JP6591785B2 - Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method - Google Patents

Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method Download PDF

Info

Publication number
JP6591785B2
JP6591785B2 JP2015107756A JP2015107756A JP6591785B2 JP 6591785 B2 JP6591785 B2 JP 6591785B2 JP 2015107756 A JP2015107756 A JP 2015107756A JP 2015107756 A JP2015107756 A JP 2015107756A JP 6591785 B2 JP6591785 B2 JP 6591785B2
Authority
JP
Japan
Prior art keywords
conductive layer
conductive
electrical resistance
conductive sheet
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015107756A
Other languages
Japanese (ja)
Other versions
JP2016225042A (en
Inventor
水谷 拓雄
拓雄 水谷
美由喜 土畑
美由喜 土畑
涼 野村
涼 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2015107756A priority Critical patent/JP6591785B2/en
Publication of JP2016225042A publication Critical patent/JP2016225042A/en
Application granted granted Critical
Publication of JP6591785B2 publication Critical patent/JP6591785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、導電性シートの製造方法及びその製造方法で製造された導電性シートに関する。   The present invention relates to a method for producing a conductive sheet and a conductive sheet produced by the production method.

近年、チオフェン系高分子は優れた安定性及び導電性を有することから、有機導電性材料としてその活用が期待されている。その活用の一つとして、液晶ディスプレイ、透明タッチパネル等の各種デバイスに用いられる透明電極の形成に、上記高分子にドーパントを付加した導電性高分子を溶媒に分散させたコーティング組成物が用いられている。   In recent years, thiophene-based polymers have excellent stability and conductivity, and are expected to be used as organic conductive materials. As one of the applications, a coating composition in which a conductive polymer in which a dopant is added to the above polymer is dispersed in a solvent is used to form a transparent electrode used in various devices such as a liquid crystal display and a transparent touch panel. Yes.

しかし、上記チオフェン系高分子としてポリ(3,4−エチレンジオキシチオフェン)を用い、上記ドーパントとしてポリスチレンスルホン酸を用いた混合物(PEDOT/PSSともいう。)をコーティング組成物として使用し、このコーティング組成物を用いて基材上に導電性膜を形成し、上記導電性膜を大気中に放置すると導電性膜の表面電気抵抗値が経時変化するという問題がある。これは、大気中の水蒸気や汚染物質である塩等の影響により、導電性膜中のドーパントであるPSSが電離し、PSSの一部がスルホン酸イオン又はスルホン酸塩となり、チオフェン系高分子であるPEDOTからドーパントであるPSSが脱離して、PSSのドーパントとしての機能が低下するためと考えられる。   However, poly (3,4-ethylenedioxythiophene) is used as the thiophene polymer, and a mixture (also referred to as PEDOT / PSS) using polystyrene sulfonic acid as the dopant is used as a coating composition. When a conductive film is formed on a substrate using the composition and the conductive film is left in the atmosphere, there is a problem that the surface electrical resistance value of the conductive film changes with time. This is because PSS, which is a dopant in the conductive film, is ionized due to the influence of water vapor and pollutants such as salt in the atmosphere, and a part of PSS becomes sulfonate ions or sulfonates. This is probably because PSS as a dopant is desorbed from a certain PEDOT and the function of the PSS as a dopant is lowered.

このような問題に対して、例えば、特許文献1には、ポリチオフェン系導電性ポリマーによる導電層に絶縁シートを熱圧着することで保護層を形成することが提案されている。   For such a problem, for example, Patent Document 1 proposes forming a protective layer by thermocompression bonding an insulating sheet to a conductive layer made of a polythiophene-based conductive polymer.

一方、非特許文献1には、PEDOT/PSSからなる導電性膜に酸処理を行うことにより、導電性膜の表面電気抵抗が低下することが開示されている。   On the other hand, Non-Patent Document 1 discloses that the surface electrical resistance of the conductive film is reduced by performing acid treatment on the conductive film made of PEDOT / PSS.

特開2007−52975号公報JP 2007-52975 A

Applied Materials & Interfaces, Vol.2, No.2, 474-483, 2010 “Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids”Applied Materials & Interfaces, Vol.2, No.2, 474-483, 2010 “Significant Conductivity Enhancement of Conductive Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids”

特許文献1に記載の保護層を用いることで、導電層を大気から遮断することができるが、タッチパネル等の各種デバイスに用いられる透明電極の形成には、導電層のパターニング工程が必要であり、そのパターニング工程において導電層が大気と接触することは避けられない。   By using the protective layer described in Patent Document 1, the conductive layer can be shielded from the atmosphere, but the formation of a transparent electrode used in various devices such as a touch panel requires a conductive layer patterning step, In the patterning process, it is inevitable that the conductive layer comes into contact with the atmosphere.

また、非特許文献1に記載の酸処理は、導電性膜を構成するPEDOT/PSSからPSSが脱離することにより、導電性膜の表面電気抵抗を低下させるものであるが、PEDOT/PSSからドーパントであるPSSが脱離すると、PSSのドーパントとしての機能が低下するため、導電性膜の表面電気抵抗値が変化することになる。タッチパネル等の各種デバイスに用いられる透明電極の表面電気抵抗値は、デバイス毎に厳密に設定されており、その透明電極に用いる導電性膜の表面電気抵抗値の変化はできるだけ抑制する必要がある。   In addition, the acid treatment described in Non-Patent Document 1 reduces the surface electrical resistance of the conductive film by desorbing PSS from PEDOT / PSS constituting the conductive film, but from PEDOT / PSS, When the PSS which is a dopant is desorbed, the function of the PSS as a dopant is lowered, so that the surface electrical resistance value of the conductive film is changed. The surface electrical resistance value of the transparent electrode used in various devices such as a touch panel is set strictly for each device, and it is necessary to suppress the change in the surface electrical resistance value of the conductive film used for the transparent electrode as much as possible.

本発明は、上記問題を解消するためになされたものであり、導電性高分子を含む導電膜の表面電気抵抗値の経時変化を小さくできる導電性シートの製造方法と、その製造方法で製造した導電性シートを提供する。   The present invention has been made in order to solve the above-described problems, and has been manufactured by a method for manufacturing a conductive sheet capable of reducing the change over time of the surface electrical resistance value of a conductive film containing a conductive polymer, and the manufacturing method thereof. A conductive sheet is provided.

本発明の導電性シートの製造方法は、基材と、前記基材の少なくとも一方の主面に配置された導電層とを含む導電性シートの製造方法であって、導電性高分子と、バインダ樹脂と、溶媒とを含む導電層形成用塗料を作製する塗料作製工程と、前記導電層形成用塗料を基材の上に塗布して乾燥することにより、前記基材の上に導電層を形成する導電層形成工程と、前記導電層を酸性水溶液に接触させる酸接触工程とを含むことを特徴とする。   The method for producing a conductive sheet according to the present invention is a method for producing a conductive sheet comprising a base material and a conductive layer disposed on at least one main surface of the base material, the conductive polymer, and a binder. A conductive layer is formed on the substrate by applying a coating preparation step for forming a conductive layer forming coating containing a resin and a solvent, and applying the conductive layer forming coating on the substrate and drying the coating. A conductive layer forming step, and an acid contact step of bringing the conductive layer into contact with an acidic aqueous solution.

また、本発明の導電性シートは、基材と、前記基材の少なくとも一方の主面に配置された導電層とを含む導電性シートであって、上記本発明の導電性シートの製造方法により製造されたことを特徴とする。   Moreover, the conductive sheet of the present invention is a conductive sheet including a base material and a conductive layer disposed on at least one main surface of the base material, and the conductive sheet manufacturing method of the present invention described above is used. It is manufactured.

本発明によれば、導電性高分子を含む導電層の表面電気抵抗値の経時変化が小さい導電性シートを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive sheet with a small temporal change of the surface electrical resistance value of the conductive layer containing a conductive polymer can be provided.

図1は、本発明の導電性シートの一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the conductive sheet of the present invention.

(本発明の導電性シートの製造方法)
本発明の導電性シートの製造方法は、基材と、上記基材の少なくとも一方の主面に配置された導電層とを含む導電性シートの製造方法であって、導電性高分子と、バインダ樹脂と、溶媒とを含む導電層形成用塗料を作製する塗料作製工程と、上記導電層形成用塗料を基材の上に塗布して乾燥することにより、上記基材の上に導電層を形成する導電層形成工程と、上記導電層を酸性水溶液に接触させる酸接触工程とを備えることを特徴とする。
(Method for producing conductive sheet of the present invention)
The method for producing a conductive sheet according to the present invention is a method for producing a conductive sheet comprising a base material and a conductive layer disposed on at least one main surface of the base material, the conductive polymer, and a binder. A conductive layer is formed on the base material by applying a coating process for forming the conductive layer forming paint containing a resin and a solvent, and drying the conductive layer forming paint on the base material. A conductive layer forming step, and an acid contact step for bringing the conductive layer into contact with an acidic aqueous solution.

