JP6585435B2 - Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof - Google Patents

Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof Download PDF

Info

Publication number
JP6585435B2
JP6585435B2 JP2015175242A JP2015175242A JP6585435B2 JP 6585435 B2 JP6585435 B2 JP 6585435B2 JP 2015175242 A JP2015175242 A JP 2015175242A JP 2015175242 A JP2015175242 A JP 2015175242A JP 6585435 B2 JP6585435 B2 JP 6585435B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
cmg
value
csi
bendability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175242A
Other languages
Japanese (ja)
Other versions
JP2017048451A (en
Inventor
藤本一郎
松本恵介
竹田博貴
島田隆登志
日比野旭
佐賀誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
UACJ Corp
Original Assignee
Nippon Steel Corp
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, UACJ Corp filed Critical Nippon Steel Corp
Priority to JP2015175242A priority Critical patent/JP6585435B2/en
Publication of JP2017048451A publication Critical patent/JP2017048451A/en
Application granted granted Critical
Publication of JP6585435B2 publication Critical patent/JP6585435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、例えば自動車ボディシート、ボディパネルのような各種自動車の部材・部品等の素材として使用される、プレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れた成形加工用アルミニウム合金板に関する。   The present invention is an aluminum alloy for forming process that is excellent in press formability, paint bake hardenability, bendability, and recyclability, and is used as a material for various automobile members and parts such as automobile body sheets and body panels. Regarding the board.

近年、様々な分野において資源をリサイクルする要求が高まっている。ボーキサイトを還元して製造されるアルミニウム合金は莫大な電力を消費して製造されるため、省資源、低コスト化等の観点からリサイクルの推進が求められている。   In recent years, there is an increasing demand for recycling resources in various fields. Since aluminum alloys produced by reducing bauxite are produced by consuming enormous electric power, recycling is required from the viewpoint of resource saving and cost reduction.

一般的にアルミニウム合金をリサイクルする場合、不純物は増加する傾向にある。例えば自動車ボディパネル材においては、機械締結に使用された鉄ネジなど分別困難な部品の混入が想定される。また、低コスト化の観点から不純物を多量に含有する品位の低いスクラップ材を使用する場合も考えられる。一方で、自動車ボディパネル材に要求されるプレス成形性や塗装焼付け硬化性、曲げ性等の厳しい要求特性を満足するために、特性低下の原因となり得る不純物元素の量を厳しく管理しているのが現状である。   In general, when an aluminum alloy is recycled, impurities tend to increase. For example, in an automobile body panel material, it is assumed that mixing of difficult-to-separate parts such as iron screws used for machine fastening is assumed. Further, from the viewpoint of cost reduction, it is conceivable to use a low-quality scrap material containing a large amount of impurities. On the other hand, in order to satisfy strict required characteristics such as press formability, paint bake hardenability, and bendability required for automobile body panel materials, the amount of impurity elements that can cause deterioration of characteristics is strictly controlled. Is the current situation.

例えば特許文献1には、アルミニウム合金屑などを利用する対策などが提案されている。しかしながら、この特許文献1では、金属組織の制御による成形性の向上やベークハード性(BH性)の向上を目的とする溶体化処理後の安定化処理が未実施である。その結果、自動車ボディパネル等に対して現在要求されている高い材料特性の確保が困難であり実用化には至っていない。   For example, Patent Document 1 proposes a countermeasure using aluminum alloy scraps and the like. However, in this patent document 1, the stabilization process after the solution treatment aiming at the improvement of the moldability by control of a metal structure and the bake hard property (BH property) is not implemented. As a result, it is difficult to secure the high material properties currently required for automobile body panels and the like, and it has not been put into practical use.

特開平11−293363号公報JP 11-293363 A

本発明は上記事情を背景としてなされたもので、例えば自動車ボディシート、ボディパネルのような各種自動車の部材・部品等の素材として使用され、プレス成形性、塗装焼付け硬化性、曲げ性に優れ、かつ、不純物元素の増加による特性低下を抑制することで、不純物元素の許容範囲を拡大したリサイクル性に優れる成形加工用アルミニウム合金板の提供を目的とする。   The present invention was made against the above circumstances, and is used as a material for various automobile parts and parts such as automobile body sheets and body panels, and is excellent in press moldability, paint bake hardenability, and bendability. And it aims at provision of the aluminum alloy plate for forming which is excellent in recyclability which expanded the tolerance of an impurity element by suppressing the characteristic fall by increase of an impurity element.

上記課題を解決するため、本発明者等が種々の実験と検討を重ねた結果、適切な合金組成と製造条件との組合せにより、後述するΔrを所定の範囲とすることで、成形性が向上することを見出し、更に、自動車ボディパネル等の素材に要求される高い材料特性を確保できることをも見出し、本発明を完成するに至った。   In order to solve the above problems, the inventors have conducted various experiments and studies, and as a result, by combining the appropriate alloy composition and manufacturing conditions, Δr described later is within a predetermined range, thereby improving formability. In addition, the present inventors have also found that high material properties required for materials such as automobile body panels can be secured, and have completed the present invention.

すなわち、本発明は請求項1において、Mg:0.30〜0.80mass%、Si:0.80〜1.40mass%、Mn:0.20〜0.65mass%、Zn:0.44〜0.60mass%、Fe:0.25〜0.40mass%、Cu:0.17〜0.25mass%を含有するとともに下記(1)〜(3)式を満たし、残部Al及び不純物からなるアルミニウム合金からなり、ランクフォード値(r値)の異方性を示すΔrが下記(4)及び(5)式を満たし、溶体化処理の100日後において、塗装焼付け処理を施した後の耐力が200MPa以上であり、かつ、引張強度から耐力を差し引いた値が110MPa以上であり、JISH7701:2008に基づくヘミング試験における判定基準で規定される評点が0〜2点であることを特徴とするプレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れた成形加工用アルミニウム合金板とした。
更に、本発明は請求項2において、請求項1に記載の成形加工用アルミニウム合金板の製造方法であって、前記アルミニウム合金を鋳造する鋳造工程と、鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板の中間焼鈍工程と、中間焼鈍した圧延板を冷間圧延する冷間圧延工程と、冷間圧延板を溶体化処理する溶体化処理工程と、溶体化処理した圧延板を安定化処理する安定化処理工程とを含み、前記溶体化処理の温度が480℃以上で前記アルミニウム合金の融点未満であり、前記安定化処理工程が前記溶体化処理工程の終了後1時間以内に、圧延板を80〜120℃の温度で1時間以上加熱保持することを特徴とするプレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れた成形加工用アルミニウム合金板の製造方法とした。
That is, the present invention according to claim 1, Mg: 0.30-0.80 mass%, Si: 0.80-1.40 mass%, Mn: 0.20-0.65 mass%, Zn: 0.44-0 .60 mass%, Fe: 0.25 to 0.40 mass%, Cu: 0.17 to 0.25 mass% and satisfying the following formulas (1) to (3), the balance being an aluminum alloy composed of Al and impurities becomes, rank Ford value Δr satisfies the following (4) showing the anisotropy of (r value) and (5) satisfy the equation, after 100 days of solution treatment, proof stress after performing baking processing than 200MPa , and the and the value obtained by subtracting the yield strength from the tensile strength Ri der least 110MPa, JISH7701: score defined by criteria of hemming tests based on 2008 0-2 points Press formability, characterized in Rukoto, paint-baking hardenability and the bendability and recycling excellent in molding an aluminum alloy plate.
Furthermore, the present invention provides a method for producing an aluminum alloy sheet for forming according to claim 1, wherein the present invention is a casting process for casting the aluminum alloy and a homogenization process for homogenizing the ingot. A hot rolling process for hot rolling the homogenized ingot, an intermediate annealing process for the hot rolled sheet, a cold rolling process for cold rolling the intermediate annealed rolled sheet, and a cold rolled sheet Including a solution treatment step for solution treatment and a stabilization treatment step for stabilizing the solution-treated rolled plate, and the temperature of the solution treatment is 480 ° C. or higher and lower than the melting point of the aluminum alloy, The press formability, paint bake hardenability, and bendability, characterized in that the stabilization treatment step holds the rolled plate heated at a temperature of 80 to 120 ° C. for 1 hour or more within 1 hour after the solution treatment step is completed. Excellent recyclability And as the manufacturing method of molding an aluminum alloy plate.

