JP6597197B2 - Beam diameter expanding element and display device - Google Patents

Beam diameter expanding element and display device Download PDF

Info

Publication number
JP6597197B2
JP6597197B2 JP2015217346A JP2015217346A JP6597197B2 JP 6597197 B2 JP6597197 B2 JP 6597197B2 JP 2015217346 A JP2015217346 A JP 2015217346A JP 2015217346 A JP2015217346 A JP 2015217346A JP 6597197 B2 JP6597197 B2 JP 6597197B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
grating
side diffraction
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217346A
Other languages
Japanese (ja)
Other versions
JP2017090562A (en
Inventor
修 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015217346A priority Critical patent/JP6597197B2/en
Priority to CN201610864032.5A priority patent/CN106802487B/en
Priority to US15/336,306 priority patent/US10133077B2/en
Publication of JP2017090562A publication Critical patent/JP2017090562A/en
Application granted granted Critical
Publication of JP6597197B2 publication Critical patent/JP6597197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光束径を拡大するための光束径拡大素子、および光束径拡大素子を備えた表示装置に関するものである。   The present invention relates to a light beam diameter enlarging element for enlarging a light beam diameter and a display device including the light beam diameter enlarging element.

光変調された光束を利用者の眼に入射させる網膜走査型の表示装置では、光束径が小さいと、瞳孔の位置が変化した場合に光束が瞳孔に入射しないため、画像の欠け等が発生してしまう。そこで、網膜走査型の表示装置では光束径拡大素子(瞳拡大素子)が設けられている。光束径拡大素子としては、例えば、導光板の相対向する2面の各々に回折格子を設け、双方の格子周期を同一にして回折角を一致させたものが提案されている(特許文献1、2)。特許文献1では、2つの回折格子が対向しており、+1次回折光および−1次回折光の双方を利用する。特許文献2では、2つの回折格子が導光板の延在方向で離間しており、+1次回折光および−1次回折光の一方を利用する。   In a retinal scanning display device in which a light-modulated light beam is incident on the user's eye, if the light beam diameter is small, the light beam does not enter the pupil when the position of the pupil changes. End up. In view of this, a retinal scanning display device is provided with a beam diameter enlarging element (pupil enlarging element). As a light beam diameter expanding element, for example, an element in which a diffraction grating is provided on each of two opposing surfaces of a light guide plate, the grating periods of the both are the same, and the diffraction angles are matched is proposed (Patent Document 1, Patent Document 1). 2). In Patent Document 1, two diffraction gratings face each other, and both + 1st order diffracted light and −1st order diffracted light are used. In Patent Document 2, two diffraction gratings are separated in the extending direction of the light guide plate, and one of + 1st order diffracted light and −1st order diffracted light is used.

特開平7−72422号公報JP-A-7-72422 特開2007−219106号公報JP 2007-219106 A

特許文献1に記載の光束径拡大素子では、入射側の回折格子で回折した光を直接、出射側の回折格子から出射する。このため、光束径は、回折格子の回折角に相当する分、拡大されるだけであるため、光束径を大きく拡大するのが困難である。一方、特許文献2に記載の光束径拡大素子では、入射側の回折格子で回折された回折光が、導光板の内部で反射しながら出射側の回折格子から出射されるため、光束径を大きく拡大することができる。しかしながら、特許文献2に記載の光束径拡大素子では、体積位相型ホログラフィック回折光学素子を用いているため、入射した光を特定の向きにのみ強く回折して利用するので、一方側にしか光束を拡大することができない。従って、出射側の回折格子の大きさに加えて入射側の回折格子の大きさが必要になることから、光束径拡大素子の大きさが大きくなるという問題点がある。   In the light beam diameter enlarging element described in Patent Document 1, light diffracted by the incident-side diffraction grating is directly emitted from the emission-side diffraction grating. For this reason, since the light beam diameter is only enlarged by the amount corresponding to the diffraction angle of the diffraction grating, it is difficult to greatly enlarge the light beam diameter. On the other hand, in the light beam diameter enlarging element described in Patent Document 2, the diffracted light diffracted by the incident side diffraction grating is emitted from the output side diffraction grating while being reflected inside the light guide plate. Can be enlarged. However, since the light beam diameter enlarging element described in Patent Document 2 uses a volume phase type holographic diffractive optical element, incident light is diffracted and used only in a specific direction, so that the light beam is emitted only on one side. Can not be expanded. Therefore, since the size of the diffraction grating on the incident side is required in addition to the size of the diffraction grating on the output side, there is a problem that the size of the beam diameter expanding element is increased.

以上の問題点に鑑みて、本発明の課題は、光束径拡大素子の大きさが大きくなることを抑制しつつ、光束径を大きく拡大することができる光束径拡大素子、および光束径拡大素子を備えた表示装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a light beam diameter expanding element and a light beam diameter expanding element capable of greatly expanding the light beam diameter while suppressing an increase in the size of the light beam diameter expanding element. It is to provide a display device provided.

上記課題を解決するために、本発明に係る光束径拡大素子の一態様は、第1面および前記第1面とは反対側の面である第2面を備えた第1導光板と、前記第1面に設けられた第1入射側回折格子と、前記第2面に設けられた第1出射側回折格子と、を有し、前記第1面は、前記第2面に平行となるように設けられ、前記第1入射側回折格子と前記第1出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、前記第1導光板の屈折率は、前記第1入射側回折格子に入射する第1光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、前記第1入射側回折格子の格子方向と交差する方向を第1方向としたとき、前記第1入射側回折格子によって回折された前記第1光線の+1次回折光および−1次回折光は、前記第1導光板内を前記第1方向の互いに反対の方向に伝播して前記第1出射側回折格子から出射されることを特徴とする。   In order to solve the above-described problem, an aspect of the light beam diameter expanding element according to the present invention includes a first light guide plate having a first surface and a second surface that is a surface opposite to the first surface, A first incident-side diffraction grating provided on the first surface; and a first emission-side diffraction grating provided on the second surface, wherein the first surface is parallel to the second surface. The first incident-side diffraction grating and the first emission-side diffraction grating are provided so that the grating directions are the same and the grating period is the same, and the refractive index of the first light guide plate Is a refractive index such that the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light of the first light beam incident on the first incident side diffraction grating are respectively greater than or equal to the critical angle. When the direction intersecting the grating direction of the incident side diffraction grating is the first direction, the first incident side diffraction grating The folded first-order diffracted light and first-order diffracted light of the first light propagate in the first light guide plate in directions opposite to each other in the first direction and are emitted from the first emission-side diffraction grating. It is characterized by.

本発明では、第1入射側回折格子で回折した+1次回折光および−1次回折光を導光板の第1方向の互いに逆方向に伝播させて第1出射側回折格子から出射するため、光束径は、十分に拡大された状態で第1出射側回折格子から出射される。従って、光束径拡大素子の大きさが大きくなることを抑制でき、光の利用効率が高い。また、第1光線の+1次回折光の回折角および−1次回折光の回折角が、第1導光板の屈折率で規定される臨界角以上の角度であるため、導光板内を全反射の状態で伝播するので、光の利用効率が高い。   In the present invention, since the + 1st order diffracted light and the −1st order diffracted light diffracted by the first incident side diffraction grating are propagated in directions opposite to each other in the first direction of the light guide plate and emitted from the first exit side diffraction grating, the beam diameter is The light is emitted from the first emission side diffraction grating in a sufficiently enlarged state. Therefore, it is possible to suppress an increase in the size of the light beam diameter expanding element, and the light use efficiency is high. In addition, since the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light of the first light beam are equal to or larger than the critical angle defined by the refractive index of the first light guide plate, the light guide plate is totally reflected. Because it propagates through, the light utilization efficiency is high.

本発明に係る光束径拡大素子の一態様において、第3面が前記第1導光板の前記第2面と対向するように設けられ、前記第3面とは反対側に第4面を備えた第2導光板と、前記第3面に設けられた第2入射側回折格子と、前記第4面に設けられた第2出射側回折格子と、を有し、前記第3面は、前記第4面に平行となるように設けられ、前記第2入射側回折格子と前記第2出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、前記第2入射側回折格子の格子方向は、前記第1入射側回折格子の格子方向と同じ方向となるように設けられ、前記第2入射側回折格子の格子周期は、前記第1入射側回折格子の格子周期と異なる周期となるように設けられ、前記第2導光板の屈折率は、前記第1光線と波長が異なる第2光線が前記第2入射側回折格子に入射した際の前記第2光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、前記第2入射側回折格子によって回折された前記第2光線の+1次回折光および−1次回折光は、前記第2導光板内を前記第1方向の互いに反対の方向に伝播して前記第2出射側回折格子から出射されることが好ましい。   In one aspect of the light beam diameter expanding element according to the present invention, a third surface is provided so as to face the second surface of the first light guide plate, and a fourth surface is provided on the side opposite to the third surface. A second light guide plate, a second incident-side diffraction grating provided on the third surface, and a second output-side diffraction grating provided on the fourth surface, wherein the third surface comprises the first The second incident side diffraction grating and the second emission side diffraction grating are provided so as to have the same grating direction and the same grating period. The grating direction of the second incident side diffraction grating is provided so as to be the same as the grating direction of the first incident side diffraction grating, and the grating period of the second incident side diffraction grating is the first incident side diffraction grating. The second light guide plate has a refractive index different from that of the first light beam and a wavelength. Refractive index so that the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light of the second light ray when the different second light rays are incident on the second incident-side diffraction grating are respectively greater than the critical angle. The + 1st order diffracted light and the −1st order diffracted light of the second light beam diffracted by the second incident side diffraction grating propagate in the second light guide plate in directions opposite to each other in the first direction. The light is preferably emitted from the second emission side diffraction grating.

本発明に係る光束径拡大素子の一態様において、第5面が前記第2導光板の前記第4面と対向するように設けられ、前記第5面とは反対側に第6面を備えた第3導光板と、前記第5面に設けられた第3入射側回折格子と、前記第6面に設けられた第3出射側回折格子と、を有し、前記第5面は、前記第6面に平行となるように設けられ、前記第3入射側回折格子と前記第3出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、前記第3入射側回折格子の格子方向は、前記第1入射側回折格子の格子方向と同じ方向となるように設けられ、前記第3入射側回折格子の格子周期は、前記第1入射側回折格子および前記第2入射側回折格子の格子周期と異なる周期となるように設けられ、前記第3導光板の屈折率は、前記第1光線および前記第2光線と波長が異なる第3光線が前記第3入射側回折格子に入射した際の前記第3光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、前記第3入射側回折格子によって回折された前記第3光線の+1次回折光および−1次回折光は、前記第3導光板内を前記第1方向の互いに反対の方向に伝播して前記第3出射側回折格子から出射されることが好ましい。   In one aspect of the light beam diameter expanding element according to the present invention, a fifth surface is provided so as to face the fourth surface of the second light guide plate, and a sixth surface is provided on the side opposite to the fifth surface. A third light guide plate; a third incident-side diffraction grating provided on the fifth surface; and a third output-side diffraction grating provided on the sixth surface. The third entrance-side diffraction grating and the third exit-side diffraction grating are provided so that the grating directions are the same and the grating period is the same period. The grating direction of the third incident side diffraction grating is provided to be the same as the grating direction of the first incident side diffraction grating, and the grating period of the third incident side diffraction grating is the first incident side diffraction grating. And having a period different from the grating period of the second incident side diffraction grating, The refractive index is determined by the diffraction angle of the + 1st order diffracted light and the -1st order diffracted light of the third light beam when a third light beam having a wavelength different from that of the first light beam and the second light beam is incident on the third incident side diffraction grating. The third light guide plate has a refractive index such that a diffraction angle is equal to or greater than a critical angle, and the + 1st order diffracted light and the −1st order diffracted light of the third light diffracted by the third incident side diffraction grating are the third light guide plate. It is preferable that the light propagates in directions opposite to each other in the first direction and is emitted from the third emission side diffraction grating.

本発明に係る光束径拡大素子の一態様において、前記第1入射側回折格子の格子周期をP1とし、前記第2入射側回折格子の格子周期をP2とし、前記第3入射側回折格子の格子周期をP3としたとき、前記格子周期P1、P2、P3は、以下の関係
P1<P2<P3
を満たしていることが好ましい。かかる構成によれば、第1光線、第2光線および第3光線の波長が以下の関係
第1光線<第2光線<第3光線
を有する場合に、各光線の出射間隔を揃えることができ、出射光の光量や色の均一性を向上させることができる。
In one aspect of the light beam diameter expanding element according to the present invention, the grating period of the first incident side diffraction grating is P1, the grating period of the second incident side diffraction grating is P2, and the grating of the third incident side diffraction grating is When the period is P3, the grating periods P1, P2, and P3 have the following relationship: P1 <P2 <P3
Is preferably satisfied. According to such a configuration, when the wavelengths of the first light beam, the second light beam, and the third light beam have the following relationship: first light beam <second light beam <third light beam, the emission intervals of the respective light beams can be aligned, The amount of emitted light and the uniformity of color can be improved.

本発明に係る光束径拡大素子の他の態様において、前記第1入射側回折格子の格子高さをH11とし、前記第2入射側回折格子の格子高さをH21とし、前記第3入射側回折格子の格子高さをH32としたとき、前記格子高さH11、H21、H31は、以下の関係
H11<H21<H31
を満たしていることが好ましい。かかる構成によれば、第1光線、第2光線および第3光線の波長が以下の関係
第1光線<第2光線<第3光線
を有する場合、各導光板が受け持つ光線の1次回折効率を高めることができ、明るい光束拡大素子を提供できるとともに、不要な回折光を抑制できる。
In another aspect of the light beam diameter expanding element according to the present invention, the grating height of the first incident-side diffraction grating is H11, the grating height of the second incident-side diffraction grating is H21, and the third incident-side diffraction is performed. When the lattice height of the lattice is H32, the lattice heights H11, H21, and H31 have the following relationship: H11 <H21 <H31
Is preferably satisfied. According to this configuration, when the wavelengths of the first light beam, the second light beam, and the third light beam have the following relationship: first light beam <second light beam <third light beam, the first-order diffraction efficiency of the light beam handled by each light guide plate is In addition to providing a bright beam expanding element, unnecessary diffracted light can be suppressed.

本発明に係る光束径拡大素子の他の態様において、前記第1出射側回折格子の格子高さをH12とし、前記第2出射側回折格子の格子高さをH22とし、前記第3出射側回折格子の格子高さをH32としたとき、前記格子高さH11、H12、H21、H22、H31、H32は、以下の関係
H12<H11<H22<H21<H32<H31
を満たしていることが好ましい。かかる構成によれば、出射側の回折格子から光が分散して出射されるため、出射光における光量分布を適正化することができる。
In another aspect of the light beam diameter expanding element according to the present invention, the grating height of the first exit side diffraction grating is H12, the grating height of the second exit side diffraction grating is H22, and the third exit side diffraction is performed. When the lattice height of the lattice is H32, the lattice heights H11, H12, H21, H22, H31, and H32 have the following relationship: H12 <H11 <H22 <H21 <H32 <H31
Is preferably satisfied. According to such a configuration, since the light is dispersed and emitted from the diffraction grating on the emission side, the light quantity distribution in the emission light can be optimized.

本発明に係る光束径拡大素子のさらに他の態様において、前記第1入射側回折格子および前記第1出射側回折格子の格子周期をPとし、前記第1光線のスペクトルの半値幅における最短波長をλcとし、前記第1光線の前記第1入射側回折格子に対する最大入射角をθmaxとしたとき、格子周期P、最短波長λcおよび最大入射角θmaxは、以下の関係
P≦λc/[sin(θmax)+1]
を満たしていることが好ましい。
In still another aspect of the light beam diameter expanding element according to the present invention, a grating period of the first incident-side diffraction grating and the first emission-side diffraction grating is P, and the shortest wavelength in the half-value width of the spectrum of the first light beam is When λc and the maximum incident angle of the first light ray with respect to the first incident-side diffraction grating is θmax, the grating period P, the shortest wavelength λc, and the maximum incident angle θmax have the following relationship: P ≦ λc / [sin (θmax +1]
Is preferably satisfied.

