JP6585764B2 - Semiconductor optical device and manufacturing method of semiconductor optical device - Google Patents

Semiconductor optical device and manufacturing method of semiconductor optical device Download PDF

Info

Publication number
JP6585764B2
JP6585764B2 JP2018076605A JP2018076605A JP6585764B2 JP 6585764 B2 JP6585764 B2 JP 6585764B2 JP 2018076605 A JP2018076605 A JP 2018076605A JP 2018076605 A JP2018076605 A JP 2018076605A JP 6585764 B2 JP6585764 B2 JP 6585764B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
optical device
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076605A
Other languages
Japanese (ja)
Other versions
JP2018137472A (en
Inventor
健 北谷
健 北谷
真二 佐々木
真二 佐々木
Original Assignee
日本ルメンタム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ルメンタム株式会社 filed Critical 日本ルメンタム株式会社
Priority to JP2018076605A priority Critical patent/JP6585764B2/en
Publication of JP2018137472A publication Critical patent/JP2018137472A/en
Application granted granted Critical
Publication of JP6585764B2 publication Critical patent/JP6585764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体レーザ素子等の半導体光素子、及び半導体光素子の製造方法に関するものである。   The present invention relates to a semiconductor optical device such as a semiconductor laser device and a method for manufacturing the semiconductor optical device.

近年のインターネット人口の爆発的増大により、情報伝送の急速な高速化および大容量化が求められており、今後も光通信が重要な役割を果たすと考えられている。光通信に用いられる光源には、主として半導体レーザ素子が用いられている。伝送距離10km程度までの短距離用途向けには、半導体レーザを直接電気信号で駆動する直接変調方式が用いられている。本方式は、単純な構成でモジュールを実現できるため消費電力が少なく、部品点数も少なくできるため低コスト化が可能である。一方、伝送距離10kmを超えるような長距離の光通信向けには、半導体レーザを直接変調することのみでは対応できないため、光変調器を集積した電界吸収(EA:Electro-Absorption)型変調器集積型半導体レーザ素子が用いられている。   With the explosive growth of the Internet population in recent years, there has been a demand for rapid increase in information transmission and capacity, and optical communication will continue to play an important role in the future. A semiconductor laser element is mainly used as a light source used for optical communication. For short-distance applications up to a transmission distance of about 10 km, a direct modulation method in which a semiconductor laser is directly driven by an electric signal is used. Since this method can realize a module with a simple configuration, power consumption is low and the number of parts can be reduced, so that the cost can be reduced. On the other hand, for optical communication over a long distance exceeding a transmission distance of 10 km, it is not possible to cope with only by directly modulating a semiconductor laser. Therefore, an electro-absorption (EA) modulator integrated with an optical modulator is integrated. Type semiconductor laser elements are used.

光通信の大容量化のためには、半導体レーザの通信速度を現在よりもさらに高速化する必要がある。半導体レーザの変調速度は素子の素子容量と素子抵抗の積(CR時定数)の制限を受けるため、更なる高速化に向けては、素子抵抗の低減、或いは素子容量の低減が必要となる。   In order to increase the capacity of optical communication, it is necessary to further increase the communication speed of the semiconductor laser than at present. Since the modulation speed of the semiconductor laser is limited by the product of the element capacitance and the element resistance (CR time constant), it is necessary to reduce the element resistance or the element capacitance in order to further increase the speed.

半導体光素子の基本構造には、大きく分けて埋め込み(BH:Buried-Hetero)構造とリッジ導波路(RWG:Ridge Wave-Guide)構造の2種類がある。一般的に半導体光素子は、p型クラッド層とn型クラッド層との間に電子とホールの再結合により発光するMQW(Multiple-Quantum-Well:レーザ部多重量子井戸)層等の活性層が配置され、更に発振スペクトルの単一モード化のために、クラッド層内に回折格子層が形成されることにより構成されている。   The basic structure of a semiconductor optical device is roughly classified into two types, a buried-hetero (BH) structure and a ridge wave-guide (RWG) structure. In general, a semiconductor optical device has an active layer such as a MQW (Multiple-Quantum-Well) layer that emits light by recombination of electrons and holes between a p-type cladding layer and an n-type cladding layer. In addition, a diffraction grating layer is formed in the cladding layer to make the oscillation spectrum into a single mode.

素子抵抗の低減に向けては、電子に比べて移動度が低い正孔をキャリアとするp型クラッド層の抵抗を低減することが有効である。ここで、従来からp型クラッド層のドーパントとして用いられているのは亜鉛(Zn)である。Znは知られているように、非常に拡散しやすい性質を有する。素子抵抗低減のためにp−InPクラッド層のドーピング濃度を過剰に増大させると、隣接するMQW層へのZnの拡散量が著しく増え、それにより損失成分が増大して半導体レーザの特性が劣化してしまう。   In order to reduce the element resistance, it is effective to reduce the resistance of the p-type cladding layer using holes having lower mobility than electrons as carriers. Here, zinc (Zn) has been conventionally used as a dopant for the p-type cladding layer. As is known, Zn has a property of being easily diffused. If the doping concentration of the p-InP cladding layer is excessively increased to reduce device resistance, the amount of Zn diffused into the adjacent MQW layer will increase significantly, thereby increasing the loss component and degrading the characteristics of the semiconductor laser. End up.

また、特にBH型構造の素子では、MQW層の周囲の絶縁部分にもZnが過剰に拡散して絶縁性を低下させてしまうため、電流のリークパスができ、MQW層に注入されずに回り込んで流れる電流成分が増えてしまう。したがって、拡散を考慮するとZnドーピング濃度には限界があり、Znによる素子抵抗の低減にも限界があった。   In particular, in an element having a BH structure, Zn is excessively diffused also in an insulating portion around the MQW layer and the insulating property is deteriorated, so that a current leakage path is formed, and the current flows around without being injected into the MQW layer. The current component that flows through increases. Therefore, when diffusion is taken into consideration, there is a limit to the Zn doping concentration, and there is a limit to the reduction in device resistance due to Zn.

非特許文献1には、Znに替わる新ドーパントとして、Mgが報告されている。AlGaInP材料のp型クラッド層にMgを用いる事で、Znよりも低拡散で、尚且つ高濃度にドーピング出来る事が示されている。   Non-Patent Document 1 reports Mg as a new dopant replacing Zn. It has been shown that by using Mg for the p-type cladding layer of AlGaInP material, it is possible to perform doping at a lower concentration and higher concentration than Zn.

特許文献1には、AlGaInP系材料において、Mgをp型ドーパントとして用いる場合のドーピング遅れという問題に関し、MOVPE結晶成長において、p型不純物としてMgの有機金属化合物とAlの有機金属化合物との混合ガスを用いることについて開示している。   Patent Document 1 discloses a problem of doping delay in the case of using Mg as a p-type dopant in an AlGaInP-based material, and a mixed gas of an organometallic compound of Mg and an organometallic compound of Al as a p-type impurity in MOVPE crystal growth. Is disclosed.