<塗料作製工程>
本発明の塗料作製工程は、導電性高分子と、バインダ樹脂と、溶媒とを含む導電層形成用塗料を作製する工程である。
<Paint preparation process>
The coating material preparation step of the present invention is a step of preparing a conductive layer forming coating material containing a conductive polymer, a binder resin, and a solvent.

[導電性高分子]
上記導電層形成用塗料に用いる導電性高分子としては、ポリチオフェン系化合物を用いることができる。
[Conductive polymer]
A polythiophene compound can be used as the conductive polymer used in the conductive layer forming coating.

上記ポリチオフェン系化合物としては、例えば、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)等が挙げられる。上記ポリチオフェン系化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。   Examples of the polythiophene compound include poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3- Hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene) ), Poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4- Dibutylthiophene), poly (3-hydroxythiophene), poly (3-methoxythiophene) , Poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxy) Thiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene) ), Poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-diheptyloxythiophene), poly (3 , 4-dioctyloxythiophene), poly (3,4-didecyloxythiophene), Li (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butenedioxythiophene), poly ( 3-methyl-4-methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4- Carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene) and the like. The said polythiophene type compound may be used individually by 1 type, and may use 2 or more types together.

本発明においては導電性高分子の電気伝導度を高めるために、ドーパントを併用する。上記ドーパントとしては、硝酸、硫酸等のプロトン酸類が使用できる。   In the present invention, a dopant is used in combination to increase the electrical conductivity of the conductive polymer. Protonic acids such as nitric acid and sulfuric acid can be used as the dopant.

本発明では、上記導電性高分子として、ポリチオフェン系化合物とドーパントとを含むものを用いることが好ましく、上記ポリチオフェン系化合物としてポリ(3,4−エチレンジオキシチオフェン)を用い、上記ドーパントとしてポリスチレンスルホン酸とを用いた混合物(PEDOT/PSS)を用いることが最も好ましい。   In the present invention, it is preferable to use a polymer containing a polythiophene compound and a dopant as the conductive polymer, poly (3,4-ethylenedioxythiophene) as the polythiophene compound, and polystyrene sulfone as the dopant. Most preferably, a mixture using acid (PEDOT / PSS) is used.

上記導電層形成用塗料における上記導電性高分子の含有量は、上記導電層形成用塗料に含まれる全固形成分の質量に対して0.7質量%以上70.0質量%以下であることが好ましい。上記導電性高分子の含有量が、上記導電層形成用塗料に含まれる全固形成分の質量に対して0.7質量%を下回ると導電層の導電性が低下し、70.0質量%を超えると導電層の物理特性や耐湿熱性が低下する傾向にある。   Content of the said conductive polymer in the said coating material for conductive layer formation is 0.7 mass% or more and 70.0 mass% or less with respect to the mass of the total solid component contained in the said coating material for conductive layer formation. preferable. When the content of the conductive polymer is less than 0.7% by mass with respect to the mass of all solid components contained in the conductive layer forming coating material, the conductivity of the conductive layer is decreased, and 70.0% by mass is obtained. If it exceeds, the physical properties and wet heat resistance of the conductive layer tend to be lowered.

[バインダ樹脂]
上記導電層形成用塗料は、バインダ樹脂を含んでいるため、導電性シートを形成した際に、導電層と基材との間の密着性が向上し、基材から導電層が剥離することを抑制できる。また、上記バインダ樹脂を用いることにより、導電層を形成した際に、導電性高分子からドーパントが脱離することがなく、導電層の表面電気抵抗値の変化を小さくできる。このように、バインダ樹脂を用いることにより、物理的及び化学的に耐久性のある導電層を形成できる。更に、上記導電層がバインダ樹脂を含むことにより、導電層の耐水性が向上する。
[Binder resin]
Since the conductive layer forming paint contains a binder resin, when the conductive sheet is formed, the adhesion between the conductive layer and the base material is improved, and the conductive layer is peeled off from the base material. Can be suppressed. In addition, by using the binder resin, when the conductive layer is formed, the dopant is not detached from the conductive polymer, and the change in the surface electrical resistance value of the conductive layer can be reduced. As described above, by using the binder resin, a physically and chemically durable conductive layer can be formed. Furthermore, when the conductive layer contains a binder resin, the water resistance of the conductive layer is improved.

上記バインダ樹脂としては、フッ素系樹脂又はシリコーン系樹脂が好ましい。これらの樹脂は、耐水性に優れ、後述する酸性水溶液に対する耐性が大きいからである。   The binder resin is preferably a fluorine resin or a silicone resin. This is because these resins are excellent in water resistance and have high resistance to an acidic aqueous solution described later.

上記フッ素系樹脂としては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−アクリル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等を用いることが好ましく、導電層と基材との間の密着性をより向上させる観点からPVDFがより好ましい。上記フッ素系樹脂を用いることにより、耐水性と透明性の高い導電層を形成できる。   As the fluororesin, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-acrylic copolymer, vinylidene fluoride-hexafluoropropylene copolymer, or the like is preferably used. From the viewpoint of further improving the adhesiveness of PVDF, PVDF is more preferable. By using the fluororesin, a conductive layer having high water resistance and transparency can be formed.

上記シリコーン系樹脂としては、アルコキシシランモノマー又はアルコキシシランオリゴマーを用いることができる。上記シリコーン系樹脂を用いることにより、高硬度の導電層を形成できる。上記シリコーン樹脂は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   As the silicone resin, an alkoxysilane monomer or an alkoxysilane oligomer can be used. By using the silicone resin, a conductive layer having a high hardness can be formed. The said silicone resin may be used independently and may be used in combination of 2 or more type.

上記アルコキシシランモノマーとしては、例えば、テトラエトキシシラン、テトラメトキシシラン、テトラプロピルシラン、テトラブトキシシラン、ビニルメトキシシラン、p−スチリルメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフロロプロピルトリメトキシシラン等が挙げられる。   Examples of the alkoxysilane monomer include tetraethoxysilane, tetramethoxysilane, tetrapropylsilane, tetrabutoxysilane, vinylmethoxysilane, p-styrylmethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and methyl. Examples include triethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and the like.

上記アルコキシシランオリゴマーとしては、上記アルコキシシランモノマーを縮合して得られるものを用いることができ、例えば、信越化学工業社製のアルコキシシランオリゴマー“KR−500”、“KC−89S”、“X−40−9225”、“X−40−9226”、“X−40−9250”、“X−40−2308”、“X−40−9238”(商品名)、コルコート社製のシリケートオリゴマー“エチルシリケート40”、“エチルシリケート48”、“メチルシリケート51”、“メチルシリケート53A”、“EMS−485”、“SS-101”(商品名)等が挙げられる。   As the alkoxysilane oligomer, those obtained by condensing the alkoxysilane monomer can be used. For example, alkoxysilane oligomers “KR-500”, “KC-89S”, “X-” manufactured by Shin-Etsu Chemical Co., Ltd. 40-9225 ”,“ X-40-9226 ”,“ X-40-9250 ”,“ X-40-2308 ”,“ X-40-9238 ”(trade name), silicate oligomer“ ethyl silicate ”manufactured by Colcoat 40 ”,“ ethyl silicate 48 ”,“ methyl silicate 51 ”,“ methyl silicate 53A ”,“ EMS-485 ”,“ SS-101 ”(trade name), and the like.

上記バインダ樹脂の含有量は、上記導電性高分子と上記バインダ樹脂との合計質量に対して30.0質量%以上99.3質量%以下が好ましく、より好ましくは65.0質量%以上95.0質量%以下である。上記バインダ樹脂の含有量が少なすぎると、導電層と基材との十分な密着性を得られにくい傾向にあり、上記バインダ樹脂の含有量が多すぎると、導電層における導電性高分子による導電パスが十分に形成されにくくなり、導電層の表面電気抵抗値が低下する傾向にある。   The content of the binder resin is preferably 30.0% by mass or more and 99.3% by mass or less, more preferably 65.0% by mass or more and 95.% by mass with respect to the total mass of the conductive polymer and the binder resin. 0% by mass or less. If the content of the binder resin is too small, it tends to be difficult to obtain sufficient adhesion between the conductive layer and the substrate. If the content of the binder resin is too large, the conductive polymer in the conductive layer is electrically conductive. There is a tendency that the path is not sufficiently formed, and the surface electrical resistance value of the conductive layer tends to decrease.

[溶媒]
上記導電層形成用塗料に用いる溶媒は、プロトン性極性溶媒と非プロトン性極性溶媒とを含んでいることが好ましい。プロトン性極性溶媒と非プロトン性極性溶媒とを併用することにより、比較的短時間且つ低い乾燥温度で均質な導電性シートを得ることができる。
[solvent]
The solvent used for the conductive layer-forming coating material preferably contains a protic polar solvent and an aprotic polar solvent. By using a protic polar solvent and an aprotic polar solvent in combination, a homogeneous conductive sheet can be obtained in a relatively short time and at a low drying temperature.