上記(1)〜(5)式は以下の通りである。
CSi+CFe+CMn≦2.30 (1)
CSi/CMg<1.60のとき、
{1.60−(CSi/CMg)}/(CMg +CFe+CMn≦1.90 (2)
CSi/CMg≧1.60のとき、
{0.1/(CMg)}+CFe+CMn≦1.70 (3)
−0.50≦Δr≦−0.01 (4)
Δr=1/2(r0°+r90°−2×r45°) (5)
ここで、CSi、CFe、CMn、CMgは、Si、Fe、Mn、Mgの含有量をそれぞれ示し、r0°は、アルミニウム合金板の圧延方向と平行方向のr値、r90°は、アルミニウム合金板の圧延方向と直角方向のr値、r45°は、アルミニウム合金板の圧延方向から45°回転した方向のr値を示す。
The above formulas (1) to (5) are as follows.
CSi + CFe + CMn ≦ 2.30 (1)
When CSi / CMg <1.60,
{1.60− (CSi / CMg)} / (CMg 2 ) + CFe + CM n ≦ 1.90 (2)
When CSi / CMg ≧ 1.60,
{0.1 / (CMg 2 )} + CFe + CM n ≦ 1.70 (3)
−0.50 ≦ Δr ≦ −0.01 (4)
Δr = 1/2 (r0 ° + r90 ° -2 × r45 °) (5)
Here, CSi, CFe, CMn, and CMg indicate the contents of Si, Fe, Mn, and Mg, respectively, r0 ° is an r value in a direction parallel to the rolling direction of the aluminum alloy plate, and r90 ° is an aluminum alloy plate. The r value in the direction perpendicular to the rolling direction, r45 °, indicates the r value in the direction rotated 45 ° from the rolling direction of the aluminum alloy sheet.

本発明によれば、例えば自動車ボディシート、ボディパネルのような各種自動車の部材・部品等の素材として使用され、プレス成形性、塗装焼付け硬化性、曲げ性に優れ、かつ、不純物元素の増加による特性低下を抑制することで、不純物元素の許容範囲を拡大したリサイクル性に優れる成形加工用アルミニウム合金板が得られる。   According to the present invention, it is used as a material for various automobile parts and parts such as automobile body sheets and body panels, and is excellent in press formability, paint bake hardenability, bendability, and due to an increase in impurity elements. By suppressing the deterioration of the characteristics, an aluminum alloy plate for forming with excellent recyclability with an increased allowable range of impurity elements can be obtained.

以下に、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

1.合金組成
まず、アルミニウム合金板の素材であるアルミニウム合金組成及びその限定理由について説明する。
Mg:
Mgは、Siと共同して強度向上に寄与する。Mg含有量が0.30mass%(以下、単に「%」と記す)未満では、塗装焼付時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなり十分な強度向上が得られない。一方、Mg含有量が0.80%を超えると、粗大なMg−Si系金属間化合物が生成され、プレス成形性、特に曲げ加工性が低下する。更に、Mg添加によるMgの固溶や金属間化合物の形成は集合組織にも影響を及ぼし、上記範囲外においては後述のΔrが本発明で規定する範囲から逸脱する。従って、Mg含有量は0.30〜0.80%とする。Mg含有量は、好ましくは0.40〜0.80%である。
1. Alloy Composition First, the aluminum alloy composition, which is the material of the aluminum alloy plate, and the reason for limitation will be described.
Mg:
Mg contributes to strength improvement in cooperation with Si. If the Mg content is less than 0.30 mass% (hereinafter, simply referred to as “%”), G. contributes to strength improvement by precipitation hardening during coating baking. P. The amount of zone formation is reduced, and sufficient strength improvement cannot be obtained. On the other hand, if the Mg content exceeds 0.80%, a coarse Mg-Si-based intermetallic compound is generated, and press formability, particularly bending workability is deteriorated. Furthermore, the solid solution of Mg and the formation of intermetallic compounds due to the addition of Mg also affect the texture. Outside the above range, Δr described later deviates from the range defined in the present invention. Therefore, the Mg content is 0.30 to 0.80%. The Mg content is preferably 0.40 to 0.80%.

Si:
Siは、Mgと共同して強度向上に寄与する。また、Siは鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si含有量が0.80%未満では上記効果が十分に得られない。一方、Si含有量が1.40%を超えると多数の金属間化合物が生成して、プレス成形性、特に曲げ加工性の低下を招く。更に、Si添加によるSiの固溶や金属間化合物の形成は集合組織にも影響を及ぼし、上記範囲外においては後述のΔrが本発明で規定される範囲から逸脱する。従って、Si含有量は0.80〜1.40%とする。Si含有量は、好ましくは0.80〜1.20%である。
Si:
Si contributes to strength improvement in cooperation with Mg. In addition, Si is produced as a crystallized product of metal Si during casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. Also contributes. If the Si content is less than 0.80%, the above effect cannot be obtained sufficiently. On the other hand, when the Si content exceeds 1.40%, a large number of intermetallic compounds are generated, which causes a decrease in press formability, particularly bending workability. Further, the solid solution of Si and the formation of intermetallic compounds due to the addition of Si also affect the texture. Outside the above range, Δr described later deviates from the range defined by the present invention. Therefore, the Si content is 0.80 to 1.40%. The Si content is preferably 0.80 to 1.20%.