特開平06−013334号公報Japanese Patent Laid-Open No. 06-013334

IEEE ジャーナルオブカンタムエレクトロニクス 40巻、12号、1634頁、2004年IEEE Journal of Quantum Electronics, Vol. 40, No. 12, p. 1634, 2004

光通信用の半導体光素子においては1300〜1550nmの波長領域が用いられるのが一般的であり、この波長領域を用いるためには、上述の特許文献1及び非特許文献1において前提となるAlGaInP系の半導体ではなく、InとV族化合物からなる例えばInPの半導体が用いられる。この場合に、Znの代りにMgをドープした層を形成する場合に、特許文献1及び非特許文献1で提案されたAlを含む半導体膜を間に挟むと、Alを含む半導体膜の格子定数が減少し、InP半導体膜の格子定数との格子定数との差が大きくなり、格子不整合が生じやすくなる。特に光通信用の半導体素子においては回折格子が形成されることが多く、回折格子上に、融点が高く、凹凸を埋めるような原子のマイグレーションが少ないAlが添加された半導体膜を形成しようとした場合には、回折格子の凹凸により、格子不整合による転位や結晶欠陥が起こりやすくなる。更に、Alが添加されることにより、InPよりもバンドギャップが大きくなるため、MQW層へ流れる電流の障壁となり、抵抗の増大等を引き起こす恐れがある。   In a semiconductor optical device for optical communication, a wavelength region of 1300 to 1550 nm is generally used. In order to use this wavelength region, an AlGaInP system which is a premise in the above-mentioned Patent Document 1 and Non-Patent Document 1 is used. For example, an InP semiconductor made of In and a V group compound is used instead of the above semiconductor. In this case, when a layer doped with Mg instead of Zn is formed, if the semiconductor film containing Al proposed in Patent Document 1 and Non-Patent Document 1 is sandwiched, the lattice constant of the semiconductor film containing Al is sandwiched between them. Decreases, the difference between the lattice constant of the InP semiconductor film and the lattice constant increases, and lattice mismatching easily occurs. Particularly in a semiconductor element for optical communication, a diffraction grating is often formed, and an attempt is made to form a semiconductor film on which an Al is added on the diffraction grating, which has a high melting point and a small amount of atomic migration that fills the unevenness. In some cases, the irregularities of the diffraction grating tend to cause dislocations and crystal defects due to lattice mismatch. Furthermore, the addition of Al makes the band gap larger than that of InP, so that it becomes a barrier to the current flowing to the MQW layer and may increase resistance.

本発明は、上述の事情に鑑みてされたものであり、素子抵抗がより低減された光通信用の半導体光素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor optical device for optical communication in which device resistance is further reduced.

上記課題を解決する為に我々が鋭意検討したところ、Mgドーピング層の形成に先立って、Alを含む層を挿入することで、その後で成長するMgドーピング層のドーピング遅れを抑制できる事が判った。Mgドーピング層の形成時には、Alの有機金属は同時に供給しないので、特許文献1に開示されている「Mgの有機金属化合物とAlの有機金属化合物が混合ガスとなる事でMgの有機金属化合物の性質が変化し、途中の配管や反応管に付着する率が低減する」ものとは異なるメカニズムである。事前にAlを含む層を形成する事で、ドーピング遅れが抑制できるメカニズムは完全には解明されていないが、Alの有機金属を供給する工程で、ドーピング遅れの原因となるMgの有機金属化合物を途中の配管や反応管に付着しやすくさせる要因(不純物等)が低減されるものと考えられる。上記知見に基づき、以下を発明した。   In order to solve the above-mentioned problems, we have intensively studied and found that by inserting a layer containing Al prior to the formation of the Mg doping layer, it is possible to suppress the doping delay of the Mg doping layer that grows thereafter. . At the time of forming the Mg-doped layer, the organometallic compound of Al is not supplied at the same time. Therefore, disclosed in Patent Document 1 is that “the organometallic compound of Mg is formed by the mixed organometallic compound of Mg and the organometallic compound of Al. This is a different mechanism from that in which the properties change and the rate of adhesion to intermediate pipes and reaction tubes decreases. The mechanism that can suppress the doping delay by forming the Al-containing layer in advance has not been fully elucidated, but in the process of supplying the organic metal of Al, the organometallic compound of Mg that causes the doping delay is added. It is thought that the factors (impurities etc.) that make it easy to adhere to the pipes and reaction tubes on the way are reduced. Based on the above findings, the following has been invented.

本発明に係る半導体光素子は、電子とホールの再結合により発光する活性層と、前記発光した光の出力波長に応じてピッチが定められた回折格子と、前記回折格子上に形成され、少なくともAlを含み、In及びV族化合物からなる第1半導体層と、前記第1半導体層上に形成され、Mgを含むIn及びV族化合物からなる第2半導体層と、を備える半導体光素子である。   The semiconductor optical device according to the present invention includes an active layer that emits light by recombination of electrons and holes, a diffraction grating having a pitch determined according to an output wavelength of the emitted light, and formed on the diffraction grating. A semiconductor optical device comprising: a first semiconductor layer containing Al and made of an In and V group compound; and a second semiconductor layer made of In and a V group compound containing Mg and formed on the first semiconductor layer. .

ここで、本発明に係る半導体光素子においては、前記第1半導体層の厚さを、0.3nm以上5nm以下とすることができる。また、前記第1半導体層のAlの濃度は、1×1016以上1×1020cm-3以下とすることができる。 Here, in the semiconductor optical device according to the present invention, the thickness of the first semiconductor layer can be 0.3 nm or more and 5 nm or less. The Al concentration of the first semiconductor layer may be 1 × 10 16 to 1 × 10 20 cm −3 .

本発明に係る半導体光素子は、電子とホールの再結合により発光する活性層と、1×1016以上1×1020cm-3以下のAlを含み、In及びV族化合物からなる第1半導体層と、前記第1半導体層上に形成され、Mgを含むIn及びV族化合物からなる第2半導体層と、を備える半導体光素子である。 The semiconductor optical device according to the present invention includes an active layer that emits light by recombination of electrons and holes, and a first semiconductor comprising Al and 1 × 10 16 to 1 × 10 20 cm −3 and comprising In and V group compounds. A semiconductor optical device comprising: a layer; and a second semiconductor layer formed on the first semiconductor layer and made of In and V group compounds containing Mg.

また、本発明に係る半導体光素子において、前記発光した光の出力波長に応じてピッチが定められた回折格子を更に備えていてもよい。また、前記第1半導体層の厚さは、0.3nm以上5nm以下とすることができる。   The semiconductor optical device according to the present invention may further include a diffraction grating having a pitch determined according to an output wavelength of the emitted light. The first semiconductor layer may have a thickness of 0.3 nm to 5 nm.

