JP6587989B2 - Measuring device, measuring method, program - Google Patents

Measuring device, measuring method, program Download PDF

Info

Publication number
JP6587989B2
JP6587989B2 JP2016146369A JP2016146369A JP6587989B2 JP 6587989 B2 JP6587989 B2 JP 6587989B2 JP 2016146369 A JP2016146369 A JP 2016146369A JP 2016146369 A JP2016146369 A JP 2016146369A JP 6587989 B2 JP6587989 B2 JP 6587989B2
Authority
JP
Japan
Prior art keywords
value
time point
threshold
detection
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016146369A
Other languages
Japanese (ja)
Other versions
JP2018015937A (en
Inventor
綾一郎 早野
綾一郎 早野
康弘 野原
康弘 野原
育典 井伊谷
育典 井伊谷
翔 関口
翔 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2016146369A priority Critical patent/JP6587989B2/en
Publication of JP2018015937A publication Critical patent/JP2018015937A/en
Application granted granted Critical
Publication of JP6587989B2 publication Critical patent/JP6587989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、例えば射出成形装置等の量産監視のための計測装置、計測方法、プログラムに関する。   The present invention relates to a measuring device, a measuring method, and a program for monitoring mass production such as an injection molding device.

射出成形装置に設置したセンサの検出信号を計測装置で計測する計測システムが知られている。この計測システムは、射出成形機内や金型内或いは成形周辺機器(例えば冷却用の温調機や真空引き装置など)内に配備した温度センサ、圧力センサ等により、樹脂等の成形材料の挙動を検出し、波形としてパーソナルコンピュータ等の情報処理装置にリアルタイム出力可能とされている。
計測データは、最適な成形条件の設定、不良品の自動選別、品質管理、金型の評価等、様々な用途に活用することができる。
また、計測システムでは、センサの検出信号に基づく計測値を監視し、異常の発生に応じてアラーム出力を行うことも可能とされている。このアラーム出力により、射出成形装置の停止や不良品の識別を行うことが可能となる。
2. Description of the Related Art A measurement system that measures a detection signal of a sensor installed in an injection molding apparatus with a measurement device is known. This measuring system uses a temperature sensor, a pressure sensor, etc. provided in an injection molding machine, a mold, or a molding peripheral device (for example, a temperature controller for cooling, a vacuuming device, etc.) to determine the behavior of a molding material such as a resin. It can be detected and output as a waveform to an information processing apparatus such as a personal computer in real time.
The measurement data can be used for various purposes such as setting of optimum molding conditions, automatic selection of defective products, quality control, and die evaluation.
In the measurement system, it is also possible to monitor the measurement value based on the detection signal of the sensor and output an alarm in response to the occurrence of an abnormality. This alarm output makes it possible to stop the injection molding apparatus and identify defective products.

なお、下記特許文献1には、射出成形装置に設けられたセンサがキャビティ内の樹脂の圧力を検出し、該センサの検出信号をアンプ装置によりサンプリングする技術が開示されている。   Patent Document 1 listed below discloses a technique in which a sensor provided in an injection molding apparatus detects the pressure of a resin in a cavity, and a detection signal of the sensor is sampled by an amplifier device.

特開2008−36975号公報JP 2008-36975 A

ここで、センサの検出信号に基づく異常判定としては、例えば射出成形装置に使用する金型や樹脂材料を変更するなど射出成形条件が変更された場合には、判定基準の見直しを要することがある。その場合、判定基準は、新たな射出成形条件による量産前試作の段階において、作業者等がセンサ検出値と完成品の出来映えとを勘案して策定することが一般的とされている。   Here, as the abnormality determination based on the detection signal of the sensor, for example, when the injection molding conditions are changed, such as changing a mold or a resin material used in the injection molding apparatus, it may be necessary to review the determination criteria. . In that case, it is common that an operator or the like is formulated in consideration of a sensor detection value and a finished product at the stage of trial production before mass production under new injection molding conditions.

しかしながら、人手により判定基準を策定するには相応の工数を要し、製品製造にあたってのコストアップを助長する。
このようなコストアップの防止を図るため、判定基準、すなわちセンサ検出値についての閾値としては、例えば幅広い射出成形条件に対応可能とするように或る程度余裕を持たせた数値を固定的に設定することが考えられるが、その場合には異常判定の精度低下を招く虞がある。
However, it takes a considerable amount of man-hours to formulate the judgment criteria manually, which helps to increase the cost of manufacturing the product.
In order to prevent such an increase in cost, for example, a threshold value for the sensor detection value is fixedly set as a numerical value with a certain margin so as to be compatible with a wide range of injection molding conditions. However, in that case, there is a possibility that the accuracy of abnormality determination is reduced.

そこで、本発明では、異常判定精度の低下抑制とコスト削減との両立を図ることを目的とする。   Accordingly, an object of the present invention is to achieve both reduction in abnormality determination accuracy and cost reduction.

本発明に係る計測装置は、射出成形装置に配備されたセンサの検出値を取得する取得部と、前記取得部が過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成部と、前記取得部が取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成部が適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定部と、を備える。
そして、前記閾値生成部は、前記時点ごとの前記閾値を、過去n成形サイクル(nは2以上の自然数)である閾値生成対象サイクルにおける各成形サイクルの前記時点ごとの前記検出値に基づいて生成すると共に、前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値生成対象サイクルの成形サイクル数を調整するものである。
また、本発明に係る別の計測装置は、射出成形装置に配備されたセンサの検出値を取得する取得部と、前記取得部が過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成部と、前記取得部が取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成部が適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定部と、を備える。
そして、前記閾値生成部は、前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値の更新周期を調整するものである。
The measuring device according to the present invention includes an acquisition unit that acquires a detection value of a sensor provided in an injection molding device, and the detection value that the acquisition unit has acquired in the past in each molding cycle of the injection molding device. And generating a threshold value for each time point, adaptively updating the threshold value, a detection value acquired by the acquisition unit, and the threshold value corresponding to the acquisition time point of the detection value, based on the results the threshold generating part is compared with the adaptively updated the threshold, obtain Preparations a determining unit for determining the abnormality determination result of the injection molding conditions, a.
And the said threshold value generation part produces | generates the said threshold value for every said time based on the said detected value for every said time of each shaping | molding cycle in the threshold value production | generation cycle which is a past n shaping | molding cycle (n is a natural number of 2 or more). And obtaining the average value for each detected time point for the detected value by averaging the detected value for each time point acquired by the acquisition unit over a plurality of molding cycles, and for each time point The difference between the detected value and the average value is calculated, and the number of molding cycles of the threshold generation target cycle is adjusted based on the difference value .
Another measuring device according to the present invention includes an acquisition unit that acquires a detection value of a sensor provided in the injection molding device, and the acquisition unit acquires in the past each time point in one molding cycle of the injection molding device. Based on the detected value, a threshold value for each time point is generated, the threshold value generating unit adaptively updating the threshold value, the detection value acquired by the acquisition unit, and the detection value corresponding to the acquisition time point A determination unit that obtains an abnormality determination result of the injection molding situation based on a result of comparing the threshold value and the threshold value adaptively updated by the threshold value generation unit.
And the said threshold value generation part obtains the average value for every said time point about the said detected value by averaging the said detected value for every said time point which the said acquisition part acquired over the some shaping | molding cycle, The difference between the detected value and the average value is calculated for each time point, and the threshold update period is adjusted based on the difference value.

上記した計測装置によると、実際の検出値に基づき生成した閾値を基準として射出成形状況の異常判定が行われるため、射出成形条件の変化に適応した判定基準によって異常判定を行うことが可能とされる。従って、射出成形条件の変化によって異常判定精度が低下することの抑制が図られる。
また、判定精度を確保するために射出成形条件の変更ごとに判定基準を模索する作業が不要となるため、成形品の製造に係る工数削減が図られる。
According to the measurement apparatus described above, the abnormality determination of the injection molding situation is performed based on the threshold value generated based on the actual detection value, so that the abnormality determination can be performed based on the determination criterion adapted to the change in the injection molding conditions. The Therefore, it is possible to suppress a decrease in abnormality determination accuracy due to a change in injection molding conditions.
In addition, since it is not necessary to search for a determination criterion every time the injection molding condition is changed in order to ensure determination accuracy, man-hours related to the manufacture of a molded product can be reduced.

上記した本発明に係る計測装置においては、前記閾値生成部は、前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、該時点ごとの平均値に基づいて前記時点ごとの閾値を生成することが考えられる。   In the measurement apparatus according to the present invention described above, the threshold value generation unit averages the detection value for each time point acquired by the acquisition unit over a plurality of molding cycles. It is conceivable to obtain an average value for each time point and generate a threshold value for each time point based on the average value for each time point.

これにより、過去複数成形サイクルで得られた複数の検出値波形の平均波形に基づいて異常判定の閾値が生成される。   Thereby, a threshold value for abnormality determination is generated based on the average waveform of the plurality of detection value waveforms obtained in the past plural molding cycles.

上記した本発明に係る計測装置においては、前記閾値生成部は、前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値に基づき、前記検出値の前記時点ごとの標準偏差を計算し、前記時点ごとの平均値をそれぞれ対応する時点の前記標準偏差に基づきオフセットさせた値を前記時点ごとの閾値として生成することが考えられる。   In the measurement apparatus according to the present invention described above, the threshold value generation unit calculates a standard deviation of the detection value for each time point based on the detection value for each time point acquired by the acquisition unit over a plurality of molding cycles. A value obtained by offsetting the average value for each time point based on the standard deviation at the corresponding time point may be generated as the threshold value for each time point.

これにより、異常判定として過去の検出値のバラツキ度合いを考慮した判定が行われる。   Thereby, the determination which considered the variation degree of the past detected value as an abnormality determination is performed.

上記した本発明に係る計測装置は、前記閾値生成部は、前記閾値として上限値と下限値の二種の閾値を生成することが考えられる。   In the measuring apparatus according to the present invention described above, the threshold value generation unit may generate two types of threshold values, an upper limit value and a lower limit value, as the threshold value.

これにより、検出値について或る監視幅を持った異常判定を行うことが可能とされる。   As a result, it is possible to perform abnormality determination with a certain monitoring width for the detected value.

また、本発明に係る計測方法は、射出成形装置に配備されたセンサの検出値を取得する取得ステップと、前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を備える。
そして、前記閾値生成ステップでは、前記時点ごとの前記閾値を、過去n成形サイクル(nは2以上の自然数)である閾値生成対象サイクルにおける各成形サイクルの前記時点ごとの前記検出値に基づいて生成すると共に、前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値生成対象サイクルの成形サイクル数を調整するものである。
また、本発明に係る別の計測方法は、射出成形装置に配備されたセンサの検出値を取得する取得ステップと、前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を備える。
そして、前記閾値生成ステップでは、前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値の更新周期を調整するものである。
本発明に係るプログラムは、上記各ステップの処理を演算処理装置に実行させるプログラムである。
The measurement method according to the present invention includes an acquisition step of acquiring a detection value of a sensor provided in an injection molding device, and the acquisition step acquired in the past for each time point in one molding cycle of the injection molding device. Based on a detection value, a threshold value generation step for generating a threshold value for each time point and adaptively updating the threshold value, a detection value acquired by the acquisition step, and the threshold value corresponding to the acquisition time point of the detection value And a determination step for obtaining an abnormality determination result of the injection molding condition based on a result of comparison with the threshold value adaptively updated by the threshold generation step .
In the threshold value generation step, the threshold value for each time point is generated based on the detected value for each time point of each molding cycle in a threshold generation cycle that is a past n molding cycle (n is a natural number of 2 or more). And obtaining an average value for each detected time point for the detected value by averaging the detected value for each time point acquired by the acquiring step over a plurality of molding cycles. The difference between the detected value and the average value is calculated, and the number of molding cycles of the threshold generation target cycle is adjusted based on the difference value .
Further, another measurement method according to the present invention includes an acquisition step of acquiring a detection value of a sensor disposed in an injection molding device, and the acquisition step is acquired at each time point in the molding cycle of the injection molding device in the past. Based on the detected value, a threshold value for each time point is generated, and a threshold value generating step for adaptively updating the threshold value, a detection value acquired in the acquisition step, and the detection value corresponding to the acquisition time point A determination step of obtaining an abnormality determination result of the injection molding condition based on a result of comparison with the threshold value that is a threshold value and is adaptively updated by the threshold value generation step.
And, in the threshold generation step, the average value for each detection point for the detection value is obtained by averaging the detection value for each point in time acquired in the acquisition step over a plurality of molding cycles, The difference between the detected value and the average value is calculated for each time point, and the threshold update period is adjusted based on the difference value.
The program according to the present invention is a program that causes an arithmetic processing unit to execute the processing of each step described above.