上記プロトン性極性溶媒としては、例えば、水、エチルアルコール、メチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール、酢酸等が挙げられ、上記非プロトン性極性溶媒としては、ジメチルスルホキシド、N−メチルピロリドン、N−エチルピロリドン、N,N−ジメチルホルムアミド、アセトニトリル、アセトン、テトラヒドロフラン等が挙げられる。   Examples of the protic polar solvent include water, ethyl alcohol, methyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, acetic acid, and the like. Examples of the polar solvent include dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, N, N-dimethylformamide, acetonitrile, acetone, tetrahydrofuran and the like.

上記非プロトン性極性溶媒の含有量は、上記溶媒の全質量に対して1.0質量%以上50.0質量%以下であることが好ましい。上記非プロトン性極性溶媒の含有量が、上記溶媒の全質量に対して1.0質量%を下回ると導電層の光学特性が低下する傾向にあり、50.0質量%を超えると導電層の耐湿熱性が低下する傾向にある。   The content of the aprotic polar solvent is preferably 1.0% by mass or more and 50.0% by mass or less with respect to the total mass of the solvent. If the content of the aprotic polar solvent is less than 1.0% by mass with respect to the total mass of the solvent, the optical properties of the conductive layer tend to deteriorate, and if it exceeds 50.0% by mass, There is a tendency for the heat and humidity resistance to decrease.

上記溶媒の全含有量は特に限定されないが、上記導電層形成用塗料の全質量に対して、50.0質量%以上99.5質量%以下とすればよい。また、上記溶媒には、無極性溶媒を含んでいてもよい。   Although total content of the said solvent is not specifically limited, What is necessary is just to be 50.0 mass% or more and 99.5 mass% or less with respect to the total mass of the said coating material for conductive layer formation. The solvent may contain a nonpolar solvent.

<導電層形成工程>
本発明の導電層形成工程は、上記導電層形成用塗料を基材の上に塗布して乾燥することにより、上記基材の上に導電層を形成する工程である。
<Conductive layer formation process>
The conductive layer forming step of the present invention is a step of forming a conductive layer on the substrate by applying the conductive layer forming coating material onto the substrate and drying it.

上記導電層形成用塗料を基材の上に塗布する方法としては、例えば、バーコート法、リバース法、グラビアコート法、マイクログラビアコート法、ダイコート法、ディッピング法、スピンコート法、スリットコート法、スプレーコート法等の塗布方法を用いることができる。   Examples of the method for applying the conductive layer-forming coating material on a substrate include a bar coating method, a reverse method, a gravure coating method, a micro gravure coating method, a die coating method, a dipping method, a spin coating method, a slit coating method, A coating method such as a spray coating method can be used.

上記塗布後の乾燥は、上記導電層形成用塗料の溶媒成分が蒸発する条件であればよく、100〜150℃で5〜60分間行うことが好ましい。溶媒が導電層に残っていると強度が劣る傾向にある。乾燥方法としては、例えば、熱風乾燥法、加熱乾燥法、真空乾燥法、自然乾燥等により行うことができる。また、必要に応じて、塗膜にUV光やEB光を照射して塗膜を硬化させたりして、導電層を形成してもよい。   The drying after the application may be performed under the condition that the solvent component of the coating material for forming a conductive layer evaporates, and is preferably performed at 100 to 150 ° C. for 5 to 60 minutes. If the solvent remains in the conductive layer, the strength tends to be inferior. As a drying method, for example, a hot air drying method, a heat drying method, a vacuum drying method, natural drying, or the like can be used. If necessary, the conductive layer may be formed by irradiating the coating film with UV light or EB light to cure the coating film.

上記基材としては特に限定されないが、透明性を有する透明基材が好ましい。上記透明基材の材質としては、例えば、樹脂、ゴム、ガラス、セラミックス等の種々のものが使用できる。   Although it does not specifically limit as said base material, The transparent base material which has transparency is preferable. As the material for the transparent substrate, for example, various materials such as resin, rubber, glass and ceramics can be used.

<酸接触工程>
本発明の酸接触工程は、上記導電層を酸性水溶液に接触させる工程である。
<Acid contact process>
The acid contact step of the present invention is a step of bringing the conductive layer into contact with an acidic aqueous solution.

導電性高分子とドーパントとを含む導電層に酸性水溶液を接触させることにより、導電性シートの導電層の表面電気抵抗値の経時変化を小さくできる。そのメカニズムは明らかではないが、次のように考えられる。   By bringing the acidic aqueous solution into contact with the conductive layer containing the conductive polymer and the dopant, the change over time in the surface electrical resistance value of the conductive layer of the conductive sheet can be reduced. The mechanism is not clear, but it is thought as follows.

即ち、導電性高分子とドーパントとを含む導電層に酸性水溶液を接触させることにより、ドーパントの電離が抑制され、ドーパントの脱離を防止でき、このため、導電性シートを大気中に曝露しても、導電層中のドーパントとしての機能が低下せず、導電性シートの導電層の表面電気抵抗値の経時変化を小さくできると考えられる。   That is, by bringing an acidic aqueous solution into contact with a conductive layer containing a conductive polymer and a dopant, ionization of the dopant can be suppressed and desorption of the dopant can be prevented. For this reason, the conductive sheet is exposed to the atmosphere. However, it is considered that the function as a dopant in the conductive layer does not deteriorate, and the change over time of the surface electrical resistance value of the conductive layer of the conductive sheet can be reduced.

例えば、導電性高分子としてPEDOTを用い、そのドーパントとしてPSSを用いて導電層を作製した場合、その導電層を、水分を含む大気中に置くと、PSSのイオン化は下記の平衡状態になると考えられる。
−SO3H ⇔ −SO3 - + H+
For example, when a conductive layer is produced using PEDOT as the conductive polymer and PSS as the dopant, the ionization of PSS is considered to be in the following equilibrium state when the conductive layer is placed in an atmosphere containing moisture. It is done.
-SO 3 H ⇔ -SO 3 - + H +

上記平衡状態において、導電層にスルホン酸と同等以上の酸性度を有する酸性水溶液を接触させると、上記平衡式は左方向へ移行し、PSSのイオン化を抑制できると考えられる。また、上記導電層に酸性水溶液を接触させた後に乾燥させても、導電層の表面に酸成分が残存するため、上記PSSのイオン化抑制効果は維持されると考えられる。   In the above equilibrium state, when an acidic aqueous solution having an acidity equal to or higher than that of sulfonic acid is brought into contact with the conductive layer, the above equilibrium equation shifts to the left, and it is considered that ionization of PSS can be suppressed. Moreover, even if it makes it dry after making acidic aqueous solution contact the said conductive layer, since the acid component remains on the surface of a conductive layer, it is thought that the ionization suppression effect of said PSS is maintained.

また、上記導電層は、バインダ樹脂を含んでいるため、上記酸性水溶液に接触させても、上記導電層が基材から剥離することはない。一方、前述の非特許文献1では、PEDOT/PSSからなる導電性膜にはバインダ樹脂が含まれていないため、酸処理によりPEDOT/PSSからなる導電性膜の剥離が懸念される。   Moreover, since the said conductive layer contains binder resin, even if it makes it contact with the said acidic aqueous solution, the said conductive layer does not peel from a base material. On the other hand, in Non-Patent Document 1 described above, since the conductive film made of PEDOT / PSS contains no binder resin, there is a concern about peeling of the conductive film made of PEDOT / PSS due to acid treatment.

上記酸性水溶液の酸性度は、用いるドーパントの酸性度と同等以上であることが必要である。スルホン酸の酸性度は有機酸の中でもとりわけ大きく、PEDOT/PSS水溶液のpHは2〜3程度である。従って、上記酸性水溶液のpHは、3未満であることが好ましく、2未満であることがより好ましい。   The acidity of the acidic aqueous solution needs to be equal to or higher than the acidity of the dopant used. The acidity of sulfonic acid is particularly large among organic acids, and the pH of the aqueous solution of PEDOT / PSS is about 2 to 3. Accordingly, the pH of the acidic aqueous solution is preferably less than 3, and more preferably less than 2.

上記酸性水溶液に含まれる酸としては、例えば、硫酸、硝酸、塩酸、臭化水素酸及びヨウ化水素酸からなる群から選ばれる少なくとも1種を用いることができる。これらの中でも、取り扱いが容易で副反応を起こし難い硫酸、硝酸、塩酸が好ましく、特に硫酸、塩酸が好ましい。上記酸性水溶液は、上記酸を純水により希釈して、所定のpHに調整して使用すればよい。   As the acid contained in the acidic aqueous solution, for example, at least one selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid can be used. Among these, sulfuric acid, nitric acid, and hydrochloric acid that are easy to handle and hardly cause side reactions are preferable, and sulfuric acid and hydrochloric acid are particularly preferable. The acid aqueous solution may be used by diluting the acid with pure water and adjusting to a predetermined pH.