本発明の半導体光素子の製造方法は、電子とホールの再結合により発光する活性層を成膜する活性層形成工程と、前記発光した光の出力波長に応じてピッチが定められた回折格子を形成する回折格子形成工程と、前記回折格子上に形成され、少なくともAlを含み、In及びV族化合物からなる第1半導体層を成膜する第1半導体層形成工程と、前記第1半導体層上に形成され、Mgを含むIn及びV族化合物からなる第2半導体層を成膜する第2半導体層形成工程と、を備える半導体光素子の製造方法である。   The method of manufacturing a semiconductor optical device of the present invention includes an active layer forming step of forming an active layer that emits light by recombination of electrons and holes, and a diffraction grating having a pitch determined according to the output wavelength of the emitted light. Forming a diffraction grating, forming a first semiconductor layer formed on the diffraction grating and including at least Al and made of In and a group V compound; and on the first semiconductor layer And a second semiconductor layer forming step of forming a second semiconductor layer made of In and a V group compound containing Mg, and a semiconductor optical device manufacturing method.

また、本発明の半導体光素子の製造方法において、前記第半導体層の厚さは、前記第1半導体層の厚さは、0.3nm以上5nm以下とすることができる。また、前記第1半導体層のAlの濃度は、1×1016以上1×1020cm-3以下とすることができる。 In the method for manufacturing a semiconductor optical device of the present invention, the thickness of the first semiconductor layer may be 0.3 nm or more and 5 nm or less. The Al concentration of the first semiconductor layer may be 1 × 10 16 to 1 × 10 20 cm −3 .

例えば回折格子層を有する下地基板の最表面に、非常に薄い膜厚で、ドーピングレベルのAl濃度であるAlInP層を形成し、引き続いてMgドーピングしたInP層を形成する。その結果、遅れなくMgをドーピングできる。また、導入したAl濃度が非常に低く、尚且つAlInP層が非常に薄いため、格子不整合やバンド構造にも影響しない。   For example, an AlInP layer having a very thin film thickness and an Al concentration of a doping level is formed on the outermost surface of the base substrate having the diffraction grating layer, and subsequently an Mg-doped InP layer is formed. As a result, Mg can be doped without delay. Further, since the introduced Al concentration is very low and the AlInP layer is very thin, it does not affect the lattice mismatch or the band structure.

Alを含む半導体層が形成される時には、本発明に従い同時にMgの有機金属を供給していないが、その後のMgドーピング層の結晶成長後に、ドーピングしたMgがAlを含む半導体層に拡散し、Mgが前記Alを含む半導体層に混入しているように見える場合がある。この場合も本発明に含まれ、その効果が得られることは言うまでもない。   When an Al-containing semiconductor layer is formed, Mg organic metal is not supplied at the same time according to the present invention, but after subsequent Mg crystal growth of the Mg-doped layer, the doped Mg diffuses into the Al-containing semiconductor layer, and Mg May be mixed in the semiconductor layer containing Al. It goes without saying that this case is also included in the present invention and the effect is obtained.

さらに、前記第1半導体形成工程は、前記第2半導体層形成工程の一連の工程の一部であってよい。例えば、Mgを含むIn及びV族化合物からなる第2半導体層を成膜する際に、前記第2半導体層の成長温度に達する前に、結晶成長炉内にAlを含む有機金属を供給した場合であってもよい。この場合、第2半導体層が形成される前に、結晶成長炉内に残留したAl原子によりAlを含む層が形成され、所望のAl濃度及び膜厚となっていれば、本発明の効果が得られる。また前記Alを含む有機金属を供給する際に、同時にMgの有機金属を供給した場合でも、第2半導体層の成長温度に達していないために、MgはAlを含む層にはほとんど取りまれず、成長温度に達した後に、Mgを含む第2半導体層が形成されていく。ただし、上述のように、成長後にMgがAlを含む半導体層に拡散することはありえる。   Furthermore, the first semiconductor formation step may be a part of a series of steps of the second semiconductor layer formation step. For example, when forming an organic metal containing Al in the crystal growth furnace before reaching the growth temperature of the second semiconductor layer when forming the second semiconductor layer made of In and V group compounds containing Mg It may be. In this case, if the Al-containing layer is formed by Al atoms remaining in the crystal growth furnace before the second semiconductor layer is formed and the desired Al concentration and film thickness are obtained, the effect of the present invention is achieved. can get. Further, when supplying the organic metal containing Al, even if Mg organic metal is supplied at the same time, since the growth temperature of the second semiconductor layer has not been reached, Mg is hardly taken into the layer containing Al. After reaching the growth temperature, the second semiconductor layer containing Mg is formed. However, as described above, Mg may diffuse into the semiconductor layer containing Al after growth.

本発明の半導体光素子及び半導体光素子の製造方法によれば、素子抵抗をより低減することができる。   According to the semiconductor optical device and the method for manufacturing the semiconductor optical device of the present invention, the device resistance can be further reduced.

本発明の実施例1に係る半導体光素子である端面発光型の半導体レーザ素子について概略的に示す図である。1 is a diagram schematically showing an edge-emitting semiconductor laser device that is a semiconductor optical device according to Example 1 of the present invention. FIG. 図1の半導体レーザ素子の構造について説明するための一部断面斜視図である。FIG. 2 is a partial cross-sectional perspective view for explaining the structure of the semiconductor laser device of FIG. 1. 図2のAで示される部分を拡大した概略図である。It is the schematic which expanded the part shown by A of FIG. 図2の半導体レーザ素子の製造工程を概略的に示す図である。FIG. 3 is a diagram schematically showing a manufacturing process of the semiconductor laser device of FIG. 2. 実施例2に係る半導体レーザ素子の構造について説明するための一部断面斜視図である。6 is a partial cross-sectional perspective view for explaining the structure of a semiconductor laser device according to Example 2. FIG. 図5のBで示される部分を拡大した概略図である。It is the schematic which expanded the part shown by B of FIG. 図5の半導体レーザ素子の製造工程を概略的に示す図である。FIG. 6 is a diagram schematically showing a manufacturing process of the semiconductor laser element of FIG. 5. 実施例2に係る半導体レーザ素子の構造について説明するための一部断面斜視図である。6 is a partial cross-sectional perspective view for explaining the structure of a semiconductor laser device according to Example 2. FIG. 図5のBで示される部分を拡大した概略図である。It is the schematic which expanded the part shown by B of FIG. 図5の半導体レーザ素子の製造工程を概略的に示す図である。FIG. 6 is a diagram schematically showing a manufacturing process of the semiconductor laser element of FIG. 5.

以下、本発明の実施例を図1〜10を用いて説明する。尚、以下の例では、InP基板上の半導体光素子のみについて記述するが、本発明は、同様の構造を有するその他のIII−V族化合物半導体素子にも適用可能である。   Embodiments of the present invention will be described below with reference to FIGS. In the following example, only the semiconductor optical device on the InP substrate is described, but the present invention is also applicable to other III-V group compound semiconductor devices having the same structure.