本発明によれば、異常判定精度の低下抑制とコスト削減との両立を図ることができる。   According to the present invention, it is possible to achieve both reduction in abnormality determination accuracy and cost reduction.

実施の形態の射出成形計測システムの構成を示したブロック図である。It is the block diagram which showed the structure of the injection molding measurement system of embodiment. 実施の形態の管理ソフトウェアによる表示画面の説明図である。It is explanatory drawing of the display screen by the management software of embodiment. 実施の形態の計測装置のブロック図である。It is a block diagram of the measuring device of an embodiment. 1成形サイクルにおける検出値波形の例を示した図である。It is the figure which showed the example of the detected value waveform in 1 shaping | molding cycle. 時点ごとの閾値のイメージを示した図である。It is the figure which showed the image of the threshold value for every time. 時点ごとの閾値を生成するための処理を示したフローチャートである。It is the flowchart which showed the process for producing | generating the threshold value for every time. 生成した閾値を用いた異常判定のための処理を示したフローチャートである。It is the flowchart which showed the process for abnormality determination using the produced | generated threshold value.

<計測システムの構成>
以下、本発明に係る実施の形態について説明する。まず本発明の実施の形態となる計測装置1と射出成形装置2を含む射出成形計測システム100(単に「計測システム100」とも表記する)について説明する。
図1は計測システム100の構成概要を示した図である。
図示するように計測システム100は、計測装置1、射出成形装置2、専用アンプ3、パーソナルコンピュータ4を備えている。
<Configuration of measurement system>
Embodiments according to the present invention will be described below. First, an injection molding measuring system 100 (also simply referred to as “measuring system 100”) including a measuring device 1 and an injection molding device 2 according to an embodiment of the present invention will be described.
FIG. 1 is a diagram showing an outline of the configuration of the measurement system 100.
As illustrated, the measurement system 100 includes a measurement device 1, an injection molding device 2, a dedicated amplifier 3, and a personal computer 4.

射出成形装置2は、一般的に公知のとおり、所定位置に配置される金型10と、金型10に対して樹脂材料を射出充填するための機構を備えた射出部11と、射出部11の射出動作や金型10の開閉動作等を制御して一連の射出成形動作を実行制御する成形制御部12を有して構成されている。   As generally known, the injection molding apparatus 2 includes a mold 10 disposed at a predetermined position, an injection unit 11 having a mechanism for injecting and filling a resin material into the mold 10, and an injection unit 11. The molding control unit 12 controls the injection operation and the opening / closing operation of the mold 10 to execute and control a series of injection molding operations.

金型10は、例えば上型、下型が配置され、例えば成形ステージ内に配置された下型に対して射出部11に設けられた機構によって上型が開閉される。上型が下型に対して閉じられた状態で、例えば上型に設けられたゲートに対し、射出部11の射出シリンダによって樹脂材料が注入され、金型10内のキャビティに樹脂材料が充填される。そして充填後、所要の時間が経過したら上型が開放され、キャビティから樹脂成形品が取り出される。
金型10内には金型内センサ31が配置されている。例えば充填された樹脂材料の温度を検出する温度センサや、樹脂材料の圧力を検出する圧力センサなどである。
金型10の構造、種別については特に限定されずに各種のものが想定される。
For example, an upper mold and a lower mold are arranged in the mold 10, and the upper mold is opened and closed by a mechanism provided in the injection unit 11 with respect to the lower mold arranged in the molding stage, for example. In a state where the upper mold is closed with respect to the lower mold, for example, a resin material is injected into the gate provided in the upper mold by the injection cylinder of the injection unit 11 and the cavity in the mold 10 is filled with the resin material. The Then, after filling, when the required time elapses, the upper mold is opened, and the resin molded product is taken out from the cavity.
An in-mold sensor 31 is disposed in the mold 10. For example, there are a temperature sensor that detects the temperature of the filled resin material, a pressure sensor that detects the pressure of the resin material, and the like.
The structure and type of the mold 10 are not particularly limited, and various types are assumed.

射出部11には、金型10に対する樹脂材料の注入機構、型締め機構、射出シリンダ機構、射出モータ等、射出成形に必要な機構が設けられている。
また射出部11には射出部内センサ32及びセンサ用アンプ33が設けられている。射出部内センサ32としては、注入過程の樹脂材料の温度を検出する温度センサや、圧力を検出する圧力センサ、注入速度を算出する位置センサなどがある。
本実施の形態では射出部11の機構、構造、例えばシリンダ構造、型締め機構の構造、ランナー構造、ノズル構造、ヒーター配置、モータ配置、材料投入機構などは特に限定されず、どのような構造/種別のものでもよい。
The injection unit 11 is provided with mechanisms necessary for injection molding, such as a resin material injection mechanism, a mold clamping mechanism, an injection cylinder mechanism, and an injection motor for the mold 10.
The injection unit 11 is provided with an in-injection sensor 32 and a sensor amplifier 33. Examples of the in-injection sensor 32 include a temperature sensor that detects the temperature of the resin material during the injection process, a pressure sensor that detects pressure, and a position sensor that calculates the injection speed.
In the present embodiment, the mechanism and structure of the injection unit 11, such as a cylinder structure, a mold clamping mechanism structure, a runner structure, a nozzle structure, a heater arrangement, a motor arrangement, a material input mechanism, and the like are not particularly limited. It may be of a type.

成形制御部12は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、CPU(Central Processing Unit)を有するマイクロコンピュータを備えて構成されている。
成形制御部12は、射出部11による各部の駆動制御を行う。例えば射出モータ制御、金型ステージ動作制御、金型開閉機構の動作制御、ノズル開閉機構の動作制御、ヒーター制御、材料投入動作制御などを行う。これによって一連の射出成形動作を実行させる。
The molding control unit 12 includes, for example, a microcomputer having a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit).
The molding control unit 12 performs drive control of each unit by the injection unit 11. For example, injection motor control, mold stage operation control, mold opening / closing mechanism operation control, nozzle opening / closing mechanism operation control, heater control, material charging operation control, and the like are performed. This causes a series of injection molding operations to be executed.

金型内センサ31の検出信号S1は、例えば射出成形装置2とは別体に配置された専用アンプ3により電圧値に変換される。そして電圧信号に変換された検出信号Vs1として計測装置1に供給される。
射出部内センサ32の検出信号S2は、例えば射出部11内に設けられたセンサ用アンプ33により電圧値に変換される。そして電圧信号に変換された検出信号Vs2として計測装置1に供給される。
The detection signal S1 of the in-mold sensor 31 is converted into a voltage value by a dedicated amplifier 3 disposed separately from the injection molding device 2, for example. Then, it is supplied to the measuring device 1 as a detection signal Vs1 converted into a voltage signal.
The detection signal S2 of the in-injection unit sensor 32 is converted into a voltage value by a sensor amplifier 33 provided in the injection unit 11, for example. Then, it is supplied to the measuring device 1 as a detection signal Vs2 converted into a voltage signal.

なお、ここでは検出信号Vs1,Vs2として2つの検出信号を示しているが、検出信号Vs1は金型内センサ31からの検出信号の総称で、検出信号Vs2は射出部内センサ32からの検出信号の総称である。金型内センサ31として複数のセンサが配置される場合や射出部内センサ32として複数のセンサが配置される場合も当然に想定される。
従って検出信号Vs1,Vs2は2系統のみの検出信号を示しているものではなく、金型内センサ31と射出部内センサ32のいずれの検出信号についても計測装置1に入力できることを示しているに過ぎない。
計測装置1にはnチャネルの入力系が用意されており、n系統の検出信号の同時入力が可能である。従って金型内センサ31としてn個のセンサの検出信号Vs1を計測装置1に供給してもよいし、射出部内センサ32としてのn個のセンサの検出信号Vs2を計測装置1に供給してもよい。さらに金型内センサ31と射出部内センサ32としてのそれぞれ1又は複数系統の検出信号Vs1,Vs2をnチャネルに振り分けて計測装置1に供給してもよい。
計測装置1に対してどのような検出信号入力を行うかは、実際の射出成形装置2や金型10の構造、種別、成形品、搭載センサ数、実行したい計測・監視の内容などに応じて適宜決められればよい。
また、図示していないが射出成形装置2の周辺機器、例えば冷却用の温調機や真空引き装置などに各種のセンサが設けられる場合もあり、それらのセンサの検出信号を計測装置1に供給することも想定されている。
Here, although two detection signals are shown as the detection signals Vs1 and Vs2, the detection signal Vs1 is a generic name of the detection signals from the in-mold sensor 31, and the detection signal Vs2 is a detection signal from the in-injection section sensor 32. It is a generic name. Of course, a case where a plurality of sensors are arranged as the in-mold sensor 31 and a case where a plurality of sensors are arranged as the in-mold sensor 32 are also assumed.
Therefore, the detection signals Vs1 and Vs2 do not indicate detection signals of only two systems, but merely indicate that any detection signal of the in-mold sensor 31 and the in-injection unit sensor 32 can be input to the measuring apparatus 1. Absent.
The measuring apparatus 1 is provided with an n-channel input system and can simultaneously input n detection signals. Therefore, the detection signal Vs1 of n sensors as the in-mold sensor 31 may be supplied to the measuring device 1, or the detection signal Vs2 of n sensors as the in-injection sensor 32 may be supplied to the measuring device 1. Good. Further, one or a plurality of detection signals Vs1 and Vs2 as the in-mold sensor 31 and the in-injection section sensor 32 may be distributed to n channels and supplied to the measuring device 1.
The type of detection signal input to the measuring device 1 depends on the actual structure, type, molded product, number of mounted sensors, contents of measurement / monitoring to be executed, etc. What is necessary is just to be decided suitably.
Although not shown in the drawings, various sensors may be provided in peripheral devices of the injection molding apparatus 2, such as a temperature controller for cooling and a vacuuming apparatus, and the detection signals of these sensors are supplied to the measuring apparatus 1. It is also assumed that

計測装置1と成形制御部12の間は各種の通信が可能とされる。図1では、通信の1つとして、成形制御部12から計測装置1に対して各種のタイミング信号STMが送信されること、及び計測装置1から成形制御部12に対して通知信号SIが送信されることを示している。
タイミング信号STMの1つとしては、例えば射出成形の1サイクルの開始/終了タイミングを通知する信号がある。計測装置1は、タイミング信号STMにより、1ショットの樹脂注入による1サイクルの成形期間を検知し、その間の各種検出信号のロギングや判定を行うことができる。
また、他のタイミング信号STMとしては、型締め期間の開始/終了のタイミングを示す信号や、工程の遷移タイミングを示す信号、或いは制御方式(速度制御、圧力制御)の切替タイミングを示す信号などが考えられる。
Various communications are possible between the measuring apparatus 1 and the molding control unit 12. In FIG. 1, as one of the communications, various timing signals STM are transmitted from the molding control unit 12 to the measuring device 1, and a notification signal SI is transmitted from the measuring device 1 to the molding control unit 12. Which indicates that.
As one of the timing signals STM, for example, there is a signal for notifying the start / end timing of one cycle of injection molding. The measuring device 1 can detect a one-cycle molding period by one-shot resin injection using the timing signal STM, and perform logging and determination of various detection signals during that period.
Other timing signals STM include a signal indicating the start / end timing of the mold clamping period, a signal indicating the transition timing of the process, or a signal indicating the switching timing of the control method (speed control, pressure control). Conceivable.

なお以下、射出成形装置2による射出成形の1サイクルのことを「1成形サイクル」と表記する。   Hereinafter, one cycle of injection molding by the injection molding apparatus 2 is referred to as “one molding cycle”.

計測装置1からの通知信号SIは各種の検出情報や判定情報の結果を通知する信号である。例えば成形不良等が推定される異常判定の際のアラーム通知や、検出信号波形の立ち上がりタイミング/立ち下がりタイミングの通知などの信号である。成形制御部12は、これらの内容の通知信号SIに応じて各種動作制御を行うことができる。   The notification signal SI from the measuring device 1 is a signal for notifying the results of various types of detection information and determination information. For example, it is a signal such as an alarm notification at the time of abnormality determination in which a molding defect or the like is estimated, or a notification of the rising timing / falling timing of the detection signal waveform. The molding control unit 12 can perform various operation controls according to the notification signal SI having these contents.