本発明を適用した光束径拡大素子を備えた表示装置の一態様は、画像生成装置およびコリメーターレンズを備え、前記画像生成装置で生成された画像光を前記コリメーターレンズを介して前記光束径拡大素子に入射させる画像光投射装置と、前記光束径拡大素子から出射された画像光を前記第1方向と交差する第2方向に導く導光光学系と、を有することを特徴とする。   One aspect of a display device including a light beam diameter enlarging element to which the present invention is applied includes an image generation device and a collimator lens, and image light generated by the image generation device is transmitted through the collimator lens through the light beam diameter. An image light projection device that is incident on the magnifying element, and a light guide optical system that guides the image light emitted from the light beam diameter magnifying element in a second direction that intersects the first direction.

本発明に係る表示装置の一態様において、前記画像光投射装置における射出瞳が前記光束径拡大素子の入射面と出射面との間に位置することが好ましい。   In one aspect of the display device according to the present invention, it is preferable that an exit pupil in the image light projection device is located between an entrance surface and an exit surface of the light beam diameter enlarging element.

本発明に係る表示装置の一態様において、前記射出瞳が前記光束径拡大素子の入射面と出射面との中間に位置することが好ましい。   In one aspect of the display device according to the present invention, it is preferable that the exit pupil is located between the entrance surface and the exit surface of the beam diameter expanding element.

本発明に係る表示装置の他の態様において、前記光束径拡大素子の前記第1方向におけるサイズが、前記導光光学系の第1方向におけるサイズより小さいことが好ましい。かかる構成によれば、表示装置の小型化を図ることができる。   In another aspect of the display device according to the present invention, it is preferable that the size of the light beam diameter enlarging element in the first direction is smaller than the size of the light guide optical system in the first direction. With this configuration, the display device can be reduced in size.

本発明に係る表示装置のさらに他の態様において、前記第1方向は、前記表示装置における縦方向であり、前記第2方向は、前記表示装置における横方向である構成を採用することができる。   In still another aspect of the display device according to the present invention, it is possible to adopt a configuration in which the first direction is a vertical direction in the display device, and the second direction is a horizontal direction in the display device.

本発明に係る表示装置のさらに他の態様において、前記第1方向は、前記表示装置における横方向であり、前記第2方向は、前記表示装置における縦方向である構成を採用してもよい。   In still another aspect of the display device according to the present invention, the first direction may be a horizontal direction in the display device, and the second direction may be a vertical direction in the display device.

本発明の実施の形態1に係る光束径拡大素子の一態様を示す説明図である。It is explanatory drawing which shows the one aspect | mode of the light beam diameter expansion element which concerns on Embodiment 1 of this invention. 図1に示す光束径拡大素子に画像光が入射した場合の説明図である。It is explanatory drawing when image light injects into the light beam diameter expansion element shown in FIG. 本発明の実施の形態1に係る光束径拡大素子の具体的構成例を示す説明図である。It is explanatory drawing which shows the specific structural example of the light beam diameter expansion element which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る光束径拡大素子の一態様を示す説明図である。It is explanatory drawing which shows the one aspect | mode of the light beam diameter expansion element which concerns on Embodiment 2 of this invention. 図4に示す光束径拡大素子に用いた青色用の導光板に青色光が入射した場合の説明図であるIt is explanatory drawing when blue light injects into the light guide plate for blue used for the beam diameter expansion element shown in FIG. 図4に示す光束径拡大素子に用いた緑色用の導光板に緑色光が入射した場合の説明図である。It is explanatory drawing when green light injects into the light guide plate for green used for the beam diameter expansion element shown in FIG. 図4に示す光束径拡大素子に用いた赤色用の導光板に赤色光Lが入射した場合の説明図である。It is explanatory drawing when the red light L injects into the light guide plate for red used for the light beam diameter expansion element shown in FIG. 本発明の実施の形態3に係る光束径拡大素子の一態様を示す説明図である。It is explanatory drawing which shows the one aspect | mode of the light beam diameter expansion element which concerns on Embodiment 3 of this invention. 本発明を適用した光束径拡大素子を備えた表示装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the display apparatus provided with the light beam diameter expansion element to which this invention is applied. 図9に示す表示装置の光学系を示す説明図である。It is explanatory drawing which shows the optical system of the display apparatus shown in FIG. 図10に示す光学系の射出瞳の説明図である。It is explanatory drawing of the exit pupil of the optical system shown in FIG. 本発明を適用した光束径拡大素子を備えた表示装置の別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of the display apparatus provided with the light beam diameter expansion element to which this invention is applied.

以下、本発明の実施の形態を説明する。なお、以下の説明で参照する図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。また、以下の説明では、回折格子の格子が延在している方向をx方向とし、x方向に直角に交差する方向をy方向とし、x方向およびy方向に直角に交差する方向をz方向として説明する。このため、本発明における「第1方向」はx方向に相当し、回折格子による回折方向(「第2方向」)はy方向に相当する。   Embodiments of the present invention will be described below. In the drawings to be referred to in the following description, the scales are different for each layer and each member so that each layer and each member have a size that can be recognized on the drawing. In the following description, the direction in which the grating of the diffraction grating extends is the x direction, the direction perpendicular to the x direction is the y direction, and the direction perpendicular to the x direction and the y direction is the z direction. Will be described. Therefore, the “first direction” in the present invention corresponds to the x direction, and the diffraction direction by the diffraction grating (“second direction”) corresponds to the y direction.

[実施の形態1]
(基本構成)
図1は、本発明の実施の形態1に係る光束径拡大素子の一態様を示す説明図である。図2は、図1に示す光束径拡大素子に画像光が入射した場合の説明図である。なお、図1および図2において、図面に向かって左側には、波長λcの光が入射角+θmaxで入射した場合C11を示し、図面に向かって右側には、波長λcの光が入射角−θmaxで入射した場合C12を示してある。
[Embodiment 1]
(Basic configuration)
FIG. 1 is an explanatory view showing an aspect of a light beam diameter expanding element according to Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram when image light is incident on the beam diameter enlarging element shown in FIG. 1 and 2, C11 is shown on the left side of the drawing when the light with the wavelength λc is incident at the incident angle + θmax, and light on the wavelength λc is on the right side of the drawing with the incident angle −θmax. C12 is shown when the light is incident at.

図1に示すように、本形態の光束径拡大素子10は、1枚の導光板1を有している。光束径拡大素子10において、導光板1は、本発明の「第1導光板」に相当する。導光板1は、屈折率がnのガラスあるいは光学樹脂の平行平板であり、その一方の面1a(第1面)には入射側回折格子11(第1入射側回折格子)が形成され、面1aに平行に対向する面1b(第2面)には出射側回折格子12(第1出射側回折格子)が形成されている。入射側回折格子11では、紙面に向かって垂直方向なx方向に延在する格子11aがy方向に複数、等間隔に形成されている。出射側回折格子12では、紙面に向かって垂直方向なx方向に延在する格子12aがy方向に複数、等間隔に形成されている。   As shown in FIG. 1, the luminous flux diameter expanding element 10 of this embodiment has a single light guide plate 1. In the light beam diameter expanding element 10, the light guide plate 1 corresponds to a “first light guide plate” of the present invention. The light guide plate 1 is a parallel plate of glass or optical resin having a refractive index of n, and an incident side diffraction grating 11 (first incident side diffraction grating) is formed on one surface 1a (first surface) thereof. An exit side diffraction grating 12 (first exit side diffraction grating) is formed on a surface 1b (second surface) facing in parallel with 1a. In the incident side diffraction grating 11, a plurality of gratings 11a extending in the x direction perpendicular to the paper surface are formed at equal intervals in the y direction. In the output side diffraction grating 12, a plurality of gratings 12a extending in the x direction perpendicular to the paper surface are formed at equal intervals in the y direction.

かかる光束径拡大素子10において、入射側回折格子11と出射側回折格子12とは光軸L方向で重なる領域に形成されている。但し、出射側回折格子12は、入射側回折格子11より広い領域に形成されており、出射側回折格子12は、入射側回折格子11が形成されている領域より、y方向の互いに逆方向に向けて広い領域にわたって形成されている。従って、光束径拡大素子10は、入射側回折格子11から入射した光線L10(第1光線)を回折して導光板1内をy方向の互いに逆方向に伝播させ、出射側回折格子12から出射することができる。従って、光束径拡大素子10は、光線L10からなる画像光のy方向の瞳拡大を行うことができる。ここでいう瞳拡大とは、入射光の入射角と同一角度で異なる位置から出射される複数の出射光を得ることであり、角度を保存した光線の複製である。   In the light beam diameter enlarging element 10, the incident side diffraction grating 11 and the emission side diffraction grating 12 are formed in a region overlapping in the optical axis L direction. However, the exit-side diffraction grating 12 is formed in a wider area than the incident-side diffraction grating 11, and the exit-side diffraction grating 12 is opposite to the y direction from the area where the entrance-side diffraction grating 11 is formed. It is formed over a wide area. Therefore, the light beam diameter enlarging element 10 diffracts the light beam L10 (first light beam) incident from the incident side diffraction grating 11 and propagates it in the light guide plate 1 in opposite directions in the y direction, and exits from the output side diffraction grating 12. can do. Therefore, the beam diameter expanding element 10 can perform pupil expansion in the y direction of the image light composed of the light beam L10. The term “pupil enlargement” as used herein refers to obtaining a plurality of outgoing lights that are emitted from different positions at the same angle as the incident angle of the incoming light, and is a reproduction of a light beam that preserves the angle.

本形態において、入射側回折格子11および出射側回折格子12は表面レリーフ型回折格子であり、入射側回折格子11と出射側回折格子12とにおいて、格子方向および格子周期は同一である。入射側回折格子11と出射側回折格子12とにおいて、格子周期Pを同一とすることにより、入射角と同一角度で出射する回折光を得ることができる。   In this embodiment, the incident side diffraction grating 11 and the emission side diffraction grating 12 are surface relief type diffraction gratings, and the incident side diffraction grating 11 and the emission side diffraction grating 12 have the same grating direction and grating period. By making the grating period P the same in the incident side diffraction grating 11 and the emission side diffraction grating 12, diffracted light emitted at the same angle as the incident angle can be obtained.

ここで、画面の大きさを規定する最大画角が半角でθmaxとすると、入射側回折格子11に入射する画像の入射光の入射角は−θmaxから+θmaxの範囲にある。また、本形態では、回折光のうち、回折効率を高くできる+1次回折光L+1および−1次回折光L−1に注目する。なお、0次回折光Lも生じるが、瞳拡大に寄与しないので、0次回折効率は低くすることが好ましい。 Here, assuming that the maximum field angle that defines the size of the screen is a half angle and θmax, the incident angle of the incident light of the image incident on the incident side diffraction grating 11 is in the range of −θmax to + θmax. In this embodiment, attention is paid to + 1st order diffracted light L + 1 and −1st order diffracted light L− 1 that can increase the diffraction efficiency among the diffracted lights. Note that 0 is order diffracted light L 0 is also occurring, it does not contribute to the pupil expander, 0 order diffraction efficiency is preferably low.

本形態の光束径拡大素子10は、入射角と同一角度で出射する複数の光を両方向で生成する。そのために、+y方向に伝播する+1次回折光L+1と、−y方向に伝播する−1次回折光L−1の両方が導光板1内を全反射で伝播する必要がある。 The light beam diameter enlarging element 10 of this embodiment generates a plurality of lights emitted at the same angle as the incident angle in both directions. Therefore, both the + 1st order diffracted light L + 1 propagating in the + y direction and the −1st order diffracted light L− 1 propagating in the −y direction need to propagate through the light guide plate 1 with total reflection.

導光板1内を全反射で伝播するには、+1次回折光L+1と−次回折光L−1の回折角がいずれも導光板1の屈折率nで決まる臨界角より大きくなければならない。場合C11で示すように、+θmaxの入射角で入射する光線L10において回折角が小さくなるのは、−1次回折光L−1の方である。従って、−1次回折光L−1の回折角θ−1の絶対値が臨界角θcより大きければ、+1次回折光L+1の回折角θ+1は、臨界角θcより必ず大きくなる。 In order to propagate through the light guide plate 1 by total reflection, the diffraction angles of the + 1st order diffracted light L + 1 and the −th order diffracted light L− 1 must be larger than the critical angle determined by the refractive index n of the light guide plate 1. As indicated by the case C11, the diffracted light beam L10 having an incident angle of + θmax has a smaller diffraction angle in the -1st order diffracted light L- 1 . Therefore, if the absolute value of the diffraction angle θ −1 of the −1st order diffracted light L −1 is larger than the critical angle θc, the diffraction angle θ + 1 of the + 1st order diffracted light L + 1 is necessarily larger than the critical angle θc.

また、格子周期Pを一定とした場合、回折角は入射する光の波長に依存し、波長が短い程、回折角は小さい。従って、導光板1を伝播させる画像光のスペクトルにおいて、画像表示に有効に寄与する一番短い波長λcに対する−1次回折光L−1の回折角θ−1の絶対値が臨界角θcより大きければ、画像光のスペクトルの全域にわたって、+y方向および−y方向の両方向に光を伝播させることができる。 When the grating period P is constant, the diffraction angle depends on the wavelength of incident light, and the shorter the wavelength, the smaller the diffraction angle. Therefore, in the spectrum of the image light propagating through the light guide plate 1, if the absolute value of the diffraction angle θ −1 of the −1st order diffracted light L −1 with respect to the shortest wavelength λc that effectively contributes to image display is larger than the critical angle θc. The light can be propagated in both the + y direction and the −y direction over the entire spectrum of the image light.

画像光の入射角が−θmaxとなった場合C12において、入射角を+θmaxから−θmaxに変化させると、−1次回折光L−1の回折角θ−1は、負の方向に次第に大きくなり、全反射による−y方向への伝播が維持される。これに対して、+1次回折光L+1の回折角θ+1は徐々に小さくなるが、導光板1と回折格子の配置が光軸Lに対して対称であるため、場合C11を上下反転させれば分かるように、入射角が−θmaxになっても、回折角θ+1は、臨界角θcより大きい。従って、全反射による+y方向への伝播が維持される。 When the incident angle of the image light becomes −θmax, in C12, when the incident angle is changed from + θmax to −θmax, the diffraction angle θ− 1 of the −1st order diffracted light L− 1 gradually increases in the negative direction, Propagation in the -y direction due to total reflection is maintained. On the other hand, the diffraction angle θ +1 of the + 1st order diffracted light L + 1 gradually decreases, but the arrangement of the light guide plate 1 and the diffraction grating is symmetric with respect to the optical axis L. As can be seen, even when the incident angle becomes −θmax, the diffraction angle θ + 1 is larger than the critical angle θc. Therefore, propagation in the + y direction due to total reflection is maintained.