図1には、本発明の実施例1に係る半導体光素子である端面発光型の半導体レーザ素子200が概略的に示されている。この図に示されるように、半導体レーザ素子200は、略直方体形状の対向する面に設けられた2つの電極に電位差を生じさせることにより、発振領域201からレーザ光202が出力される。   FIG. 1 schematically shows an edge-emitting semiconductor laser device 200 that is a semiconductor optical device according to a first embodiment of the present invention. As shown in this figure, the semiconductor laser element 200 outputs a laser beam 202 from the oscillation region 201 by causing a potential difference between two electrodes provided on opposing surfaces of a substantially rectangular parallelepiped shape.

図2は、図1の半導体レーザ素子200の構造について説明するための一部断面斜視図である。ここで示される半導体レーザ素子200は、DFB(Distributed Feedback:分布帰還型)半導体レーザ素子である。図3には、図2のAで示される部分を拡大した図が概略的に示されており、図4には、この半導体レーザ素子200の製造工程が概略的に示されている。   FIG. 2 is a partial cross-sectional perspective view for explaining the structure of the semiconductor laser device 200 of FIG. The semiconductor laser element 200 shown here is a DFB (Distributed Feedback) semiconductor laser element. FIG. 3 schematically shows an enlarged view of a portion indicated by A in FIG. 2, and FIG. 4 schematically shows a manufacturing process of the semiconductor laser element 200.

以下、半導体レーザ素子200の製造工程を構成と共に説明する。まず、バッファ層形成工程S101において、n−InP基板302上に、n−InPバッファ層303を形成する。次に、活性層形成工程S102において、InGaAsPから成り、電子とホールの再結合により発光する活性層であるMQW層306を形成し、引き続き、回折格子形成工程S103において、出力される光の波長に応じてピッチが定められた回折格子309が形成される。通常は、保護のために上部にp−InPキャップ層が形成される。回折格子形成工程S103の後、第1半導体層形成工程S104において、Alを含み、In及びV族化合物からなる第1半導体層である厚さ1nmのアンドープAlInP層311を形成するが、0.3nm以上5nm以下で適宜定めることができる。これは原子層レベルの膜厚であり、伝導するキャリアにとってほとんど障壁とならない薄い膜厚に設定した。このような構造にすることによりドーピング遅れを抑制できると共に、挿入したAlを含む層が、次に形成するMgドーピング層以降の結晶構造に何ら影響を与えないため、ほぼ元々の設計通りの素子構造を形成することが可能となる。また、このときのAl濃度は1×1017cm-3とするが、1×1016以上1×1020cm-3以下の範囲で適宜定めることができる。ここで下限濃度は現状の原子濃度検出分析(例えば2次イオン質量分析法)の測定限界近くまでは効果が得られたことから決定された。また、上限濃度は凹凸を有する下地基板の格子不整合転位発生の臨界値から定まった。 Hereinafter, the manufacturing process of the semiconductor laser device 200 will be described together with the configuration. First, in the buffer layer formation step S <b> 101, the n-InP buffer layer 303 is formed on the n-InP substrate 302. Next, in the active layer forming step S102, the MQW layer 306, which is an active layer made of InGaAsP and emits light by recombination of electrons and holes, is formed. Subsequently, in the diffraction grating forming step S103, the wavelength of the output light is changed. Accordingly, a diffraction grating 309 having a predetermined pitch is formed. Usually, a p-InP cap layer is formed on top for protection. After the diffraction grating formation step S103, in the first semiconductor layer formation step S104, an undoped AlInP layer 311 having a thickness of 1 nm, which is a first semiconductor layer containing Al and made of In and a V group compound, is formed. It can be determined as appropriate in the range of 5 nm or less. This is a film thickness at the atomic layer level, and is set to a thin film thickness that hardly becomes a barrier for conducting carriers. By adopting such a structure, the doping delay can be suppressed and the inserted Al-containing layer has no influence on the crystal structure after the Mg doping layer to be formed next, so that the element structure almost as originally designed. Can be formed. Further, the Al concentration at this time is 1 × 10 17 cm −3 , but can be appropriately determined within a range of 1 × 10 16 to 1 × 10 20 cm −3 . Here, the lower limit concentration was determined because the effect was obtained up to the measurement limit of the current atomic concentration detection analysis (for example, secondary ion mass spectrometry). The upper limit concentration is determined from the critical value of occurrence of lattice mismatch dislocations in the underlying substrate having irregularities.

引き続き、MgをドーピングしたIn及びV族化合物からなる第2半導体層である上部p−InPクラッド層307により、回折格子309を埋め込む(第2半導体層形成工程S105)、連続的にp+−InGaAsコンタクト層308を形成する(コンタクト層形成工程S106)。この際、AlInP層311の挿入により、上部p−InPクラッド層307にドーピング遅れは見られなかった。引き続き、メサ構造形成工程S107において、このような多層構造にメサストライプマスクを形成し、エッチングによりメサ構造以外の部分を除去したのち、適切な前処理を行い、RuドーピングInP層304にて埋め込み成長を行う。その際、CH3Clを同時に添加した。その後は、電極形成工程S108において、通常の素子作製方法を用いてパッシベーション膜310形成、上部電極305、下部電極301形成等を施し、半導体レーザ素子200として完成した。 Subsequently, the diffraction grating 309 is embedded by the upper p-InP cladding layer 307 which is the second semiconductor layer made of Mg and doped In and V group compounds (second semiconductor layer forming step S105), and p + -InGaAs is continuously formed. A contact layer 308 is formed (contact layer forming step S106). At this time, no doping delay was observed in the upper p-InP cladding layer 307 due to the insertion of the AlInP layer 311. Subsequently, in the mesa structure forming step S107, a mesa stripe mask is formed in such a multilayer structure, and portions other than the mesa structure are removed by etching, and then appropriate pretreatment is performed, and the Ru-doped InP layer 304 is embedded and grown. I do. At that time, CH 3 Cl was added simultaneously. Thereafter, in the electrode forming step S108, the passivation film 310, the upper electrode 305, the lower electrode 301, and the like were formed using a normal device manufacturing method, and the semiconductor laser device 200 was completed.