計測装置1による温度や圧力などの計測結果は、計測装置1と有線又は無線の通信経路USによって接続されたコンピュータ装置4により閲覧可能とされている。通信経路USは、例えばLAN(Local Area Network)ケーブルなどにより実現される。
コンピュータ装置4には、計測装置1による各種検出信号の計測について管理を行うための管理ソフトウェアがインストールされている。この管理ソフトウェアにより、作業者等はコンピュータ装置4のディスプレイを介して計測装置1による計測結果を閲覧可能とされている。
また、管理ソフトウェアを用いた設定により、作業者等は各種の数値設定を行うことができる。
さらに計測結果をコンピュータ装置4におけるHDD(Hard Disk Drive)やSSD(Solid State Disk)等の所定の記憶装置に収録させることが可能とされている。
Measurement results such as temperature and pressure by the measuring device 1 can be viewed by the computer device 4 connected to the measuring device 1 through a wired or wireless communication path US. The communication path US is realized by, for example, a LAN (Local Area Network) cable.
Management software for managing the measurement of various detection signals by the measuring device 1 is installed in the computer device 4. With this management software, an operator or the like can view the measurement result obtained by the measurement device 1 via the display of the computer device 4.
Moreover, the operator etc. can perform various numerical value settings by the setting using management software.
Further, the measurement result can be recorded in a predetermined storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Disk) in the computer device 4.

図2は管理ソフトウェアによってコンピュータ装置4の画面に提示される管理画面90の表示内容例を示している。図示のように管理画面90には、各種センサによる検出信号の計測結果を波形により示すことが可能とされるとともに、各検出信号の所定の数値(例えばピーク値、積分値、立ち上がりタイミング値、立ち下がりタイミング値等)が示される。また作業者が各種設定入力を行うための操作子が用意されている。   FIG. 2 shows a display content example of the management screen 90 presented on the screen of the computer device 4 by the management software. As shown in the figure, on the management screen 90, the measurement results of detection signals from various sensors can be displayed as waveforms, and predetermined numerical values (for example, peak value, integral value, rise timing value, rise time, etc.) of each detection signal can be displayed. Falling timing value, etc.). Operators are provided for the operator to input various settings.

なお図2では、計測波形の表示について、時間軸に沿って描画方向が左から右に向かうようにしているが、これを右から左に向かって描画されるように切り替えることもできる。即ち作業者の操作に応じて、波形の描画方向を切り替えることができるようにしている。例えば射出成形装置では、右側に射出機構が配置され、左に向かって射出する装置が多い。このように樹脂材料の注入方向が右から左になっている場合、表示する波形も右から左に進行するようにすると、作業者にとって感覚的に計測内容がわかりやすいものとなる。   In FIG. 2, the display of the measurement waveform is such that the drawing direction is from left to right along the time axis, but it can be switched so that the drawing is drawn from right to left. That is, the waveform drawing direction can be switched in accordance with the operator's operation. For example, in an injection molding apparatus, an injection mechanism is arranged on the right side, and there are many apparatuses that inject toward the left. As described above, when the injection direction of the resin material is from right to left, if the waveform to be displayed also proceeds from right to left, the measurement contents can be easily understood by the operator.

<計測装置の構成>
図3は計測装置1の内部構成を示している。
計測装置1には、演算部20、入力部21、A/D変換器22、バッファ及びIF部23、メモリ部24が設けられている。
<Configuration of measuring device>
FIG. 3 shows the internal configuration of the measuring apparatus 1.
The measuring device 1 is provided with a calculation unit 20, an input unit 21, an A / D converter 22, a buffer and IF unit 23, and a memory unit 24.

入力部21は、検出信号Vs1,Vs2についてnチャネルの入力が可能とされる。図の例では8チャネル入力を想定し、入力チャネルをI1〜I8として示している。
各入力チャネルI1〜I8に入力される検出信号Vs1,Vs2は、上述のように専用アンプ3又はセンサ用アンプ33で検出情報が電圧レベルに変換された信号である。
チャネルI1〜I8の全部又は一部に対して、検出信号Vs1又はVs2が入力される。即ち金型内センサ31や射出部内センサ32として射出成形装置2に配備された1又は複数のセンサの検出信号を、同時に、それぞれ所要のチャネルに入力可能とされている。
The input unit 21 can input n channels for the detection signals Vs1 and Vs2. In the example shown in the figure, an 8-channel input is assumed, and the input channels are indicated as I1 to I8.
The detection signals Vs1 and Vs2 input to the input channels I1 to I8 are signals obtained by converting the detection information into voltage levels by the dedicated amplifier 3 or the sensor amplifier 33 as described above.
The detection signal Vs1 or Vs2 is input to all or part of the channels I1 to I8. That is, detection signals of one or a plurality of sensors arranged in the injection molding apparatus 2 as the in-mold sensor 31 and the in-injection part sensor 32 can be simultaneously input to the required channels.

A/D変換器22は、入力チャネル数と同数の同時入力が可能とされる。従って図の例では8チャネル入力のA/D変換器とされている。
A/D変換器22は、入力された各チャネルI1〜I8の検出信号を電圧値に応じたデジタルデータに変換し、バッファ及びIF部23に供給する。
The A / D converter 22 can input the same number as the number of input channels. Accordingly, in the example shown in the figure, an 8-channel input A / D converter is used.
The A / D converter 22 converts the input detection signals of the channels I <b> 1 to I <b> 8 into digital data corresponding to the voltage value, and supplies the digital data to the buffer and IF unit 23.

バッファ及びIF部23は、各チャネルI1〜I8の検出信号の演算部20への受け渡しや、演算部20と外部機器(コンピュータ装置4や成形制御部12)との通信データの送受信を行う部位を総括して示している。
例えばA/D変換器22から出力される同時入力された複数チャネルの検出信号のデジタルデータ(後述する検出値Ddet)は、バッファ及びIF部23で一時的にバファリングされながら各時点の検出情報として検出信号のサンプリング時点の時刻情報とともに順次演算部20に転送される。
また演算部20からの通知信号SIは、バッファ及びIF部23が端子TM2から成形制御部12に送信する。また成形制御部12からの各種のタイミング信号STMは、端子TM1からバッファ及びIF部23に一旦取り込まれ、時刻情報とともに順次演算部20に転送される。
また演算部20とコンピュータ装置4の各種情報通信は、バッファ及びIF部23を介して、端子TM3(例えばLANコネクタ端子)に接続された通信経路USにより実行される。
The buffer and IF unit 23 is a part for passing detection signals of the channels I1 to I8 to the calculation unit 20 and transmitting / receiving communication data between the calculation unit 20 and external devices (the computer device 4 and the molding control unit 12). Summarized.
For example, digital data (detection value Ddet described later) of the detection signals of a plurality of channels input simultaneously from the A / D converter 22 is temporarily buffered by the buffer and IF unit 23 and detected at each time point. Are sequentially transferred to the arithmetic unit 20 together with time information at the time of sampling of the detection signal.
The notification signal SI from the arithmetic unit 20 is transmitted from the terminal TM2 to the molding control unit 12 by the buffer and IF unit 23. Various timing signals STM from the molding control unit 12 are once taken into the buffer and IF unit 23 from the terminal TM1 and sequentially transferred to the calculation unit 20 together with time information.
Various kinds of information communication between the arithmetic unit 20 and the computer apparatus 4 are executed by the communication path US connected to the terminal TM3 (for example, a LAN connector terminal) via the buffer and IF unit 23.

演算部20は例えばROM、RAM、CPUを有するマイクロコンピュータにより構成される。
本実施の形態では、演算部20は特に取得処理部20a、データログ処理部20b、閾値生成処理部20c、及び判定処理部20dとしての機能を持つ。
The arithmetic unit 20 is constituted by a microcomputer having, for example, a ROM, a RAM, and a CPU.
In the present embodiment, the arithmetic unit 20 particularly has functions as an acquisition processing unit 20a, a data log processing unit 20b, a threshold generation processing unit 20c, and a determination processing unit 20d.

取得処理部20aは、射出成形装置に配備されたセンサの検出値を取得する。つまりこれは、A/D変換器22からバッファ及びIF部23を経由して転送される検出信号のサンプリング値を取得する機能に相当する。
以下、金型内センサ31、又は射出部内センサ32の検出信号をデジタルサンプリングして得られた値を「検出値Ddet」と表記する。
The acquisition processing unit 20a acquires a detection value of a sensor provided in the injection molding apparatus. That is, this corresponds to the function of acquiring the sampling value of the detection signal transferred from the A / D converter 22 via the buffer and IF unit 23.
Hereinafter, a value obtained by digital sampling of the detection signal of the in-mold sensor 31 or the injection unit sensor 32 is referred to as “detection value Ddet”.

データログ処理部20bは、取得処理部20aにより取得した各時点での検出値Ddetをログデータとして記憶する処理を行う。例えばA/D変換器22でデジタル値とされた各チャネルI1〜I8の検出信号についてサンプル毎の値(検出値Ddet)をサンプリング時点の時刻情報と共に記憶していく処理を行う。   The data log processing unit 20b performs a process of storing the detection value Ddet at each time point acquired by the acquisition processing unit 20a as log data. For example, for each of the detection signals of the channels I1 to I8 converted into digital values by the A / D converter 22, a value for each sample (detection value Ddet) is stored together with time information at the time of sampling.

閾値生成処理部20cは、取得処理部20aが過去において射出成形装置2の1成形サイクル内における時点ごとに取得した検出値Ddetに基づき、時点ごとの閾値を生成する。
判定処理部20dは、取得処理部20aが取得した検出値Ddetと、該検出値Ddetの取得時点に対応して生成された閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める。
なお、これら閾値生成処理部20c、判定処理部20dとしての機能を実現するための演算部20による具体的な処理例については後述する。
The threshold value generation processing unit 20c generates a threshold value for each time point based on the detection value Ddet acquired by the acquisition processing unit 20a for each time point in the molding cycle of the injection molding device 2 in the past.
The determination processing unit 20d obtains an abnormality determination result of the injection molding situation based on the result of comparing the detection value Ddet acquired by the acquisition processing unit 20a with the threshold value generated corresponding to the acquisition time point of the detection value Ddet. .
A specific processing example by the calculation unit 20 for realizing the functions as the threshold generation processing unit 20c and the determination processing unit 20d will be described later.

メモリ部24は、例えばROM、ワークメモリ、不揮発性メモリ等として演算部20が使用できるメモリ領域を総括して示している。
メモリ部24は、例えばデータログ処理部20bの処理によるログデータの記憶領域として用いられる。またメモリ部24は、各種演算処理のワーク領域として用いられる。またメモリ部24は、演算部20の処理、特に取得処理部20a、データログ処理部20b、閾値生成処理部20c、及び判定処理部20dの処理を実現するためのプログラムの格納領域としても用いられる。
The memory unit 24 collectively indicates a memory area that can be used by the arithmetic unit 20 as, for example, a ROM, a work memory, a nonvolatile memory, or the like.
The memory unit 24 is used, for example, as a storage area for log data by the processing of the data log processing unit 20b. The memory unit 24 is used as a work area for various arithmetic processes. The memory unit 24 is also used as a storage area for programs for realizing the processing of the calculation unit 20, particularly the processing of the acquisition processing unit 20a, the data log processing unit 20b, the threshold value generation processing unit 20c, and the determination processing unit 20d. .

<1成形サイクルにおける検出値波形の例>
図4は、金型内センサ31又は射出部内センサ32としてのセンサによる検出信号から得られた検出値Ddetの波形の例を示している。縦軸は検出値Ddet、横軸は時間である。例えば、本図に示す波形は圧力センサの検出値Ddetである。
<Example of detected value waveform in one molding cycle>
FIG. 4 shows an example of the waveform of the detection value Ddet obtained from the detection signal from the sensor as the in-mold sensor 31 or the injection unit sensor 32. The vertical axis represents the detection value Ddet, and the horizontal axis represents time. For example, the waveform shown in this figure is the detection value Ddet of the pressure sensor.

図4において、時点T0〜T1が1成形サイクルの期間である。この1成形サイクルには、例えば、金型10の上型と下型を閉じる型締め、金型10に対して射出部11のシリンダにより樹脂材料を注入する射出、充填後の保圧、成形固化までの計量・冷却、型開き、成形品の突き出し等の各工程が含まれている。   In FIG. 4, time points T0 to T1 are periods of one molding cycle. In this one molding cycle, for example, the upper and lower molds of the mold 10 are closed, the resin material is injected into the mold 10 by the cylinder of the injection unit 11, the pressure after filling, and the molding solidification. Each process such as weighing / cooling, mold opening, and extrusion of the molded product is included.