以下に、+y方向と−y方向の両方向に全反射で伝播できる条件を式で説明する。まず、入射光(光線L10)の波長をλcとし、入射角をθmaxとし、導光板1の屈折率をnとし、導光板1内での−1次回折光L−1の回折角をθ−1としたとき、回折角θ−1が臨界角θcと一致する格子周期Pは、以下の式で表される。
P=λc/[sin(θmax)+1]・・式(1)
In the following, a condition that can be propagated by total reflection in both the + y direction and the -y direction will be described with equations. First, the wavelength of incident light (light ray L10) is λc, the incident angle is θmax, the refractive index of the light guide plate 1 is n, and the diffraction angle of the −1st order diffracted light L −1 in the light guide plate 1 is θ −1. , The grating period P at which the diffraction angle θ −1 coincides with the critical angle θc is expressed by the following equation.
P = λc / [sin (θmax) +1] (1)

ここで、格子周期Pが式(1)で表される値より小さければ、−1次回折光L−1の回折角θ−1は、臨界角θcより大きくなる。従って、入射側回折格子11に入射する画像光(光線L10)を+y方向および−y方向の両方に全反射で伝播させるためには、以下の条件式を満たせばよい。
P≦λc/[sin(θmax)+1]・・式(2)
Here, if the grating period P is smaller than the value represented by the formula (1), the diffraction angle θ −1 of the −1st order diffracted light L −1 becomes larger than the critical angle θc. Therefore, in order to propagate the image light (light ray L10) incident on the incident side diffraction grating 11 in both the + y direction and the -y direction by total reflection, the following conditional expression should be satisfied.
P ≦ λc / [sin (θmax) +1]... (2)

一方、格子周期Pが決まっているとき、入射側回折格子11による回折角θm(mは回折次数)は、入射波長をλとし、入射角をθiとすると、回折角θmは、以下の式で求められる。
θm=sin−1{[sin(θi)+m(λ/P)]/N}・・式(3)
On the other hand, when the grating period P is determined, the diffraction angle θm (m is the diffraction order) by the incident-side diffraction grating 11 is λ and the incident angle is θi. Desired.
θm = sin −1 {[sin (θi) + m (λ / P)] / N} (3)

図1では、画像光を線(光線L)で表したが、実際には、図2に示すように、画像光L1は、空間的な広がりをもつ光束である。従って、入射側回折格子11が形成されている領域の大きさは、画像光L1の光束の大きさとすることが好ましい。   In FIG. 1, the image light is represented by a line (light ray L), but actually, as shown in FIG. 2, the image light L <b> 1 is a light beam having a spatial spread. Therefore, the size of the region where the incident side diffraction grating 11 is formed is preferably the size of the light beam of the image light L1.

(具体的構成例)
図3は、本発明の実施の形態1に係る光束径拡大素子10の具体的構成例を示す説明図である。なお、図3において、図面に向かって左側には、最短の波長λc(0.46nm)の光が入射した場合C21を示し、図面に向かって右側には、波長λR(0.61nm)の赤色光L(R)、波長λG(0.53nm)の緑色光L(G)、波長λB(0.4747nm)の青色光L(B)が入射した場合C22を示してある。
(Specific configuration example)
FIG. 3 is an explanatory diagram showing a specific configuration example of the light beam diameter expanding element 10 according to Embodiment 1 of the present invention. In FIG. 3, C21 is shown on the left side of the drawing when light having the shortest wavelength λc (0.46 nm) is incident, and red on the right side of the drawing is red with the wavelength λR (0.61 nm). C22 is shown when light L (R), green light L (G) with wavelength λG (0.53 nm), and blue light L (B) with wavelength λB (0.4747 nm) are incident.

まず、図3の場合21に基づいて、入射側回折格子11および出射側回折格子12の格子周期を決定する。画像光のスペクトルにおいて画像表示に必要な最短の波長λcを0.46μmとし、最大画角の半角+θmaxを7°とする。導光板1の屈折率nを1.64とすると、臨界角θcは37.6°となる。ここで、導光板1の屈折率nの波長依存性は極めて小さいとする。   First, based on the case 21 of FIG. 3, the grating periods of the incident side diffraction grating 11 and the emission side diffraction grating 12 are determined. In the spectrum of image light, the shortest wavelength λc necessary for image display is 0.46 μm, and the half angle + θmax of the maximum angle of view is 7 °. When the refractive index n of the light guide plate 1 is 1.64, the critical angle θc is 37.6 °. Here, it is assumed that the wavelength dependence of the refractive index n of the light guide plate 1 is extremely small.

−1次回折光L−1の回折角θ−1が臨界角θcとなるように、入射側回折格子11および出射側回折格子12の格子周期Pを求めると、式(1)から、P=0.410μmとなる。かかる入射側回折格子11および出射側回折格子12を備えた導光板1に、波長λR、λG、λBの光が入射した場合C22、入射側回折格子11によって波長λRの赤色光L(R)、波長λGの緑色光L(G)、波長λBの青色光L(B)の入射光の各々において回折光が生じ、かかる回折光は、導光板1内を+y方向および−y方向に伝播し、出射側回折格子12から、7°の出射角で出射される。その際の+1次回折光L+1の回折角θ+1(+1次回折角)および−1次回折光L−1の回折角θ−1(−1次回折角)を表1に示す。 When the grating period P of the incident side diffraction grating 11 and the emission side diffraction grating 12 is determined so that the diffraction angle θ −1 of the −1st order diffracted light L −1 becomes the critical angle θc, P = 0 from Equation (1). 410 μm. When light having wavelengths λR, λG, and λB is incident on the light guide plate 1 including the incident side diffraction grating 11 and the output side diffraction grating 12, the red light L (R) having the wavelength λR is incident on the incident side diffraction grating 11. Diffracted light is generated in each of the incident light of the green light L (G) having the wavelength λG and the blue light L (B) having the wavelength λB. The diffracted light propagates in the light guide plate 1 in the + y direction and the −y direction, The light is emitted from the emission side diffraction grating 12 at an emission angle of 7 °. Indicates that time +1 diffraction angle theta +1 order diffracted light L +1 (+1 order diffraction) and -1 diffraction angle theta -1 order diffracted light L-1 a (-1 order diffraction) in Table 1.

Figure 0006597197
Figure 0006597197

表1に示すように、いずれの波長λR、λG、λBの光においても、回折角の絶対値が臨界角37.6を超えるので、入射光(第1光線)を導光板1の+y方向および−y方向の両方に向けて全反射で伝播させ、出射側回折格子12から出射することができる。   As shown in Table 1, since the absolute value of the diffraction angle exceeds the critical angle 37.6 in the light of any wavelength λR, λG, λB, the incident light (first light beam) is converted into the + y direction of the light guide plate 1 and It can be propagated by total reflection toward both of the −y directions and can be emitted from the exit-side diffraction grating 12.

(本形態の主な効果)
このように、本形態の光束径拡大素子10では、入射側回折格子11で回折した光線L10の+1次回折光L+1および−1次回折光L−1を導光板1のy方向(第1方向)の互いに逆方向に伝播させて出射側回折格子12から出射するため、光束径は、十分に拡大された状態で出射側回折格子12から出射される。また、入射側回折格子11と出射側回折格子12とは光軸L方向で重なる領域に形成されているので、光束径拡大素子の大きさが大きくなることを抑制できる。また、光線L10の+1次回折光L+1の回折角θ+1および−1次回折光L−1の回折角θ−1が、導光板1の屈折率で規定される臨界角θc以上の角度である。このため、+1次回折光L+1および−1次回折光L−1が導光板1内を全反射の状態で伝播して出射側回折格子12から出射されるので、光の利用効率が高い。
(Main effects of this form)
Thus, the beam diameter enlarging device 10 of the present embodiment, + 1st-order diffracted light L +1 and -1 order diffracted light L -1 light guide plate 1 in the y direction of a light ray L10 diffracted at the incident side grating 11 (first direction) Are propagated in the opposite directions of each other and emitted from the exit side diffraction grating 12, so that the beam diameter is emitted from the exit side diffraction grating 12 in a sufficiently enlarged state. In addition, since the incident-side diffraction grating 11 and the emission-side diffraction grating 12 are formed in a region overlapping in the optical axis L direction, it is possible to suppress an increase in the size of the light beam diameter expanding element. Further, the diffraction angle θ +1 of the + 1st order diffracted light L +1 of the light beam L 10 and the diffraction angle θ −1 of the −1st order diffracted light L −1 are angles greater than the critical angle θc defined by the refractive index of the light guide plate 1. For this reason, since the + 1st order diffracted light L + 1 and the −1st order diffracted light L- 1 propagate in the light guide plate 1 in a state of total reflection and are emitted from the exit side diffraction grating 12, the light utilization efficiency is high.

[実施の形態2]
(光束径拡大素子10の構成)
図4は、本発明の実施の形態2に係る光束径拡大素子10の一態様を示す説明図である。なお、図4において、図面に向かって左側には、青色光L(B)の光束径が拡大される様子C31を示し、図面に向かって右側には、赤色光L(R)の光束径が拡大される様子C33を示し、図面に向かって中央には、緑色光L(G)の光束径が拡大される様子C32を示してある。図5は、図4に示す光束径拡大素子10に用いた青色用の導光板1(B)に青色光L(B)が入射した場合の説明図である。図6は、図4に示す光束径拡大素子10に用いた緑色用の導光板1(G)に緑色光L(G)が入射した場合の説明図である。図7は、図4に示す光束径拡大素子10に用いた赤色用の導光板1(R)に赤色光L(R)が入射した場合の説明図である。なお、図5、図6および図7において、図面に向かって左側には、各スペクトルの最短の波長の光が入射した場合C41(R)、C41(G)、C41(B)を示し、図面に向かって中央には、各スペクトルの最長の波長の光が入射した場合C42(R)、C42(G)、C42(B)を示し、図面に向かって右側には、各スペクトルの最短の波長の光と最長の波長の光とが入射した場合C43(R)、C43(G)、C43(B)を示してある。
[Embodiment 2]
(Configuration of the beam diameter expanding element 10)
FIG. 4 is an explanatory view showing an aspect of the light beam diameter expanding element 10 according to Embodiment 2 of the present invention. In FIG. 4, the left side of the drawing shows a state C31 in which the light beam diameter of the blue light L (B) is enlarged, and the right side of the drawing shows the light beam diameter of the red light L (R). A state C33 of enlargement is shown, and a state C32 of the light beam diameter of the green light L (G) is shown in the center of the drawing. FIG. 5 is an explanatory diagram when the blue light L (B) is incident on the blue light guide plate 1 (B) used in the light beam diameter expanding element 10 shown in FIG. FIG. 6 is an explanatory diagram when the green light L (G) is incident on the green light guide plate 1 (G) used in the light beam diameter expanding element 10 shown in FIG. FIG. 7 is an explanatory diagram when the red light L (R) is incident on the red light guide plate 1 (R) used in the light beam diameter enlarging element 10 shown in FIG. 5, 6, and 7, C41 (R), C41 (G), and C41 (B) are shown on the left side of the drawing when light having the shortest wavelength of each spectrum is incident. C42 (R), C42 (G), and C42 (B) are shown in the center toward the center when light having the longest wavelength of each spectrum is incident. C43 (R), C43 (G), and C43 (B) are shown in the case where the light with the longest wavelength is incident.

図4に示すように、本形態の光束径拡大素子10では、画像光の入射側から出射側に向かって、青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)が光軸Lに沿って順に配置されている。すなわち、各導光板1(R)、1(G)、1(B)は、対応する光の波長が短いものから長いものの順に配置されている。本形態において、青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)は各々、図1〜図3を参照して説明した導光板と略同様な構成を有している。また、導光板1(B)、1(G)、1(R)は厚さが同一である。   As shown in FIG. 4, in the light beam diameter enlarging element 10 of the present embodiment, the blue light guide plate 1 (B), the green light guide plate 1 (G), Red light guide plates 1 (R) are sequentially arranged along the optical axis L. That is, each light guide plate 1 (R), 1 (G), 1 (B) is arranged in order from the shortest to the longest wavelength of the corresponding light. In this embodiment, the blue light guide plate 1 (B), the green light guide plate 1 (G), and the red light guide plate 1 (R) are each described with reference to FIGS. And substantially the same configuration. The light guide plates 1 (B), 1 (G), and 1 (R) have the same thickness.

かかる構成の光束径拡大素子10では、画像光に含まれる青色光L(B)、緑色光L(G)、および赤色光L(R)は、青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)に順に透過して出射される。   In the light beam diameter enlarging element 10 having such a configuration, the blue light L (B), the green light L (G), and the red light L (R) included in the image light are blue light guide plate 1 (B) and green light. The light guide plate 1 (G) and the red light guide plate 1 (R) are sequentially transmitted and emitted.

本形態の光束径拡大素子10において、導光板1(B)は、一方の面1a(B)と、面1a(B)に平行に対向する他方の面1b(B)とを備えている。面1a(B)には、x方向に格子11a(B)が延在する入射側回折格子11(B)が設けられ、面1b(B)には、x方向に格子12a(B)が延在する出射側回折格子12(B)が設けられている。入射側回折格子11(B)と出射側回折格子12(B)とは、格子方向および格子周期が同一である。   In the light beam diameter expanding element 10 of this embodiment, the light guide plate 1 (B) includes one surface 1 a (B) and the other surface 1 b (B) facing the surface 1 a (B) in parallel. The incident side diffraction grating 11 (B) in which the grating 11a (B) extends in the x direction is provided on the surface 1a (B), and the grating 12a (B) extends in the x direction on the surface 1b (B). The existing exit side diffraction grating 12 (B) is provided. The incident side diffraction grating 11 (B) and the emission side diffraction grating 12 (B) have the same grating direction and grating period.

導光板1(G)は、導光板1(B)の面1b(B)に導光板1(B)とは反対側で平行に対向する面1a(G)と、面1a(G)に導光板1(B)とは反対側で平行に対向する面1b(G)とを備えている。面1a(G)には、x方向に格子11a(G)が延在する入射側回折格子11(G)が設けられ、面1b(G)には、x方向に格子12a(G)が延在する出射側回折格子12(G)が設けられている。入射側回折格子11(G)と出射側回折格子12(G)とは、格子方向および格子周期が同一である。但し、入射側回折格子11(G)および出射側回折格子12(G)は、入射側回折格子11(B)および出射側回折格子12(B)と格子方向が同一であるが、格子周期は相違している。   The light guide plate 1 (G) is guided to the surface 1a (G) facing the surface 1b (B) of the light guide plate 1 (B) in parallel on the opposite side to the light guide plate 1 (B) and to the surface 1a (G). A surface 1b (G) facing in parallel on the opposite side to the optical plate 1 (B) is provided. An incident side diffraction grating 11 (G) in which a grating 11a (G) extends in the x direction is provided on the surface 1a (G), and a grating 12a (G) extends in the x direction on the surface 1b (G). An existing exit side diffraction grating 12 (G) is provided. The incident side diffraction grating 11 (G) and the emission side diffraction grating 12 (G) have the same grating direction and grating period. However, the incident-side diffraction grating 11 (G) and the emission-side diffraction grating 12 (G) have the same grating direction as the incident-side diffraction grating 11 (B) and the emission-side diffraction grating 12 (B), but the grating period is It is different.