ここで、第1半導体層形成工程S104及び第2半導体層形成工程S105、およびRuドーピングInP層304の形成工程(S107)では、有機金属気相成長(MOVPE:Metal-Organic Vapor Phase Epitaxy)法を用いた。キャリアガスとしては水素を用いた。III族元素の原料は、トリメチルアルミニウム(TMA)、トリエチルガリウム(TEG)、トリメチルインジウム(TMI)を用いた。V族元素の原料には、アルシン(AsH3)とフォスフィン(PH3)を用いた。また、n型ドーパントとしてはジシラン(Si2H6)を、p型ドーパントとしてはシクロペンタジエニルマグネシウム(Cp2Mg)を用いた。添加するハロゲン原子含有ガスとしては、塩化メチル(CH3Cl)を、Ruの有機金属原料としては、ビスエチルシクロペンタジエニルルテニウムを用いた。尚、結晶成長法は、MOVPEのみに限定されるものではなく、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、化学ビーム成長(CBE:Chemical Beam Epitaxy)法、有機金属分子線エピタキシー(MOMBE:Metal-organic Molecular Beam Epitaxy)法などの手法においても、本発明の効果を得ることは可能である。   Here, in the first semiconductor layer formation step S104, the second semiconductor layer formation step S105, and the Ru doping InP layer 304 formation step (S107), a metal-organic vapor phase epitaxy (MOVPE) method is used. Using. Hydrogen was used as the carrier gas. Trimethylaluminum (TMA), triethylgallium (TEG), and trimethylindium (TMI) were used as the group III element material. Arsine (AsH3) and phosphine (PH3) were used as the Group V element materials. Further, disilane (Si2H6) was used as the n-type dopant, and cyclopentadienyl magnesium (Cp2Mg) was used as the p-type dopant. As the halogen atom-containing gas to be added, methyl chloride (CH 3 Cl) was used, and as the organometallic raw material for Ru, bisethylcyclopentadienyl ruthenium was used. Note that the crystal growth method is not limited to MOVPE, but includes molecular beam epitaxy (MBE) method, chemical beam epitaxy (CBE) method, metal organic molecular beam epitaxy (MOMBE). The effects of the present invention can also be obtained by techniques such as the -organic Molecular Beam Epitaxy method.

このようにして作製した半導体レーザ素子200のしきい値電流は85℃において15mAであり、20mWを超える高い光出力特性を示した。また、素子抵抗が低く、変調特性も良好であった。さらに長時間動作でも素子特性は劣化せず高い素子信頼性を示した。また、半導体レーザ素子200の作製歩留まりも高かった。   The threshold current of the semiconductor laser device 200 manufactured in this way was 15 mA at 85 ° C., and showed high light output characteristics exceeding 20 mW. Also, the element resistance was low and the modulation characteristics were good. Furthermore, the device characteristics did not deteriorate even during long-time operation, and high device reliability was shown. Also, the production yield of the semiconductor laser element 200 was high.

図5は、実施例2に係る半導体レーザ素子400の構造について説明するための、図2と同様の一部断面斜視図である。ここで示される半導体レーザ素子400は、変調器集積型半導体光素子であり、半導体レーザ素子400内には、変調器部、導波路部、レーザ部のそれぞれが形成されている。図6には、図5のBで示される部分を拡大した図が概略的に示されており、図7には、この半導体レーザ素子400の製造工程が概略的に示されている。成長方法としては、実施例1と同様にMOVPE法を用いた。III族元素の原料は、実施例1と同様である。添加するハロゲン原子含有ガスとしては、塩化水素(HCl)を用いた。   FIG. 5 is a partial cross-sectional perspective view similar to FIG. 2 for illustrating the structure of the semiconductor laser device 400 according to the second embodiment. A semiconductor laser device 400 shown here is a modulator integrated semiconductor optical device, and each of a modulator portion, a waveguide portion, and a laser portion is formed in the semiconductor laser device 400. FIG. 6 schematically shows an enlarged view of the portion indicated by B in FIG. 5, and FIG. 7 schematically shows a manufacturing process of the semiconductor laser device 400. As the growth method, the MOVPE method was used as in Example 1. The raw material of the group III element is the same as in Example 1. Hydrogen chloride (HCl) was used as the halogen atom-containing gas to be added.

以下、半導体レーザ素子400の製造工程を構成と共に説明する。まず、バッファ層形成工程S201において、n−InP基板402上に、n−InPバッファ層403を形成する。次に、活性層・導波路層形成工程S202において、InGaAlAs系からなる変調器部MQW層404を成長する。通常は、保護のために上部にp−InPキャップ層を形成しておくことが殆どである。次にウエハの所望の場所にマスクパターンを形成し、これをエッチングマスクとして、p−InPキャップ層と変調器部MQW層404を除去する。次に、活性層回折格子形成工程S203において、ウエハを成長炉内に導入し、InGaAlAs系からなるレーザ部MQW層406と回折格子407、及びp−InPキャップ層をバットジョイント(BJ:Butt-Joint)再成長する。次に、先のマスクを除去した後、変調器部MQW層404とレーザ部MQW層406の所望の場所に再度BJマスクを形成し、エッチングによりMQWとp−InPキャップ層を除去する。さらに、InGaAsPからなる導波路層405、及びp−InPキャップ層をBJ再成長する。ここでは、変調器部、レーザ部の2箇所同時にBJ接続した。ウエハを成長炉から取り出した後マスクを除去し、レーザ部MQW層406上に回折格子407を形成する。   Hereinafter, the manufacturing process of the semiconductor laser element 400 will be described together with the configuration. First, in the buffer layer forming step S <b> 201, the n-InP buffer layer 403 is formed on the n-InP substrate 402. Next, in the active layer / waveguide layer forming step S202, a modulator part MQW layer 404 made of InGaAlAs is grown. Usually, a p-InP cap layer is usually formed on the top for protection. Next, a mask pattern is formed at a desired location on the wafer. Using this as an etching mask, the p-InP cap layer and the modulator section MQW layer 404 are removed. Next, in the active layer diffraction grating forming step S203, the wafer is introduced into the growth furnace, and the laser part MQW layer 406, the diffraction grating 407, and the p-InP cap layer made of InGaAlAs are connected to the butt joint (BJ: Butt-Joint). ) Re-grow. Next, after removing the previous mask, a BJ mask is formed again at desired locations in the modulator section MQW layer 404 and the laser section MQW layer 406, and the MQW and p-InP cap layer are removed by etching. Further, the waveguide layer 405 made of InGaAsP and the p-InP cap layer are regrown BJ. Here, BJ connection was simultaneously performed at two locations of the modulator portion and the laser portion. After removing the wafer from the growth furnace, the mask is removed, and a diffraction grating 407 is formed on the laser unit MQW layer 406.