上記酸性水溶液の温度は、10℃以上45℃以下が好ましく、20℃以上40℃以下がより好ましい。上記酸性水溶液の温度が高いと、酸接触工程時間を短縮できるが、上記温度が高すぎると導電層の一部が溶解する場合がある。また、上記酸性水溶液の温度が低すぎると、酸接触工程時間を長くする必要があり、生産効率が低下する。   The temperature of the acidic aqueous solution is preferably 10 ° C. or higher and 45 ° C. or lower, and more preferably 20 ° C. or higher and 40 ° C. or lower. If the temperature of the acidic aqueous solution is high, the acid contact process time can be shortened, but if the temperature is too high, a part of the conductive layer may be dissolved. Moreover, when the temperature of the said acidic aqueous solution is too low, it is necessary to lengthen an acid contact process time, and production efficiency will fall.

上記酸性水溶液を上記導電層に接触させる時間は、長すぎると酸処理効果が飽和すると同時に導電層の一部が溶解する場合があり、上記酸性水溶液の温度にもよるが、酸処理効果と生産性とを考慮すると、5秒以上30分以下が好ましく、10秒以上10分以下がより好ましい。また、上記酸接触工程時間が短いほうが、導電性シートのロール・ツウ・ロール又は枚葉での連続生産が可能となり、生産性の面で好ましい。   If the acidic aqueous solution is brought into contact with the conductive layer for too long, the acid treatment effect is saturated, and at the same time a part of the conductive layer may be dissolved. Depending on the temperature of the acidic aqueous solution, the acid treatment effect and production In view of the property, it is preferably 5 seconds or longer and 30 minutes or shorter, and more preferably 10 seconds or longer and 10 minutes or shorter. Moreover, the one where the said acid contact process time is short becomes possible from the surface of productivity, since the continuous production by the roll of a conductive sheet, a roll-to-roll, or a sheet | seat is attained.

上記条件下で導電性シートを上記酸性水溶液に接触させる方法は特に限定されず、浸漬、噴霧等の方法で行えばよい。例えば、樹脂基材を用いた導電性シートをロール・ツウ・ロールで連続生産する場合は、酸性水溶液を入れた水槽に浸漬することにより、上記導電性シートに上記酸性水溶液を接触させればよく、ガラス等の硬質基材を用いた導電性シートの場合は、コンベアで移動させながら酸性水溶液を噴霧することにより、上記導電性シートに上記酸性水溶液を接触させればよい。   The method for bringing the conductive sheet into contact with the acidic aqueous solution under the above conditions is not particularly limited, and may be performed by a method such as dipping or spraying. For example, when the conductive sheet using the resin base material is continuously produced by roll-to-roll, it is sufficient to bring the acidic aqueous solution into contact with the conductive sheet by immersing it in a water tank containing the acidic aqueous solution. In the case of a conductive sheet using a hard substrate such as glass, the acidic aqueous solution may be brought into contact with the conductive sheet by spraying the acidic aqueous solution while being moved by a conveyor.

上記酸接触工程の後に、上記導電性シートを純水で洗浄してもよい。導電性シートの表面に不揮発性の酸性水溶液が多く残る状態で次工程の加工を行うと、残存した酸性水溶液により次工程に悪影響を及す場合があるからである。上記導電性シートを純水で洗浄する方法は特に限定されず、導電性シートを純水の入った水槽に浸漬してもよいし、導電性シートに純水を噴霧してもよい。上記洗浄時間は、導電性シートの用途にもよるが1秒から5分でよいが、洗浄時間が5分を超えると酸性水溶液に接触させた効果を損ねる場合がある。   After the acid contact step, the conductive sheet may be washed with pure water. This is because if the next process is performed in a state where a large amount of non-volatile acidic aqueous solution remains on the surface of the conductive sheet, the remaining acidic aqueous solution may adversely affect the next process. The method for washing the conductive sheet with pure water is not particularly limited, and the conductive sheet may be immersed in a water tank containing pure water, or pure water may be sprayed onto the conductive sheet. Although the said washing | cleaning time may be 1 second-5 minutes depending on the use of an electroconductive sheet, when the washing | cleaning time exceeds 5 minutes, the effect made to contact acidic aqueous solution may be impaired.

<パターニング工程>
本発明の導電性シートの製造方法は、上記導電層上の導電パターンを形成する位置にレジスト膜を形成した後、導電性を失活させる不活性剤を用いて、上記レジスト膜をマスクとして、上記導電層の露出部の導電性を失活させて上記導電層をパターニングする工程を更に備えることができる。
<Patterning process>
In the method for producing a conductive sheet of the present invention, after forming a resist film at a position where a conductive pattern is formed on the conductive layer, an inert agent that deactivates the conductivity is used, using the resist film as a mask, The method may further comprise a step of patterning the conductive layer by deactivating the conductivity of the exposed portion of the conductive layer.

上記導電層上の導電パターンを形成する位置に形成されるレジスト膜は、例えば、レジスト剤を上記導電層上にスクリーン印刷することにより形成できる。上記レジスト剤は特に限定されず、適宜選択できる。   The resist film formed at the position where the conductive pattern on the conductive layer is formed can be formed, for example, by screen printing a resist agent on the conductive layer. The said resist agent is not specifically limited, It can select suitably.

上記導電層の露出部の導電性を失活させるために用いる不活性剤としては、上記導電性高分子を失活できるものであればよく、例えば、酸化性化合物、塩基性化合物が挙げられる。   As an inert agent used in order to deactivate the electroconductivity of the exposed part of the said conductive layer, what is necessary is just to be able to deactivate the said conductive polymer, For example, an oxidizing compound and a basic compound are mentioned.

上記酸化性化合物としては、例えば、過酸化水素系化合物、過塩素酸系化合物、次亜塩素酸系化合物、過酢酸系化合物、メタクロロ安息香酸系化合物、亜硫酸系化合物等が挙げられる。   Examples of the oxidizing compound include hydrogen peroxide compounds, perchloric acid compounds, hypochlorous acid compounds, peracetic acid compounds, metachlorobenzoic acid compounds, sulfite compounds, and the like.

また、上記塩基性化合物としては、例えば、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、ピリジン、4−メチルピリジン、水酸化テトラメチルアンモニウム等が挙げられる。   Examples of the basic compound include ammonia, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, pyridine, 4-methylpyridine, and tetramethylammonium hydroxide.

上記パターニング工程において、上記導電層はバインダ樹脂を含んでいるため、上記不活性剤が上記導電層に浸透しにくい。このため、上記導電層に上記不活性剤が徐々に浸透するため、導電パターンを精度よく形成できる。   In the patterning step, since the conductive layer contains a binder resin, the inert agent hardly penetrates into the conductive layer. For this reason, since the inactive agent gradually penetrates into the conductive layer, a conductive pattern can be formed with high accuracy.

(本発明の導電性シート)
本発明の導電性シートは、基材と、上記基材の少なくとも一方の主面に配置された導電層とを備え、上記本発明の導電性シートの製造方法により製造されたことを特徴とする。
(Conductive sheet of the present invention)
The conductive sheet of the present invention comprises a base material and a conductive layer disposed on at least one main surface of the base material, and is manufactured by the method for manufacturing a conductive sheet of the present invention. .

本発明の導電性シートは、上記本発明の導電性シートの製造方法により製造されているので、上記導電層はバインダ樹脂を含んでいる。これにより、導電性高分子のみからなる導電層に比べて、硬度が高く基材への密着性が高い導電層を形成できる。また、上記導電層がバインダ樹脂を含むことにより、基材上に厚みのばらつきが小さい導電層を形成できるため、導電層全体の電気抵抗値を均一にできる。更に、上記導電層は、パターニングしてもよく、これによりタッチパネル用途に適した導電層を形成できる。   Since the electroconductive sheet of this invention is manufactured by the manufacturing method of the electroconductive sheet of the said invention, the said conductive layer contains binder resin. Thereby, it is possible to form a conductive layer having high hardness and high adhesion to the substrate as compared to a conductive layer made of only a conductive polymer. In addition, since the conductive layer contains a binder resin, a conductive layer having a small thickness variation can be formed on the base material, so that the electrical resistance value of the entire conductive layer can be made uniform. Furthermore, the conductive layer may be patterned, whereby a conductive layer suitable for touch panel use can be formed.

上記導電層の表面電気抵抗値は、50Ω/sq以上10000Ω/sq以下であることが好ましい。更に、上記導電層をタッチパネル用電極として用いる場合には、上記導電層の表面電気抵抗値は、50Ω/sq以上1000Ω/sq以下が好ましく、50Ω/sq以上500Ω/sq以下がより好ましい。表面電気抵抗値が小さいほど良好な電気特性を示す。上記導電層の表面電気抵抗値は、接触式の4探針法、非接触式の渦電流法等により測定することができる。   The surface electrical resistance value of the conductive layer is preferably 50Ω / sq or more and 10,000Ω / sq or less. Furthermore, when the conductive layer is used as an electrode for a touch panel, the surface electrical resistance value of the conductive layer is preferably 50Ω / sq to 1000Ω / sq, more preferably 50Ω / sq to 500Ω / sq. The smaller the surface electrical resistance value, the better the electrical characteristics. The surface electrical resistance value of the conductive layer can be measured by a contact type four-probe method, a non-contact type eddy current method, or the like.