Mn:
Mnは強度向上と、結晶粒の微細化及び組織の安定化に効果を発揮する元素である。Mn含有量が0.20%以上とすることで、上記の効果を十分に得ることができる。また、Mn含有量を0.65%以下とすることで、上記の効果を十分に維持しつつ、多数の金属間化合物の生成による成形性、特に曲げ加工性への悪影響を抑制することができる。更に、Mn添加による金属間化合物の形成は集合組織にも影響を及ぼし、Mn含有量を上記範囲内とすることによって、後述のΔrを本発明で規定される範囲とすることができる。従って、Mn含有量は0.20〜0.65%とする。Mn含有量は、好ましくは0.30〜0.60%である。
Mn:
Mn is an element that exhibits an effect of improving strength, refining crystal grains, and stabilizing the structure. When the Mn content is 0.20% or more, the above effects can be sufficiently obtained. Moreover, by making Mn content 0.65% or less, the above-mentioned effects can be sufficiently maintained, and adverse effects on formability, particularly bending workability due to the generation of a large number of intermetallic compounds can be suppressed. . Furthermore, the formation of the intermetallic compound by addition of Mn also affects the texture. By setting the Mn content within the above range, Δr described later can be within the range defined by the present invention. Therefore, the Mn content is set to 0.20 to 0.65%. The Mn content is preferably 0.30 to 0.60%.

Zn:
Znは時効性向上を通じて強度向上に寄与するとともに、表面処理性の向上に有効な元素である。Zn含有が0.44%以上とすることで、上記の効果を十分に得ることができる。また、Zn含有量を0.60%以下とすることで、成形性の低下を抑制することができる。更に、Zn添加によるZnの固溶は集合組織にも影響を及ぼし、Zn含有量を上記範囲内とすることによって、後述のΔrを本発明で規定される範囲とすることができる。従って、Zn含有量は0.44〜0.60%とする。
Zn:
Zn is an element that contributes to strength improvement through aging improvement and is effective in improving surface treatment. By making the Zn content 0.44% or more, the above effects can be sufficiently obtained. Moreover, the fall of a moldability can be suppressed because Zn content shall be 0.60% or less. Furthermore, the solid solution of Zn due to the addition of Zn also affects the texture. By setting the Zn content within the above range, Δr described later can be within the range defined by the present invention. Therefore, the Zn content is set to 0.44 to 0.60%.

Fe:
Feは、強度向上と結晶粒微細化に有効な元素である。Fe含有量が0.25%以上とすることで、上記の効果を十分に得ることができる。また、Fe含有量を0.40%以下とすることで、多数の金属間化合物の生成によるプレス成形性及び曲げ加工性の低下を抑制することができる。更に、Fe添加によるFeの固溶や金属間化合物の形成は集合組織にも影響を及ぼし、Fe含有量を上記範囲内とすることによって、後述のΔrを本発明で規定される範囲とすることができる。従って、Fe含有量は0.25〜0.40%とする。Fe含有量は、好ましくは0.25〜0.35%である。
Fe:
Fe is an element effective for strength improvement and crystal grain refinement. When the Fe content is 0.25% or more, the above effect can be sufficiently obtained. Moreover, the fall of press formability and bending workability by the production | generation of many intermetallic compounds can be suppressed because Fe content shall be 0.40% or less. Furthermore, the solid solution of Fe and the formation of intermetallic compounds due to the addition of Fe also affect the texture. By setting the Fe content within the above range, Δr described later is within the range specified in the present invention. Can do. Therefore, the Fe content is 0.25 to 0.40%. The Fe content is preferably 0.25 to 0.35%.

Cu:
Cuは、強度向上と成形性向上に有効な元素である。Cu含有量が0.17%未満では、上記の効果を十分に得ることができない。一方、Cu含有量が0.25%を超えると曲げ性が損なわれる。更に、Cu添加によるCuの固溶や金属間化合物の形成は集合組織にも影響を及ぼし、Cu含有量を上記範囲内とすることによって、後述のΔrを本発明で規定する範囲とすることができる。従って、Cu含有量は0.17〜0.25%とする。
Cu:
Cu is an element effective for improving strength and improving formability. If the Cu content is less than 0.17%, the above effects cannot be obtained sufficiently. On the other hand, if the Cu content exceeds 0.25%, the bendability is impaired. Further, Cu solid solution and formation of intermetallic compounds due to addition of Cu also affect the texture. By setting the Cu content within the above range, Δr described later may be within the range specified in the present invention. it can. Therefore, the Cu content is 0.17 to 0.25%.

また、強度向上や、結晶粒の微細化と組織の安定化を目的として、Cr、Zr及びVから選択される1種以上を添加してもよい。Cr、Zr、Vの各含有量は、0.01〜0.40%とするのが好ましい。これら各含有量を0.01%以上とすることで、上記の効果を十分に得ることができる。また、これら各含有量を0.40%以下とすることで、上記の効果を十分に維持しつつ、多数の金属間化合物の生成による成形性、特に曲げ加工性への悪影響を抑制することができる。従って、これら各含有量は0.01〜0.40%とするのが好ましく、0.01〜0.20%とするのがより好ましい。   Moreover, you may add 1 or more types selected from Cr, Zr, and V for the purpose of strength improvement, refinement | miniaturization of a crystal grain, and stabilization of a structure | tissue. Each content of Cr, Zr, and V is preferably 0.01 to 0.40%. By making each of these contents 0.01% or more, the above effects can be sufficiently obtained. In addition, by making each of these contents 0.40% or less, it is possible to suppress the adverse effects on formability, particularly bending workability due to the generation of a large number of intermetallic compounds, while maintaining the above effects sufficiently. it can. Therefore, each of these contents is preferably 0.01 to 0.40%, and more preferably 0.01 to 0.20%.

更に、鋳塊組織の微細化を通じて最終板の強度向上、肌荒れ防止、耐リジング性向上を目的としてTiを添加してもよい。Ti含有量は、0.005〜0.300%とするのが好ましい。Ti含有量を0.005%以上とすることで、上記の効果を十分に得ることができる。また、Ti含有量を0.300%以下とすることで、上記の効果を十分に維持しつつ、粗大な晶出物の生成を抑制することができる。従って、Ti含有量は0.005〜0.300%とするのが好ましく、0.005〜0.100%とするのがより好ましい。なお、TiとともにBを添加してもよく、これにより鋳塊組織の微細化と安定化の効果が一層顕著となる。上記含有量のTiとともにBを添加する場合におけるBの含有量は、1〜500ppm、好ましくは1〜200ppmである。1ppm未満では上記一層の顕著な効果が得られず、500ppmを超えると粗大な晶出物が形成してしまう。   Furthermore, Ti may be added for the purpose of improving the strength of the final plate, preventing rough skin, and improving ridging resistance through refinement of the ingot structure. The Ti content is preferably 0.005 to 0.300%. By making the Ti content 0.005% or more, the above effects can be sufficiently obtained. Moreover, the production | generation of a coarse crystallization thing can be suppressed, maintaining said effect fully by making Ti content 0.300% or less. Therefore, the Ti content is preferably 0.005 to 0.300%, and more preferably 0.005 to 0.100%. In addition, B may be added together with Ti, whereby the effect of refining and stabilizing the ingot structure becomes more remarkable. The content of B in the case of adding B together with the Ti content is 1 to 500 ppm, preferably 1 to 200 ppm. If it is less than 1 ppm, the above-mentioned remarkable effect cannot be obtained, and if it exceeds 500 ppm, a coarse crystallized product is formed.