<実施の形態としての異常判定手法>
ここで、前述もしたように、センサの検出信号に基づく異常判定としては、例えば射出成形装置2に使用する金型10や樹脂材料を変更するなど射出成形条件が変更された場合には、判定基準の見直しを要することがある。しかしながら、人手により判定基準を策定するには相応の工数を要し、製品製造にあたってのコストアップを助長する。
このため、本実施の形態では、判定基準、つまり判定にあたり用いる閾値を計測装置1の演算処理により生成することとし、工数の削減を図る。
<Abnormality determination method as embodiment>
Here, as described above, the abnormality determination based on the detection signal of the sensor is determined when the injection molding conditions are changed, for example, by changing the mold 10 or the resin material used in the injection molding apparatus 2. Standards may need to be reviewed. However, it takes a considerable amount of man-hours to formulate the judgment criteria manually, which helps to increase the cost of manufacturing the product.
For this reason, in the present embodiment, a determination criterion, that is, a threshold value used for the determination is generated by the arithmetic processing of the measuring apparatus 1, thereby reducing the number of man-hours.

この際、金型10の変更など射出成形条件の変更に対して適応的に判定の閾値が変化するように、実施の形態では、実際の検出値Ddetに基づき閾値を生成するという手法を採る。   At this time, in the embodiment, a method of generating a threshold value based on the actual detection value Ddet is adopted so that the determination threshold value adaptively changes in response to a change in injection molding conditions such as a change in the mold 10.

また、本実施の形態では、異常判定は1成形サイクルにおける検出値波形の局所部分のみを対象として行うのではなく、少なくとも複数の工程を含んだ比較的広い範囲を対象として行う。例えば、本例では、1成形サイクル全体を対象として各時点の検出値Ddetと判定閾値とを用いた異常判定を行う。この場合、閾値は、1成形サイクルにおける時点ごとに生成する。
このような手法を採ることで、良品ができる場合と不良品ができる場合とで1成形サイクル内のどのタイミング(例えば工程など)で波形の差が現れるかを特定できない場合であっても異常判定を適切に行うことができる。
Further, in the present embodiment, the abnormality determination is performed not on only the local part of the detected value waveform in one molding cycle but on a relatively wide range including at least a plurality of steps. For example, in this example, abnormality determination using the detection value Ddet at each time point and the determination threshold is performed for the entire one molding cycle. In this case, the threshold value is generated for each time point in one molding cycle.
By adopting such a method, even if it is not possible to specify at which timing (for example, process) the waveform difference appears in one molding cycle between when a good product is produced and when a defective product is produced, an abnormality is determined. Can be performed appropriately.

また、検出信号に基づく異常判定を行う際には、金型10の種類など射出成形条件が一定の条件に定まった後においても、射出成形を繰り返すうちに検出値波形が変化し得る点に留意すべきである。例えば、射出成形装置2を起動後、ショットを繰り返していくと金型10の温度が上昇して金型10への樹脂の入りが良くなるということがあり、その場合、例えば金型10内の圧力についての検出値Ddetとしては、起動時から経時的に波形がシフトしていく(例えば図4に示したピーク部分がより早いタイミングで訪れる等)ことになる。
このような波形変化は、成形品の良/否とは無関係な変化であるため、異常と判定されることは望ましくない。換言すれば、判定の閾値としては、このような波形の経時的な変化にも追従可能であることが望まれる。
そこで、本実施の形態では、取得処理部20aが複数の成形サイクルにわたって取得した時点ごとの検出値Ddetを時点ごとに平均化することで、検出値Ddetについての時点ごとの平均値Vaを得、該時点ごとの平均値Vaに基づいて時点ごとの閾値を生成する。
In addition, when performing abnormality determination based on the detection signal, it should be noted that the detected value waveform may change while the injection molding is repeated even after the injection molding conditions such as the type of the mold 10 are fixed. Should. For example, if the shot is repeated after the injection molding apparatus 2 is started, the temperature of the mold 10 may rise and the resin may enter the mold 10 better. As the detected value Ddet for pressure, the waveform shifts with time from the time of activation (for example, the peak portion shown in FIG. 4 arrives at an earlier timing).
Since such a waveform change is a change unrelated to the quality of the molded product, it is not desirable to determine that it is abnormal. In other words, it is desirable that the threshold for determination can follow such a change with time of the waveform.
Therefore, in the present embodiment, the detection value Ddet for each time point acquired by the acquisition processing unit 20a over a plurality of molding cycles is averaged for each time point, thereby obtaining an average value Va for each detection time value Ddet, A threshold value for each time point is generated based on the average value Va for each time point.

本例では、時点ごとの閾値として、上限値Luと下限値Llの二種を生成する。
図5に、時点ごとの上限値Lu、下限値Llのイメージを示す。
図5において、破線で示す波形Aは、時点ごとの平均値Vaを波形として表したものである。また、実線で示す波形U、波形Lは、それぞれ時点ごとの上限値Lu、時点ごとの下限値Llを波形により表したものである。
本例において、上限値Lu、下限値Llは、それぞれ対応する時点の平均値Vaに対し図中の矢印で示すようなオフセットを与えた値として生成する。
具体的に、平均値Vaに与えるオフセットの値は、該当する時点について過去複数の成形サイクルにわたって取得した検出値Ddetの標準偏差σに基づく値としている。本例では、オフセット値=3σとして、上限値Luと下限値Llとを生成する。つまり、この場合の上限値Lu、下限値Llとしては、それぞれ対応する時点について計算した平均値Vaと標準偏差σとを用い、「上限値Lu=平均値Va+3σ」「下限値Ll=平均値Va−3σ」により生成する。
本例の異常判定では、時点ごとの検出値Ddet及び上限値Luと下限値Llについて、「Lu≦Ddet≦Ll」の条件を満たすか否かを判定する。すなわち、該条件を満たさなければ異常との判定結果を得る。
In this example, two types of upper limit value Lu and lower limit value Ll are generated as threshold values for each time point.
FIG. 5 shows an image of the upper limit value Lu and the lower limit value Ll for each time point.
In FIG. 5, a waveform A indicated by a broken line represents an average value Va for each time point as a waveform. A waveform U and a waveform L indicated by solid lines represent the upper limit value Lu for each time point and the lower limit value Ll for each time point, respectively.
In this example, the upper limit value Lu and the lower limit value Ll are generated as values obtained by giving an offset as indicated by an arrow in the drawing to the average value Va at the corresponding time point.
Specifically, the offset value given to the average value Va is a value based on the standard deviation σ of the detection value Ddet acquired over a plurality of past molding cycles at the corresponding time point. In this example, the upper limit value Lu and the lower limit value Ll are generated with the offset value = 3σ. That is, as the upper limit value Lu and the lower limit value Ll in this case, the average value Va and the standard deviation σ calculated for each corresponding time point are used, and “upper limit value Lu = average value Va + 3σ” “lower limit value Ll = average value Va”. −3σ ”.
In the abnormality determination of this example, it is determined whether or not the condition “Lu ≦ Ddet ≦ Ll” is satisfied for the detection value Ddet, the upper limit value Lu, and the lower limit value Ll for each time point. That is, if the condition is not satisfied, a determination result of abnormality is obtained.

上記のように標準偏差σに基づく閾値の生成を行うことで、異常判定として過去の検出値Ddetのバラツキ度合いを考慮した判定を行うことができる。特に、上記のような3σを用いた閾値の生成を行うことで、過去の傾向から特異と推定される状況のみを異常の対象とする判定を実現できる。すなわち、異常判定の感度が過度に高くなることの防止が図られる。   By generating the threshold value based on the standard deviation σ as described above, it is possible to perform a determination in consideration of the degree of variation in the past detection value Ddet as the abnormality determination. In particular, by generating a threshold value using 3σ as described above, it is possible to realize a determination that only a situation that is presumed to be peculiar from a past tendency is an abnormality target. That is, it is possible to prevent the abnormality determination sensitivity from becoming excessively high.

<処理手順>
図6及び図7のフローチャートを参照して、上記により説明した実施の形態としての異常判定手法を実現するための処理手順について説明する。
図6は時点ごとの閾値(上限値Lu、下限値Ll)を生成するための処理を、図7は生成した閾値を用いた異常判定のための処理をそれぞれ示している。
なお、ここでは、射出成形装置2による射出成形を実行中にリアルタイムで閾値生成及び異常判定を行うことを前提とする。この場合、図6、図7に示す処理は、演算部20が並行処理として行う。
図6及び図7に示す処理は、複数種の検出値Ddetについて演算部20がそれぞれ並行して(実際の処理としては時分割でもよい)行うこともできる。
<Processing procedure>
A processing procedure for realizing the abnormality determination method according to the embodiment described above will be described with reference to the flowcharts of FIGS.
FIG. 6 shows processing for generating threshold values (upper limit Lu and lower limit value Ll) for each time point, and FIG. 7 shows processing for abnormality determination using the generated threshold values.
Here, it is assumed that threshold generation and abnormality determination are performed in real time during injection molding by the injection molding apparatus 2. In this case, the processing unit 20 performs the processing illustrated in FIGS. 6 and 7 as parallel processing.
The processing shown in FIGS. 6 and 7 can be performed in parallel by the arithmetic unit 20 for a plurality of types of detection values Ddet (actual processing may be time division).

先ず、図6において、演算部20はステップS101で、開始基準時からの通算ショット数が所定値n以上となるまで待機する。なお、nは2以上の自然数である。
ここで、開始基準時とは、図7に示す異常判定のための処理が開始される基準時点を表すものである。
例えば、図7に示す異常判定のための処理は、コンピュータ装置4への所定操作入力に応じて開始することができる。その場合、開始基準時は該所定操作入力が検知された時点とすればよい。或いは、図7に示す処理が例えば射出成形装置2の起動に応じて開始されるのであれば、該起動を検知した時点を開始基準時とすればよい。なお、射出成形装置2の起動は、前述したタイミング信号STMとして起動タイミングを示す信号が出力される場合には、該タイミング信号STMの検知有無により判定できる。
通算ショット数は、1成形サイクル分の射出成形動作が行われた回数と同義である。通算ショット数は、例えばタイミング信号STMの1つとして射出成形装置2側から入力される1成形サイクルの開始タイミング信号の受信回数により特定する。
First, in FIG. 6, the calculation unit 20 stands by in step S <b> 101 until the total number of shots from the start reference time becomes a predetermined value n or more. Note that n is a natural number of 2 or more.
Here, the start reference time represents a reference time point at which the abnormality determination process shown in FIG. 7 is started.
For example, the process for determining an abnormality shown in FIG. 7 can be started in response to a predetermined operation input to the computer apparatus 4. In this case, the start reference time may be the time when the predetermined operation input is detected. Alternatively, if the process shown in FIG. 7 is started in response to the start of the injection molding device 2, for example, the time point at which the start is detected may be set as the start reference time. The activation of the injection molding device 2 can be determined based on whether or not the timing signal STM is detected when a signal indicating the activation timing is output as the timing signal STM described above.
The total number of shots is synonymous with the number of injection molding operations for one molding cycle. The total number of shots is specified by, for example, the number of receptions of the start timing signal of one molding cycle input from the injection molding apparatus 2 side as one of the timing signals STM.

開始基準時からの通算ショット数が所定値n以上となった場合、演算部20はステップS102に進み、サイクル終了タイミングとなるまで待機する。これは、開始基準時点からn番目の成形サイクルの終了タイミングを待機していることに相当する。該終了タイミングの待機処理としては、タイミング信号STMの1つとして射出成形装置2側から入力される1成形サイクルの終了タイミング信号を待機する処理として実現できる。
或いは、該終了タイミングについては、最新の開始タイミングから所定時間経過の時点として演算部20が内部タイマ計数により管理してもよい。
When the total number of shots from the start reference time is equal to or greater than the predetermined value n, the calculation unit 20 proceeds to step S102 and waits until the cycle end timing is reached. This corresponds to waiting for the end timing of the nth molding cycle from the start reference time. The end timing standby process can be realized as a process of waiting for an end timing signal of one molding cycle input from the injection molding apparatus 2 side as one of the timing signals STM.
Alternatively, the end timing may be managed by the arithmetic unit 20 using an internal timer count as a predetermined time has elapsed from the latest start timing.

サイクル終了タイミングが確認されると、演算部20はステップS103で時点識別値xを「0」にセットする。時点識別値xは、本例では1成形サイクルにおける個々の時点(検出値Ddetの個々のサンプリングタイミング)を識別するための識別値とされる。例えば、1成形サイクルにおける検出値Ddetのサンプリング総数を「α」とすると、時点識別値xとしては「0」から「α−1」までの値をとり得る。   When the cycle end timing is confirmed, the calculation unit 20 sets the time point identification value x to “0” in step S103. In this example, the time point identification value x is an identification value for identifying each time point (each sampling timing of the detection value Ddet) in one molding cycle. For example, if the total number of samplings of the detection value Ddet in one molding cycle is “α”, the time point identification value x can take a value from “0” to “α−1”.