酸性水溶液に接触させる前の上記導電層の表面電気抵抗値をRaとし、酸性水溶液に接触させた後の上記導電層の表面電気抵抗値をRbとした場合、下記式(1)が成立することが好ましい。これにより、上記導電層の酸処理による影響を小さくできる。
(|Rb−Ra|/Ra)×100<10 (1)
When the surface electrical resistance value of the conductive layer before being brought into contact with the acidic aqueous solution is Ra and the surface electrical resistance value of the conductive layer after being brought into contact with the acidic aqueous solution is Rb, the following formula (1) is satisfied. Is preferred. Thereby, the influence by the acid treatment of the said conductive layer can be made small.
(| Rb-Ra | / Ra) × 100 <10 (1)

また、酸性水溶液に接触させる前の上記導電層の表面電気抵抗値をRaとし、酸性水溶液に接触させた後の上記導電層を、温度25℃、相対湿度50%の大気中に10日間曝露した後の、上記導電層の表面電気抵抗値をRcとした場合、下記式(2)が成立することが好ましい。これにより、上記導電層の耐湿熱性を向上できる。
(|Rc−Ra|/Ra)×100<10 (2)
The surface electrical resistance value of the conductive layer before contact with the acidic aqueous solution was Ra, and the conductive layer after contact with the acidic aqueous solution was exposed to the atmosphere at a temperature of 25 ° C. and a relative humidity of 50% for 10 days. When the surface electrical resistance value of the conductive layer later is Rc, the following formula (2) is preferably satisfied. Thereby, the heat-and-moisture resistance of the said conductive layer can be improved.
(| Rc−Ra | / Ra) × 100 <10 (2)

更に、酸性水溶液に接触させる前の上記導電層の表面電気抵抗値をRaとし、酸性水溶液に接触させた後の上記導電層の表面を、純水を含ませた白ネルを用いて、加重100g/cm2、速度4500mm/分、摺動幅25mmで、20往復させた後の、上記導電層の表面電気抵抗値をRdとした場合、下記式(3)が成立することが好ましい。これにより、上記導電層の耐久性を向上できる。
(|Rd−Ra|/Ra)×100<10 (3)
Furthermore, the surface electrical resistance value of the conductive layer before being brought into contact with the acidic aqueous solution is defined as Ra, and the surface of the conductive layer after being brought into contact with the acidic aqueous solution is loaded with white water containing pure water and loaded with 100 g. / Cm 2 , speed 4500 mm / min, sliding width 25 mm, and when the surface electrical resistance value of the conductive layer after 20 reciprocations is Rd, the following formula (3) is preferably satisfied. Thereby, the durability of the conductive layer can be improved.
(| Rd−Ra | / Ra) × 100 <10 (3)

上記導電層の厚みは、用途に応じて適宜設定されるものであるが、通常、0.01〜10μm程度である。上記導電層の厚みが薄すぎても厚すぎても、均一な導電層を形成することが困難となる。上記導電性高分子の割合にもよるが、上記導電層の厚みが0.01μmより薄いと、表面電気抵抗値が上昇したり、表面電気抵抗値の場所によるばらつきが大きくなる傾向にあり、上記導電層の厚みが10μmより厚くなると、導電層の厚みが大きくなりすぎて、全光線透過率が低下する傾向にある。   Although the thickness of the said conductive layer is suitably set according to a use, it is about 0.01-10 micrometers normally. If the conductive layer is too thin or too thick, it is difficult to form a uniform conductive layer. Depending on the proportion of the conductive polymer, when the thickness of the conductive layer is less than 0.01 μm, the surface electrical resistance value tends to increase or the variation in the surface electrical resistance value tends to increase. When the thickness of the conductive layer is greater than 10 μm, the thickness of the conductive layer becomes too large and the total light transmittance tends to decrease.

次に、本発明の導電性シートを図面に基づき説明する。図1は、本発明の導電性シートの一例を示す模式断面図である。図1において、導電性シート10は、基材11と、基材11の上に形成された導電層12とを備えている。前述のとおり、導電層12は導電性高分子とバインダ樹脂とを含み、導電層12は酸性水溶液に接触して形成されている。   Next, the electroconductive sheet of this invention is demonstrated based on drawing. FIG. 1 is a schematic cross-sectional view showing an example of the conductive sheet of the present invention. In FIG. 1, the conductive sheet 10 includes a base material 11 and a conductive layer 12 formed on the base material 11. As described above, the conductive layer 12 includes a conductive polymer and a binder resin, and the conductive layer 12 is formed in contact with an acidic aqueous solution.

以下、実施例を用いて本発明を詳細に述べる。但し、本発明は以下の実施例に限定されるものではない。特に指摘がない場合、下記において、「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the following examples. Unless otherwise indicated, in the following, “part” means “part by mass”.

(実施例1)
<導電層形成用塗料の調製>
以下の成分を添加、混合して導電層形成用塗料aを調製した。
(1)導電性高分子分散液(ヘレウス社製、商品名“PH−1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.0質量%、溶媒:水):46部
(2)バインダ樹脂分散液(PVDF分散液、PVDF粒子の平均分散粒子径:0.2μm、固形分濃度:30質量%、溶媒:水):4.5部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):12部
(4)プロトン性極性溶媒(ノルマルプロピルアルコール):36部
(5)プロトン性極性溶媒(水):1.5部
Example 1
<Preparation of paint for forming conductive layer>
The following components were added and mixed to prepare a conductive layer forming coating material a.
(1) Conductive polymer dispersion (manufactured by Heraeus, trade name “PH-1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.0 mass%, solvent: water): 46 parts (2 ) Binder resin dispersion (PVDF dispersion, average dispersion particle size of PVDF particles: 0.2 μm, solid content concentration: 30% by mass, solvent: water): 4.5 parts (3) Aprotic polar solvent (dimethyl sulfoxide ): 12 parts (4) Protic polar solvent (normal propyl alcohol): 36 parts (5) Protic polar solvent (water): 1.5 parts

<導電性シートの形成>
次に、厚さ100μmのPETフィルム(東洋紡社製、商品名“A4100”、ヘイズ:0.9%、全光線透過率:92.0%)を基材として用い、基材の一方の主面に上記導電層形成用塗料aを、バーコータを用いて塗布し、その後110℃で5分間乾燥した。これにより、一方の主面に導電層が形成された実施例1の導電性シートを作製した。上記導電層の厚みは、0.3μmであった。
<Formation of conductive sheet>
Next, a PET film having a thickness of 100 μm (manufactured by Toyobo Co., Ltd., trade name “A4100”, haze: 0.9%, total light transmittance: 92.0%) was used as a base material, and one main surface of the base material The conductive layer-forming coating material a was applied using a bar coater and then dried at 110 ° C. for 5 minutes. Thereby, the electroconductive sheet of Example 1 in which the electroconductive layer was formed in one main surface was produced. The thickness of the conductive layer was 0.3 μm.

<作製直後の導電層の表面電気抵抗値Raの測定>
先ず、上記導電性シートの作製直後の導電層の表面電気抵抗値Raを、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。その結果、Raは180Ω/sqであった。
<Measurement of surface electrical resistance value Ra of conductive layer immediately after production>
First, the surface electrical resistance value Ra of the conductive layer immediately after the production of the conductive sheet was measured using a resistivity measuring device “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe. . As a result, Ra was 180Ω / sq.

<導電性シートの酸接触>
作製した導電性シートを5cm角に切り出し、その切り出した導電性シートを、温度25℃、濃度0.1Nの硫酸水溶液(pH:1.5)100mLに、10秒間浸漬した。その後、上記導電性シートを純水に5秒間浸漬して洗浄して乾燥した。
<Acid contact of conductive sheet>
The produced conductive sheet was cut into a 5 cm square, and the cut conductive sheet was immersed in 100 mL of sulfuric acid aqueous solution (pH: 1.5) having a temperature of 25 ° C. and a concentration of 0.1 N for 10 seconds. Thereafter, the conductive sheet was immersed in pure water for 5 seconds, washed and dried.

<酸接触後の導電層の表面電気抵抗値Rbの測定>
次に、酸接触後の導電性シートの導電層の表面電気抵抗値Rbを、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。
<Measurement of surface electrical resistance value Rb of conductive layer after acid contact>
Next, the surface electrical resistance value Rb of the conductive layer of the conductive sheet after the acid contact is measured using a resistivity measuring device “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe. did.

<導電層の耐湿熱試験後の表面電気抵抗値Rcの測定>
酸性水溶液に接触させた後の上記導電性シートを、温度25℃、相対湿度50%の恒温恒湿槽に遮光した状態で10日間静置した後の、上記導電性シートの導電層の表面電気抵抗値Rcを、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。
<Measurement of surface electrical resistance value Rc after wet heat resistance test of conductive layer>
The surface electricity of the conductive layer of the conductive sheet after leaving the conductive sheet after contact with the acidic aqueous solution for 10 days in a state where it is shielded from light in a constant temperature and humidity chamber having a temperature of 25 ° C. and a relative humidity of 50%. The resistance value Rc was measured using a resistivity measuring device “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe.