その後、Mgをドーピングした第2半導体層であるp−InPクラッド層410を成長させるが、この工程は以下の手順で行った。まずウエハを炉体内に導入し、Mgをドーピングした第2半導体層であるp−InPクラッド層410が成長できる温度になるまでウエハ温度を上昇させていく。この温度上昇中に、炉体内にAlおよびMgの有機金属を供給した(第1半導体形成工程S204)。その結果。第1半導体層である厚さ0.5nmのアンドープAlInP層415が形成された。この時に炉体内にはMgの有機金属が供給されているが、ウエハ温度が低いためにAlInP層には取り込まれず、アンドープのAlInP層415となる。このときのAl濃度は1×1019cm-3としたが、1×1016以上1×1020cm-3以下の範囲で適宜定めることができる。そして、ウエハ温度が第2半導体層であるp−InPクラッド層410が成長できる温度になる前、もしくは温度になった時にAlの有機金属の供給を停止し、ウエハ全面にMgをドーピングした第2半導体層であるp−InPクラッド層410を成長させる(第2半導体形成工程S205)。引き続き、コンタクト層形成工程S206において、p+−InGaAsコンタクト層を成長させ、結晶成長工程を終了する。 Thereafter, a p-InP clad layer 410, which is a second semiconductor layer doped with Mg, is grown. This step was performed according to the following procedure. First, the wafer is introduced into the furnace, and the wafer temperature is increased until the temperature reaches a temperature at which the p-InP cladding layer 410, which is the second semiconductor layer doped with Mg, can be grown. During this temperature rise, organometals of Al and Mg were supplied into the furnace body (first semiconductor formation step S204). as a result. An undoped AlInP layer 415 having a thickness of 0.5 nm, which is the first semiconductor layer, was formed. At this time, the organometallic Mg is supplied into the furnace, but is not taken into the AlInP layer due to the low wafer temperature, and becomes an undoped AlInP layer 415. The Al concentration at this time is 1 × 10 19 cm −3 , but can be appropriately determined within the range of 1 × 10 16 to 1 × 10 20 cm −3 . Then, before or when the wafer temperature reaches a temperature at which the p-InP clad layer 410 as the second semiconductor layer can be grown, the supply of the organometallic metal of Al is stopped, and the entire surface of the wafer is doped with Mg. A p-InP cladding layer 410, which is a semiconductor layer, is grown (second semiconductor formation step S205). Subsequently, in the contact layer formation step S206, a p + -InGaAs contact layer is grown, and the crystal growth step is completed.

AlInP層415の挿入により、p−InPクラッド層410にドーピング遅れは見られなかった。引き続き、メサ構造形成工程S207において、このような多層構造にメサストライプマスクを形成し、エッチングによりメサ構造以外の部分を除去した後、適切な前処理を行い、RuドーピングInP層408にて埋めこみ成長を行う。その際、HClガスを同時に添加した。尚、出射光の反射による戻り光を防ぐため、変調器部側の光の出射端は、RuドーピングInP層408により埋め込まれており、所謂窓構造となっている。その後は、電極形成工程S208において、導波路部上部のp+−InGaAsコンタクト層を除去し、変調器部のp+−InGaAsコンタクト層412とレーザ部のp−InGaAsコンタクト層411を素子分離した後、通常の素子作製方法を用いてパッシベーション膜413形成、変調器部の上部電極414、レーザ部の上部電極409、及び下部電極401形成等を施し、半導体レーザ素子400として完成した。 Due to the insertion of the AlInP layer 415, no doping delay was observed in the p-InP cladding layer 410. Subsequently, in the mesa structure forming step S207, a mesa stripe mask is formed in such a multilayer structure, and portions other than the mesa structure are removed by etching, and then appropriate pretreatment is performed, and the Ru-doped InP layer 408 is embedded and grown. I do. At that time, HCl gas was added simultaneously. In order to prevent return light due to reflection of the emitted light, the light emitting end on the modulator side is buried with a Ru-doped InP layer 408, which has a so-called window structure. After that, in the electrode forming step S208, the p + -InGaAs contact layer on the waveguide portion is removed, and the p + -InGaAs contact layer 412 in the modulator portion and the p-InGaAs contact layer 411 in the laser portion are separated. Then, the passivation film 413 was formed, the modulator upper electrode 414, the laser upper electrode 409, and the lower electrode 401 were formed using a normal device fabrication method, and the semiconductor laser device 400 was completed.

このようにして作製した半導体レーザ素子400のしきい値電流は85℃で15mA、−5℃から85℃の範囲で冷却器無しで10GHzの良好な変調特性を示し、また、長時間動作でも素子特性は劣化せず高い素子信頼性を示した。また、半導体レーザ素子400の作製歩留まりも高かった。尚、レーザや変調器のMQWとして、InGaAlAs系材料のみでなく、InGaAsP系の材料や、それにSbやNを添加した材料を用いることもできる。   The threshold current of the semiconductor laser device 400 fabricated in this way is 15 mA at 85 ° C., shows a good modulation characteristic of 10 GHz without a cooler in the range of −5 ° C. to 85 ° C., and can operate even for a long time. The characteristics did not deteriorate and showed high device reliability. Also, the production yield of the semiconductor laser device 400 was high. In addition, as MQW of a laser or a modulator, not only an InGaAlAs-based material but also an InGaAsP-based material or a material added with Sb or N can be used.

図8は、実施例3に係る半導体レーザ素子500の構造について説明するための、図2と同様の一部断面斜視図である。ここで示される半導体レーザ素子500は、裏面出射型半導体光素子であり、素子構造は、プレーナBH構造と呼ばれるものである。図9には、図8のCで示される部分を拡大した図が概略的に示されており、図9には、この半導体レーザ素子500の製造工程が概略的に示されている。成長方法としては、ここでもMOVPE法を用いたが、それに限定されるものでは無く、同一の効果が得られれば他の手法でも良い。用いた原料は、実施例1〜2と同様である。   FIG. 8 is a partial cross-sectional perspective view similar to FIG. 2 for illustrating the structure of the semiconductor laser device 500 according to the third embodiment. The semiconductor laser device 500 shown here is a back-emitting semiconductor optical device, and the device structure is called a planar BH structure. FIG. 9 schematically shows an enlarged view of a portion indicated by C in FIG. 8, and FIG. 9 schematically shows a manufacturing process of the semiconductor laser device 500. As the growth method, the MOVPE method is used here, however, the method is not limited thereto, and other methods may be used as long as the same effect can be obtained. The raw materials used are the same as in Examples 1-2.