導光板1(R)は、導光板1(G)の面1b(G)に導光板1(B)とは反対側で平行に対向する面1a(R)と、面1a(R)に導光板1(B)とは反対側で平行に対向する面1b(R)とを備えている。面1a(R)には、x方向に格子11a(R)が延在する入射側回折格子11(R)が設けられ、面1b(R)には、x方向に格子12a(R)が延在する出射側回折格子12(R)が設けられている。入射側回折格子11(R)と出射側回折格子12(R)とは、格子方向および格子周期が同一である。但し、入射側回折格子11(R)および出射側回折格子12(R)は、入射側回折格子11(B)および出射側回折格子12(B)と格子方向が同一であるが、入射側回折格子11(B)、出射側回折格子12(B)、入射側回折格子11(G)および出射側回折格子12(G)と格子周期が相違している。   The light guide plate 1 (R) is guided to a surface 1a (R) facing the surface 1b (G) of the light guide plate 1 (G) in parallel on the opposite side to the light guide plate 1 (B) and to the surface 1a (R). A surface 1b (R) facing in parallel on the opposite side to the optical plate 1 (B) is provided. The incident side diffraction grating 11 (R) in which the grating 11a (R) extends in the x direction is provided on the surface 1a (R), and the grating 12a (R) extends in the x direction on the surface 1b (R). An existing exit-side diffraction grating 12 (R) is provided. The incident side diffraction grating 11 (R) and the emission side diffraction grating 12 (R) have the same grating direction and grating period. However, the incident side diffraction grating 11 (R) and the output side diffraction grating 12 (R) have the same grating direction as the incident side diffraction grating 11 (B) and the output side diffraction grating 12 (B), but the incident side diffraction grating The grating period is different from that of the grating 11 (B), the emitting side diffraction grating 12 (B), the incident side diffraction grating 11 (G), and the emitting side diffraction grating 12 (G).

このように構成した光束径拡大素子10において、上記の構成要素は、本発明における構成要素と以下の関係を有している。
導光板1(B)=第1導光板
面1a(B)=第1面
面1b(B)=第2面
入射側回折格子11(B)=第1入射側回折格子
出射側回折格子12(B)=第1出射側回折格子
導光板1(G)=第2導光板
面1a(G)=第3面
面1b(G)=第4面
入射側回折格子11(G)=第2入射側回折格子
出射側回折格子12(G)=第2出射側回折格子
導光板1(R)=第3導光板
面1a(R)=第5面
面1b(R)=第6面
入射側回折格子11(R)=第3入射側回折格子
出射側回折格子12(R)=第3出射側回折格子
青色光L(B)=第1光線
緑色光L(G)=第2光線
赤色光L(R)=第3光線
In the light beam diameter enlarging element 10 configured as described above, the above-described constituent elements have the following relationship with the constituent elements in the present invention.
Light guide plate 1 (B) = first light guide plate surface 1 a (B) = first surface surface 1 b (B) = second surface incident side diffraction grating 11 (B) = first incident side diffraction grating output side diffraction grating 12 ( B) = first exit side diffraction grating Light guide plate 1 (G) = second light guide plate surface 1 a (G) = third surface surface 1 b (G) = fourth surface incident side diffraction grating 11 (G) = second incidence Side diffraction grating Output side diffraction grating 12 (G) = second output side diffraction grating Light guide plate 1 (R) = third light guide plate Surface 1 a (R) = Fifth surface Surface 1 b (R) = Sixth surface Incident side diffraction Grating 11 (R) = third incident side diffraction grating Emission side diffraction grating 12 (R) = third emission side diffraction grating Blue light L (B) = first light beam Green light L (G) = second light beam red light L (R) = third light ray

本形態の光束径拡大素子10において、導光板1(B)、1(G)、1(R)に対する入射角、入射する光の色、格子周期、対応する色光の最短波長、対応する色光の最長波長、+1次回折角、および−1次回折角は、表2に示す通りである。   In the light beam diameter enlarging element 10 of this embodiment, the incident angle with respect to the light guide plates 1 (B), 1 (G), 1 (R), the color of incident light, the grating period, the shortest wavelength of the corresponding color light, and the corresponding color light The longest wavelength, the + 1st order diffraction angle, and the −1st order diffraction angle are as shown in Table 2.

Figure 0006597197
Figure 0006597197

本形態では、表2から分かるように、入射側回折格子11(B)および出射側回折格子12(B)の格子周期P1と、入射側回折格子11(G)および出射側回折格子12(G)の格子周期P2と、入射側回折格子11(R)および出射側回折格子12(R)の格子周期P3は、
以下の関係を満たしている。
P1<P2<P3
In this embodiment, as can be seen from Table 2, the grating period P1 of the incident side diffraction grating 11 (B) and the emission side diffraction grating 12 (B), and the incidence side diffraction grating 11 (G) and the emission side diffraction grating 12 (G ) And the grating period P3 of the incident side diffraction grating 11 (R) and the emission side diffraction grating 12 (R) are:
The following relationship is satisfied.
P1 <P2 <P3

また、後述するように、入射側回折格子11(B)の格子高さH11、出射側回折格子12(B)の格子高さH12、入射側回折格子11(G)の格子高さH21、出射側回折格子12(G)の格子高さH22、入射側回折格子11(R)の格子高さH31、出射側回折格子12(R)の格子高さH32は、以下の関係を満たしている。
H11<H21<H31
H12<H11
H22<H21
H32<H31
H12<H11<H22<H21<H32<H31
Further, as described later, the grating height H11 of the incident side diffraction grating 11 (B), the grating height H12 of the emission side diffraction grating 12 (B), the grating height H21 of the incident side diffraction grating 11 (G), and the emission The grating height H22 of the side diffraction grating 12 (G), the grating height H31 of the incident side diffraction grating 11 (R), and the grating height H32 of the emission side diffraction grating 12 (R) satisfy the following relationship.
H11 <H21 <H31
H12 <H11
H22 <H21
H32 <H31
H12 <H11 <H22 <H21 <H32 <H31

本形態の光束径拡大素子10において、図4および図5に示すように、青色用の導光板1(B)は、入射角が±7°の範囲の青色の波長帯域の光(青色光(L(B))に対する+1次回折光L+1および−1次回折光L−1のいずれもが導光板1(B)の臨界角より大きな角度で回折され、入射位置から+y方向および−y方向の両方向に回折光が導光板1(B)内を伝播するように、回折格子の格子周期P1が設定されている。 In the light beam diameter enlarging element 10 of the present embodiment, as shown in FIGS. 4 and 5, the blue light guide plate 1 (B) has a blue wavelength band (blue light (with an incident angle of ± 7 °)). L (B) any of the + 1st order diffracted light L +1 and -1 order diffracted light L -1 for) also is diffracted at an angle greater than the critical angle of the light guide plate 1 (B), both from the incident position + y direction and -y direction The grating period P1 of the diffraction grating is set so that the diffracted light propagates through the light guide plate 1 (B).

より具体的には、青色用の導光板1(B)の入射側回折格子11(B)および出射側回折格子12(B)の格子周期P1は、青色光L(B)の波長帯域における最短波長(λc=0.45μm)の1次回折角が導光板1(B)(屈折率=1.64)の臨界角(37.6°)に等しくなるように、0.401μmに設定されている。図5には、青色光L(B)の波長帯域における最短波長(λcb=0.45μm)が青色用の導光板に入射した場合C41(B)の光線と、青色光L(B)の波長帯域における最長波長(0.47μm)が青色用の導光板1(B)に入射した場合C42(B)の光線とを示してある。また、図5には、青色光L(B)の波長帯域における最短波長(λcb=0.45μm)が青色用の導光板1(B)に入射した場合C41の光線と、青色光L(B)の波長帯域における最長波長(0.47μm)が青色用の導光板1(B)に入射した場合C42の光線とを重ねた場合C43(B)の様子を示してある。図5に示すように、青色光L(B)の波長帯域における最短波長と最長波長との間には0.02μmの差しかないため、両者の回折角の差が小さい。それ故、両者の光の出射位置の差は小さい。   More specifically, the grating period P1 of the incident side diffraction grating 11 (B) and the emission side diffraction grating 12 (B) of the blue light guide plate 1 (B) is the shortest in the wavelength band of the blue light L (B). The first-order diffraction angle of the wavelength (λc = 0.45 μm) is set to 0.401 μm so as to be equal to the critical angle (37.6 °) of the light guide plate 1 (B) (refractive index = 1.64). . In FIG. 5, when the shortest wavelength (λcb = 0.45 μm) in the wavelength band of the blue light L (B) is incident on the blue light guide plate, the light beam of C41 (B) and the wavelength of the blue light L (B) When the longest wavelength (0.47 μm) in the band is incident on the light guide plate 1 (B) for blue, the light beam C42 (B) is shown. Further, FIG. 5 shows that when the shortest wavelength (λcb = 0.45 μm) in the wavelength band of the blue light L (B) is incident on the blue light guide plate 1 (B), the light beam C41 and the blue light L (B ) When the longest wavelength (0.47 μm) in the wavelength band is incident on the blue light guide plate 1 (B), the state of C43 (B) is shown when the light beam C42 is overlapped. As shown in FIG. 5, since there is no difference of 0.02 μm between the shortest wavelength and the longest wavelength in the wavelength band of the blue light L (B), the difference between the diffraction angles is small. Therefore, the difference between the light emission positions of the two is small.

また、図5に示すように、青色用の導光板1(B)の入射側回折格子11(B)の格子高さH11は、青色光L(B)の波長帯域における最短波長(λcb=0.45μm)から最長波長(0.47μm)の範囲で1次回折効率が高くなるように設定されている。また、入射側回折格子11(B)の格子高さH11は、垂直に入射する波長0.46μmの青色光L(B)に対して1次回折効率が高くなり、垂直に入射する緑色光L(G)や赤色光L(R)に対する回折効率が低くなる高さとしてある。本形態において、入射側回折格子11(B)の格子高さH11は、例えば、約0.57μmである。また、出射側回折格子12(B)では、導光板1(B)を伝播してきた光を複数回に分けて出射させる。このため、出射側回折格子12(B)において1次回折効率が高いと、1回目の出射で多くの光が取り出され、次回以降、光量が大きく減衰してしまう。従って、出射側回折格子12(B)の1次回折効率は、入射側回折格子11(B)の1次回折効率より低いことが好ましい。それ故、本形態において、出射側回折格子12の格子高さH12は、約0.57μmより低い。よって、出射側回折格子12(B)から出射される光量分布を適正化することができる。   Further, as shown in FIG. 5, the grating height H11 of the incident side diffraction grating 11 (B) of the blue light guide plate 1 (B) is the shortest wavelength (λcb = 0) in the wavelength band of the blue light L (B). .45 μm) to the longest wavelength (0.47 μm), the first-order diffraction efficiency is set to be high. Further, the grating height H11 of the incident side diffraction grating 11 (B) has a higher first-order diffraction efficiency with respect to the blue light L (B) having a wavelength of 0.46 μm incident vertically, and the green light L incident vertically. The height is such that the diffraction efficiency for (G) and red light L (R) decreases. In this embodiment, the grating height H11 of the incident side diffraction grating 11 (B) is, for example, about 0.57 μm. Moreover, in the output side diffraction grating 12 (B), the light which has propagated through the light guide plate 1 (B) is emitted in a plurality of times. For this reason, if the first-order diffraction efficiency is high in the emission-side diffraction grating 12 (B), a lot of light is extracted by the first emission, and the amount of light is greatly attenuated from the next time. Therefore, the first-order diffraction efficiency of the exit-side diffraction grating 12 (B) is preferably lower than the first-order diffraction efficiency of the incident-side diffraction grating 11 (B). Therefore, in this embodiment, the grating height H12 of the output side diffraction grating 12 is lower than about 0.57 μm. Therefore, it is possible to optimize the light amount distribution emitted from the emission-side diffraction grating 12 (B).

このように構成した青色用の導光板1(B)において、入射側回折格子11(B)と出射側回折格子12(B)とは、格子周期P1が等しいので、導光板1(B)内を全反射で伝播して出射側回折格子12(B)に到達した光線は、入射角と同一角度で出射される。すなわち、入射角と同一角度で出射される光が複製される。なお、青色用の導光板1(B)には、青色光L(B)と同一角度で緑色光L(G)および赤色光L(R)も入射するが、緑色光L(G)および赤色光L(R)は、青色光L(B)より波長が長いので、青色光L(B)より大きな角度で回折される。   In the blue light guide plate 1 (B) configured as described above, the incident-side diffraction grating 11 (B) and the output-side diffraction grating 12 (B) have the same grating period P1, so that the light guide plate 1 (B) The light beam that has propagated through the total reflection and arrives at the output-side diffraction grating 12 (B) is emitted at the same angle as the incident angle. That is, the light emitted at the same angle as the incident angle is duplicated. The blue light guide plate 1 (B) also receives the green light L (G) and the red light L (R) at the same angle as the blue light L (B), but the green light L (G) and the red light. Since the wavelength of the light L (R) is longer than that of the blue light L (B), the light L (R) is diffracted at a larger angle than the blue light L (B).

図4および図6において、青色用の導光板1から出射された青色光L(B)、緑色光L(G)および赤色光L(R)は、青色用の導光板1(B)に対する入射角と同一入射角で、緑色用の導光板1(G)の入射側回折格子11(G)に入射する。緑色用の導光板1(G)は、入射角が±7°の範囲の緑色の波長帯域の光に対する+1次回折光および−1次回折光のいずれもが導光板1(G)の臨界角より大きな角度で回折され、入射位置から+y方向および−y方向の両方向に回折光が導光板1(G)内を伝播するように、回折格子の格子周期P2が設定されている。   4 and 6, the blue light L (B), green light L (G), and red light L (R) emitted from the blue light guide plate 1 are incident on the blue light guide plate 1 (B). It is incident on the incident side diffraction grating 11 (G) of the green light guide plate 1 (G) at the same incident angle as the angle. In the green light guide plate 1 (G), both the + 1st order diffracted light and the −1st order diffracted light with respect to light in the green wavelength band with an incident angle in the range of ± 7 ° are larger than the critical angle of the light guide plate 1 (G). The grating period P2 of the diffraction grating is set so that the light is diffracted at an angle and the diffracted light propagates in the light guide plate 1 (G) in both the + y direction and the −y direction from the incident position.

より具体的には、緑色用の導光板1(G)の入射側回折格子11(G)および出射側回折格子12(G)の格子周期P2は、緑色光L(G)の波長帯域における最短波長(λcg=0.52μm)の1次回折角が導光板(屈折率=1.64)の臨界角(37.6°)に等しくなるように、0.464μmに設定されている。図6には、緑色光L(G)の波長帯域における最短波長(λcg=0.52μm)が緑色用の導光板1(G)に入射した場合C41(G)の光線と、緑色光L(G)の波長帯域における最長波長(0.54μm)が緑色用の導光板1(G)に入射した場合C42(G)の光線とを示してある。また、図6には、緑色光L(G)の波長帯域における最短波長(λcg=0.52μm)が緑色用の導光板1(G)に入射した場合C41(G)の光線と、緑色光の波長帯域における最長波長(0.54μm)が緑色用の導光板に入射した場合C42(G)の光線とを重ねた場合C43(G)の様子を示してある。図6に示すように、緑色光L(G)の波長帯域における最短波長と最長波長との間には0.02μmの差しかないため、両者の回折角の差が小さい。それ故、両者の光の出射位置の差は小さい。   More specifically, the grating period P2 of the incident side diffraction grating 11 (G) and the emission side diffraction grating 12 (G) of the green light guide plate 1 (G) is the shortest in the wavelength band of the green light L (G). The first diffraction angle of the wavelength (λcg = 0.52 μm) is set to 0.464 μm so as to be equal to the critical angle (37.6 °) of the light guide plate (refractive index = 1.64). In FIG. 6, when the shortest wavelength (λcg = 0.52 μm) in the wavelength band of the green light L (G) is incident on the green light guide plate 1 (G), the light of C41 (G) and the green light L ( When the longest wavelength (0.54 μm) in the wavelength band G) is incident on the green light guide plate 1 (G), the light beam C42 (G) is shown. Further, FIG. 6 shows the light of C41 (G) and the green light when the shortest wavelength (λcg = 0.52 μm) in the wavelength band of the green light L (G) is incident on the green light guide plate 1 (G). When the longest wavelength (0.54 μm) in the wavelength band is incident on the light guide plate for green, the state of C43 (G) is shown when the light of C42 (G) is overlapped. As shown in FIG. 6, since there is no difference of 0.02 μm between the shortest wavelength and the longest wavelength in the wavelength band of the green light L (G), the difference between the diffraction angles is small. Therefore, the difference between the light emission positions of the two is small.