また、高温時効促進元素又は室温時効抑制元素であるAg、In、Cd、Be及びSnの1種以上を微量添加してもよい。その場合には、これら元素の各含有量が0.3%以下、全体でも1.0%以下であれば、他の特性が損なわれることはない。また、鋳塊組織の微細化にはScを微量添加してもよい。その場合には、Sc含有量が0.01〜0.20%であれば本発明の効果が損なわれることはない。なお、以上挙げた元素の他に不純物として、Ni、Bi等を各々0.05%以下、全体として0.15%以下含有していてもよい。   Further, a trace amount of one or more of Ag, In, Cd, Be and Sn which are high temperature aging promoting elements or room temperature aging suppressing elements may be added. In that case, if each content of these elements is 0.3% or less, or 1.0% or less as a whole, other characteristics are not impaired. Further, a small amount of Sc may be added to refine the ingot structure. In that case, if the Sc content is 0.01 to 0.20%, the effect of the present invention is not impaired. In addition to the elements listed above, Ni, Bi, or the like may be contained as impurities, respectively, at 0.05% or less, and as a whole, 0.15% or less.

2.アルミニウム合金における含有量の関係
次に、アルミニウム合金における含有量の関係を、下記の(1)〜(3)式に基づいて説明する。
CSi+CFe+CMn≦2.30 (1)
CSi/CMg<1.60のとき、
{1.60−(CSi/CMg)}/(CMg+CFe+CMn)≦1.90 (2)
CSi/CMg≧1.60のとき、
{0.1/(CMg)}+CFe+CMn)≦1.70 (3)
ここで、CSi、CFe、CMn及びCMgは、アルミニウム合金中のSi、Fe、Mn及びMgの含有量をそれぞれ示す。
2. Relation of content in aluminum alloy Next, the relation of content in the aluminum alloy will be described based on the following formulas (1) to (3).
CSi + CFe + CMn ≦ 2.30 (1)
When CSi / CMg <1.60,
{1.60− (CSi / CMg)} / (CMg 2 + CFe + CMn) ≦ 1.90 (2)
When CSi / CMg ≧ 1.60,
{0.1 / (CMg 2 )} + CFe + CMn) ≦ 1.70 (3)
Here, CSi, CFe, CMn, and CMg indicate the contents of Si, Fe, Mn, and Mg in the aluminum alloy, respectively.

まず、(1)式は良好な曲げ加工性を確保する観点から規定した式である。Si、Fe、Mnは粗大な金属間化合物の形成に特に寄与する元素であり、上記の各添加元素の説明でも各々上限が設定されるが、3者の総和についても規制する必要がある。3者の総和を2.3(%)以下とすることによって、例えば、自動車ボディパネル等の利用に適した良好な曲げ加工性が確保される。なお、式(1)は、Si、Fe及びMnの含有量の和と曲げ加工性の実験的関係から得られるものである。   First, equation (1) is an equation defined from the viewpoint of ensuring good bending workability. Si, Fe, and Mn are elements that particularly contribute to the formation of coarse intermetallic compounds, and an upper limit is set for each of the additive elements described above, but the sum of the three elements must also be regulated. By setting the total sum of the three parties to 2.3 (%) or less, for example, good bending workability suitable for use in an automobile body panel or the like is ensured. Formula (1) is obtained from an experimental relationship between the sum of the contents of Si, Fe and Mn and bending workability.

次に、(2)、(3)式は塗装焼付け処理後の耐力を確保する観点から規定した式である。SiとMgは塗装焼付時の析出によって大きな強度向上に寄与する元素であるが、Fe、Mnと金属間化合物を形成し易い。その結果、強度向上に寄与するSi、Mgがこの金属間化合物の形成に消費されるため、Fe、Mnの添加に伴い強度向上効果が減少する。(2)式は、アルミニウム合金中のMg含有量に対するSi含有量の比が1.60未満の場合を規定し、(3)式は、アルミニウム合金中のMg含有量に対するSi含有量の比が1.60以上の場合を規定する。上述した各元素範囲を満たすとともに、Si、Mg、Fe、Mnの添加量が上記(2)、(3)式を満足することで、例えば、自動車ボディパネル等の利用に適した塗装焼付け後の耐力を得ることができる。ここで、(2)式と(3)式は、上記のようにCSi/CMgを場合分けし、各場合におけるSi、Mg、Fe及びMnの含有量と良好な塗装焼付け後耐力との実験で得られる関係を数値解析によって求めたものである。   Next, formulas (2) and (3) are formulas defined from the viewpoint of securing the yield strength after the coating baking process. Si and Mg are elements that contribute to a significant improvement in strength by precipitation during paint baking, but easily form intermetallic compounds with Fe and Mn. As a result, Si and Mg that contribute to the strength improvement are consumed for the formation of the intermetallic compound, so that the strength improvement effect decreases with the addition of Fe and Mn. The formula (2) defines the case where the ratio of the Si content to the Mg content in the aluminum alloy is less than 1.60, and the formula (3) is the ratio of the Si content to the Mg content in the aluminum alloy. 1. Specify the case of 60 or more. While satisfying each element range mentioned above, and addition amount of Si, Mg, Fe, and Mn satisfies the above formulas (2) and (3), for example, after paint baking suitable for use in automobile body panels and the like Yield strength can be obtained. Here, the formulas (2) and (3) are divided into cases of CSi / CMg as described above, and in the experiments of the content of Si, Mg, Fe and Mn and good post-baking strength in each case. The obtained relationship is obtained by numerical analysis.

3.アルミニウム合金板の製造方法
次に、本発明に係る成形加工用アルミニウム合金板の製造方法について説明する。
3. Next, the manufacturing method of the aluminum alloy plate for shaping | molding which concerns on this invention is demonstrated.

まず、前述のような合金組成を有するアルミニウム合金を常法に従って溶製し、溶湯を鋳造することで鋳塊を作製する。得られた鋳塊に対し、均質化処理、熱間圧延、中間焼鈍、冷間圧延、溶体化処理、安定化処理をこの順序で行う。本発明にて規定する材料特性を満足するための、各工程の好ましい条件を以下に説明する。   First, an ingot is produced by melting an aluminum alloy having the above alloy composition in accordance with a conventional method and casting a molten metal. The obtained ingot is subjected to homogenization treatment, hot rolling, intermediate annealing, cold rolling, solution treatment, and stabilization treatment in this order. The preferable conditions for each step for satisfying the material properties defined in the present invention will be described below.

鋳造工程:
鋳造工程では、DC鋳造法等の通常の鋳造法によって溶湯を鋳造して鋳塊を得る。
Casting process:
In the casting process, the molten metal is cast by a normal casting method such as a DC casting method to obtain an ingot.