以下、半導体レーザ素子500の製造工程を構成と共に説明する。まず、実施例1と同様に、バッファ層形成工程S301、活性層形成工程S302及び回折格子形成工程S303において、n−InP基板502上に、n−InPバッファ層503、InGaAlAs系からなるレーザ部MQW層510、及び回折格子511を形成する。このとき、表面保護の為、p−InPキャップ層を形成しておく場合が殆どである。通常のプロセスにて回折格子511を形成した後、第1半導体層形成工程S304において、Alの有機金属を供給し、厚さ0.3nmのノンドープAlInP層514を形成した。このときのAl濃度は1×1018cm-3としたが、1×1016以上1×1020cm-3以下の範囲で適宜定めることができる。引き続き、第2半導体層形成工程S305において、Mgドーピングした第2半導体層である薄い第一のp−InPクラッド層509、及びInGaAsPキャップ層で埋め込む。 Hereinafter, the manufacturing process of the semiconductor laser device 500 will be described together with the configuration. First, similarly to Example 1, in the buffer layer forming step S301, the active layer forming step S302, and the diffraction grating forming step S303, an n-InP buffer layer 503 and an InGaAlAs-based laser unit MQW are formed on the n-InP substrate 502. A layer 510 and a diffraction grating 511 are formed. At this time, in most cases, a p-InP cap layer is formed for surface protection. After forming the diffraction grating 511 by a normal process, in the first semiconductor layer forming step S304, an Al organic metal was supplied to form a non-doped AlInP layer 514 having a thickness of 0.3 nm. The Al concentration at this time is 1 × 10 18 cm −3 , but can be appropriately determined within a range of 1 × 10 16 to 1 × 10 20 cm −3 . Subsequently, in the second semiconductor layer forming step S305, the thin first p-InP cladding layer 509 and the InGaAsP cap layer which are Mg-doped second semiconductor layers are embedded.

メサ構造形成工程S306において、このような多層構造にメサストライプマスクを形成し、エッチングによりメサ構造以外の部分を除去した後、適切な前処理を行い、本発明の手法によるRuドーピングInP層504にて埋めこみ成長を行った。その際、CH3Clを同時に添加した。次に、マスクを除去したのち、適切な前処理を行いInGaAsPキャップ層を除去した後、2回目の第1半導体層形成工程S307において、Alの有機金属を供給し、第1半導体層である厚さ5nmのノンドープAlInP層508を形成した。このときのAl濃度は1×1018cm-3とした。引き続き、2回目の第2半導体層形成工程S308において、Mgドーピングした第2半導体層である第二のp−InPクラッド層505、p−InGaAsPコンタクト層506を連続的に形成した。その際、Ru埋めこみ成長にて形成された結晶面による凹凸を平坦化するような条件にて再成長を行った。その後、反射鏡・電極形成工程S309において、表面に135度の角度を有する反射鏡512、裏面に出射光を収束させるための裏面レンズ513を形成し、上部電極507、下部電極501を形成して半導体レーザ素子500として完成した。 In the mesa structure forming step S306, a mesa stripe mask is formed in such a multilayer structure, and portions other than the mesa structure are removed by etching, and then appropriate pretreatment is performed to form the Ru-doped InP layer 504 according to the method of the present invention. And buried growth. At that time, CH 3 Cl was added simultaneously. Next, after removing the mask and performing an appropriate pretreatment to remove the InGaAsP cap layer, in the second first semiconductor layer forming step S307, an organometallic metal of Al is supplied to form the thickness of the first semiconductor layer. A 5 nm thick non-doped AlInP layer 508 was formed. The Al concentration at this time was 1 × 10 18 cm −3 . Subsequently, in the second semiconductor layer formation step S308 for the second time, a second p-InP clad layer 505 and a p-InGaAsP contact layer 506, which are Mg-doped second semiconductor layers, were continuously formed. At that time, regrowth was performed under the condition that the unevenness due to the crystal plane formed by the Ru embedded growth was flattened. Thereafter, in the reflecting mirror / electrode forming step S309, a reflecting mirror 512 having an angle of 135 degrees is formed on the surface, a back lens 513 for converging outgoing light is formed on the back surface, and an upper electrode 507 and a lower electrode 501 are formed. The semiconductor laser device 500 was completed.

このようにして作製した半導体レーザ素子500は、素子抵抗が2オームと低く、85℃においても、10mAの低しきい値電流で発振した。また、冷却器無しで10GHzの良好な変調特性を示し、また、長時間動作でも素子特性は劣化せず高い素子信頼性を示した。また、半導体レーザ素子500の作製歩留まりも高かった。   The semiconductor laser device 500 thus fabricated had a low element resistance of 2 ohms and oscillated at a low threshold current of 10 mA even at 85 ° C. In addition, a good modulation characteristic of 10 GHz was exhibited without a cooler, and the element characteristics were not deteriorated even after long-time operation, and high element reliability was exhibited. Also, the production yield of the semiconductor laser device 500 was high.

200 半導体レーザ素子、201 発振領域、202 レーザ光、301 下部電極、302 n−InP基板、303 n−InPバッファ層、304 RuドーピングInP層、305 上部電極、306 MQW層、307 上部p−InPクラッド層、308 p+−InGaAsコンタクト層、309 回折格子、310 パッシベーション膜、311 アンドープAlInP層、400 半導体レーザ素子、401 下部電極、402 n−InP基板、403 n−InPバッファ層、404 変調器部MQW層、405 導波路層、406 レーザ部MQW層、407 回折格子、408 RuドーピングInP層、409 レーザ部の上部電極、410 p−InPクラッド層、411 レーザ部のp+−InGaAsコンタクト層、412 変調器部のp+−InGaAsコンタクト層、413 パッシベーション膜、414 変調器部の上部電極、415 アンドープAlInP層、500 半導体レーザ素子、501 下部電極、502 n−InP基板、503 n−InPバッファ層、504 RuドーピングInP層、505 第二のp−InPクラッド層、506 p+−InGaAsコンタクト層、507 上部電極、508 アンドープAlInP層、509 第一のp−InPクラッド層、510 MQW層、511 回折格子、512 135度反射鏡、513 裏面レンズ、514 アンドープAlInP層。

200 Semiconductor laser device, 201 Oscillation region, 202 Laser light, 301 Lower electrode, 302 n-InP substrate, 303 n-InP buffer layer, 304 Ru-doped InP layer, 305 Upper electrode, 306 MQW layer, 307 Upper p-InP clad Layer, 308 p + -InGaAs contact layer, 309 diffraction grating, 310 passivation film, 311 undoped AlInP layer, 400 semiconductor laser element, 401 lower electrode, 402 n-InP substrate, 403 n-InP buffer layer, 404 modulator section MQW Layer, 405 waveguide layer, 406 laser part MQW layer, 407 diffraction grating, 408 Ru-doped InP layer, 409 laser part upper electrode, 410 p-InP cladding layer, 411 laser part p + -InGaAs contact layer, 412 modulation P + -I of the vessel GaAs contact layer, 413 passivation film, 414 modulator upper electrode, 415 undoped AlInP layer, 500 semiconductor laser element, 501 lower electrode, 502 n-InP substrate, 503 n-InP buffer layer, 504 Ru-doped InP layer, 505 Second p-InP cladding layer, 506 p + -InGaAs contact layer, 507 top electrode, 508 undoped AlInP layer, 509 first p-InP cladding layer, 510 MQW layer, 511 diffraction grating, 512 135 degree reflector, 513 Back lens, 514 Undoped AlInP layer.