ステップS103に続くステップS104で演算部20は、過去nサイクルにおけるx番目時点の検出値Ddetについて平均値Vaを計算する。本例では、取得した検出値Ddetは、演算部20のデータログ処理部20bとしての機能により例えばメモリ部24の所定の領域にログとして記憶される(サンプリング時点の時刻情報と共に記憶される)。ステップS104では、例えば該機能によって記憶された過去nサイクルの検出値Ddetから該当するサイクルにおける該当する時点の検出値Ddetをそれぞれ特定し、特定した検出値Ddetについて平均値Vaを計算する。   In step S104 following step S103, the arithmetic unit 20 calculates an average value Va for the detected value Ddet at the xth time point in the past n cycles. In this example, the acquired detection value Ddet is stored as a log in a predetermined area of the memory unit 24 by the function as the data log processing unit 20b of the calculation unit 20 (stored together with time information at the time of sampling). In step S104, for example, the detection value Ddet at the corresponding time in the corresponding cycle is specified from the detection values Ddet of the past n cycles stored by the function, and the average value Va is calculated for the specified detection value Ddet.

ステップS104に続くステップS105で演算部20は、計算した平均値Vaをx番目時点の閾値基準値として記憶する処理を行う。
さらに、続くステップS106で演算部20は、過去nサイクルにおけるx番目時点の標準偏差σを計算する。すなわち、先のステップS104において特定した過去nサイクルそれぞれにおけるx番目時点の検出値Ddetについて標準偏差σを計算する。
In step S <b> 105 following step S <b> 104, the calculation unit 20 performs processing for storing the calculated average value Va as the threshold reference value at the x-th time point.
Further, in the subsequent step S106, the arithmetic unit 20 calculates the standard deviation σ at the xth time point in the past n cycles. That is, the standard deviation σ is calculated for the detected value Ddet at the xth time point in each of the past n cycles specified in the previous step S104.

ステップS106で標準偏差σを計算したことに応じ、演算部20はステップS107に進み、「閾値基準値+3σ」を計算しx番目時点の上限値Luとして記憶する処理を行う。さらに、続くステップS108で演算部20は、「閾値基準値−3σ」を計算しx番目時点の下限値Llとして記憶する処理を行う。   In response to the calculation of the standard deviation σ in step S106, the calculation unit 20 proceeds to step S107 and performs a process of calculating “threshold reference value + 3σ” and storing it as the upper limit value Lu at the xth time point. Further, in the subsequent step S <b> 108, the calculation unit 20 performs a process of calculating “threshold reference value−3σ” and storing it as the x-th time point lower limit value Ll.

ステップS108に続くステップS109で演算部20は、時点識別値xが最大値xMAX以上であるか否かを判定する。ここで、最大値xMAXは、上述した「α−1」と同値である。
時点識別値xが最大値xMAX以上でなければ、演算部20はステップS110に進んで時点識別値xを1インクリメントした上でステップS104に戻る。これにより、1成形サイクルにおける残りの各時点について、上限値Luと下限値Llの生成が行われる。
In step S109 following step S108, the calculation unit 20 determines whether or not the time point identification value x is equal to or greater than the maximum value xMAX. Here, the maximum value xMAX is the same value as “α−1” described above.
If the time point identification value x is not equal to or greater than the maximum value xMAX, the calculation unit 20 proceeds to step S110, increments the time point identification value x by 1, and then returns to step S104. Thus, the upper limit Lu and the lower limit Ll are generated for each remaining time point in one molding cycle.

一方、時点識別値xが最大値xMAX以上であれば、演算部20はステップS111に進んで終了条件が成立したか否かを判定する。すなわち、図7に示す異常判定のための処理を終了すべきとして予め定められた条件が成立したか否を判定する。該終了条件としては、例えば作業者のコンピュータ装置4を用いた所定操作入力、或いは規定された成形サイクル数分の処理の完了、或いは図7の処理により異常が判定された場合等を挙げることができる。   On the other hand, if the time point identification value x is equal to or greater than the maximum value xMAX, the calculation unit 20 proceeds to step S111 and determines whether or not the end condition is satisfied. That is, it is determined whether or not a predetermined condition that the process for abnormality determination shown in FIG. Examples of the termination condition include a predetermined operation input using the operator's computer device 4, completion of processing for a specified number of molding cycles, or a case where abnormality is determined by the processing of FIG. 7. it can.

終了条件が成立していない場合、演算部20はステップS102に戻る。これにより、終了条件が成立するまで、各成形サイクルごとに各時点の上限値Lu及び下限値Llの生成が行われる。
一方、終了条件が成立している場合、演算部20は図6に示す処理を終える。
If the end condition is not satisfied, the calculation unit 20 returns to step S102. Thus, the upper limit value Lu and the lower limit value Ll at each time point are generated for each molding cycle until the end condition is satisfied.
On the other hand, when the end condition is satisfied, the arithmetic unit 20 finishes the process shown in FIG.

なお、ステップS107、S108においては、それぞれ過去に記憶した上限値Lu、下限値Llを最新の上限値Lu、下限値Llによって上書き記憶することもできる。   In steps S107 and S108, the upper limit value Lu and the lower limit value Ll stored in the past can be overwritten and stored by the latest upper limit value Lu and lower limit value Ll, respectively.

上記図6の処理により、開始基準時からn+1ショット目以降の各成形サイクルごとに、過去nショット分の検出値Ddetから適応的に生成した閾値が順次得られていくことになる。
なお以下、図6の処理で生成される閾値を便宜上「適応閾値」と表記する。
With the processing in FIG. 6, threshold values adaptively generated from the detection values Ddet for the past n shots are sequentially obtained for each molding cycle after the (n + 1) th shot from the start reference time.
Hereinafter, the threshold value generated in the process of FIG. 6 is referred to as an “adaptive threshold value” for convenience.

ここで、図6の処理では、開始基準時からnショット目までの各成形サイクルにおいては上記の適応閾値が得られない。このため、以下で説明する「初期閾値」を用いる。
初期閾値としては、例えば開始基準時以前に射出成形装置2を稼働させ、その際における複数の成形サイクルで取得した検出値Ddetを用いて図6で説明した手法(S104からS108)と同手法により予め生成しておく。
例えば、作業者等は、開始基準時以前の射出成形動作として、n成形サイクル分の動作を射出成形装置2に実行させる。このとき、作業者等は、それらn成形サイクルにおける各成形サイクルで得られた成形品の出来映えを確認し、全て良品と判断したらそれらn成形サイクル分の検出値Ddetを用いた閾値生成を計測装置1(演算部20)に実行させる。例えばこのような手法により、上記の初期閾値を得る。
或いは、開始基準時以前の射出成形動作として、n成形サイクルよりも多い成形サイクル分の動作を射出成形装置2に実行させ、計測装置1に各成形サイクルで得られた検出値Ddetのログデータを記憶させておく。作業者等は、該ログデータに基づく検出値Ddetの波形をコンピュータ装置4に表示させ、各成形サイクルのうち、良好な波形が得られたと判断される成形サイクルを選択する。コンピュータ装置4は該選択を受け付け、選択された各成形サイクルの検出値Ddetを用いた閾値生成の実行を計測装置1に指示する。このような手法によっても、初期閾値を得ることができる。
例えば上記の手法によって、開始基準時以前の段階で計測装置1(演算部20)が初期閾値を生成するようにしておく。この場合、演算部20は、生成した初期閾値を例えばメモリ部24に記憶する。
Here, in the process of FIG. 6, the adaptive threshold value cannot be obtained in each molding cycle from the start reference time to the n-th shot. For this reason, the “initial threshold value” described below is used.
As the initial threshold value, for example, the injection molding apparatus 2 is operated before the start reference time, and the detection value Ddet acquired in a plurality of molding cycles at that time is used in the same method as the method described in FIG. 6 (S104 to S108). Generate in advance.
For example, an operator or the like causes the injection molding apparatus 2 to perform an operation for n molding cycles as an injection molding operation before the start reference time. At this time, the workers check the performance of the molded product obtained in each molding cycle in those n molding cycles, and if all the products are determined to be non-defective products, the threshold generation using the detection value Ddet for these n molding cycles is measured. 1 (arithmetic unit 20). For example, the initial threshold value is obtained by such a method.
Alternatively, as an injection molding operation before the start reference time, the injection molding device 2 is caused to execute an operation for a molding cycle larger than the n molding cycles, and the measurement device 1 stores log data of the detection value Ddet obtained in each molding cycle. Remember. An operator or the like displays the waveform of the detection value Ddet based on the log data on the computer device 4 and selects a molding cycle at which a good waveform is determined to be obtained from each molding cycle. The computer apparatus 4 accepts the selection, and instructs the measuring apparatus 1 to execute threshold generation using the detection value Ddet of each selected molding cycle. The initial threshold can be obtained also by such a method.
For example, the measurement apparatus 1 (calculation unit 20) generates an initial threshold value at a stage before the start reference time by the above method. In this case, the arithmetic unit 20 stores the generated initial threshold value in the memory unit 24, for example.

続いて、異常判定のための処理を説明する。
図7において、演算部20は、先ずステップS201でサイクル開始タイミングとなるまで待機する。具体的には、タイミング信号STMの1つとしての上述した開始タイミング信号を待機する処理を行う。
演算部20は、上記の開始タイミング信号によりサイクル開始タイミングであることが確認されると、ステップS202で開始基準時からの通算ショット数が「n+1」以上であるか否かを判定する。
Subsequently, processing for determining an abnormality will be described.
In FIG. 7, the arithmetic unit 20 first waits until the cycle start timing is reached in step S201. Specifically, a process of waiting for the above-described start timing signal as one of the timing signals STM is performed.
If the start timing signal confirms that the cycle start timing is reached, the calculation unit 20 determines in step S202 whether the total number of shots from the start reference time is “n + 1” or more.

開始基準時からの通算ショット数が「n+1」以上でなければ、演算部20はステップS203に進み、参照閾値を初期閾値とする処理を行う。すなわち、後述する異常判定処理(S208)で参照する閾値、つまりはステップS207で取得対象とする閾値を上述した初期閾値とするための設定処理(例えばフラグ設定処理等)を行う。
一方、開始基準時からの通算ショット数が「n+1」以上であれば、演算部20はステップS204に進んで参照閾値を適応閾値とする処理を行う。
If the total number of shots from the start reference time is not “n + 1” or more, the calculation unit 20 proceeds to step S203 and performs a process using the reference threshold as an initial threshold. That is, a setting process (for example, a flag setting process) is performed to set a threshold referred to in an abnormality determination process (S208) described later, that is, a threshold to be acquired in step S207 as the initial threshold described above.
On the other hand, if the total number of shots from the start reference time is equal to or greater than “n + 1”, the calculation unit 20 proceeds to step S204 and performs a process using the reference threshold as an adaptive threshold.

ステップS203又はS204の処理を実行したことに応じ、演算部20はステップS205で時点識別値xを「0」にセットし、続くステップS206でx番目時点の検出値Ddetを取得するまで待機する。つまり本例では、A/D変換器22からバッファ及びIF部23を経由して転送される検出値Ddetを取得するまで待機する。   In response to the execution of the processing in step S203 or S204, the calculation unit 20 sets the time point identification value x to “0” in step S205, and waits until the detection value Ddet at the xth time point is acquired in step S206. That is, in this example, the process waits until the detection value Ddet transferred from the A / D converter 22 via the buffer and IF unit 23 is acquired.

x番目時点の検出値Ddetを取得すると、演算部20はステップS207に進んでx番目時点の上、下限値を取得する。つまり、先のステップS203で説明した設定処理が行われていれば、演算部20は初期閾値として記憶されているx番目時点の上限値Lu、下限値Llを取得する。一方、先のステップS204による設定処理が行われていれば、演算部20は図6のステップS107、S108の処理により成形サイクルごとに記憶されたx番目時点の上限値Luと下限値Llのうち、最新の値をそれぞれ取得する。換言すれば、現在処理対象としている成形サイクルの1つ前の成形サイクルにおいて生成された適応閾値を取得するものである。   When the detection value Ddet at the xth time point is acquired, the calculation unit 20 proceeds to step S207 and acquires the upper and lower limit values at the xth time point. That is, if the setting process described in step S203 is performed, the calculation unit 20 acquires the upper limit value Lu and the lower limit value Ll at the xth time point stored as the initial threshold value. On the other hand, if the setting process in the previous step S204 has been performed, the arithmetic unit 20 calculates the upper limit value Lu and the lower limit value Ll at the xth time point stored for each molding cycle by the processes in steps S107 and S108 in FIG. , Get the latest value respectively. In other words, the adaptive threshold value generated in the molding cycle immediately before the molding cycle currently being processed is acquired.