均質化処理工程:
均質化処理は、添加元素の偏析をなくすことが主目的である。均質化処理温度は、480℃以上融点未満とするのが好ましい。均質化処理の温度が480℃未満では、偏析をなくす効果が十分に得られない。一方、処理温度が融点以上では、共晶融解が発生する。均質化処理の時間は添加元素量にもよるが、上記温度範囲内にて20分〜24時間とするのが好ましい。処理時間が20分未満の場合は十分に偏析をなくすことが困難となる場合がある。一方、処理時間が24時間を超える場合は製造コストが増加する。
Homogenization process:
The main purpose of the homogenization treatment is to eliminate segregation of additive elements. The homogenization temperature is preferably 480 ° C. or higher and lower than the melting point. If the temperature of the homogenization treatment is less than 480 ° C., the effect of eliminating segregation cannot be obtained sufficiently. On the other hand, eutectic melting occurs when the treatment temperature is higher than the melting point. Although the time for the homogenization treatment depends on the amount of added elements, it is preferably 20 minutes to 24 hours within the above temperature range. If the treatment time is less than 20 minutes, it may be difficult to sufficiently eliminate segregation. On the other hand, when the processing time exceeds 24 hours, the manufacturing cost increases.

熱間圧延工程:
続く熱間圧延工程では、開始温度を450〜融点未満℃とするのが好ましい。開始温度が450℃未満では、変形抵抗が増加し生産効率が低下する。一方、開始温度が融点以上では、共晶融解が発生する。また、熱間圧延の終了温度は、200〜400℃とするのが好ましい。終了温度が200℃未満では、変形抵抗が増加し生産効率が低下する。一方、終了温度が400℃を超えると、析出物の粗大化が起こりその後の工程での溶体化が困難となる。
Hot rolling process:
In the subsequent hot rolling step, the starting temperature is preferably 450 to less than the melting point. When the starting temperature is less than 450 ° C., deformation resistance increases and production efficiency decreases. On the other hand, eutectic melting occurs when the starting temperature is equal to or higher than the melting point. Moreover, it is preferable that the completion | finish temperature of hot rolling shall be 200-400 degreeC. If the end temperature is less than 200 ° C., the deformation resistance increases and the production efficiency decreases. On the other hand, when the end temperature exceeds 400 ° C., the precipitates become coarse and it becomes difficult to form a solution in the subsequent steps.

中間焼鈍工程:
続く中間焼鈍は、添加元素の溶体化と再結晶を目的とする。中間焼鈍の保持温度は、480℃以上融点未満とするのが好ましい。この工程は、MgSi、単体Si等をマトリックス中に固溶させ、これにより焼付硬化性を付与して塗装焼付後の強度向上を図るために重要である。また、この工程は、MgSi、単体Si粒子等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性の向上にも寄与する。更に、この工程は、これに続く冷間圧延工程と溶体化処理工程とともに最終的に所要の結晶組織を得て、良好な成形性を得るためにも重要である。
Intermediate annealing process:
The subsequent intermediate annealing is aimed at solution and recrystallization of the additive elements. The holding temperature of the intermediate annealing is preferably 480 ° C. or higher and lower than the melting point. This step is important for dissolving Mg 2 Si, elemental Si and the like in the matrix, thereby imparting bake hardenability and improving the strength after paint baking. Furthermore, this process, Mg 2 Si, the solid solution such as elemental Si particles by lowering the distribution density of the second phase particles, which contributes to the improvement of ductility and bendability. Furthermore, this step is important for obtaining a desired crystal structure and obtaining good formability together with the subsequent cold rolling step and solution treatment step.

中間焼鈍の保持温度が480℃未満では、上記各効果が十分に得られない場合がある。一方、処理温度が融点以上では、共晶融解が起こる恐れがある。中間焼鈍の保持時間は、5分以下とするのが好ましい。保持時間が5分を超えると、生産性に欠ける。また、中間焼鈍の冷却中にMgSi、単体Si等が粒界に多量に析出することを防止するため、100℃/分以上の冷却速度で、保持温度から150℃以下の温度域まで冷却(焼入れ)するのが好ましい。なお、この中間焼鈍工程とその前工程である熱間圧延の間に、必要に応じて冷間圧延工程を設けてもよい。 If the holding temperature of the intermediate annealing is less than 480 ° C., the above effects may not be sufficiently obtained. On the other hand, if the processing temperature is higher than the melting point, eutectic melting may occur. The holding time for the intermediate annealing is preferably 5 minutes or less. When the holding time exceeds 5 minutes, productivity is lacking. Also, in order to prevent a large amount of Mg 2 Si, elemental Si, etc. from precipitating at the grain boundaries during the cooling of the intermediate annealing, cooling from the holding temperature to a temperature range of 150 ° C. or less at a cooling rate of 100 ° C./min or more (Quenching) is preferable. In addition, you may provide a cold rolling process as needed between this intermediate annealing process and the hot rolling which is the previous process.

冷間圧延工程:
続く冷間圧延工程により、熱間圧延板を所望の板厚まで常法で圧延される。冷間圧延率を大きくすることで、結晶粒径が微細化し、曲げ性の改善や肌荒れ防止に効果を発揮するので、冷間圧延率は25%以上とするのが好ましい。金属組織制御の観点からは、冷間圧延率の上限を制限する積極的な理由はないが、冷間圧延率を過度に大きくする場合、生産性の低下を招くため冷間圧延率は90%以下とするのが好ましい。また、最終的に後述する所望のΔrとなる結晶組織を安定して得る上においても、冷間圧延率を上記範囲にするのが望ましい。
Cold rolling process:
In the subsequent cold rolling process, the hot-rolled sheet is rolled by a conventional method to a desired sheet thickness. By increasing the cold rolling rate, the crystal grain size is refined, and the effect of improving the bendability and preventing rough skin is exhibited. Therefore, the cold rolling rate is preferably 25% or more. From the viewpoint of controlling the metal structure, there is no positive reason to limit the upper limit of the cold rolling rate. However, when the cold rolling rate is excessively increased, the productivity is reduced and the cold rolling rate is 90%. The following is preferable. In order to stably obtain a crystal structure having a desired Δr, which will be described later, it is desirable to set the cold rolling rate within the above range.

溶体化処理工程:
冷間圧延終了後は、冷間圧延板に溶体化処理を施す。溶体化処理の目的は中間焼鈍と同様であり、添加元素の固溶と再結晶化にある。また、この溶体化処理中の再結晶をもって最終的な結晶組織が決定される。溶体化処理温度は、480℃以上、好ましくは490℃以上で融点未満とする。溶体化処理温度が480℃未満の場合、室温時効の経時変化の抑制に対しては有利であるが、固溶量が少なくなって十分な焼付硬化性が得られなくなるとともに、延性と曲げ性も著しく悪化する。一方、溶体化中の共晶融解の発生を抑制するため融点未満とする。また、溶体化処理の保持時間は5分以下とするのが好ましい。保持時間が5分を超えると、生産性の低下を招く。更に、溶体化処理の保持後における冷却中にMgSiや単体Si等が粒界に多量に析出することを防止するため、100℃/分以上の冷却速度で、保持温度から150℃以下の温度域まで冷却(焼入れ)するのが好ましい。なお、後述する実施例中にある溶体化処理の保持時間0秒とは、溶体化処理温度に到達後、直ちに冷却を行うことを意味する。
Solution treatment process:
After the cold rolling is completed, the cold rolled sheet is subjected to a solution treatment. The purpose of the solution treatment is the same as in the intermediate annealing, and is in the solid solution and recrystallization of the additive elements. The final crystal structure is determined by recrystallization during the solution treatment. The solution treatment temperature is 480 ° C. or higher, preferably 490 ° C. or higher and lower than the melting point. When the solution treatment temperature is less than 480 ° C., it is advantageous for suppressing the aging of the room temperature aging, but the amount of solid solution decreases and sufficient bake hardenability cannot be obtained, and ductility and bendability are also obtained. Remarkably worse. On the other hand, in order to suppress the occurrence of eutectic melting during solution treatment, the melting point is set to less than the melting point. Moreover, it is preferable that the retention time of the solution treatment is 5 minutes or less. When the holding time exceeds 5 minutes, the productivity is lowered. Furthermore, in order to prevent a large amount of Mg 2 Si, elemental Si, etc. from precipitating at the grain boundaries during cooling after holding the solution treatment, at a cooling rate of 100 ° C./min or higher, the holding temperature is 150 ° C. or lower. Cooling (quenching) to a temperature range is preferable. In addition, the retention time of 0 seconds in the solution treatment in the examples described later means that the solution is cooled immediately after reaching the solution treatment temperature.