Claims (4)

電子とホールの再結合により発光する活性層と、
前記発光した光の出力波長に応じてピッチが定められた回折格子と、
前記回折格子に接し前記回折格子上に形成され、少なくともAlを含み、In及びV族化合物からなる第1半導体層と、
前記第1半導体層上に形成され、Mgを含むIn及びV族化合物からなる第2半導体層と、を備え、
前記第1半導体層の厚さは、0.3nm以上5nm以下であり、
前記第1半導体層のAlの濃度は、1×10 16 以上1×10 20 cm −3 以下である、
ことを特徴とする半導体光素子。
An active layer that emits light by recombination of electrons and holes;
A diffraction grating having a pitch determined according to an output wavelength of the emitted light;
A first semiconductor layer formed on and in contact with the diffraction grating, comprising at least Al, and comprising In and a group V compound;
A second semiconductor layer formed on the first semiconductor layer and made of In and V compounds containing Mg,
The thickness of the first semiconductor layer state, and are more 5nm or less 0.3 nm,
The concentration of Al in the first semiconductor layer is 1 × 10 16 or more and 1 × 10 20 cm −3 or less,
A semiconductor optical device.
請求項1に記載の半導体光素子において、
前記第1半導体層はAlInP層であり、前記第2半導体層はInP層である、ことを特徴とする半導体光素子。
The semiconductor optical device according to claim 1 ,
The semiconductor optical device, wherein the first semiconductor layer is an AlInP layer, and the second semiconductor layer is an InP layer.
電子とホールの再結合により発光する活性層を成膜する活性層形成工程と、 前記発光した光の出力波長に応じてピッチが定められた回折格子を形成する回折格子形成工程と、
前記回折格子に接し前記回折格子上に形成され、少なくともAlを含み、In及びV族化合物からなる第1半導体層を成膜する第1半導体層形成工程と、
前記第1半導体層上に形成され、Mgを含むIn及びV族化合物からなる第2半導体層を成膜する第2半導体層形成工程と、を備え、
前記第1半導体層の厚さは、0.3nm以上5nm以下であり、
前記第1半導体層のAlの濃度は、1×10 16 以上1×10 20 cm −3 以下である、
ことを特徴とする半導体光素子の製造方法。
An active layer forming step of forming an active layer that emits light by recombination of electrons and holes; a diffraction grating forming step of forming a diffraction grating having a pitch determined according to an output wavelength of the emitted light;
A first semiconductor layer forming step of forming a first semiconductor layer formed on and in contact with the diffraction grating and including at least Al and made of In and a V group compound;
A second semiconductor layer forming step of forming a second semiconductor layer formed on the first semiconductor layer and made of an In and V group compound containing Mg,
The thickness of the first semiconductor layer state, and are more 5nm or less 0.3 nm,
The concentration of Al in the first semiconductor layer is 1 × 10 16 or more and 1 × 10 20 cm −3 or less,
A method of manufacturing a semiconductor optical device.
請求項に記載の半導体光素子の製造方法において、
前記第1半導体層はAlInP層であり、前記第2半導体層はInP層である、ことを特徴とする半導体光素子の製造方法。
In the manufacturing method of the semiconductor optical device according to claim 3 ,
The method of manufacturing a semiconductor optical device, wherein the first semiconductor layer is an AlInP layer, and the second semiconductor layer is an InP layer.
JP2018076605A 2018-04-12 2018-04-12 Semiconductor optical device and manufacturing method of semiconductor optical device Active JP6585764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076605A JP6585764B2 (en) 2018-04-12 2018-04-12 Semiconductor optical device and manufacturing method of semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076605A JP6585764B2 (en) 2018-04-12 2018-04-12 Semiconductor optical device and manufacturing method of semiconductor optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014028194A Division JP6325276B2 (en) 2014-02-18 2014-02-18 Semiconductor optical device and manufacturing method of semiconductor optical device

Publications (2)

Publication Number Publication Date
JP2018137472A JP2018137472A (en) 2018-08-30
JP6585764B2 true JP6585764B2 (en) 2019-10-02

Family

ID=63365711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076605A Active JP6585764B2 (en) 2018-04-12 2018-04-12 Semiconductor optical device and manufacturing method of semiconductor optical device

Country Status (1)

Country Link
JP (1) JP6585764B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053836B2 (en) * 1989-06-16 2000-06-19 株式会社東芝 (III) —Method of manufacturing Group V compound semiconductor device
JP3133187B2 (en) * 1992-03-04 2001-02-05 富士通株式会社 Semiconductor device and method of manufacturing the same
JPH09116233A (en) * 1995-10-24 1997-05-02 Nec Corp 3-5 group optical semiconductor element and 3-5 group optical semiconductor integrated element
JPH1022579A (en) * 1996-07-03 1998-01-23 Mitsubishi Electric Corp Light waveguide path structure, and semiconductor laser, modulator, and integrated semiconductor laser device using this light waveguide structure
JP2005136162A (en) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd Method for manufacturing compound semiconductor device
JP2008198942A (en) * 2007-02-15 2008-08-28 Sumitomo Electric Ind Ltd Semiconductor photo element
JP2009267231A (en) * 2008-04-28 2009-11-12 Rohm Co Ltd Nitride semiconductor laser
JP2010098201A (en) * 2008-10-20 2010-04-30 Mitsubishi Electric Corp Ridge type semiconductor laser

Also Published As

Publication number Publication date
JP2018137472A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US7636378B2 (en) Semiconductor laser diode
JP2008053649A (en) Buried semiconductor laser
JP2006286809A (en) Optical semiconductor device and its manufacturing method
JP4894576B2 (en) Semiconductor optical device manufacturing method
JP2000196188A (en) Semiconductor laser device and manufacture thereof
CN109087978B (en) Optical semiconductor element, optical module, and optical module
JP6325276B2 (en) Semiconductor optical device and manufacturing method of semiconductor optical device
US8270446B2 (en) Semiconductor laser device
US8213477B2 (en) Semiconductor laser and method of manufacturing the same
US20050123018A1 (en) Ridge type distributed feedback semiconductor laser
JP6585764B2 (en) Semiconductor optical device and manufacturing method of semiconductor optical device
US20090142869A1 (en) Method of producing semiconductor optical device
US7782919B2 (en) Buried semiconductor laser and method for manufacturing the same
JP6487236B2 (en) Semiconductor optical device and manufacturing method thereof
JP3889896B2 (en) Semiconductor light emitting device
JP3889910B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JP2001135895A (en) Semiconductor light emitting device
JP2001358409A (en) Semiconductor optical device and its manufacturing method
JP2001185810A (en) Semiconductor optical device and manufacturing method therefor
JP7296845B2 (en) MODULATION DOPED SEMICONDUCTOR LASER AND MANUFACTURING METHOD THEREOF
JP2004134786A (en) Semiconductor laser device and manufacturing method therefor
JPH11340585A (en) Semiconductor light-emitting device
JP2000353861A (en) Manufacture of iii-v semiconductor light emitting device
JP4871241B2 (en) Optical semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250