<導電層の摺動試験後の表面電気抵抗値Rdの測定>
酸性水溶液に接触させた後の上記導電性シートの導電層の表面を、純水を含ませた白ネル(#400)を用いて、加重100g/cm2、速度4500mm/分、摺動幅25mmで、20往復させた後の、上記導電層の表面電気抵抗値をRdを、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。
<Measurement of surface electrical resistance value Rd after sliding test of conductive layer>
The surface of the conductive layer of the conductive sheet after being contacted with the acidic aqueous solution was loaded with white water (# 400) containing pure water using a load of 100 g / cm 2 , a speed of 4500 mm / min, and a sliding width of 25 mm. Then, Rd was measured for the surface electrical resistance value of the conductive layer after 20 reciprocations using a resistivity measuring device “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe. did.

<導電層の表面電気抵抗値の変化率の算出>
上記で測定した表面電気抵抗値Ra、Rb、Rc、Rdを用いて、下記式(4)〜(6)から、酸接触前後の表面電気抵抗値の変化率CR1、耐湿熱試験前後の表面電気抵抗値の変化率CR2、及び摺動試験前後の表面電気抵抗値の変化率CR3を算出した。
<Calculation of change rate of surface electric resistance value of conductive layer>
Using the surface electrical resistance values Ra, Rb, Rc, and Rd measured above, from the following formulas (4) to (6), the change rate CR1 of the surface electrical resistance value before and after the acid contact, the surface electrical power before and after the wet heat resistance test The change rate CR2 of the resistance value and the change rate CR3 of the surface electrical resistance value before and after the sliding test were calculated.

CR1(%)=(|Rb−Ra|/Ra)×100 (4)
CR2(%)=(|Rc−Ra|/Ra)×100 (5)
CR3(%)=(|Rd−Ra|/Ra)×100 (6)
CR1 (%) = (| Rb−Ra | / Ra) × 100 (4)
CR2 (%) = (| Rc−Ra | / Ra) × 100 (5)
CR3 (%) = (| Rd−Ra | / Ra) × 100 (6)

上記測定の結果、上記表面電気抵抗値の変化率が5%未満の場合、導電性シートの導電層の表面電気抵抗値の変化が極めて小さく、優良(A)と判断し、上記表面電気抵抗値の変化率が5%以上10%未満の場合、導電性シートの導電層の表面電気抵抗値の変化が小さく、良好(B)と判断し、上記表面電気抵抗値の変化率が10%を超えた場合、導電性シートの導電層の表面電気抵抗値の変化が大きく、不良(C)と判断した。   As a result of the measurement, when the rate of change of the surface electrical resistance value is less than 5%, the change in the surface electrical resistance value of the conductive layer of the conductive sheet is judged to be extremely small and excellent (A). When the rate of change of the surface electrical resistance is 5% or more and less than 10%, the change in the surface electrical resistance value of the conductive layer of the conductive sheet is small and judged as good (B), and the rate of change in the surface electrical resistance value exceeds 10% In this case, the change in the surface electrical resistance value of the conductive layer of the conductive sheet was large, and it was judged as defective (C).

(実施例2)
導電性シートの酸浸漬時間を1分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 2)
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 1 minute, and the surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例3)
導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 3)
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 5 minutes, and the surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例4)
導電性シートの酸浸漬時間を15分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
Example 4
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 15 minutes. The surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例5)
導電性シートの酸浸漬時間を25分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 5)
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 25 minutes, and the surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例6)
硫酸水溶液の温度を15℃に変更し、導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 6)
A conductive sheet was prepared in the same manner as in Example 1 except that the temperature of the sulfuric acid aqueous solution was changed to 15 ° C. and the acid immersion time of the conductive sheet was changed to 5 minutes. The surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet are measured to calculate the surface electrical resistance value change rates CR1, CR2, and CR3, and the magnitude of the change in each surface electrical resistance value is evaluated. did.

(実施例7)
硫酸水溶液の温度を40℃に変更し、導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 7)
A conductive sheet was prepared in the same manner as in Example 1 except that the temperature of the sulfuric acid aqueous solution was changed to 40 ° C. and the acid immersion time of the conductive sheet was changed to 5 minutes. The surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet are measured to calculate the surface electrical resistance value change rates CR1, CR2, and CR3, and the magnitude of the change in each surface electrical resistance value is evaluated. did.

(実施例8)
硫酸水溶液の濃度を0.01N、pHを2.5に変更し、導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 8)
A conductive sheet was prepared in the same manner as in Example 1 except that the concentration of the sulfuric acid aqueous solution was changed to 0.01 N, the pH was changed to 2.5, and the acid immersion time of the conductive sheet was changed to 5 minutes. 1, the surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet are measured, and the surface electrical resistance value change rates CR1, CR2, and CR3 are calculated. The magnitude of change was evaluated.

(実施例9)
硫酸水溶液の濃度を0.01N、pHを2.5に変更し、硫酸水溶液の温度を40℃に変更し、導電性シートの酸浸漬時間を1分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
Example 9
Example 1 except that the concentration of the sulfuric acid aqueous solution was changed to 0.01 N, the pH was changed to 2.5, the temperature of the sulfuric acid aqueous solution was changed to 40 ° C., and the acid immersion time of the conductive sheet was changed to 1 minute. In the same manner as in Example 1, the surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet were measured, and the rate of change of the surface electrical resistance values CR1, CR2 And CR3 were calculated, and the magnitude of change in each surface electrical resistance value was evaluated.

(実施例10)
硫酸水溶液を濃度0.1Nの塩酸水溶液(pH:1.5)に変更し、導電性シートの酸浸漬時間を1分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 10)
A conductive sheet was prepared in the same manner as in Example 1 except that the sulfuric acid aqueous solution was changed to a 0.1N hydrochloric acid aqueous solution (pH: 1.5) and the acid immersion time of the conductive sheet was changed to 1 minute. In the same manner as in Example 1, the surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet were measured, and the surface electrical resistance value change rates CR1, CR2, and CR3 were calculated. The magnitude of change in electrical resistance value was evaluated.

(実施例11)
<導電層形成用塗料の調製>
以下の成分を添加、混合して導電層形成用塗料bを調製した。
(1)導電性高分子分散液(ヘレウス社製、商品名“PH−1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.0質量%、溶媒:水):13.4部
(2)バインダ樹脂(アルコキシシランオリゴマー、信越化学工業社製、商品名“X40−2308”):0.6部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):15部
(4)プロトン性極性溶媒(エタノール):64.2部
(5)プロトン性極性溶媒(水):6.8部
(Example 11)
<Preparation of paint for forming conductive layer>
The following components were added and mixed to prepare a conductive layer forming coating material b.
(1) Conductive polymer dispersion (manufactured by Heraeus, trade name “PH-1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.0 mass%, solvent: water): 13.4 parts (2) Binder resin (alkoxysilane oligomer, manufactured by Shin-Etsu Chemical Co., Ltd., trade name “X40-2308”): 0.6 part (3) Aprotic polar solvent (dimethyl sulfoxide): 15 parts (4) Protic polarity Solvent (ethanol): 64.2 parts (5) Protic polar solvent (water): 6.8 parts

<導電性シートの形成>
次に、サイズ10cm四方、厚さ0.7mmの無アルカリガラス(全光線透過率:91.2%)を基材として用い、基材の一方の主面に上記導電層形成用塗料bを、スピンコーティング法により30秒間、回転速度1000rpmで塗布し、その後120℃で1時間乾燥した。これにより、一方の主面に導電層が形成された実施例11の導電性シートを作製した。上記導電層の厚みは、0.5μmであった。
<Formation of conductive sheet>
Next, a non-alkali glass (total light transmittance: 91.2%) having a size of 10 cm square and a thickness of 0.7 mm is used as a base material, and the conductive layer forming coating b is applied to one main surface of the base material. The coating was performed by spin coating for 30 seconds at a rotation speed of 1000 rpm, and then dried at 120 ° C. for 1 hour. This produced the electroconductive sheet of Example 11 in which the electroconductive layer was formed in one main surface. The thickness of the conductive layer was 0.5 μm.

<作製直後の導電層の表面電気抵抗値Raの測定>
上記導電性シートの作製直後の導電層の表面電気抵抗値Raを、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。その結果、Raは400Ω/sqであった。
<Measurement of surface electrical resistance value Ra of conductive layer immediately after production>
The surface electrical resistance value Ra of the conductive layer immediately after the production of the conductive sheet was measured using a resistivity measuring apparatus “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe. As a result, Ra was 400 Ω / sq.

<導電性シートの酸接触>
作製した導電性シートを5cm角に切り出し、その切り出した導電性シートを、温度25℃、濃度0.1Nの硫酸水溶液(pH:1.5)100mLに、10秒間浸漬した。その後、上記導電性シートを純水に5秒間浸漬して洗浄して乾燥した。
<Acid contact of conductive sheet>
The produced conductive sheet was cut into a 5 cm square, and the cut conductive sheet was immersed in 100 mL of sulfuric acid aqueous solution (pH: 1.5) having a temperature of 25 ° C. and a concentration of 0.1 N for 10 seconds. Thereafter, the conductive sheet was immersed in pure water for 5 seconds, washed and dried.