安定化処理工程:
溶体化処理工程の終了後1時間以内に、圧延板を80〜120℃の温度で1時間以上加熱保持する安定化処理を行う必要がある。この安定化処理は、塗装焼付け時に強度向上に寄与するG.P.ゾーンに移行し易いクラスターIIと言われる原子群を形成することを目的としており、塗装焼付け後の強度確保のために必要な処理である。溶体化処理工程の終了後1時間を超えて80℃未満の温度域に保持された場合、クラスターIIと競合して塗装焼付け時の強度向上を妨げるクラスターIが形成されるため、塗装焼付け後の強度が不足する。一方、加熱保持温度が120℃を超える場合には、クラスターIIが過度に成長して曲げ加工性や成形性が低下する。更に、加熱保持時間が1時間未満の場合には、クラスターIIの形成が不十分となり塗装焼付け後の強度が不足する。なお、加熱保持時間の上限は特に限定されるものではないが、生産効率の観点から24時間以内とするのが好ましい。
Stabilization process:
Within 1 hour after the completion of the solution treatment step, it is necessary to perform a stabilization treatment in which the rolled plate is heated and held at a temperature of 80 to 120 ° C. for 1 hour or more. This stabilization treatment contributes to the improvement of strength during paint baking. P. The purpose is to form an atomic group called cluster II that easily migrates to the zone, and is a treatment necessary for securing the strength after paint baking. When the temperature is kept below 80 ° C. for more than 1 hour after the solution treatment process is completed, cluster I is formed which competes with cluster II and prevents strength improvement during paint baking. Insufficient strength. On the other hand, when the heating and holding temperature exceeds 120 ° C., the cluster II grows excessively and bending workability and formability deteriorate. Furthermore, when the heating and holding time is less than 1 hour, the formation of the cluster II is insufficient and the strength after baking is insufficient. The upper limit of the heating and holding time is not particularly limited, but is preferably within 24 hours from the viewpoint of production efficiency.

4.Δr
次に、アルミニウム合金におけるΔrを下記の(4)、(5)式に基づいて説明する。
−0.50≦Δr≦−0.01 (4)
Δr=1/2(r0°+r90°−2×r45°) (5)
ここで、r0°は、アルミニウム合金板の圧延方向と平行方向のランクフォード値(r値)、r90°は、アルミニウム合金板の圧延方向と直角方向のr値、r45°は、アルミニウム合金板の圧延方向から45°回転した方向のr値を示す。
4). Δr
Next, Δr in the aluminum alloy will be described based on the following equations (4) and (5).
−0.50 ≦ Δr ≦ −0.01 (4)
Δr = 1/2 (r0 ° + r90 ° -2 × r45 °) (5)
Here, r0 ° is a Rankford value (r value) parallel to the rolling direction of the aluminum alloy plate, r90 ° is an r value perpendicular to the rolling direction of the aluminum alloy plate, and r45 ° is the aluminum alloy plate. The r value in the direction rotated 45 ° from the rolling direction is shown.

r値は、引張試験片に所定量、例えば15%の引張変形を付与した場合における板幅方向の対数歪と板厚方向の対数歪との比、すなわち、r=(板幅方向の対数歪)/(板厚方向の対数歪)として定義される。また、Δrはr値の異方性を示す指標である。   The r value is the ratio between the logarithmic strain in the plate width direction and the logarithmic strain in the plate thickness direction when a predetermined amount, for example, 15% of tensile deformation is applied to the tensile test piece, that is, r = (logarithmic strain in the plate width direction). ) / (Logarithmic strain in the thickness direction). Δr is an index indicating the anisotropy of the r value.

アルミニウム合金の主方位はCube方位{001}<100>であり、Cube方位が発達するとr0°、r90°に比べr45°の値が低くなる傾向がある。その結果、上記(5)式からも分かるように、アルミニウム合金ではΔrが正の値となるのが一般的である。本発明によれば、上述した様に合金組成と製造方法を限定することにより、Δrが正の値とはならない通常とは態様が異なる結晶組織を安定して得ることができる。このように、Δrを本発明で規定する範囲とすることで成形性の改善効果が得られ、不純物元素の増加による成形性の低下を相殺することが本発明の一つの特徴となっている。   The main orientation of the aluminum alloy is the Cube orientation {001} <100>, and when the Cube orientation develops, the value of r45 ° tends to be lower than r0 ° and r90 °. As a result, as can be seen from the above equation (5), it is common for Δr to be a positive value in an aluminum alloy. According to the present invention, as described above, by limiting the alloy composition and the manufacturing method, it is possible to stably obtain a crystal structure having a different aspect from that in which Δr is not a positive value. Thus, by making Δr within the range defined by the present invention, an improvement effect of formability can be obtained, and one of the features of the present invention is to offset a decrease in formability due to an increase in impurity elements.

なお、例えば自動車ボディパネル用のアルミニウム合金板において、r値の向上により成形性を改善する技術は既に公知であるが、合金組成と製造工程を厳密に規定することにより、例えばr値の制御に効果的な異周速圧延等の特殊な塑性加工を施すことなく、Δrが負の値(r値の向上ではない)となる結晶組織を有するアルミニウム合金板が得られ、成形性の改善効果が得られることは、本発明者らが初めて見出したものである。   For example, in an aluminum alloy plate for an automobile body panel, a technique for improving formability by improving the r value is already known, but by strictly defining the alloy composition and the manufacturing process, for example, the r value can be controlled. An aluminum alloy sheet having a crystal structure in which Δr has a negative value (not an increase in r value) can be obtained without performing special plastic working such as effective different speed rolling, and the effect of improving formability can be obtained. This is what the present inventors have found for the first time.