ステップS207の取得処理を実行したことに応じ、演算部20はステップS208で「下限値Ll≦検出値Ddet≦上限値Lu」による条件を満たすか否かを判定する。すなわち、ステップS206で取得した検出値DdetがステップS207で取得した下限値Ll以上且つ上限値Lu以下であるか否かを判定する。   In response to the execution of the acquisition process in step S207, the calculation unit 20 determines in step S208 whether or not the condition of “lower limit L1 ≦ detected value Ddet ≦ upper limit Lu” is satisfied. That is, it is determined whether or not the detection value Ddet acquired in step S206 is not less than the lower limit value L1 and not more than the upper limit value Lu acquired in step S207.

「下限値Ll≦検出値Ddet≦上限値Lu」による条件を満たしていれば、演算部20はステップS209に進み、時点識別値xが最大値xMAX以上か否かを判定し、時点識別値xが最大値xMAX以上でなければステップS210で時点識別値xを1インクリメントした上でステップS206に戻る。
これにより、ステップS208で条件不成立となる(異常と判定される)までは、処理対象の1成形サイクル内における残りの各時点の検出値Ddetについて異常判定が繰り返される。
If the condition of “lower limit value L1 ≦ detection value Ddet ≦ upper limit value Lu” is satisfied, the calculation unit 20 proceeds to step S209, determines whether or not the time point identification value x is greater than or equal to the maximum value xMAX. Is not equal to or greater than the maximum value xMAX, the time point identification value x is incremented by 1 in step S210, and the process returns to step S206.
As a result, until the condition is not satisfied (determined as abnormal) in step S208, the abnormality determination is repeated for the remaining detection values Ddet at each time point within one molding cycle to be processed.

一方、「下限値Ll≦検出値Ddet≦上限値Lu」による条件を満たしていなければ、演算部20はステップS211の異常対応処理を実行する。異常対応処理としては、異常を通知するための通知信号SI(アラーム信号)を成形制御部12に送信し、またコンピュータ装置4に異常を通知する処理を行うことが考えられる。
なおこの段階で異常(成形不良)との判定結果情報を今回の成形サイクルの識別情報と共にログデータとして記憶させてもよい。
On the other hand, if the condition of “lower limit L1 ≦ detected value Ddet ≦ upper limit Lu” is not satisfied, the arithmetic unit 20 executes the abnormality handling process of step S211. As the abnormality handling process, it is conceivable to perform a process of transmitting a notification signal SI (alarm signal) for notifying an abnormality to the molding control unit 12 and notifying the computer device 4 of the abnormality.
At this stage, the determination result information indicating abnormality (molding failure) may be stored as log data together with the identification information of the current molding cycle.

先のステップS209で時点識別値xが最大値xMAX以上であった場合、又はステップS211の異常対応処理を実行したことに応じ、演算部20はステップS212に進み、終了条件が成立したか否かを判定する。該ステップS212の判定処理は先のステップS111の判定処理と同様であるため重複説明は避ける。
終了条件が成立していない場合、演算部20はステップS201に戻る。つまり、新たな成形サイクルを対象として上記した処理が再び実行される。
一方、終了条件が成立していれば、演算部20は図7に示す処理を終える。
When the time point identification value x is greater than or equal to the maximum value xMAX in the previous step S209, or in response to the execution of the abnormality handling process in step S211, the calculation unit 20 proceeds to step S212, and whether or not the end condition is satisfied. Determine. Since the determination process in step S212 is the same as the determination process in the previous step S111, redundant description is avoided.
If the end condition is not satisfied, the calculation unit 20 returns to step S201. That is, the above-described processing is executed again for a new molding cycle.
On the other hand, if the end condition is satisfied, the calculation unit 20 ends the process shown in FIG.

なお、上記では、開始基準時からn成形サイクルまでの各成形サイクルにおいて初期閾値(共通値)を用いる例を挙げたが、図6の処理としては、開始基準時以前の各成形サイクルで取得した検出値Ddetも含めて、過去n成形サイクルの検出値Ddetに基づく閾値生成を行うものとしてもよい。これにより、開始基準時の直後の1成形サイクルでのみ初期閾値を使用し、以降の各成形サイクルにおいて適応閾値を用いることができる。   In the above description, an example in which the initial threshold value (common value) is used in each molding cycle from the start reference time to the n molding cycle has been described. However, the processing in FIG. 6 was acquired in each molding cycle before the start reference time. The threshold value generation based on the detection value Ddet of the past n molding cycles including the detection value Ddet may be performed. Thus, the initial threshold value can be used only in one molding cycle immediately after the start reference time, and the adaptive threshold value can be used in each subsequent molding cycle.

また、上記では、閾値生成や閾値を用いた異常判定の処理を1成形サイクル実行中に検出値Ddetをロギングしながらいわばリアルタイムに行う例を挙げたが、これらの処理は1サイクル完了時点やさらに後の時点等で、ログデータを取得して行うこともできる。つまり1成形サイクルの実行中に、各時点で入力部21から入力され取得された各チャネルI1〜I8の検出値Ddetや、もしくはデータログ処理部20bによってログデータとして記憶された検出値Ddetを用いて、各種のタイミングで閾値生成や異常判定の処理を行うことができる。   In the above, an example is given in which the threshold value generation and the abnormality determination process using the threshold value are performed in real time while logging the detection value Ddet during execution of one molding cycle. Log data can also be obtained at a later time. That is, during the execution of one molding cycle, the detection values Ddet of the channels I1 to I8 input and acquired from the input unit 21 at each time point or the detection values Ddet stored as log data by the data log processing unit 20b are used. Thus, threshold generation and abnormality determination processing can be performed at various timings.

また、上記では、閾値の生成周期を1成形サイクルごととしたが、閾値の生成周期は複数成形サイクルごととすることもできる。具体的には、例えばN(Nは2以上の自然数)成形サイクルごとに図6のステップS103からS110の処理を行うことで、閾値をN成形サイクルごとに生成し、異常判定においてはN成形サイクルごとに使用する閾値を新たに生成された閾値に変更する。   In the above description, the threshold generation cycle is set to one molding cycle. However, the threshold generation cycle may be set to a plurality of molding cycles. Specifically, for example, by performing the processing of steps S103 to S110 in FIG. 6 for each N (N is a natural number of 2 or more) molding cycle, a threshold value is generated for each N molding cycle. The threshold value used every time is changed to a newly generated threshold value.

またこのとき、閾値の生成周期は、検出値Ddetの平均値Vaに対する差Δdを評価指標として、該評価指標に基づき可変とすることもできる。差Δdは、射出成形動作の安定性の指標とみなせる(差Δdが小さい=安定している)。
例えば、各時点における差Δdの最大値又は平均値の時間軸方向での平均値(「平均値Vat」とする)が所定値以下であれば、異常判定に用いる閾値の生成を1成形サイクルごとでなく複数成形サイクルごとに行うことが考えられる。或いは、各時点における差Δdの最大値又は平均値が所定回数以上連続して所定値以下(又は所定値以下となる頻度が所定頻度以上)であれば、異常判定に用いる閾値の生成を複数成形サイクルごとに行うことも考えられる。
これにより、安定時には1度計算した閾値を複数成形サイクルにわたって使い回せるようになる。閾値の生成を毎成形サイクル行う必要がなくなり、演算部20の計算処理負担を軽減できる。このとき、安定してないと判定したら、閾値の生成周期を1成形サイクルごとに戻す。
なお、閾値の生成周期は上記の例のように2段階に調整するのではなく、上記した平均値Vatの大きさに応じて多々段階に調整可能としてもよい。
また、作業者等からの操作入力を受け付け、操作入力に応じて閾値の生成周期を可変とすることもできる。
At this time, the threshold generation cycle can be made variable based on the evaluation index, using the difference Δd of the detected value Ddet with respect to the average value Va as an evaluation index. The difference Δd can be regarded as an index of the stability of the injection molding operation (the difference Δd is small = stable).
For example, if the average value of the difference Δd at each time point or the average value in the time axis direction (referred to as “average value Vat”) is less than or equal to a predetermined value, the threshold value used for abnormality determination is generated for each molding cycle Instead, it is conceivable to carry out every plural molding cycles. Alternatively, if the maximum value or average value of the difference Δd at each time point is continuously equal to or less than a predetermined value for a predetermined number of times (or a frequency that is equal to or lower than the predetermined value is equal to or higher than a predetermined frequency), a plurality of threshold values used for abnormality determination are formed It can also be done every cycle.
Thereby, at the time of stability, the threshold value calculated once can be used over a plurality of molding cycles. It is not necessary to perform generation of the threshold value every molding cycle, and the calculation processing load of the calculation unit 20 can be reduced. At this time, if it is determined that it is not stable, the threshold generation cycle is returned for each molding cycle.
Note that the threshold generation cycle is not adjusted in two steps as in the above example, but may be adjusted in many steps according to the magnitude of the average value Vat.
It is also possible to accept an operation input from an operator or the like and make the threshold generation cycle variable according to the operation input.

また、上記では、過去n成形サイクルにわたって取得した検出値Ddetに基づいて閾値を生成することを言及したが、「n」の値は固定でなく可変とすることもできる。このとき、「n」の値を小さくすれば、閾値の生成に係る計算処理負担の軽減を図ることができる。
例えば、「n」の値は操作入力に応じて可変とすることができる。
或いは、差Δdについて上記と同様の手法により射出成形動作の安定性について判定を行い、安定していると判定した場合は「n」の値を小さく設定したり、平均値Vatの大きさに応じて「n」の値を多段階に調整することもできる。
In the above description, the threshold value is generated based on the detection value Ddet acquired over the past n molding cycles. However, the value of “n” may be variable instead of fixed. At this time, if the value of “n” is reduced, the calculation processing burden related to the generation of the threshold can be reduced.
For example, the value of “n” can be made variable according to the operation input.
Alternatively, the stability of the injection molding operation is determined for the difference Δd by the same method as described above. If it is determined that the difference is stable, the value of “n” is set to a small value or the average value Vat is set. Thus, the value of “n” can be adjusted in multiple stages.

また、上記では、閾値基準値(閾値の生成にあたり基準とする値)として平均値Vaを例示したが、閾値基準値は、例えば対象とする時点について過去複数成形サイクルにわたって取得した検出値Ddetの中央値とする等、平均値Vaに限定されるものではない。
また、閾値基準値に与えるオフセットの値は、標準偏差σに基づく値に限定されず、例えば固定値によるオフセットを与える等、標準偏差σに基づく値に限定されるものではない。
さらに、閾値基準値に与えるオフセットの値は操作入力に応じて可変とすることもできる。例えば、標準偏差σに基づくオフセットを与える場合において、2σ/3σの選択操作を可能とすることが考えられる。これにより、目的に応じた適切な基準による異常判定を行うことができる。
In the above description, the average value Va is exemplified as the threshold reference value (the reference value for generating the threshold value). However, the threshold reference value is, for example, the center of the detection value Ddet acquired over the past plural molding cycles for the target time point. It is not limited to the average value Va, such as a value.
Further, the offset value given to the threshold reference value is not limited to a value based on the standard deviation σ, and is not limited to a value based on the standard deviation σ, such as giving an offset based on a fixed value.
Further, the offset value given to the threshold reference value can be made variable according to the operation input. For example, when an offset based on the standard deviation σ is given, it is conceivable that a selection operation of 2σ / 3σ can be performed. Thereby, it is possible to perform abnormality determination based on an appropriate standard according to the purpose.

なお、前述したデータログ処理部20bとしての機能により、計測装置1は射出成形装置2に配備される各種のセンサ、例えば圧力センサや温度センサ等の検出値Ddetのデータロガーとして機能する。このことで、検出値Ddetについて事後的な評価を行うことが可能となる。すなわち、成形サイクル中の検出値Ddetをログデータとして保存しておくことで、事後的に複数サイクルでの検出値Ddetの分析など、多様な評価、動作解析、調整などに役立てる情報を得ることができる。   Note that the measurement device 1 functions as a data logger for detection values Ddet of various sensors provided in the injection molding device 2, for example, a pressure sensor and a temperature sensor, by the function as the data log processing unit 20b described above. This makes it possible to perform an ex-post evaluation on the detection value Ddet. That is, by storing the detection value Ddet during the molding cycle as log data, it is possible to obtain information useful for various evaluations, operation analysis, adjustment, etc., such as analysis of the detection value Ddet in a plurality of cycles. it can.

また、異常判定結果をログデータとして記憶しておくことも、後の時点での評価や調整等に有用である。特に一旦実行した判定処理を無駄にしないという意味もある。   In addition, storing the abnormality determination result as log data is also useful for evaluation and adjustment at a later time. In particular, it also means that the determination process once executed is not wasted.