上記導電性シートを用いた以外は、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。   Except for using the conductive sheet, the surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet were measured in the same manner as in Example 1, and the surface electrical resistance value change rate CR1, CR2 and CR3 were calculated, and the magnitude of change in each surface electrical resistance value was evaluated.

(実施例12)
導電性シートの酸浸漬時間を3秒に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 12)
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 3 seconds, and the surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例13)
導電性シートの酸浸漬時間を45分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 13)
A conductive sheet was produced in the same manner as in Example 1 except that the acid immersion time of the conductive sheet was changed to 45 minutes, and the surface electrical resistance value Ra of the conductive layer of the conductive sheet was obtained in the same manner as in Example 1. , Rb, Rc, Rd were measured to calculate the rate of change CR1, CR2, and CR3 of the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(実施例14)
硫酸水溶液の温度を50℃に変更し、導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 14)
A conductive sheet was prepared in the same manner as in Example 1 except that the temperature of the sulfuric acid aqueous solution was changed to 50 ° C. and the acid immersion time of the conductive sheet was changed to 5 minutes. The surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet are measured to calculate the surface electrical resistance value change rates CR1, CR2, and CR3, and the magnitude of the change in each surface electrical resistance value is evaluated. did.

(実施例15)
硫酸水溶液の温度を5℃に変更し、導電性シートの酸浸漬時間を1分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 15)
A conductive sheet was prepared in the same manner as in Example 1 except that the temperature of the sulfuric acid aqueous solution was changed to 5 ° C. and the acid immersion time of the conductive sheet was changed to 1 minute. The surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet are measured to calculate the surface electrical resistance value change rates CR1, CR2, and CR3, and the magnitude of the change in each surface electrical resistance value is evaluated. did.

(実施例16)
硫酸水溶液を濃度0.01Nの酢酸水溶液(pH:3.4)に変更し、導電性シートの酸浸漬時間を5分に変更した以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Example 16)
A conductive sheet was prepared in the same manner as in Example 1 except that the sulfuric acid aqueous solution was changed to a 0.01N acetic acid aqueous solution (pH: 3.4) and the acid immersion time of the conductive sheet was changed to 5 minutes. In the same manner as in Example 1, the surface electrical resistance values Ra, Rb, Rc, and Rd of the conductive layer of the conductive sheet were measured, and the surface electrical resistance value change rates CR1, CR2, and CR3 were calculated. The magnitude of change in electrical resistance value was evaluated.

(比較例1)
導電性シートを酸接触させなかった以外は、実施例1と同様にして導電性シートを作製し、この酸接触させなかった導電性シートを用いた以外は、実施例1と同様にして表面電気抵抗値Ra、Rc、Rdを測定して、表面電気抵抗値の変化率CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Comparative Example 1)
A conductive sheet was prepared in the same manner as in Example 1 except that the conductive sheet was not brought into acid contact, and the surface electricity was obtained in the same manner as in Example 1 except that this conductive sheet was not brought into acid contact. The resistance values Ra, Rc, and Rd were measured to calculate the rate of change CR2 and CR3 in the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(比較例2)
導電性シートを酸接触させなかった以外は、実施例11と同様にして導電性シートを作製し、この酸接触させなかった導電性シートを用いた以外は、実施例1と同様にして表面電気抵抗値Ra、Rc、Rdを測定して、表面電気抵抗値の変化率CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Comparative Example 2)
A conductive sheet was prepared in the same manner as in Example 11 except that the conductive sheet was not brought into acid contact, and the surface electricity was obtained in the same manner as in Example 1 except that this conductive sheet was not brought into acid contact. The resistance values Ra, Rc, and Rd were measured to calculate the rate of change CR2 and CR3 in the surface electrical resistance value, and the magnitude of the change in each surface electrical resistance value was evaluated.

(比較例3)
硫酸水溶液を純水(pH:7)に変更し、導電性シートの純水浸漬時間を5分とした以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb(純水浸漬後の導電層の表面電気抵抗値)、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Comparative Example 3)
A conductive sheet was prepared in the same manner as in Example 1 except that the sulfuric acid aqueous solution was changed to pure water (pH: 7), and the pure water immersion time of the conductive sheet was changed to 5 minutes. The surface electrical resistance values Ra and Rb (surface electrical resistance values of the conductive layer after immersion in pure water), Rc and Rd are measured, and the rate of change of the surface electrical resistance values CR1, CR2 and CR3 was calculated and the magnitude of change in each surface electrical resistance value was evaluated.

(比較例4)
硫酸水溶液を純水(pH:7)に変更し、導電性シートの純水浸漬時間を30分とした以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb(純水接触後の導電層の表面電気抵抗値)、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Comparative Example 4)
A conductive sheet was prepared in the same manner as in Example 1 except that the sulfuric acid aqueous solution was changed to pure water (pH: 7), and the pure water immersion time of the conductive sheet was changed to 30 minutes. The surface electrical resistance values Ra, Rb (surface electrical resistance values of the conductive layer after contact with pure water), Rc, Rd are measured, and the rate of change of the surface electrical resistance values CR1, CR2 and CR3 was calculated and the magnitude of change in each surface electrical resistance value was evaluated.

(比較例5)
硫酸水溶液を濃度0.01Nの水酸化ナトリウム水溶液(pH:12.1)に変更し、導電性シートのアルカリ浸漬時間を5分とした以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb(アルカリ浸漬後の導電層の表面電気抵抗値)、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。
(Comparative Example 5)
A conductive sheet was produced in the same manner as in Example 1 except that the sulfuric acid aqueous solution was changed to a 0.01N sodium hydroxide aqueous solution (pH: 12.1), and the alkaline immersion time of the conductive sheet was changed to 5 minutes. In the same manner as in Example 1, the surface electrical resistance values Ra, Rb (surface electrical resistance values of the conductive layer after alkali immersion), Rc, Rd of the conductive layer of the conductive sheet were measured, and the surface electrical resistance values were measured. The change rates CR1, CR2 and CR3 were calculated, and the magnitude of the change in each surface electrical resistance value was evaluated.

(比較例6)
<導電層形成用塗料の調製>
以下の成分を添加、混合して導電層形成用塗料cを調製した。
(1)導電性高分子分散液(ヘレウス社製、商品名“PH−1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.0質量%、溶媒:水):46部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):12部
(4)プロトン性極性溶媒(ノルマルプロピルアルコール):36部
(5)プロトン性極性溶媒(水):6部
(Comparative Example 6)
<Preparation of paint for forming conductive layer>
The following components were added and mixed to prepare a conductive layer forming coating material c.
(1) Conductive polymer dispersion (manufactured by Heraeus, trade name “PH-1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.0 mass%, solvent: water): 46 parts (3 ) Aprotic polar solvent (dimethyl sulfoxide): 12 parts (4) Protic polar solvent (normal propyl alcohol): 36 parts (5) Protic polar solvent (water): 6 parts

上記導電層形成用塗料cを用いた以外は、実施例1と同様にして導電性シートを作製し、実施例1と同様にして、導電性シートの導電層の表面電気抵抗値Ra、Rb、Rc、Rdを測定して、表面電気抵抗値の変化率CR1、CR2及びCR3を算出し、各表面電気抵抗値の変化の大きさを評価した。上記導電層の厚みは0.2μmであり、Raは150Ω/sqであった。   A conductive sheet was produced in the same manner as in Example 1 except that the conductive layer-forming coating material c was used, and in the same manner as in Example 1, the surface electrical resistance values Ra, Rb, Rc and Rd were measured to calculate the rate of change of surface electrical resistance value CR1, CR2 and CR3, and the magnitude of change of each surface electrical resistance value was evaluated. The thickness of the conductive layer was 0.2 μm, and Ra was 150Ω / sq.

以上の実施例1〜16及び比較例1〜6の評価結果を表1〜3に示す。また、表1〜3では、使用した導電層形成用塗料の種類、導電性シートの表面処理条件も合せて示した。   The evaluation results of Examples 1 to 16 and Comparative Examples 1 to 6 are shown in Tables 1 to 3. Tables 1 to 3 also show the type of conductive layer forming paint used and the surface treatment conditions of the conductive sheet.