5.塗装焼付け後の耐力
例えば自動車ボディパネル等では、成形後の塗装焼付け処理中において析出硬化により強度が向上する。塗装焼付けの条件にもよるが、その強度向上効果は経時の初期で最も大きく、経時に伴い減少していく傾向がある。本発明では、自動車ボディパネル向けのアルミニウム板での一般的な使用を想定し、溶体化処理の100日後において、塗装焼付け処理を施した後の耐力が200MPa以上と規定する。この条件を満足することで、実際の工業規模での生産に耐え得る材料となる。本発明においては、合金組成の限定及び製造方法のうち特に溶体化処理と安定化処理を制御することにより、この塗装焼付け処理後の耐力の特徴を確保している。なお、本発明では、180℃で1時間保持を塗装焼付け条件とした。
5. Strength after Paint Baking For example, in an automobile body panel, the strength is improved by precipitation hardening during the paint baking process after molding. Although it depends on the conditions of paint baking, the strength improvement effect is greatest at the beginning of time and tends to decrease with time. In the present invention, assuming a general use with an aluminum plate for an automobile body panel, the proof stress after the coating baking process is defined as 200 MPa or more 100 days after the solution heat treatment. Satisfying this condition provides a material that can withstand production on an actual industrial scale. In the present invention, by limiting the alloy composition and controlling the solution treatment and the stabilization treatment among the manufacturing methods, the characteristics of the proof stress after the paint baking treatment are ensured. In the present invention, holding at 180 ° C. for 1 hour was set as a coating baking condition.

6.引張強度―耐力
引張強度−耐力、すなわち、引張強度から耐力を差し引いた値は成形性の指標の一つとして用いられており、この数値が高い材料は、成形時の材料流入量が増加し成形性が改善される。本発明においては、この引張強度−耐力を110MPa以上に規定する。なお、この引張強度−耐力は、120MPa以上とするのがより好ましい。本発明では、合金組成の限定、ならびに、製造方法のうち特に溶体化処理条件を制御することにより、引張強度から耐力を差し引いた値が110MPa以上となることを確保している。
6). Tensile strength-proof strength Tensile strength-proof strength, that is, the value obtained by subtracting the proof strength from the tensile strength is used as one of the indicators of formability. Improved. In the present invention, this tensile strength-proof strength is specified to be 110 MPa or more. The tensile strength-proof strength is more preferably 120 MPa or more. In the present invention, it is ensured that the value obtained by subtracting the yield strength from the tensile strength is 110 MPa or more by limiting the alloy composition and controlling the solution treatment conditions among the manufacturing methods.

以下に、本発明の実施例について説明する。なお、以下の実施例は、本発明の効果を説明するためのものであり、実施例記載のプロセス及び条件が本発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below. The following examples are for explaining the effects of the present invention, and the processes and conditions described in the examples do not limit the technical scope of the present invention.

まず、表1に示す本発明の成分組成範囲内の合金A1〜A6と、本発明の成分組成範囲外のB1〜B6をそれぞれ常法に従って溶製し、DC鋳造法によりスラブに鋳造した。   First, alloys A1 to A6 within the component composition range of the present invention shown in Table 1 and B1 to B6 outside the component composition range of the present invention were respectively melted in accordance with a conventional method and cast into a slab by a DC casting method.

Figure 0006585435
Figure 0006585435

得られた各スラブに対して、540℃で10時間の均質化処理を行い室温まで冷却した後に再加熱し、開始温度530℃で終了温度250℃で熱間圧延を実施し厚さ3mmの圧延板を得た。得られた熱間圧延板に、2mm厚さとなるまで冷間圧延を施した。次いで、冷間圧延板を塩浴炉中において530℃で5秒保持して中間焼鈍を行い、ファンを用いて300℃/分の冷却速度で保持温度から室温まで強制空冷した。次いで、冷間圧延によって板厚1mmとしてから、溶体化処理を行なった後にファンを用いて300℃/分の冷却速度で溶体化処理温度から室温まで強制空冷した。次いで、強制空冷した圧延板に安定化処理を施して最終板を得た。なお、溶体化処理及び安定化処理については、表2に示す条件で実施した。   Each slab obtained was homogenized at 540 ° C. for 10 hours, cooled to room temperature, reheated, hot-rolled at a start temperature of 530 ° C. and an end temperature of 250 ° C., and rolled to a thickness of 3 mm. I got a plate. The obtained hot-rolled sheet was cold-rolled to a thickness of 2 mm. Next, the cold-rolled sheet was subjected to intermediate annealing by being held at 530 ° C. for 5 seconds in a salt bath furnace, and forcibly air-cooled from the holding temperature to room temperature at a cooling rate of 300 ° C./min using a fan. Subsequently, after the sheet thickness was 1 mm by cold rolling, solution treatment was performed, and then forced air cooling was performed from the solution treatment temperature to room temperature using a fan at a cooling rate of 300 ° C./min. Next, the final plate was obtained by subjecting the forced air-cooled rolled plate to a stabilization treatment. The solution treatment and the stabilization treatment were performed under the conditions shown in Table 2.

Figure 0006585435
Figure 0006585435

得られたアルミニウム合金最終板のうち本発明で規定する範囲内である発明例1〜11と、本発明で規定する範囲外の比較例12〜23について、以下に示す方法で各特性を評価した。評価結果を併せて表2に示す。また、表2には上述の(1)〜(3)式の左辺の計算結果、ならびに、(2)及び(3)式に関係するSi/Mgの値についても併せて示す。   Each characteristic was evaluated by the method shown below about Invention Examples 1-11 which are in the range prescribed | regulated by this invention among the obtained aluminum alloy final plates, and Comparative Examples 12-23 outside the range prescribed | regulated by this invention. . The evaluation results are also shown in Table 2. Table 2 also shows the calculation results of the left side of the above-described equations (1) to (3) and the Si / Mg values related to the equations (2) and (3).

溶体化処理の100日後において塗装焼付け処理を施した後の耐力(100日後BHYS):
上述のようにして作製した最終板を室温で100日経時させた後、圧延方向に対して90°方向のJIS5号試験片を採取し、180℃で1時間の塗装焼付けを模擬した熱処理を行った。この熱処理後に、JISZ2241に基づく室温引張試験を行い塗装焼付け処理後の耐力を測定した。
Yield strength after coating baking treatment 100 days after solution treatment (100 days after BHYS):
The final plate produced as described above was allowed to age for 100 days at room temperature, and then a JIS No. 5 test piece in the 90 ° direction with respect to the rolling direction was collected and subjected to heat treatment simulating paint baking at 180 ° C. for 1 hour. It was. After this heat treatment, a room temperature tensile test based on JISZ2241 was performed to measure the yield strength after the paint baking process.

溶体化処理の100日後における<引張強度−耐力>(100日後TS−YS)
上述のようにして作製した最終板を室温で100日経時させた後、圧延方向に対して90°方向のJIS5号試験片を採取し、JISZ2241に基づく室温引張試験を行い引張強度(TS)と耐力(YS)を測定し、その差を求めた。
<Tensile strength-yield strength> after 100 days of solution treatment (TS-YS after 100 days)
After the final plate produced as described above was aged at room temperature for 100 days, a JIS No. 5 test piece in a direction of 90 ° with respect to the rolling direction was collected, and a room temperature tensile test based on JISZ2241 was performed to obtain a tensile strength (TS). The yield strength (YS) was measured and the difference was determined.