<まとめ及び変形例>
上記のように実施の形態の計測装置1は、射出成形装置2に配備されたセンサの検出値を取得する取得部(取得処理部20a)と、取得部が過去において射出成形装置の1成形サイクル内における時点ごとに取得した検出値に基づき、時点ごとの閾値を生成する閾値生成部(閾値生成処理部20c)と、取得部が取得した検出値と、該検出値の取得時点に対応して生成された閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定部(判定処理部20d)と、を備えている。
<Summary and modification>
As described above, the measurement device 1 according to the embodiment includes an acquisition unit (acquisition processing unit 20a) that acquires a detection value of a sensor provided in the injection molding device 2, and one acquisition cycle of the injection molding device in the past. Corresponding to the threshold value generation unit (threshold generation processing unit 20c) that generates a threshold value for each time point based on the detection value acquired for each time point in the network, the detection value acquired by the acquisition unit, and the acquisition time point of the detection value And a determination unit (determination processing unit 20d) for obtaining an abnormality determination result of the injection molding situation based on a result of comparison with the generated threshold value.

上記した計測装置1によると、実際の検出値に基づき生成した閾値を基準として射出成形状況の異常判定が行われるため、射出成形条件の変化に適応した判定基準によって異常判定を行うことが可能とされる。従って、射出成形条件の変化によって異常判定精度が低下することの抑制が図られる。
また、判定精度を確保するために射出成形条件の変更ごとに判定基準を模索する作業が不要となるため、成形品の製造に係る工数削減が図られる。
これらの点より、本実施の形態によれば異常判定精度の低下抑制とコスト削減との両立を図ることができる。
According to the measurement apparatus 1 described above, the abnormality determination of the injection molding situation is performed based on the threshold value generated based on the actual detection value, and therefore it is possible to perform the abnormality determination based on the determination criterion adapted to the change in the injection molding conditions. Is done. Therefore, it is possible to suppress a decrease in abnormality determination accuracy due to a change in injection molding conditions.
In addition, since it is not necessary to search for a determination criterion every time the injection molding condition is changed in order to ensure determination accuracy, man-hours related to the manufacture of a molded product can be reduced.
From these points, according to the present embodiment, it is possible to achieve both reduction in abnormality determination accuracy and cost reduction.

また、実施の形態の計測装置1においては、閾値生成部は、取得部が複数の成形サイクルにわたって取得した時点ごとの検出値を時点ごとに平均化することで検出値についての時点ごとの平均値を得、該時点ごとの平均値に基づいて時点ごとの閾値を生成している。   Moreover, in the measuring device 1 of the embodiment, the threshold generation unit averages the detection values for each time point acquired by the acquisition unit over a plurality of molding cycles for each time point, thereby averaging the detection values for each time point. And a threshold value for each time point is generated based on the average value for each time point.

これにより、過去複数成形サイクルで得られた複数の検出値波形の平均波形に基づいて異常判定の閾値が生成される。
従って、例えば射出成形動作開始後における温度変化等に起因した波形シフト等、射出成形動作開始後における経時的な波形変化に追従する閾値を生成することができ、異常判定の精度向上を図ることができる。
Thereby, a threshold value for abnormality determination is generated based on the average waveform of the plurality of detection value waveforms obtained in the past plural molding cycles.
Therefore, for example, a threshold value that follows a change in waveform over time after the start of the injection molding operation such as a waveform shift due to a temperature change after the start of the injection molding operation can be generated, and the accuracy of abnormality determination can be improved. it can.

さらに、実施の形態の計測装置1においては、閾値生成部は、取得部が複数の成形サイクルにわたって取得した時点ごとの検出値に基づき、前記検出値の前記時点ごとの標準偏差を計算し、前記時点ごとの平均値をそれぞれ対応する時点の前記標準偏差に基づきオフセットさせた値を前記時点ごとの閾値として生成している。   Furthermore, in the measuring apparatus 1 of the embodiment, the threshold value generation unit calculates a standard deviation for each time point of the detection value based on the detection value for each time point acquired by the acquisition unit over a plurality of molding cycles, A value obtained by offsetting the average value for each time point based on the standard deviation at the corresponding time point is generated as a threshold value for each time point.

これにより、異常判定として過去の検出値のバラツキ度合いを考慮した判定が行われる。
従って、過去の傾向から特異と推定される状況のみを異常の対象とする判定を実現することが可能となり、異常判定の感度が過度に高くなることの防止が図られるという点で、判定精度の低下抑制が図られる。
Thereby, the determination which considered the variation degree of the past detected value as an abnormality determination is performed.
Therefore, it is possible to realize the determination that only the situation that is presumed to be unusual from the past tendency is an abnormality target, and it is possible to prevent the sensitivity of the abnormality determination from becoming excessively high. Reduction suppression is achieved.

さらにまた、実施の形態の計測装置1においては、閾値生成部は、閾値として上限値と下限値の二種の閾値を生成している。   Furthermore, in the measurement apparatus 1 according to the embodiment, the threshold value generation unit generates two types of threshold values, that is, an upper limit value and a lower limit value as threshold values.

これにより、検出値について或る監視幅を持った異常判定を行うことができる。   Thereby, abnormality determination with a certain monitoring width can be performed on the detected value.

本発明は上記した具体例に限定されるべきものではなく、多様な変形例が考えられる。
例えば、射出成形装置2の構成は多様に考えられる。計測装置1の構成も同様である。
また、図6や図7に示した演算部20の処理例も一例に過ぎず、具体的な処理例は多様に考えられる。
射出成形装置2に搭載されるセンサ(金型内センサ31や射出部内センサ32)としては多様に考えられる。すなわち計測装置1は、圧力センサによる射出部11内や金型10内における樹脂材料の圧力計測や、温度センサの検出信号に基づく成形材料や金型表面温度の計測以外にも多様な検出信号の計測に適用できる。例えば光センサ等の検出信号に基づく成形材料の流速計測、赤外線センサ等の検出信号に基づくフローフロント計測(例えば成形樹脂がキャビティ内の所定位置に到達するまでの時間の計測)、位置センサ等の検出信号に基づく型閉時における金型同士の位置ズレ量の計測(型開き量の計測)等、射出成形に係る他の計測を行う場合の各種センサの検出信号についても好適に適用できる。
The present invention should not be limited to the specific examples described above, and various modifications can be considered.
For example, various configurations of the injection molding apparatus 2 are conceivable. The configuration of the measuring device 1 is the same.
Further, the processing examples of the calculation unit 20 shown in FIGS. 6 and 7 are merely examples, and various specific processing examples can be considered.
Various sensors (in-mold sensor 31 and in-injection sensor 32) mounted on the injection molding apparatus 2 can be considered. In other words, the measuring device 1 can measure various detection signals other than the pressure measurement of the resin material in the injection unit 11 and the mold 10 by the pressure sensor and the measurement of the molding material and the mold surface temperature based on the detection signal of the temperature sensor. Applicable to measurement. For example, flow rate measurement of molding material based on detection signal of optical sensor, flow front measurement based on detection signal of infrared sensor, etc. (for example, measurement of time until molding resin reaches predetermined position in cavity), position sensor, etc. The present invention can also be suitably applied to detection signals of various sensors when performing other measurements related to injection molding, such as measurement of misalignment between molds when the mold is closed based on the detection signal (measurement of mold opening amount).

<プログラム及び記憶媒体>
本発明に係る実施の形態のプログラムは、計測装置1における演算部20(マイクロコンピュータ等の演算処理装置)に取得処理部20a、閾値生成処理部20c、及び判定処理部20dとしての機能を実行させるプログラムである。
<Program and storage medium>
The program according to the embodiment of the present invention causes the calculation unit 20 (an arithmetic processing device such as a microcomputer) in the measurement apparatus 1 to execute functions as the acquisition processing unit 20a, the threshold generation processing unit 20c, and the determination processing unit 20d. It is a program.

実施の形態のプログラムは、射出成形装置に配備されたセンサの検出値を取得する取得ステップと、前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成する閾値生成ステップと、前記取得ステップが取得した検出値と、該検出値の取得時点に対応して生成された前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップ(S115)とを演算処理装置に実行させるプログラムである。すなわち、図6や図7の処理を実行させるプログラムである。   The program according to the embodiment includes an acquisition step of acquiring a detection value of a sensor arranged in the injection molding device, and the detection value acquired at each time point in the molding cycle of the injection molding device in the past by the acquisition step. Based on the result of comparing the threshold value generation step for generating the threshold value for each time point, the detection value acquired in the acquisition step, and the threshold value generated corresponding to the acquisition time point of the detection value, This is a program for causing the arithmetic processing unit to execute a determination step (S115) for obtaining a determination result of the abnormality of the situation. That is, it is a program for executing the processing of FIG. 6 and FIG.

このようなプログラムにより本実施の形態の計測装置1の製造が容易となる。
そしてこのようなプログラムはコンピュータ装置等の機器に内蔵されている記憶媒体や、CPUを有するマイクロコンピュータ内のROM等に予め記憶しておくことができる。或いはまた、半導体メモリ、メモリカード、光ディスク、光磁気ディスク、磁気ディスクなどのリムーバブル記憶媒体に、一時的あるいは永続的に格納(記憶)しておくことができる。またこのようなリムーバブル記憶媒体は、いわゆるパッケージソフトウェアとして提供することができる。
また、このようなプログラムは、リムーバブル記憶媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN、インターネットなどのネットワークを介してダウンロードすることもできる。
Such a program facilitates the manufacture of the measuring apparatus 1 of the present embodiment.
Such a program can be stored in advance in a storage medium built in a device such as a computer device or a ROM in a microcomputer having a CPU. Alternatively, it can be stored (stored) temporarily or permanently in a removable storage medium such as a semiconductor memory, memory card, optical disk, magneto-optical disk, or magnetic disk. Such a removable storage medium can be provided as so-called package software.
Further, such a program can be installed from a removable storage medium to a personal computer or the like, or can be downloaded from a download site via a network such as a LAN or the Internet.

またこのような実施の形態のプログラムがコンピュータ装置4にインストールされることで、コンピュータ装置4が計測装置1の機能を備えるようにすることもできる。
例えば専用アンプ3とコンピュータ装置4をコネクタで直接接続する。専用アンプ3を介してコンピュータ装置4には単一又は複数の入力チャネルの検出信号が同時に供給されるようにする。そしてコンピュータ装置4において当該プログラムを含むソフトウェアが起動されることで、図6や図7の処理をコンピュータ装置4で実行する。すなわち、センサ(31,32)の検出信号について検出値の取得、検出値に基づく閾値生成、及び検出値と閾値とに基づき射出成形状況の異常判定結果を求める処理を行う。これにより、パーソナルコンピュータ等のコンピュータ装置4を用いて計測装置1を実現できる。
Moreover, the computer apparatus 4 can also be provided with the function of the measuring device 1 by installing the program of such embodiment in the computer apparatus 4. FIG.
For example, the dedicated amplifier 3 and the computer device 4 are directly connected by a connector. A detection signal of a single or a plurality of input channels is supplied simultaneously to the computer apparatus 4 via the dedicated amplifier 3. And when the software containing the said program is started in the computer apparatus 4, the process of FIG. 6 and FIG. That is, processing for obtaining a detection value for the detection signals of the sensors (31, 32), generating a threshold value based on the detection value, and obtaining an abnormality determination result of the injection molding situation based on the detection value and the threshold value is performed. Thereby, the measuring apparatus 1 is realizable using computer apparatuses 4, such as a personal computer.

