JP6418070B2 (en) Measuring device, measuring method of semiconductor device
CN107870294B (en) Evaluation device and evaluation method of semiconductor device
CN107845599A (en) Chuck, the method using the chuck and for testing semiconductor wafer
JP2019102596A (en) Semiconductor device
JP5656422B2 (en) Measuring method
US11862553B2 (en) Semiconductor device
JP6747374B2 (en) Semiconductor device evaluation apparatus and semiconductor device evaluation method
US20210311099A1 (en) Resistance mapping device, resistance measurement method, and recording medium
US20220359694A1 (en) Semiconductor device
US10332852B2 (en) Semiconductor device
JP6731862B2 (en) Semiconductor device evaluation equipment
US10506714B2 (en) MEMS film for semiconductor device test socket including MEMS bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250