また、図6に示すように、緑色用の導光板1(G)の入射側回折格子11(G)の格子高さH21は、緑色光L(G)の波長帯域における最短波長(λcg=0.52μm)から最長波長(0.54μm)の範囲で1次回折効率が高くなるように設定されている。本形態において、入射側回折格子11(G)の格子高さH21は、垂直に入射する波長0.52μmの緑色光L(G)に対して1次回折効率が高くなり、垂直に入射する青色光L(B)や赤色光L(R)に対する回折効率が低くなる高さとしてある。本形態において、入射側回折格子11(G)の格子高さH21は、例えば、約0.60μmである。また、出射側回折格子の1次回折効率は、入射側回折格子の1次回折効率より低いことが好ましいことから、出射側回折格子12(R)の格子高さH22は、約0.60μmより低い。よって、出射側回折格子12(G)から出射される光量分布を適正化することができる。   As shown in FIG. 6, the grating height H21 of the incident side diffraction grating 11 (G) of the green light guide plate 1 (G) is the shortest wavelength (λcg = 0) in the wavelength band of the green light L (G). .52 μm) to the longest wavelength (0.54 μm), the first-order diffraction efficiency is set to be high. In this embodiment, the grating height H21 of the incident-side diffraction grating 11 (G) has a higher first-order diffraction efficiency for green light L (G) having a wavelength of 0.52 μm that is incident vertically, and blue light that is incident vertically. The diffraction efficiency for light L (B) and red light L (R) is low. In this embodiment, the grating height H21 of the incident side diffraction grating 11 (G) is, for example, about 0.60 μm. In addition, since the first-order diffraction efficiency of the output-side diffraction grating is preferably lower than the first-order diffraction efficiency of the input-side diffraction grating, the grating height H22 of the output-side diffraction grating 12 (R) is about 0.60 μm. Low. Therefore, the light quantity distribution emitted from the emission side diffraction grating 12 (G) can be optimized.

このように構成した緑色用の導光板1(G)において、入射側回折格子11(G)と出射側回折格子12(G)とは、格子周期P2が等しいので、導光板1(G)内を全反射で伝播して出射側回折格子12(G)に到達した光線は、入射角と同一角度で出射される。従って、入射角と同一角度で出射される光が複製される。   In the green light guide plate 1 (G) configured as described above, since the incident side diffraction grating 11 (G) and the output side diffraction grating 12 (G) have the same grating period P2, the light guide plate 1 (G) The light beam that has propagated through the total reflection and arrives at the output-side diffraction grating 12 (G) is emitted at the same angle as the incident angle. Therefore, the light emitted at the same angle as the incident angle is duplicated.

図4および図7において、緑色用の導光板1(B)から出射された青色光L(B)、緑色光L(G)および赤色光L(R)は、青色用の導光板1(B)に対する入射角と同一入射角で、赤色用の導光板1(R)の入射側回折格子11(R)に入射する。赤色用の導光板1(R)は、入射角が±7°の範囲の赤色の波長帯域の光に対する+1次回折光および−1次回折光のいずれもが導光板1(R)の臨界角より大きな角度で回折され、入射位置から+y方向および−y方向の両方向に回折光が導光板1(R)内を伝播するように、回折格子の格子周期が設定されている。   4 and 7, the blue light L (B), the green light L (G), and the red light L (R) emitted from the green light guide plate 1 (B) are blue light guide plate 1 (B ) With respect to the incident side diffraction grating 11 (R) of the red light guide plate 1 (R). In the red light guide plate 1 (R), both the + 1st order diffracted light and the −1st order diffracted light with respect to light in the red wavelength band with an incident angle in the range of ± 7 ° are larger than the critical angle of the light guide plate 1 (R). The grating period of the diffraction grating is set so that the light is diffracted at an angle and diffracted light propagates in the light guide plate 1 (R) in both the + y direction and the −y direction from the incident position.

より具体的には、赤色用の導光板1(R)の入射側回折格子11(R)および出射側回折格子12(R)の格子周期P3は、赤色光L(R)の波長帯域における最短波長(λcr=0.60μm)の1次回折角が導光板1(R)(屈折率=1.64)の臨界角(37.6°)に等しくなるように、0.535μmに設定されている。図7には、赤色光L(R)の波長帯域における最短波長(λcr=0.60μm)が赤色用の導光板1(R)に入射した場合C41(R)の光線と、赤色光L(R)の波長帯域における最長波長(0.62μm)が赤色用の導光板1(R)に入射した場合C42(R)の光線とを示してある。また、図7には、赤色光L(R)の波長帯域における最短波長(λcr=0.60μm)が赤色用の導光板1(R)に入射した場合C41(R)の光線と、赤色光L(R)の波長帯域における最長波長(0.62μm)が赤色用の導光板1(R)に入射した場合C42(R)の光線とを重ねた場合C43(R)の様子を示してある。図6に示すように、赤色光L(R)の波長帯域における最短波長と最長波長との間には0.02μmの差しかないため、両者の回折角の差が小さい。それ故、両者の光の出射位置の差は小さい。   More specifically, the grating period P3 of the incident side diffraction grating 11 (R) and the emission side diffraction grating 12 (R) of the red light guide plate 1 (R) is the shortest in the wavelength band of the red light L (R). The first-order diffraction angle of the wavelength (λcr = 0.60 μm) is set to 0.535 μm so as to be equal to the critical angle (37.6 °) of the light guide plate 1 (R) (refractive index = 1.64). . In FIG. 7, when the shortest wavelength (λcr = 0.60 μm) in the wavelength band of the red light L (R) is incident on the red light guide plate 1 (R), the light beam C41 (R) and the red light L ( When the longest wavelength (0.62 μm) in the wavelength band R) is incident on the red light guide plate 1 (R), the light beam C42 (R) is shown. Further, FIG. 7 shows the light of C41 (R) and the red light when the shortest wavelength (λcr = 0.60 μm) in the wavelength band of the red light L (R) is incident on the red light guide plate 1 (R). When the longest wavelength (0.62 μm) in the wavelength band of L (R) is incident on the red light guide plate 1 (R), the state of C43 (R) is shown when the light of C42 (R) is superimposed. . As shown in FIG. 6, since there is no difference of 0.02 μm between the shortest wavelength and the longest wavelength in the wavelength band of the red light L (R), the difference between the diffraction angles is small. Therefore, the difference between the light emission positions of the two is small.

また、赤色用の導光板1(R)の入射側回折格子11(R)の格子高さH31は、赤色光L(R)の波長帯域における最短波長(λcr=0.60μm)から最長波長(0.62μm)の範囲で1次回折効率が高くなるように設定されている。本形態において、入射側回折格子11(R)の格子高さH31は、垂直に入射する波長0.60μmの赤色光に対して1次回折効率が高くなり、垂直に入射する青色光や緑色光に対する回折効率が低くなる高さとしてある。本形態において、入射側回折格子11(R)の格子高さH31は、約0.70μmである。また、出射側回折格子12(R)の1次回折効率は、入射側回折格子11(R)の1次回折効率より低いことが好ましいことから、出射側回折格子12(R)の格子高さH32は、約0.70μmより低い。よって、出射側回折格子12(R)から出射される光量分布を適正化することができる。   Further, the grating height H31 of the incident side diffraction grating 11 (R) of the red light guide plate 1 (R) is from the shortest wavelength (λcr = 0.60 μm) to the longest wavelength in the wavelength band of the red light L (R). The first-order diffraction efficiency is set to be high in the range of 0.62 μm). In this embodiment, the grating height H31 of the incident-side diffraction grating 11 (R) has a higher first-order diffraction efficiency for red light having a wavelength of 0.60 μm that is incident vertically, and blue light or green light that is incident vertically. The height at which the diffraction efficiency with respect to is low. In this embodiment, the grating height H31 of the incident side diffraction grating 11 (R) is about 0.70 μm. Further, since the first-order diffraction efficiency of the exit-side diffraction grating 12 (R) is preferably lower than the first-order diffraction efficiency of the entrance-side diffraction grating 11 (R), the grating height of the exit-side diffraction grating 12 (R) H32 is lower than about 0.70 μm. Therefore, it is possible to optimize the light amount distribution emitted from the emission side diffraction grating 12 (R).

このように構成した赤色用の導光板1(R)において、入射側回折格子11(R)と出射側回折格子12(R)とは、格子周期P3が等しいので、導光板1(R)内を全反射で伝播して出射側回折格子12(R)に到達した光線は、入射角と同一角度で出射される。従って、入射角と同一角度で出射される光が複製される。その際、赤色用の導光板1(R)の回折格子は、赤色光L(R)の波長で回折効率が高くなるように格子高さが設定されているので、青色光L(B)および緑色光(LG)に対する回折効率が低い。それ故、不要な回折光の影響を抑制することができる。   In the red light guide plate 1 (R) configured as described above, the incident side diffraction grating 11 (R) and the output side diffraction grating 12 (R) have the same grating period P3. Then, the light beam that has propagated through the total reflection and reaches the output-side diffraction grating 12 (R) is emitted at the same angle as the incident angle. Therefore, the light emitted at the same angle as the incident angle is duplicated. At that time, the diffraction grating of the red light guide plate 1 (R) is set so that the diffraction efficiency becomes high at the wavelength of the red light L (R), so the blue light L (B) and Low diffraction efficiency for green light (LG). Therefore, the influence of unnecessary diffracted light can be suppressed.

本形態の光束径拡大素子10において、青色用の導光板1(B)から出射した青色光L(B)、緑色光L(G)および赤色光L(R)は、緑色用の導光板1(G)および赤色用の導光板1(R)に順次、入射し、これらの導光板に設けられた回折格子によって回折される。また、緑色用の導光板1(G)から出射した青色光L(B)、緑色光L(G)および赤色光L(R)は、赤色用の導光板1(R)および赤色用の導光板1(R)に入射し、これらの導光板に設けられた回折格子によって回折される。その際、緑色用の導光板1(G)および赤色用の導光板1(R)では、必要な角度以外の不要な回折光を出射することになる。このような場合でも、不要な回折光の回折角が7°より十分に大きい場合、後段で遮蔽あるいは吸収することが可能である。   In the light beam diameter expanding element 10 of this embodiment, the blue light L (B), the green light L (G), and the red light L (R) emitted from the blue light guide plate 1 (B) are emitted from the green light guide plate 1. (G) and red light guide plate 1 (R) are sequentially incident and diffracted by the diffraction grating provided on these light guide plates. The blue light L (B), green light L (G), and red light L (R) emitted from the green light guide plate 1 (G) are red light guide plate 1 (R) and red light guide. The light enters the optical plate 1 (R) and is diffracted by the diffraction grating provided on these light guide plates. At that time, the green light guide plate 1 (G) and the red light guide plate 1 (R) emit unnecessary diffracted light other than the required angle. Even in such a case, if the diffraction angle of unnecessary diffracted light is sufficiently larger than 7 °, it can be shielded or absorbed later.

(本形態の主な効果)
以上説明したように、本形態の光束径拡大素子10では、導光板1(B)、1(G)、1(R)が各々、実施の形態1で説明した構成を有しているため、光束径が、十分に拡大された状態で出射される。従って、光束径拡大素子の大きさが大きくなることを抑制でき、光の利用効率が高い。また、青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)において、格子周期を上記のように設定したため、各導光板1(B)、1(G)、1(R)において導光板内を伝播する光線の角度を同一に設定することができる。従って、導光板1(B)、1(G)、1(Rの厚さが同一であれば、光束径拡大素子から出射される青色光L(B)、緑色光L(G)、および赤色光L(R)における各光線の間隔を同一にできるので、各色の出射光の光量分布を揃えることができる。従って、出射光束内における色ムラの発生を抑制することができる。また、各導光板1(R)、1(G)、1(B)が、対応する光の波長が短いものから長いものの順に配置されているため、不要な回折光の発生を抑制することができる。
(Main effects of this form)
As described above, in the light beam diameter enlarging element 10 of the present embodiment, the light guide plates 1 (B), 1 (G), and 1 (R) each have the configuration described in the first embodiment. The light beam diameter is emitted in a sufficiently expanded state. Therefore, it is possible to suppress an increase in the size of the light beam diameter expanding element, and the light use efficiency is high. In addition, in the blue light guide plate 1 (B), the green light guide plate 1 (G), and the red light guide plate 1 (R), the lattice period is set as described above, so that each light guide plate 1 (B ) In 1 (G) and 1 (R), the angle of the light beam propagating in the light guide plate can be set to be the same. Therefore, if the light guide plates 1 (B), 1 (G), and 1 (R have the same thickness, the blue light L (B), the green light L (G), and the red light emitted from the light beam diameter expanding element Since the intervals between the light beams in the light L (R) can be made the same, it is possible to make the light quantity distribution of the emitted light of each color uniform, thus suppressing the occurrence of color unevenness in the emitted light beam. Since the optical plates 1 (R), 1 (G), and 1 (B) are arranged in the order of the corresponding wavelengths of light from shortest to longest, generation of unnecessary diffracted light can be suppressed.

なお、青色光、緑色光および赤色光において、0.02μmのスペクトル範囲は、例えば。後述する液晶装置と光源であるLEDとの間にバンドパスフィルターを挿入することによって実現することができる。また、有機エレクトロルミネッセンス装置を用いた場合、上記のスペクトル範囲は、有機エレクトロルミネッセンス素子に微少光共振器構造を設けることによって実現することができる。   In addition, in blue light, green light, and red light, the spectral range of 0.02 μm is, for example. This can be realized by inserting a band-pass filter between a liquid crystal device described later and an LED as a light source. When an organic electroluminescence device is used, the above spectral range can be realized by providing a micro optical resonator structure in the organic electroluminescence element.

[実施の形態3]
図8は、本発明の実施の形態3に係る光束径拡大素子10の一態様を示す説明図である。なお、図8において、図面に向かって左側には、赤色光L(R)の光束径が拡大される様子C51を示し、図面に向かって右側には、青色光L(B)の光束径が拡大される様子C53を示し、図面に向かって中央には、緑色光L(G)の光束径が拡大される様子C52を示してある。また、本形態の基本的な構成は、実施の形態2と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[Embodiment 3]
FIG. 8 is an explanatory view showing one aspect of the light beam diameter expanding element 10 according to Embodiment 3 of the present invention. In FIG. 8, the left side of the drawing shows a state C51 in which the light beam diameter of the red light L (R) is enlarged, and the right side of the drawing shows the light beam diameter of the blue light L (B). An enlarged state C53 is shown, and in the center of the drawing, a state C52 in which the light beam diameter of the green light L (G) is enlarged is shown. In addition, since the basic configuration of this embodiment is the same as that of the second embodiment, common portions are denoted by the same reference numerals and description thereof is omitted.

上記実施の形態2に係る光束径拡大素子10では、画像光の入射側から出射側に向かって、青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)が光軸Lに沿って順に配置されていた。これに対して、本形態の光束径拡大素子10では、図8に示すように、画像光の入射側から出射側に向かって、赤色用の導光板1(R)、緑色用の導光板1(G)、および青色用の導光板1(B)が光軸Lに沿って順に配置されている。すなわち、各導光板1(R)、1(G)、1(B)が、対応する光の波長が長いものから短いものの順に配置されている。   In the light beam diameter enlarging element 10 according to the second embodiment, the blue light guide plate 1 (B), the green light guide plate 1 (G), and the red light guide plate are arranged from the image light incident side to the light emitting side. The light guide plate 1 (R) was sequentially arranged along the optical axis L. On the other hand, in the light beam diameter enlarging element 10 of this embodiment, as shown in FIG. 8, the red light guide plate 1 (R) and the green light guide plate 1 from the incident side to the outgoing side of the image light. (G) and the light guide plate 1 (B) for blue are arranged in order along the optical axis L. That is, each light guide plate 1 (R), 1 (G), 1 (B) is arranged in order from the longest wavelength of the corresponding light.