Figure 0006591785
Figure 0006591785

Figure 0006591785
Figure 0006591785

Figure 0006591785
Figure 0006591785

表1及び表2から、本発明の実施例1〜11では、表面電気抵抗値の変化率RC1、RC2、RC3の全てで優秀(A)となった。また、浸漬時間が5秒未満となった実施例12、処理液の温度が10℃未満となった実施例15及び処理液のpHが3以上となった実施例16では、酸処理の効果が若干低下したためか、表面電気抵抗値の変化率RC1は優秀(A)となったが、RC2及びRC3では良好(B)にとどまった。また、浸漬時間が30分を超えた実施例13及び処理液の温度が45℃を超えた実施例15では、酸処理の効果が若干強すぎたためか、表面電気抵抗値の変化率RC1、RC2、RC3の全てで良好(B)にとどまった。   From Tables 1 and 2, in Examples 1 to 11 of the present invention, the change rates RC1, RC2, and RC3 of the surface electrical resistance values were all excellent (A). In Example 12 in which the immersion time was less than 5 seconds, Example 15 in which the temperature of the treatment liquid was less than 10 ° C., and Example 16 in which the pH of the treatment liquid was 3 or more, the effect of the acid treatment was high. The change rate RC1 of the surface electrical resistance value was excellent (A) because of a slight decrease, but only good (B) in RC2 and RC3. Further, in Example 13 in which the immersion time exceeded 30 minutes and in Example 15 in which the temperature of the treatment liquid exceeded 45 ° C., the rate of change in surface electrical resistance value RC1, RC2 was probably due to the effect of acid treatment being slightly too strong. All of RC3 remained good (B).

一方、表3から、酸処理を行わなかった比較例1及び2では、表面電気抵抗値の変化率RC2及びRC3が不良(C)となり、純水の浸漬時間が5分の比較例3では、表面電気抵抗値の変化率RC1が良好(B)となったものの、表面電気抵抗値の変化率RC2及びRC3が不良(C)となり、純水の浸漬時間が30分の比較例4、アルカリ処理を行った比較例4、及びバインダ樹脂を含まない導電層形成用塗料を用いた比較例6では、表面電気抵抗値の変化率RC1、RC2、RC3の全てで不良(C)となった。   On the other hand, from Comparative Example 1 and 2 in which acid treatment was not performed from Table 3, the rate of change RC2 and RC3 of the surface electrical resistance value was poor (C), and in Comparative Example 3 where the immersion time of pure water was 5 minutes, Although the rate of change RC1 of the surface electrical resistance value was good (B), the rate of change RC2 and RC3 of the surface electrical resistance value was poor (C), and the immersion time for pure water was 30 minutes in Comparative Example 4, alkali treatment In Comparative Example 4 performed and Comparative Example 6 using the conductive layer forming paint not including the binder resin, all of the change rates RC1, RC2, and RC3 of the surface electrical resistance value were defective (C).

10 導電性シート
11 基材
12 導電層
10 conductive sheet 11 base material 12 conductive layer

Claims (6)

基材と、前記基材の少なくとも一方の主面に配置された導電層とを含む導電性シートの製造方法であって、
導電性高分子と、バインダ樹脂と、溶媒とを含む導電層形成用塗料を作製する塗料作製工程と、
前記導電層形成用塗料を基材の上に塗布して乾燥することにより、前記基材の上に導電層を形成する導電層形成工程と、
前記導電層を酸性水溶液に接触させる酸接触工程とを含み、
前記バインダ樹脂は、フッ素系樹脂又はシリコーン系樹脂であることを特徴とする導電性シートの製造方法。
A method for producing a conductive sheet comprising a base material and a conductive layer disposed on at least one main surface of the base material,
A paint preparation process for preparing a conductive layer-forming paint comprising a conductive polymer, a binder resin, and a solvent;
A conductive layer forming step of forming a conductive layer on the substrate by applying and drying the conductive layer forming paint on the substrate; and
An acid contact step of contacting the conductive layer with an acidic aqueous solution,
The said binder resin is a fluorine resin or a silicone resin, The manufacturing method of the electroconductive sheet characterized by the above-mentioned.
前記導電性高分子は、ポリチオフェン系化合物とポリスチレンスルホン酸とを含む請求項1に記載の導電性シートの製造方法。   The method for producing a conductive sheet according to claim 1, wherein the conductive polymer includes a polythiophene compound and polystyrene sulfonic acid. 前記酸接触工程において、
前記酸性水溶液のpHが、3未満であり、
前記酸性水溶液の温度が、10℃以上45℃以下であり、
前記酸性水溶液を前記導電層に接触させる時間が、5秒以上30分以下である請求項1又は2に記載の導電性シートの製造方法。
In the acid contact step,
The pH of the acidic aqueous solution is less than 3,
The temperature of the acidic aqueous solution is 10 ° C. or higher and 45 ° C. or lower,
The method for producing a conductive sheet according to claim 1 or 2, wherein the acidic aqueous solution is brought into contact with the conductive layer for 5 seconds to 30 minutes.
前記酸性水溶液に含まれる酸が、硫酸、硝酸、塩酸、臭化水素酸及びヨウ化水素酸からなる群から選ばれる少なくとも1種である請求項1〜3のいずれか1項に記載の導電性シートの製造方法。   The conductivity according to any one of claims 1 to 3, wherein the acid contained in the acidic aqueous solution is at least one selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid. Sheet manufacturing method. 前記導電層形成用塗料における前記バインダ樹脂の含有量は、前記導電性高分子と前記バインダ樹脂との合計質量に対して、30.0質量%以上99.3質量%以下である請求項1〜4のいずれか1項に記載の導電性シートの製造方法。   The content of the binder resin in the coating material for forming a conductive layer is 30.0% by mass or more and 99.3% by mass or less with respect to the total mass of the conductive polymer and the binder resin. 5. The method for producing a conductive sheet according to any one of 4 above. 前記溶媒は、プロトン性極性溶媒と非プロトン性極性溶媒とを含む請求項1〜5のいずれか1項に記載の導電性シートの製造方法。   The said solvent contains the protic polar solvent and the aprotic polar solvent, The manufacturing method of the electroconductive sheet of any one of Claims 1-5.
JP2015107756A 2015-05-27 2015-05-27 Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method Active JP6591785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107756A JP6591785B2 (en) 2015-05-27 2015-05-27 Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107756A JP6591785B2 (en) 2015-05-27 2015-05-27 Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2016225042A JP2016225042A (en) 2016-12-28
JP6591785B2 true JP6591785B2 (en) 2019-10-16

Family

ID=57746673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107756A Active JP6591785B2 (en) 2015-05-27 2015-05-27 Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method

Country Status (1)

Country Link
JP (1) JP6591785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354689B1 (en) 2017-01-30 2024-01-24 Heraeus Epurio GmbH Compositions useful for the formation of an antistatic layer or an electromagnetic radiation shield

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214587A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, and composite formed from the same
KR20120077870A (en) * 2010-12-31 2012-07-10 삼성전기주식회사 Post treatment method for conductive film and the conductive film using the same
JP6157056B2 (en) * 2012-03-12 2017-07-05 日立マクセル株式会社 Transparent conductive coating composition, transparent conductive sheet, and method for producing transparent conductive sheet

Also Published As

Publication number Publication date
JP2016225042A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Chen et al. Neutral-pH PEDOT: PSS as over-coating layer for stable silver nanowire flexible transparent conductive films
Yang et al. Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater
Jin et al. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol–gel transition
JP6200004B2 (en) TRANSPARENT CONDUCTIVE LAMINATE, TRANSPARENT ELECTRODE CONTAINING TRANSPARENT CONDUCTIVE LAMINATE, AND METHOD FOR PRODUCING TRANSPARENT CONDUCTIVE LAMINATE
JP2017500741A5 (en)
JP6837387B2 (en) Conductive polymer dispersion, antistatic substrate and its manufacturing method
KR102408128B1 (en) Polymer composition, and transparent conducting polymer thin film with excellent conductivity and flexibility using the same, and transparent electrode using the same and method for manufacturing the same
KR20140044895A (en) Transparent conductive multilayer electrode and associated manufacturing process
TW202030243A (en) Conductive polymer dispersion, conductive substrate and method for producing the same
JP6325364B2 (en) Transparent conductive coating composition, transparent conductive sheet and method for producing the same, and transparent conductive pattern forming method
US20210054217A1 (en) Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments
JP6591785B2 (en) Manufacturing method of conductive sheet and conductive sheet manufactured by the manufacturing method
CN104792849A (en) Field-effect tube gas sensor based on shellac encapsulation/regulation and preparation method thereof
CN107565020B (en) A kind of formaldehyde sensor and preparation method thereof based on organic field-effect tube
TW201034269A (en) Organic thin film transistor which contains azole complex to dielectric insulating layer
CN103649832A (en) Process for the production of a layered body and layered bodies obtainable therefrom
CN103688220A (en) Process for the production of a layered body and layered bodies without masking obtainable therefrom
JP5708284B2 (en) Electrode / wiring conductor
JP6466770B2 (en) Conductive laminate and touch panel using the same
US9330808B2 (en) Passivation composition and its application
KR101163940B1 (en) Method for forming conducting polymer electrode containing metal nano particle and the electrode material
JP2017157530A (en) Conductive film and method of producing the same
US20160131537A1 (en) Temperature sensor with heat-sensitive paste
JP6347687B2 (en) Resist composition, method for producing transparent conductive pattern sheet using the same, and transparent conductive pattern sheet
Han et al. Enhanced Stability of All Solution-Processed Organic Thin-Film Transistors Using Highly Conductive Modified Polymer Electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6591785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250