1 計測装置、2 射出成形装置、3 専用アンプ、4 コンピュータ装置、10 金型、11 射出部、12 成形制御部、20 演算部、20a 取得処理部、20b データログ処理部、20c 閾値生成処理部、20d 判定処理部、21 入力部、22 A/D変換器、23 バッファ及びIF部、24 メモリ部、31 金型内センサ、32 射出部内センサ、33 センサ用アンプ、100 計測システム   DESCRIPTION OF SYMBOLS 1 Measurement apparatus, 2 Injection molding apparatus, 3 Dedicated amplifier, 4 Computer apparatus, 10 Mold, 11 Injection part, 12 Molding control part, 20 Calculation part, 20a Acquisition process part, 20b Data log process part, 20c Threshold generation process part 20d determination processing unit, 21 input unit, 22 A / D converter, 23 buffer and IF unit, 24 memory unit, 31 sensor in mold, 32 sensor in injection unit, 33 sensor amplifier, 100 measurement system

Claims (9)

射出成形装置に配備されたセンサの検出値を取得する取得部と、
前記取得部が過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成部と、
前記取得部が取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成部が適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定部と、を備え、
前記閾値生成部は、
前記時点ごとの前記閾値を、過去n成形サイクル(nは2以上の自然数)である閾値生成対象サイクルにおける各成形サイクルの前記時点ごとの前記検出値に基づいて生成すると共に、
前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値生成対象サイクルの成形サイクル数を調整する
計測装置。
An acquisition unit for acquiring a detection value of a sensor provided in the injection molding apparatus;
Based on the detection value acquired for each time point in the molding cycle of the injection molding apparatus in the past by the acquisition unit, a threshold value generation unit that adaptively updates the threshold value while generating a threshold value for each time point;
Based on the result of comparing the detection value acquired by the acquisition unit with the threshold value corresponding to the acquisition time point of the detection value and the threshold value generation unit adaptively updated, the abnormality determination of the injection molding situation a determining unit for determining a result, the Bei example,
The threshold generation unit
The threshold value for each time point is generated based on the detected value for each time point of each molding cycle in a threshold generation target cycle that is a past n molding cycle (n is a natural number of 2 or more),
The acquisition unit obtains an average value for each detection point by averaging the detection values for each time point acquired over a plurality of molding cycles, and the detection value for each time point. A measuring device that calculates a difference from the average value and adjusts the number of molding cycles of the threshold generation target cycle based on the difference value .
射出成形装置に配備されたセンサの検出値を取得する取得部と、  An acquisition unit for acquiring a detection value of a sensor provided in the injection molding apparatus;
前記取得部が過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成部と、  Based on the detection value acquired for each time point in the molding cycle of the injection molding apparatus in the past by the acquisition unit, a threshold value generation unit that adaptively updates the threshold value while generating a threshold value for each time point;
前記取得部が取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成部が適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定部と、を備え、  Based on the result of comparing the detection value acquired by the acquisition unit with the threshold value corresponding to the acquisition time point of the detection value and the threshold value generation unit adaptively updated, the abnormality determination of the injection molding situation A determination unit for obtaining a result,
前記閾値生成部は、  The threshold generation unit
前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値の更新周期を調整する  The acquisition unit obtains an average value for each detection point by averaging the detection values for each time point acquired over a plurality of molding cycles, and the detection value for each time point. The difference from the average value is calculated, and the threshold update period is adjusted based on the difference value.
計測装置。  Measuring device.
前記閾値生成部は、
前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、該時点ごとの平均値に基づいて前記時点ごとの閾値を生成する
請求項1又は請求項2に記載の計測装置。
The threshold generation unit
By averaging the detection values for each time point acquired by the acquisition unit over a plurality of molding cycles for each time point, an average value for each time point for the detection value is obtained, and based on the average value for each time point The measurement device according to claim 1 or 2 , wherein a threshold value for each time point is generated.
前記閾値生成部は、
前記取得部が複数の成形サイクルにわたって取得した前記時点ごとの前記検出値に基づき、前記検出値の前記時点ごとの標準偏差を計算し、前記時点ごとの平均値をそれぞれ対応する時点の前記標準偏差に基づきオフセットさせた値を前記時点ごとの閾値として生成する
請求項3に記載の計測装置。
The threshold generation unit
Based on the detection value for each time point acquired by the acquisition unit over a plurality of molding cycles, the standard deviation for each time point of the detection value is calculated, and the average value for each time point corresponds to the standard deviation at the corresponding time point. Generates a value offset based on the threshold value for each time point
The measuring device according to claim 3 .
前記閾値生成部は、
前記閾値として上限値と下限値の二種の閾値を生成する
請求項1乃至請求項4の何れかに記載の計測装置。
The threshold generation unit
Measurement apparatus according to any one of claims 1 to 4 to produce two kinds of threshold upper limit and the lower limit value as the threshold value.
射出成形装置に配備されたセンサの検出値を取得する取得ステップと、
前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、
前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を備え、
前記閾値生成ステップでは、
前記時点ごとの前記閾値を、過去n成形サイクル(nは2以上の自然数)である閾値生成対象サイクルにおける各成形サイクルの前記時点ごとの前記検出値に基づいて生成すると共に、
前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値生成対象サイクルの成形サイクル数を調整する
計測装置の計測方法。
An acquisition step of acquiring a detection value of a sensor provided in the injection molding apparatus;
Based on the detection value acquired for each time point in one molding cycle of the injection molding apparatus in the past, the threshold value generating step for adaptively updating the threshold value and generating the threshold value for each time point;
Based on the result of comparing the detection value acquired by the acquisition step and the threshold value corresponding to the acquisition time point of the detection value and adaptively updated by the threshold value generation step, the abnormality determination of the injection molding situation A determination step for obtaining a result ,
In the threshold generation step,
The threshold value for each time point is generated based on the detected value for each time point of each molding cycle in a threshold generation target cycle that is a past n molding cycle (n is a natural number of 2 or more),
The acquisition step obtains an average value for each time point for the detection value by averaging the detection value for each time point acquired over a plurality of molding cycles, and the detection value for each time point. A measurement method of a measurement apparatus that calculates a difference from the average value and adjusts the number of molding cycles of the threshold generation target cycle based on the difference value .
射出成形装置に配備されたセンサの検出値を取得する取得ステップと、  An acquisition step of acquiring a detection value of a sensor provided in the injection molding apparatus;
前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、  Based on the detection value acquired for each time point in one molding cycle of the injection molding apparatus in the past, the threshold value generating step for adaptively updating the threshold value and generating the threshold value for each time point;
前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を備え、  Based on the result of comparing the detection value acquired by the acquisition step and the threshold value corresponding to the acquisition time point of the detection value and adaptively updated by the threshold value generation step, the abnormality determination of the injection molding situation A determination step for obtaining a result,
前記閾値生成ステップでは、  In the threshold generation step,
前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値の更新周期を調整する  The acquisition step obtains an average value for each time point for the detection value by averaging the detection value for each time point acquired over a plurality of molding cycles, and the detection value for each time point. The difference from the average value is calculated, and the threshold update period is adjusted based on the difference value.
計測装置の計測方法。  Measuring method of the measuring device.
射出成形装置に配備されたセンサの検出値を取得する取得ステップと、
前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、
前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を演算処理装置に実行させると共に、
前記閾値生成ステップでは、
前記時点ごとの前記閾値を、過去n成形サイクル(nは2以上の自然数)である閾値生成対象サイクルにおける各成形サイクルの前記時点ごとの前記検出値に基づいて生成すると共に、
前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値生成対象サイクルの成形サイクル数を調整する処理、を前記演算処理装置に実行させる
プログラム。
An acquisition step of acquiring a detection value of a sensor provided in the injection molding apparatus;
Based on the detection value acquired for each time point in one molding cycle of the injection molding apparatus in the past, the threshold value generating step for adaptively updating the threshold value and generating the threshold value for each time point;
Based on the result of comparing the detection value acquired by the acquisition step and the threshold value corresponding to the acquisition time point of the detection value and adaptively updated by the threshold value generation step, the abnormality determination of the injection molding situation a determining step of determining the result, to be executed by the arithmetic processing unit,
In the threshold generation step,
The threshold value for each time point is generated based on the detected value for each time point of each molding cycle in a threshold generation target cycle that is a past n molding cycle (n is a natural number of 2 or more),
The acquisition step obtains an average value for each time point for the detection value by averaging the detection value for each time point acquired over a plurality of molding cycles, and the detection value for each time point. The program which makes the said arithmetic processing unit perform the process which calculates the difference with the said average value, and adjusts the molding cycle number of the said threshold value production | generation object cycle based on the value of this difference .
射出成形装置に配備されたセンサの検出値を取得する取得ステップと、  An acquisition step of acquiring a detection value of a sensor provided in the injection molding apparatus;
前記取得ステップが過去において前記射出成形装置の1成形サイクル内における時点ごとに取得した前記検出値に基づき、前記時点ごとの閾値を生成すると共に、前記閾値を適応的に更新する閾値生成ステップと、  Based on the detection value acquired for each time point in one molding cycle of the injection molding apparatus in the past, the threshold value generating step for adaptively updating the threshold value and generating the threshold value for each time point;
前記取得ステップが取得した検出値と、該検出値の取得時点に対応する前記閾値であって前記閾値生成ステップが適応的に更新した前記閾値とを比較した結果に基づき、射出成形状況の異常判定結果を求める判定ステップと、を演算処理装置に実行させると共に、  Based on the result of comparing the detection value acquired by the acquisition step and the threshold value corresponding to the acquisition time point of the detection value and adaptively updated by the threshold value generation step, the abnormality determination of the injection molding situation A determination step for obtaining a result, and causing the arithmetic processing unit to execute,
前記閾値生成ステップでは、  In the threshold generation step,
前記取得ステップが複数の成形サイクルにわたって取得した前記時点ごとの前記検出値を前記時点ごとに平均化することで前記検出値についての前記時点ごとの平均値を得、前記時点ごとに前記検出値と前記平均値との差を計算し、該差の値に基づいて前記閾値の更新周期を調整する処理、を前記演算処理装置に実行させる  The acquisition step obtains an average value for each time point for the detection value by averaging the detection value for each time point acquired over a plurality of molding cycles, and the detection value for each time point. A process of calculating a difference from the average value and adjusting an update period of the threshold based on the difference value is executed by the arithmetic processing unit.
プログラム。  program.
JP2016146369A 2016-07-26 2016-07-26 Measuring device, measuring method, program Active JP6587989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146369A JP6587989B2 (en) 2016-07-26 2016-07-26 Measuring device, measuring method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146369A JP6587989B2 (en) 2016-07-26 2016-07-26 Measuring device, measuring method, program

Publications (2)

Publication Number Publication Date
JP2018015937A JP2018015937A (en) 2018-02-01
JP6587989B2 true JP6587989B2 (en) 2019-10-09

Family

ID=61081147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146369A Active JP6587989B2 (en) 2016-07-26 2016-07-26 Measuring device, measuring method, program

Country Status (1)

Country Link
JP (1) JP6587989B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787971B2 (en) 2018-10-25 2020-11-18 ファナック株式会社 State judgment device and state judgment method
JP6824355B1 (en) * 2019-09-25 2021-02-03 株式会社アマダウエルドテック Laser machining monitoring method and laser machining monitoring device
CN116075410A (en) 2020-07-17 2023-05-05 日精Asb机械株式会社 Method for detecting operation abnormality, method for producing resin container, operation abnormality detecting device, device for producing resin container, and device for producing resin preform

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028025A (en) * 1988-06-28 1990-01-11 Meiki Co Ltd Monitoring method for control state of injection molding machine
JP2545465B2 (en) * 1989-07-03 1996-10-16 東洋機械金属株式会社 Method for automatically setting upper and lower limits of molding conditions of molding machine
JPH06231327A (en) * 1993-01-28 1994-08-19 Konica Corp Automatic discrimination device for molding defect
JP3894904B2 (en) * 2003-05-02 2007-03-22 日精樹脂工業株式会社 Mold clamping control method of injection molding machine

Also Published As

Publication number Publication date
JP2018015937A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6532845B2 (en) Measuring device, measuring method, program
JP6587989B2 (en) Measuring device, measuring method, program
US8060240B2 (en) Injection molding control method
TWI293916B (en) Control apparatus for injection molding machine
US10836088B2 (en) Method for reproducing injection molded parts of quality and injection molding unit for performing the method
JPH05177685A (en) Method and apparatus for controlling injection molding
JP6494113B2 (en) Measuring device, measuring method, program
JP6155290B2 (en) Measuring device
JP2008114286A (en) Molten metal filling condition-determining apparatus in die casting machine, and molten metal filling condition good/bad judging method
JP7311387B2 (en) Injection molding machine management support device and injection molding machine
JP6772119B2 (en) Arithmetic processing unit, arithmetic processing unit arithmetic method and program
CN112005180B (en) State monitoring device and asynchronous data adjusting method
JP5460355B2 (en) Control device for injection molding machine having correlation coefficient calculation function
CN116880616B (en) Hot runner temperature control method, temperature controller, electronic equipment and storage medium
JP2002248665A (en) Method and device for controlling injection molding machine
JP6687574B2 (en) Arithmetic processing device, arithmetic method of arithmetic processing device, and program
US20170282428A1 (en) Injection molding system
JP3974736B2 (en) Die casting machine control system
KR101465347B1 (en) Characteristic signal deriving method of injection molding process and monitoring method of injection molding process using the same
US20240140011A1 (en) Information processing device, injection molding machine, and non-transitory computer readable medium storing program
KR102500376B1 (en) Monitoring apparatus using sensor signal in injection mold and method thereof
CN214067658U (en) Processing parameter management and control system applied to batch production equipment
CN115803172A (en) Control device and program for injection molding machine
JP2001198964A (en) Apparatus and method for controlling temperature of injection mold
JPH09122877A (en) Method for controlling die clamping force in die casting machine and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6587989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250