従って、本形態の光束径拡大素子10の各構成要素は、本発明における構成要素と以下の関係を有している。
導光板1(R)=第1導光板
面1a(R)=第1面
面1b(R)=第2面
入射側回折格子11(R)=第1入射側回折格子
出射側回折格子12(R)=第1出射側回折格子
導光板1(G)=第2導光板
面1a(G)=第3面
面1b(G)=第4面
入射側回折格子11(G)=第2入射側回折格子
出射側回折格子12(G)=第2出射側回折格子
導光板1(B)=第3導光板
面1a(B)=第5面
面1b(B)=第6面
入射側回折格子11(B)=第3入射側回折格子
出射側回折格子12(B)=第3出射側回折格子
赤色光L(R)=第1光線
緑色光L(G)=第2光線
青色光L(B)=第3光線
Therefore, each component of the light beam diameter expanding element 10 of this embodiment has the following relationship with the component in the present invention.
Light guide plate 1 (R) = first light guide plate surface 1 a (R) = first surface surface 1 b (R) = second surface incident side diffraction grating 11 (R) = first incident side diffraction grating output side diffraction grating 12 ( R) = first exit side diffraction grating Light guide plate 1 (G) = second light guide plate surface 1 a (G) = third surface surface 1 b (G) = fourth surface incident side diffraction grating 11 (G) = second incidence Side diffraction grating Output side diffraction grating 12 (G) = second output side diffraction grating Light guide plate 1 (B) = third light guide plate surface 1 a (B) = fifth surface surface 1 b (B) = sixth surface incident side diffraction Grating 11 (B) = third incident side diffraction grating Emission side diffraction grating 12 (B) = third emission side diffraction grating Red light L (R) = first light beam Green light L (G) = second light beam blue light L (B) = 3rd ray

その他の構成は、図3を参照して説明した導光板と同様な構成を有しているため、説明を省略する。かかる光束径拡大素子10でも、実施の形態2に係る光束径拡大素子10と同様、各色の出射光の光量分布を揃えることができる等、実施の形態2と同様な効果を奏する。   The other configuration has the same configuration as the light guide plate described with reference to FIG. This light beam diameter enlarging element 10 also has the same effects as in the second embodiment, such as being able to align the light quantity distribution of the emitted light of each color, as with the light beam diameter enlarging element 10 according to the second embodiment.

[実施の形態4]
図9は、本発明を適用した光束径拡大素子10を備えた表示装置の構成例を示す説明図である。図10は、図9に示す表示装置の光学系を示す説明図である。図11は、図10に示す光学系の射出瞳の説明図である。
[Embodiment 4]
FIG. 9 is an explanatory diagram showing a configuration example of a display device including the light beam diameter expanding element 10 to which the present invention is applied. FIG. 10 is an explanatory diagram showing an optical system of the display device shown in FIG. FIG. 11 is an explanatory diagram of the exit pupil of the optical system shown in FIG.

図9に示す表示装置100は、眼鏡のような外観を有するヘッドマウントディスプレイ(頭部装着型表示装置)である。表示装置100は、表示装置100を装着した観察者に対して画像光を認識させることができるとともに、観察者に外界像をシースルーで観察させることができる。表示装置100は、観察者の眼前を覆う光学パネル110と、光学パネル110を支持するフレーム121と、フレーム121の側枠に設けられた第1駆動部131および第2駆動部132とを備えている。光学パネル110は、第1パネル部分111と第2パネル部分112とを有しており、第1パネル部分111と第2パネル部分112とは、中央で一体的に連結された板状の部品となっている。図面に向かって左側の第1パネル部分111と第1駆動部131とを組み合わせた第1表示装置100Aは、左眼用の部分であり、単独でも虚像表示装置として機能する。また、図面に向かって右側の第2パネル部分112と第2駆動部132とを組み合わせた第2表示装置100Bは、右眼用の部分であり、単独でも虚像表示装置として機能する。   A display device 100 shown in FIG. 9 is a head-mounted display (head-mounted display device) having an appearance like glasses. The display device 100 can cause the observer wearing the display device 100 to recognize the image light, and can allow the observer to observe the outside world image in a see-through manner. The display device 100 includes an optical panel 110 that covers the front of the viewer's eyes, a frame 121 that supports the optical panel 110, and a first drive unit 131 and a second drive unit 132 that are provided on a side frame of the frame 121. Yes. The optical panel 110 has a first panel portion 111 and a second panel portion 112, and the first panel portion 111 and the second panel portion 112 are plate-like parts integrally connected at the center. It has become. The first display device 100A in which the first panel portion 111 and the first drive unit 131 on the left side in the drawing are combined is a portion for the left eye, and functions alone as a virtual image display device. Further, the second display device 100B in which the second panel portion 112 on the right side and the second drive unit 132 in the drawing are combined is a right eye portion, and functions alone as a virtual image display device.

ここで、第2表示装置100Bは、第1表示装置100Aと同様の構造を有し、左右を反転させた構成であるので、以下の説明では、第1表示装置100Aを中心に説明し、第2表示装置100Bの詳細な説明は省略する。   Here, since the second display device 100B has the same structure as the first display device 100A and has a configuration in which left and right are reversed, the following description will focus on the first display device 100A. A detailed description of the two-display device 100B is omitted.

図10に示すように、第1表示装置100Aは、画像光投射装置15および導光光学装置20を備えている。画像光投射装置15は、図3における第1駆動部131に相当し、導光光学装置20は、図9における第1パネル部分111に相当する。なお、図9に示す第2表示装置100Bにおいて、画像光投射装置15は第2駆動部132に相当し、導光光学装置20は第2パネル部分112に相当する。   As shown in FIG. 10, the first display device 100 </ b> A includes an image light projection device 15 and a light guide optical device 20. The image light projection device 15 corresponds to the first drive unit 131 in FIG. 3, and the light guide optical device 20 corresponds to the first panel portion 111 in FIG. In the second display device 100B shown in FIG. 9, the image light projection device 15 corresponds to the second drive unit 132, and the light guide optical device 20 corresponds to the second panel portion 112.

画像光投射装置15は、画像形成装置16と投射光学系17とを有している。画像形成装置16は、図示を省略するが、2次元的な照明光を出射する照明装置と、透過型の液晶表示デバイスと、照明装置および液晶表示デバイスの動作を制御する駆動制御部とを有する。照明装置は、赤色、緑色、青色の3色を含む光を発生し、液晶表示デバイスは、照明装置からの照明光を空間的に変調して動画像等の表示対象となるべき画像光L1を形成する。   The image light projector 15 includes an image forming device 16 and a projection optical system 17. Although not shown, the image forming apparatus 16 includes an illumination device that emits two-dimensional illumination light, a transmissive liquid crystal display device, and a drive control unit that controls operations of the illumination device and the liquid crystal display device. . The illuminating device generates light including three colors of red, green, and blue, and the liquid crystal display device spatially modulates the illuminating light from the illuminating device to generate image light L1 to be a display target such as a moving image. Form.

本形態において、投射光学系17は、画像形成装置16(液晶表示デバイス)上の各点から出射された画像光L1の光線を集光するパワーを有するコリメーターレンズ18を備えている。なお、画像形成装置16としては、光源からの光をMEMS等のミラーで反射させて画像を形成させる反射型の空間光変調器や、有機エレクトロルミネッセンス表示素子を用いてもよい。   In this embodiment, the projection optical system 17 includes a collimator lens 18 having a power for condensing the light beam of the image light L1 emitted from each point on the image forming apparatus 16 (liquid crystal display device). The image forming apparatus 16 may be a reflective spatial light modulator that reflects light from a light source with a mirror such as a MEMS to form an image, or an organic electroluminescence display element.

導光光学装置20は、画像光L1が照射される被照射領域21と、被照射領域21から入射して進行してきた光を表示光L2として出射する表示光出射領域23とを備えている。   The light guide optical device 20 includes an irradiated region 21 to which the image light L1 is irradiated, and a display light emitting region 23 that emits the light that has entered the irradiated region 21 and traveled as display light L2.

本形態において、導光光学装置20は、光束径拡大素子10と、光束径拡大素子10から出射された画像光L1をy方向(第1方向)と交差するx方向(第2方向)に導く導光光学系25とを有している。光束径拡大素子10は、本発明が適用された光束径拡大素子であり、例えば、実施の形態2を参照して説明した構成を有している。導光光学系25は、x方向に延在する導光板30を有している。導光板30は、x方向の一方側の端部において光束径拡大素子10と対向する入射側回折格子31と、x方向の他方側の端部において眼Eと対向する出射側回折格子32とを有しており、出射側回折格子32によって表示光出射領域23が構成されている。   In the present embodiment, the light guide optical device 20 guides the light beam diameter expanding element 10 and the image light L1 emitted from the light beam diameter expanding element 10 in the x direction (second direction) intersecting the y direction (first direction). And a light guide optical system 25. The light beam diameter expanding element 10 is a light beam diameter expanding element to which the present invention is applied, and has, for example, the configuration described with reference to the second embodiment. The light guide optical system 25 has a light guide plate 30 extending in the x direction. The light guide plate 30 includes an incident side diffraction grating 31 that faces the light beam diameter enlarging element 10 at one end portion in the x direction and an emission side diffraction grating 32 that faces the eye E at the other end portion in the x direction. The display light emission region 23 is constituted by the emission side diffraction grating 32.

ここで、光束径拡大素子10のy方向におけるサイズは、導光光学系25(導光板30)のy方向におけるサイズより小さい。このため、光束径拡大素子10は、導光光学系25(導光板30)からy方向に張り出していない。   Here, the size of the light beam diameter expanding element 10 in the y direction is smaller than the size of the light guide optical system 25 (light guide plate 30) in the y direction. For this reason, the light beam diameter enlarging element 10 does not protrude in the y direction from the light guide optical system 25 (light guide plate 30).

本形態において、y方向(第1方向)は縦方向に相当し、光束径拡大素子10では、3枚の導光板(青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R))が各々、縦方向(y方向)に延在している。また、3枚の導光板(青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R))は各々、x方向に格子が延在する入射側回折格子11(B)、11(G)、11(R)と、x方向に格子が延在する出射側回折格子12(B)、12(G)、12(R)とが設けられている。
従って、画像光投射装置15から出射された画像光L1は、光束径拡大素子10に入射し、光束径拡大素子10によって、縦方向(y方向)に光束径が拡大された後、導光板30の入射側回折格子31に出射される。そして、導光板30の入射側回折格子31から入射した光は、導光板30内をx方向(第2方向)に伝播し、導光板30の出射側回折格子32から眼Eに向けて出射される間に横方向(x方向)に瞳拡大される。
In this embodiment, the y direction (first direction) corresponds to the vertical direction, and in the light beam diameter expanding element 10, three light guide plates (blue light guide plate 1 (B) and green light guide plate 1 (G) are provided. , And red light guide plate 1 (R), respectively, extend in the vertical direction (y direction). Each of the three light guide plates (blue light guide plate 1 (B), green light guide plate 1 (G), and red light guide plate 1 (R)) has a lattice extending in the x direction. Incident-side diffraction gratings 11 (B), 11 (G), and 11 (R) and output-side diffraction gratings 12 (B), 12 (G), and 12 (R) that extend in the x direction are provided. ing.
Accordingly, the image light L1 emitted from the image light projector 15 is incident on the light beam diameter enlarging element 10, and after the light beam diameter is expanded in the vertical direction (y direction) by the light beam diameter enlarging element 10, the light guide plate 30. To the incident side diffraction grating 31. The light incident from the incident side diffraction grating 31 of the light guide plate 30 propagates in the light guide plate 30 in the x direction (second direction), and is emitted from the emission side diffraction grating 32 of the light guide plate 30 toward the eye E. During this period, the pupil is magnified in the horizontal direction (x direction).

ここで、画像光投射装置15では、図11に示すように、画像形成装置16から出射された画像光は、投射光学系17のコリメーターレンズ18よって平行光に変換される。ここで、投射光学系17の射出瞳170は、光軸方向において、光束径拡大素子10の入射面(青色用の導光板1(B)の面1a(B))と光束径拡大素子10の出射面(赤色用の導光板1(R)の面1b(R)との間に位置する。本形態において、投射光学系17の射出瞳170は、緑色用の導光板1(G)の面1a(G)に位置する。このため、画像光L1の全ての画角の光を光束径拡大素子10に用いた青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)の入射側回折格子11(B)、(G)、(R)に入射させることができる。従って、画面全体にわたって、青色光L(B)、緑色光L(G)および赤色光L(R)の全ての色の画像を表示することができる。なお、投射光学系17の射出瞳170を、光軸方向において、光束径拡大素子10の入射面(青色用の導光板1(B)の面1a(B))と光束径拡大素子10の出射面(赤色用の導光板1(R)の面1b(R)との中間に配置することが好ましい。かかる構成によれば、画像光L1の全ての画角の光を光束径拡大素子10に用いた青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R)の入射側回折格子11(B)、(G)、(R)により確実に入射させることができる。従って、画面全体にわたって、青色光L(B)、緑色光L(G)および赤色光L(R)の全ての色の画像をより確実に表示することができる。   Here, in the image light projection device 15, as shown in FIG. 11, the image light emitted from the image forming device 16 is converted into parallel light by the collimator lens 18 of the projection optical system 17. Here, the exit pupil 170 of the projection optical system 17 has an incident surface (surface 1a (B) of the blue light guide plate 1 (B)) and the light beam diameter expanding element 10 in the optical axis direction. It is located between the exit surface (the surface 1b (R) of the red light guide plate 1 (R). In this embodiment, the exit pupil 170 of the projection optical system 17 is the surface of the green light guide plate 1 (G). For this reason, the light guide plate 1 (B) for blue, the light guide plate 1 (G) for green, and the light guide plate 1 (G) for green, each of which uses the light of all the field angles of the image light L1 for the light beam diameter expanding element 10, The red light guide plate 1 (R) can be incident on the incident-side diffraction gratings 11 (B), (G), and (R), so that the blue light L (B) and the green light L are spread over the entire screen. Images of all colors of (G) and red light L (R) can be displayed, and the exit pupil 170 of the projection optical system 17 can be displayed. In the optical axis direction, the incident surface (surface 1a (B) of the blue light guide plate 1 (B)) and the exit surface (red light guide plate 1 (R) of the light beam diameter expanding device 10) of the light beam diameter expanding device 10. The light guide plate 1 (B) for blue light using all the angles of view of the image light L1 for the light beam diameter expanding element 10 is preferably disposed in the middle of the surface 1b (R). The light can be reliably incident on the incident-side diffraction gratings 11 (B), (G), and (R) of the green light guide plate 1 (G) and the red light guide plate 1 (R). In addition, the images of all the colors of the blue light L (B), the green light L (G), and the red light L (R) can be more reliably displayed.

[実施の形態5]
図12は、本発明を適用した光束径拡大素子10を備えた表示装置の別の構成例を示す説明図である。なお、本形態の基本的な構成は、実施の形態4と同様であるため、共通する部分には同一の符号を付してそれらの詳細な説明を省略する。
[Embodiment 5]
FIG. 12 is an explanatory diagram showing another configuration example of the display device including the light beam diameter enlarging element 10 to which the present invention is applied. Since the basic configuration of this embodiment is the same as that of Embodiment 4, common portions are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示すように、本形態の第1表示装置100Aも、実施の形態4と同様、画像光投射装置15は、画像形成装置16と投射光学系17とを有している。導光光学装置20は、光束径拡大素子10と、光束径拡大素子10から出射された画像光L1をy方向(第1方向)と交差するx方向(第2方向)に導く導光光学系25とを有している。光束径拡大素子10は、本発明が適用された光束径拡大素子であり、例えば、実施の形態2を参照して説明した構成を有している。導光光学系25は、x方向に延在する導光板30を有している。ここで、光束径拡大素子10のy方向におけるサイズは、導光光学系25(導光板30)のy方向におけるサイズより小さい。このため、光束径拡大素子10は、導光光学系25(導光板30)からy方向に張り出していない。   As shown in FIG. 12, the first display device 100 </ b> A of the present embodiment also includes an image forming device 16 and a projection optical system 17 as in the fourth embodiment. The light guide optical device 20 includes a light beam diameter expanding element 10 and a light guide optical system that guides the image light L1 emitted from the light beam diameter expanding element 10 in the x direction (second direction) intersecting the y direction (first direction). 25. The light beam diameter expanding element 10 is a light beam diameter expanding element to which the present invention is applied, and has, for example, the configuration described with reference to the second embodiment. The light guide optical system 25 has a light guide plate 30 extending in the x direction. Here, the size of the light beam diameter expanding element 10 in the y direction is smaller than the size of the light guide optical system 25 (light guide plate 30) in the y direction. For this reason, the light beam diameter enlarging element 10 does not protrude in the y direction from the light guide optical system 25 (light guide plate 30).

本形態において、y方向(第1方向)は横方向に相当し、光束径拡大素子10では、3枚の導光板(青色用の導光板1(B)、緑色用の導光板1(G)、および赤色用の導光板1(R))が各々、横方向(y方向)に延在している。また、x方向(第2方向)は縦方向に相当し、導光板30は、縦方向(x方向)に延在している。
このように構成した第1表示装置100Aにおいても、実施の形態4と同様、画像光投射装置15から出射された画像光L1は、光束径拡大素子10に入射し、光束径拡大素子10によって、縦方向(y方向)に光束径が拡大された後、導光板30の入射側回折格子31に出射される。そして、導光板30の入射側回折格子31から入射した光は、導光板30内をx方向(第2方向)に伝播し、導光板30の出射側回折格子32から眼Eに向けて出射される間に横方向(x方向)に瞳拡大される。
In this embodiment, the y direction (first direction) corresponds to the lateral direction, and in the light beam diameter expanding element 10, three light guide plates (blue light guide plate 1 (B) and green light guide plate 1 (G) are provided. , And red light guide plate 1 (R), respectively, extend in the lateral direction (y direction). The x direction (second direction) corresponds to the vertical direction, and the light guide plate 30 extends in the vertical direction (x direction).
Also in the first display device 100A configured as described above, the image light L1 emitted from the image light projection device 15 is incident on the light beam diameter expansion element 10 and is emitted by the light beam diameter expansion element 10 as in the fourth embodiment. After the beam diameter is enlarged in the vertical direction (y direction), the light beam is emitted to the incident side diffraction grating 31 of the light guide plate 30. The light incident from the incident side diffraction grating 31 of the light guide plate 30 propagates in the light guide plate 30 in the x direction (second direction), and is emitted from the emission side diffraction grating 32 of the light guide plate 30 toward the eye E. During this period, the pupil is magnified in the horizontal direction (x direction).

[他の実施の形態]
実施の形態2、3、4、5において、光束径拡大素子10が3枚の導光板を有していたが、2枚の導光板を有する構成を採用してもよい。この場合、例えば、2枚の導光板のうちの1枚が青色光L(B)と緑色光L(G)の光束径の拡大を行い、他の1枚が赤色光L(R)の光束径の拡大を行う。
[Other embodiments]
In the second, third, fourth, and fifth embodiments, the light beam diameter expanding element 10 has three light guide plates. However, a configuration having two light guide plates may be employed. In this case, for example, one of the two light guide plates enlarges the light beam diameter of the blue light L (B) and the green light L (G), and the other light beam of the red light L (R). Increase the diameter.

1、1(B)、1(G)、1(R)…導光板、1a、1a(B)、1a(G)、1a(R)…面、1b、1b(B)、1b(G)、1b(R)…面、10…光束径拡大素子、11、11(B)、11(G)、11(R)…入射側回折格子、11a、11a(B)、11a(G)、11a(R)…格子、12、12(B)、12(G)、12(R)…出射側回折格子、12a、12a(B)、12a(G)、12a(R)…格子、15…画像光投射装置、16…画像形成装置、17…投射光学系、18…コリメーターレンズ、20…導光光学装置、21…被照射領域、23…表示光出射領域、25…導光光学系、30…導光板、31…入射側回折格子、32…出射側回折格子、100…表示装置、100A…第1表示装置、100B…第2表示装置、110…光学パネル、111…第1パネル部分、112…第2パネル部分、121…フレーム、131…第1駆動部、132…第2駆動部、170…射出瞳、E…眼、L…光軸、L0…0次回折光、L+1…+1次回折光、L−1…−1次回折光、L1…画像光、L2…表示光、L10…光線L(B)…青色光、L(G)…緑色光、L(R)…赤色光、P…格子周期、P1…格子周期、P2…格子周期、P3…格子周期 1, 1 (B), 1 (G), 1 (R) ... light guide plate, 1 a, 1 a (B), 1 a (G), 1 a (R) ... surface, 1 b, 1 b (B), 1 b (G) DESCRIPTION OF SYMBOLS 1b (R) ... surface, 10 ... Light beam diameter expansion element 11, 11 (B), 11 (G), 11 (R) ... Incident side diffraction grating, 11a, 11a (B), 11a (G), 11a (R) ... grating, 12, 12 (B), 12 (G), 12 (R) ... exit side diffraction grating, 12a, 12a (B), 12a (G), 12a (R) ... grating, 15 ... image Optical projection device, 16 ... image forming device, 17 ... projection optical system, 18 ... collimator lens, 20 ... light guide optical device, 21 ... irradiated region, 23 ... display light emitting region, 25 ... light guide optical system, 30 DESCRIPTION OF SYMBOLS ... Light guide plate, 31 ... Incident side diffraction grating, 32 ... Outgoing side diffraction grating, 100 ... Display apparatus, 100A ... First display apparatus, 100B ... Second display 110, optical panel, 111, first panel portion, 112, second panel portion, 121, frame, 131, first drive unit, 132, second drive unit, 170, exit pupil, E, eye, L,. Optical axis, L0 ... 0th order diffracted light, L + 1 ... + 1st order diffracted light, L- 1 ...- 1st order diffracted light, L1 ... Image light, L2 ... Display light, L10 ... Light ray L (B) ... Blue light, L (G) ... green light, L (R) ... red light, P ... lattice period, P1 ... lattice period, P2 ... lattice period, P3 ... lattice period

Claims (10)

第1面および前記第1面とは反対側の面である第2面を備えた第1導光板と、
前記第1面に設けられた第1入射側回折格子と、
前記第2面に設けられた第1出射側回折格子と、
第3面が前記第1導光板の前記第2面と対向するように設けられ、前記第3面とは反対側に第4面を備えた第2導光板と、
前記第3面に設けられた第2入射側回折格子と、
前記第4面に設けられた第2出射側回折格子と、
第5面が前記第2導光板の前記第4面と対向するように設けられ、前記第5面とは反対側に第6面を備えた第3導光板と、
前記第5面に設けられた第3入射側回折格子と、
前記第6面に設けられた第3出射側回折格子と、
を有し、
前記第1面は、前記第2面に平行となるように設けられ、
前記第1入射側回折格子と前記第1出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、
前記第1導光板の屈折率は、前記第1入射側回折格子に入射する第1光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、
前記第1入射側回折格子の格子方向と交差する方向を第1方向としたとき、
前記第1入射側回折格子によって回折された前記第1光線の+1次回折光および−1次回折光は、前記第1導光板内を前記第1方向の互いに反対の方向に伝播して前記第1出射側回折格子から出射され
前記第3面は、前記第4面に平行となるように設けられ、
前記第2入射側回折格子と前記第2出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、
前記第2入射側回折格子の格子方向は、前記第1入射側回折格子の格子方向と同じ方向となるように設けられ、
前記第2入射側回折格子の格子周期は、前記第1入射側回折格子の格子周期と異なる周期となるように設けられ、
前記第2導光板の屈折率は、前記第1光線と波長が異なる第2光線が前記第2入射側回折格子に入射した際の前記第2光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、
前記第2入射側回折格子によって回折された前記第2光線の+1次回折光および−1次回折光は、前記第2導光板内を前記第1方向の互いに反対の方向に伝播して前記第2出射側回折格子から出射され、
前記第5面は、前記第6面に平行となるように設けられ、
前記第3入射側回折格子と前記第3出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、
前記第3入射側回折格子の格子方向は、前記第1入射側回折格子の格子方向と同じ方向となるように設けられ、
前記第3入射側回折格子の格子周期は、前記第1入射側回折格子および前記第2入射側回折格子の格子周期と異なる周期となるように設けられ、
前記第3導光板の屈折率は、前記第1光線および前記第2光線と波長が異なる第3光線が前記第3入射側回折格子に入射した際の前記第3光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、
前記第3入射側回折格子によって回折された前記第3光線の+1次回折光および−1次回折光は、前記第3導光板内を前記第1方向の互いに反対の方向に伝播して前記第3出射側回折格子から出射され、
前記第1入射側回折格子の格子高さをH11とし、
前記第2入射側回折格子の格子高さをH21とし、
前記第3入射側回折格子の格子高さをH31としたとき、
前記格子高さH11、H21、H31は、以下の関係
H11<H21<H31
を満たしていることを特徴とする光束径拡大素子。
A first light guide plate having a first surface and a second surface which is a surface opposite to the first surface;
A first incident-side diffraction grating provided on the first surface;
A first exit-side diffraction grating provided on the second surface;
A second light guide plate provided with a third surface facing the second surface of the first light guide plate, and having a fourth surface on the opposite side of the third surface;
A second incident side diffraction grating provided on the third surface;
A second exit-side diffraction grating provided on the fourth surface;
A third light guide plate provided with a fifth surface facing the fourth surface of the second light guide plate, and having a sixth surface on the opposite side of the fifth surface;
A third incident-side diffraction grating provided on the fifth surface;
A third exit-side diffraction grating provided on the sixth surface;
Have
The first surface is provided to be parallel to the second surface,
The first incident-side diffraction grating and the first emission-side diffraction grating are provided so that the grating direction is the same direction and the grating period is the same period,
The refractive index of the first light guide plate is such that the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light of the first light incident on the first incident-side diffraction grating are equal to or greater than the critical angle, respectively. Is the refractive index,
When the direction intersecting the grating direction of the first incident side diffraction grating is the first direction,
The + 1st order diffracted light and the −1st order diffracted light of the first light beam diffracted by the first incident side diffraction grating are propagated in the first light guide plate in directions opposite to each other in the first direction. Emitted from the side diffraction grating ,
The third surface is provided to be parallel to the fourth surface,
The second incident side diffraction grating and the second emission side diffraction grating are provided such that the grating direction is the same direction and the grating period is the same period,
The grating direction of the second incident side diffraction grating is provided to be the same direction as the grating direction of the first incident side diffraction grating,
The grating period of the second incident side diffraction grating is provided to be different from the grating period of the first incident side diffraction grating,
The refractive index of the second light guide plate is such that the second light beam having a wavelength different from that of the first light beam is incident on the second incident-side diffraction grating, the diffraction angle of the + 1st order diffracted light of the second light beam, and the −1st order diffracted light. Is a refractive index such that the diffraction angle of each becomes an angle greater than the critical angle,
The + 1st order diffracted light and the −1st order diffracted light of the second light beam diffracted by the second incident side diffraction grating propagate in the second light guide plate in directions opposite to each other in the first direction, and the second emission. Emitted from the side diffraction grating,
The fifth surface is provided to be parallel to the sixth surface,
The third incident side diffraction grating and the third emission side diffraction grating are provided such that the grating directions are the same direction and the grating period is the same period,
The grating direction of the third incident side diffraction grating is provided to be the same direction as the grating direction of the first incident side diffraction grating,
The grating period of the third incident side diffraction grating is provided to be different from the grating period of the first incident side diffraction grating and the second incident side diffraction grating,
The refractive index of the third light guide plate is a diffraction angle of the + 1st order diffracted light of the third light beam when a third light beam having a wavelength different from that of the first light beam and the second light beam is incident on the third incident side diffraction grating. And the refractive index so that the diffraction angles of the -1st order diffracted light are each greater than the critical angle,
The + 1st order diffracted light and the −1st order diffracted light of the third light beam diffracted by the third incident side diffraction grating propagate in the third light guide plate in directions opposite to each other in the first direction, and the third emission. Emitted from the side diffraction grating,
The grating height of the first incident side diffraction grating is H11,
The grating height of the second incident side diffraction grating is H21,
When the grating height of the third incident side diffraction grating is H31,
The lattice heights H11, H21, and H31 have the following relationship:
H11 <H21 <H31
Beam diameter enlarging element characterized that you have met the.
請求項に記載の光束径拡大素子において、
前記第1入射側回折格子の格子周期をP1とし、
前記第2入射側回折格子の格子周期をP2とし、
前記第3入射側回折格子の格子周期をP3としたとき、
前記格子周期P1、P2、P3は、以下の関係
P1<P2<P3
を満たしていることを特徴とする光束径拡大素子。
In the light beam diameter expanding element according to claim 1 ,
The grating period of the first incident side diffraction grating is P1,
The grating period of the second incident side diffraction grating is P2,
When the grating period of the third incident side diffraction grating is P3,
The lattice periods P1, P2, and P3 have the following relationship: P1 <P2 <P3
A light beam diameter enlarging element characterized by satisfying
請求項1または2に記載の光束径拡大素子において、
前記第1出射側回折格子の格子高さをH12とし、
前記第2出射側回折格子の格子高さをH22とし、
前記第3出射側回折格子の格子高さをH32としたとき、
前記格子高さH11、H12、H21、H22、H31、H32は、以下の関係
H12<H11<H22<H21<H32<H31
を満たしていることを特徴とする光束径拡大素子。
In the light beam diameter expanding element according to claim 1 or 2 ,
The grating height of the first output side diffraction grating is H12,
The grating height of the second exit side diffraction grating is H22,
When the grating height of the third output side diffraction grating is H32,
The lattice heights H11, H12, H21, H22, H31, and H32 have the following relationship: H12 <H11 <H22 <H21 <H32 <H31
A light beam diameter enlarging element characterized by satisfying
第1面および前記第1面とは反対側の面である第2面を備えた第1導光板と、  A first light guide plate having a first surface and a second surface which is a surface opposite to the first surface;
前記第1面に設けられた第1入射側回折格子と、  A first incident-side diffraction grating provided on the first surface;
前記第2面に設けられた第1出射側回折格子と、  A first exit-side diffraction grating provided on the second surface;
第3面が前記第1導光板の前記第2面と対向するように設けられ、前記第3面とは反対側に第4面を備えた第2導光板と、  A second light guide plate provided with a third surface facing the second surface of the first light guide plate, and having a fourth surface on the opposite side of the third surface;
前記第3面に設けられた第2入射側回折格子と、  A second incident side diffraction grating provided on the third surface;
前記第4面に設けられた第2出射側回折格子と、  A second exit-side diffraction grating provided on the fourth surface;
を有し、  Have
前記第1面は、前記第2面に平行となるように設けられ、  The first surface is provided to be parallel to the second surface,
前記第1入射側回折格子と前記第1出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、  The first incident side diffraction grating and the first emission side diffraction grating are provided so that the grating directions are the same direction and the grating period is the same period,
前記第1導光板の屈折率は、前記第1入射側回折格子に入射する第1光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、  The refractive index of the first light guide plate is such that the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light incident on the first incident-side diffraction grating are equal to or greater than the critical angle, respectively. Is the refractive index,
前記第1入射側回折格子の格子方向と交差する方向を第1方向としたとき、  When the direction intersecting the grating direction of the first incident side diffraction grating is the first direction,
前記第1入射側回折格子によって回折された前記第1光線の+1次回折光および−1次回折光は、前記第1導光板内を前記第1方向の互いに反対の方向に伝播して前記第1出射側回折格子から出射され、  The + 1st order diffracted light and the −1st order diffracted light of the first light beam diffracted by the first incident side diffraction grating are propagated in the first light guide plate in directions opposite to each other in the first direction. Emitted from the side diffraction grating,
前記第3面は、前記第4面に平行となるように設けられ、  The third surface is provided to be parallel to the fourth surface,
前記第2入射側回折格子と前記第2出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、  The second incident side diffraction grating and the second emission side diffraction grating are provided such that the grating directions are the same direction and the grating period is the same period,
前記第2入射側回折格子の格子方向は、前記第1入射側回折格子の格子方向と同じ方向となるように設けられ、  The grating direction of the second incident side diffraction grating is provided to be the same direction as the grating direction of the first incident side diffraction grating,
前記第2入射側回折格子の格子周期は、前記第1入射側回折格子の格子周期と異なる周期となるように設けられ、  The grating period of the second incident side diffraction grating is provided to be different from the grating period of the first incident side diffraction grating,
前記第2導光板の屈折率は、前記第1光線と波長が異なる第2光線が前記第2入射側回折格子に入射した際の前記第2光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、  The refractive index of the second light guide plate is such that the second light beam having a wavelength different from that of the first light beam is incident on the second incident-side diffraction grating, the diffraction angle of the + 1st order diffracted light of the second light beam, and the −1st order diffracted light. Is a refractive index such that the diffraction angle of each becomes an angle greater than the critical angle,
前記第2入射側回折格子によって回折された前記第2光線の+1次回折光および−1次回折光は、前記第2導光板内を前記第1方向の互いに反対の方向に伝播して前記第2出射側回折格子から出射され、  The + 1st order diffracted light and the −1st order diffracted light of the second light beam diffracted by the second incident side diffraction grating propagate in the second light guide plate in directions opposite to each other in the first direction. Emitted from the side diffraction grating,
前記第1入射側回折格子の格子高さをH11とし、  The grating height of the first incident side diffraction grating is H11,
前記第2入射側回折格子の格子高さをH21としたとき、  When the grating height of the second incident side diffraction grating is H21,
前記格子高さH11、H21は、以下の関係  The lattice heights H11 and H21 have the following relationship:
H11<H21      H11 <H21
を満たしていることを特徴とする光束径拡大素子。A light beam diameter enlarging element characterized by satisfying
請求項1乃至の何れか一項に記載の光束径拡大素子において、
前記第1入射側回折格子および前記第1出射側回折格子の格子周期をPとし、
前記第1光線のスペクトルの半値幅における最短波長をλcとし、
前記第1光線の前記第1入射側回折格子に対する最大入射角をθmaxとしたとき、
格子周期P、最短波長λcおよび最大入射角θmaxは、以下の関係
P≦λc/[sin(θmax)+1]
を満たしていることを特徴とする光束径拡大素子。
In the light flux diameter enlarging element according to any one of claims 1 to 4 ,
The grating period of the first incident side diffraction grating and the first emission side diffraction grating is P,
The shortest wavelength in the half width of the spectrum of the first light is λc,
When the maximum incident angle of the first light beam with respect to the first incident side diffraction grating is θmax,
The grating period P, the shortest wavelength λc, and the maximum incident angle θmax have the following relationship: P ≦ λc / [sin (θmax) +1]
A light beam diameter enlarging element characterized by satisfying
第1面および前記第1面とは反対側の面である第2面を備えた第1導光板と、
前記第1面に設けられた第1入射側回折格子と、
前記第2面に設けられた第1出射側回折格子と、
画像生成装置およびコリメーターレンズを備え、前記画像生成装置で生成された画像光を前記コリメーターレンズを介して前記光束径拡大素子に入射させる画像光投射装置と、
前記光束径拡大素子から出射された画像光を前記第1方向と交差する第2方向に導く導光光学系と、
を有し、
前記第1面は、前記第2面に平行となるように設けられ、
前記第1入射側回折格子と前記第1出射側回折格子とは、格子方向が同じ方向、かつ、格子周期が同じ周期となるように設けられ、
前記第1導光板の屈折率は、前記第1入射側回折格子に入射する第1光線の+1次回折光の回折角および−1次回折光の回折角が、それぞれ臨界角以上の角度となるような屈折率であり、
前記第1入射側回折格子の格子方向と交差する方向を第1方向としたとき、
前記第1入射側回折格子によって回折された前記第1光線の+1次回折光および−1次回折光は、前記第1導光板内を前記第1方向の互いに反対の方向に伝播して前記第1出射側回折格子から出射され、
前記画像光投射装置における射出瞳が前記光束径拡大素子の入射面と出射面との間に位置することを特徴とする表示装置。
A first light guide plate having a first surface and a second surface which is a surface opposite to the first surface;
A first incident-side diffraction grating provided on the first surface;
A first exit-side diffraction grating provided on the second surface;
An image light projection device comprising an image generation device and a collimator lens, and causing the image light generated by the image generation device to enter the light beam diameter enlarging element through the collimator lens;
A light guide optical system that guides image light emitted from the light beam diameter enlarging element in a second direction intersecting the first direction;
Have
The first surface is provided to be parallel to the second surface,
The first incident side diffraction grating and the first emission side diffraction grating are provided so that the grating directions are the same direction and the grating period is the same period,
The refractive index of the first light guide plate is such that the diffraction angle of the + 1st order diffracted light and the diffraction angle of the −1st order diffracted light incident on the first incident-side diffraction grating are equal to or greater than the critical angle, respectively. Is the refractive index,
When the direction intersecting the grating direction of the first incident side diffraction grating is the first direction,
The + 1st order diffracted light and the −1st order diffracted light of the first light beam diffracted by the first incident side diffraction grating are propagated in the first light guide plate in directions opposite to each other in the first direction. Emitted from the side diffraction grating,
A display device, wherein an exit pupil in the image light projection device is located between an entrance surface and an exit surface of the light beam diameter enlarging element .
請求項に記載の表示装置において、
前記射出瞳が前記光束径拡大素子の入射面と出射面との中間に位置することを特徴とする表示装置。
The display device according to claim 6 ,
The display apparatus, wherein the exit pupil is located between an entrance surface and an exit surface of the light beam diameter enlarging element.
請求項6または7に記載の表示装置において、
前記光束径拡大素子の前記第1方向におけるサイズが、前記導光光学系の第1方向におけるサイズより小さいことを特徴とする表示装置。
The display device according to claim 6 or 7 ,
The display device, wherein a size of the light beam diameter enlarging element in the first direction is smaller than a size of the light guide optical system in the first direction.
請求項乃至の何れか一項に記載の表示装置において、
前記第1方向は、前記画像光を観察する観察者から見て縦となる方向であり、
前記第2方向は、前記画像光を観察する観察者から見て横となる方向であることを特徴とする表示装置。
The display device according to any one of claims 6 to 8 ,
The first direction is a vertical direction when viewed from an observer observing the image light ,
The display device according to claim 1, wherein the second direction is a horizontal direction when viewed from an observer who observes the image light .
請求項乃至の何れか一項に記載の表示装置において、
前記第1方向は、前記画像光を観察する観察者から見て横となる方向であり、
前記第2方向は、前記画像光を観察する観察者から見て縦となる方向であることを特徴とする表示装置。
The display device according to any one of claims 6 to 8 ,
The first direction is a side direction as viewed from an observer observing the image light ,
The display device characterized in that the second direction is a vertical direction as viewed from an observer who observes the image light .
JP2015217346A 2015-11-05 2015-11-05 Beam diameter expanding element and display device Active JP6597197B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015217346A JP6597197B2 (en) 2015-11-05 2015-11-05 Beam diameter expanding element and display device
CN201610864032.5A CN106802487B (en) 2015-11-05 2016-09-29 Beam diameter enlarging element and display device
US15/336,306 US10133077B2 (en) 2015-11-05 2016-10-27 Luminous flux diameter enlarging element and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217346A JP6597197B2 (en) 2015-11-05 2015-11-05 Beam diameter expanding element and display device

Publications (2)

Publication Number Publication Date
JP2017090562A JP2017090562A (en) 2017-05-25
JP6597197B2 true JP6597197B2 (en) 2019-10-30

Family

ID=58667617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217346A Active JP6597197B2 (en) 2015-11-05 2015-11-05 Beam diameter expanding element and display device

Country Status (3)

Country Link
US (1) US10133077B2 (en)
JP (1) JP6597197B2 (en)
CN (1) CN106802487B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736911B2 (en) 2016-02-29 2020-08-05 セイコーエプソン株式会社 Luminous flux diameter expanding element and image display device
CN107238974B (en) * 2017-07-24 2021-03-02 京东方科技集团股份有限公司 Backlight source and liquid crystal display module
JP7127116B2 (en) * 2017-09-12 2022-08-29 エルジー・ケム・リミテッド Diffraction light guide plate and method for manufacturing diffraction light guide plate
EP3690505B1 (en) * 2017-09-26 2024-03-06 LG Chem, Ltd. Optical element, and imaging device
US10534176B1 (en) * 2017-10-09 2020-01-14 Facebook Technologies, Llc Waveguide display with gratings for improved diffraction efficiency
FI130178B (en) * 2018-03-28 2023-03-29 Dispelix Oy Waveguide element and waveguide stack for display applications
CN112041727B (en) * 2018-04-20 2022-11-04 3M创新有限公司 Headset and head mounted display
CN109948410B (en) * 2018-07-20 2020-09-11 华为技术有限公司 Electronic equipment with line detects function
US11256012B2 (en) * 2019-02-27 2022-02-22 Boe Technology Group Co., Ltd. Color dispersion apparatus and spectrometer
JP7259461B2 (en) * 2019-03-25 2023-04-18 セイコーエプソン株式会社 Display device
JP2021056278A (en) * 2019-09-27 2021-04-08 セイコーエプソン株式会社 Display device
US11703689B2 (en) * 2019-11-15 2023-07-18 Samsung Electronics Co., Ltd. Device for enlarging exit pupil area and display including the same
US11796960B2 (en) * 2019-12-11 2023-10-24 Samsung Electronics Co., Ltd. Holographic display apparatus for providing expanded viewing window
CN113568168B (en) * 2020-04-29 2023-02-24 宁波舜宇光电信息有限公司 Lens unit and AR apparatus including the same
JP7479945B2 (en) * 2020-06-09 2024-05-09 株式会社小糸製作所 Optical element and image projection device
JP7353252B2 (en) * 2020-09-09 2023-09-29 株式会社日立エルジーデータストレージ Image display element and image display device using the same
US20220413207A1 (en) * 2021-06-29 2022-12-29 Infineon Technologies Ag Cascaded eyebox expansion in extended reality image projection devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3623250B2 (en) 1993-06-23 2005-02-23 オリンパス株式会社 Video display device
KR100444981B1 (en) 2000-12-15 2004-08-21 삼성전자주식회사 Wearable display system
TW522256B (en) * 2000-12-15 2003-03-01 Samsung Electronics Co Ltd Wearable display system
US6833955B2 (en) * 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US7206107B2 (en) * 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
US7573640B2 (en) * 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
ES2547378T3 (en) 2005-09-07 2015-10-05 Bae Systems Plc Projection display device with two plate-shaped coplanar waveguides that include grilles
JP2007219106A (en) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
WO2007141587A1 (en) * 2006-06-02 2007-12-13 Nokia Corporation Color distribution in exit pupil expanders
EP2076813B1 (en) * 2006-09-28 2017-12-20 Nokia Technologies Oy Beam expansion with three-dimensional diffractive elements
DE102007021036A1 (en) * 2007-05-04 2008-11-06 Carl Zeiss Ag Display device and display method for binocular display of a multicolor image
WO2009077802A1 (en) * 2007-12-18 2009-06-25 Nokia Corporation Exit pupil expanders with wide field-of-view
JP2010032997A (en) * 2008-06-30 2010-02-12 Hoya Corp Image display, and head mount display
JP5461550B2 (en) * 2009-06-17 2014-04-02 株式会社エンプラス Light guide substrate and optical system including the same
JP2011002778A (en) 2009-06-22 2011-01-06 Hoya Corp Video display and head-mounted display
JP5545076B2 (en) * 2009-07-22 2014-07-09 ソニー株式会社 Image display device and optical device
CN102918431A (en) * 2011-04-12 2013-02-06 松下电器产业株式会社 Incoherence device and optical apparatus using same
CN202975475U (en) * 2012-11-14 2013-06-05 中航华东光电有限公司 A holographic optical waveguide helmet display optical system
JP2014109727A (en) * 2012-12-03 2014-06-12 Canon Inc Optical scanner
JP6241762B2 (en) * 2013-03-28 2017-12-06 パナソニックIpマネジメント株式会社 Image display device
JP2014224846A (en) * 2013-05-15 2014-12-04 セイコーエプソン株式会社 Display device
JP6265805B2 (en) * 2014-03-20 2018-01-24 オリンパス株式会社 Image display device
JP6417589B2 (en) * 2014-10-29 2018-11-07 セイコーエプソン株式会社 OPTICAL ELEMENT, ELECTRO-OPTICAL DEVICE, WEARING TYPE DISPLAY DEVICE, AND OPTICAL ELEMENT MANUFACTURING METHOD
JP6387800B2 (en) * 2014-11-17 2018-09-12 セイコーエプソン株式会社 Beam diameter expanding element and display device

Also Published As

Publication number Publication date
US20170131552A1 (en) 2017-05-11
JP2017090562A (en) 2017-05-25
CN106802487A (en) 2017-06-06
CN106802487B (en) 2021-03-12
US10133077B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
JP6597197B2 (en) Beam diameter expanding element and display device
JP6736911B2 (en) Luminous flux diameter expanding element and image display device
US20210231947A1 (en) Projector architecture incorporating artifact mitigation
JP6232863B2 (en) Optical device and image display apparatus
JP6624617B2 (en) Display system
JP6477051B2 (en) Image display device
JP2016085430A (en) Virtual image display device
JP2021512357A (en) Diffractive display element with lattice mirror
JP2018054978A (en) Virtual image display device and method for manufacturing the same
JP2009133999A (en) Image display apparatus
CN210243962U (en) Optical structure for augmented reality display and augmented reality display
JP2015049376A (en) Optical device and image display apparatus
JP2017090561A (en) Virtual image display device
JP7304861B2 (en) Multi-pupil waveguide display element and display device
KR102162994B1 (en) Ned polarization system for wavelength pass-through
JP2016188901A (en) Display device
JP2020519955A (en) Diffractive display, light guide element and projector therefor, and method for displaying images
JP2015194549A (en) Optical device, image projection apparatus, and electronic equipment
JP2023526018A (en) Method and System for Pupil Separation in Diffractive Eyepiece Waveguide Displays
JP2015194654A (en) Optical device, image projection apparatus, and electronic equipment
GB2571389A (en) Optical structure for augmented reality display
WO2022124024A1 (en) Image display device and image display method
AU2023201163B2 (en) Projector architecture incorporating artifact mitigation

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6597197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150