Δr:
上述のようにして作製した最終板から、圧延方向に対して0°、45°、90°の3方向からJIS5号試験片を採取し、公称ひずみ0%及び15%のときの伸び、幅変位より3方向の各r値を測定した後、(5)式に従ってΔrを求めた。
Δr:
From the final plate produced as described above, JIS No. 5 test specimens were collected from three directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, and the elongation and width displacement were obtained when the nominal strain was 0% and 15%. After measuring each r value in three directions, Δr was determined according to the equation (5).

成形性(プレス成形性):
プレス成形性としての成形性の評価として張出高さと限界絞り比を測定した。
張出高さは、上述のようにして作製した最終板に日東電工株式会社製の樹脂フィルム(SPV−224)を貼り付けた後、潤滑材としてカストロール製No.700を塗布し、しわ押さえ力15tonの条件でφ100mm球頭張出試験を行なって測定した。張出高さが34mm以上の場合を合格とし、34mm未満を不合格とした。
限界絞り比は、上述のようにして作製した最終板をφ60〜70mmの円板に加工した後、潤滑材としてカストロール製No.700を塗布し、しわ押さえ力150kgの条件でφ32mmのポンチにて絞り試験を行った。限界絞り比は、「絞り可能であった最大サンプル径」/「ポンチ径の比」として求めた。限界絞り比が1.95以上の場合を合格とし、1.95未満を不合格とした。
Formability (press formability):
The overhang height and the limit drawing ratio were measured as evaluation of formability as press formability.
The overhang height is determined by applying No. 1 made by Castrol as a lubricant after pasting a resin film (SPV-224) made by Nitto Denko Corporation on the final plate produced as described above. 700 was applied, and a φ100 mm ball head overhang test was performed under the condition of a wrinkle holding force of 15 ton. The case where the overhang height was 34 mm or more was regarded as acceptable, and the case where it was less than 34 mm was regarded as unacceptable.
The limit drawing ratio was determined by converting the final plate produced as described above into a disc having a diameter of 60 to 70 mm, and then using Castrol No. as a lubricant. 700 was applied, and a squeezing test was conducted with a φ32 mm punch under the condition of a wrinkle holding force of 150 kg. The limit drawing ratio was determined as “maximum sample diameter that could be drawn” / “ratio of punch diameter”. The case where the limit drawing ratio was 1.95 or more was determined to be acceptable, and the value of less than 1.95 was regarded as unacceptable.

曲げ性:
上述のようにして作製した最終板を室温で100日経時させた後、圧延方向に対して90°方向のJIS5号試験片を採取し、JISH7701:2008に基づくヘミング試験を実施した。なお、予歪は8%、プリヘミング時のポンチ先端半径は0.5mm、本ヘミング時の中板の厚さは1.0mmとした。ヘミング試験後は外周部表面の観察を行い、外周部表面におけるJISH7701:2008の判定基準で規定される評点が0〜2点のものを合格(○)とし、3〜4点のものを不合格(×)と判定した。
Flexibility:
The final plate produced as described above was aged at room temperature for 100 days, and then a JIS No. 5 test piece with a direction of 90 ° with respect to the rolling direction was collected, and a hemming test based on JIS 7701 : 2008 was performed. The pre-strain was 8%, the punch tip radius during pre-hemming was 0.5 mm, and the thickness of the intermediate plate during main hemming was 1.0 mm. After hemming test was performed to observe the outer periphery surface, JISH7701 at the outer peripheral portion surface: those score 0-2 points defined by criteria of 2008 as acceptable (○), unacceptable ones 3-4 points (X) was determined.

合金組成及び製造条件が本発明で規定する範囲内である発明例1〜11では、不純物元素を多量に含有する合金組成でありながら、溶体化処理の100日後において塗装焼付け処理を施した際の耐力と、溶体化処理の100日後における「引張強度―耐力」の値が高く、Δrが負であるために張出高さ・限界絞り比も高く、更に、曲げ性も良好であり、例えば自動車ボディシートやボディパネルのような、プレス成形、塗装焼付け硬化、曲げを施される部材・部品等の素材として好適であった。   In Invention Examples 1 to 11 in which the alloy composition and the production conditions are within the range defined in the present invention, the alloy composition containing a large amount of impurity elements, the coating baking process was performed 100 days after the solution treatment. The yield strength and the value of “tensile strength-proof strength” 100 days after solution treatment are high, Δr is negative, the overhang height / limit drawing ratio is high, and the bendability is also good. It was suitable for materials such as body sheets and body panels, such as press molding, paint bake hardening, and members / parts to be bent.

これに対して、本発明で規定する範囲外である比較例12〜23では、溶体化処理の100日後において塗装焼付け処理を施した際の耐力、溶体化処理の100日後における「引張強度―耐力」、張出高さ・限界絞り比の少なくとも一つ以上の特性が不良であり、例えば自動車ボディパネル等で要求される高い材料特性を確保できなかった。   On the other hand, in Comparative Examples 12 to 23 which are outside the range specified in the present invention, the proof stress when the coating baking process was performed 100 days after the solution treatment, and the “tensile strength-proof strength 100 days after the solution treatment. “At least one of the overhang height and the limit drawing ratio is poor, and the high material properties required for, for example, an automobile body panel cannot be secured.

具体的には、比較例12では、溶体化処理温度が低かったため、100日後BHYS、100日後TS−YS、成形性(以下、「プレス成形性」と記す)が不合格であった。   Specifically, in Comparative Example 12, since the solution treatment temperature was low, BHYS after 100 days, TS-YS after 100 days, and formability (hereinafter referred to as “press formability”) were unacceptable.

比較例13では、溶体化処理から安定化処理開始までの時間が長かったため、100日後BHYSが不合格であった。   In Comparative Example 13, BHYS was rejected after 100 days because the time from the solution treatment to the start of the stabilization treatment was long.

比較例14では、安定化処理の保持時間が短かったため、100日後BHYSが不合格であった。   In Comparative Example 14, since the holding time of the stabilization treatment was short, BHYS was rejected after 100 days.

比較例15では、安定化処理の温度が高かったため、プレス成形性、曲げ性が不合格であった。   In Comparative Example 15, since the temperature of the stabilization treatment was high, press formability and bendability were unacceptable.

比較例16、17では、アルミニウム合金組成においてSi、Mg、Fe、Mnの関係が(2)式を満たさないため、100日後BHYS、100日後TS−YSが不合格であった。   In Comparative Examples 16 and 17, the relationship between Si, Mg, Fe, and Mn in the aluminum alloy composition did not satisfy the formula (2), so BHYS after 100 days and TS-YS after 100 days failed.

比較例18では、アルミニウム合金組成においてMg、Fe、Mnの関係が(3)式を満たさないため、100日後BHYSが不合格であった。   In Comparative Example 18, the BHYS was rejected after 100 days because the relationship among Mg, Fe, and Mn did not satisfy the formula (3) in the aluminum alloy composition.

比較例19では、アルミニウム合金組成においてSi、Fe、Mnの関係が(1)式を満たさないため曲げ性が不合格であった。   In Comparative Example 19, the bendability was rejected because the relationship among Si, Fe, and Mn did not satisfy the formula (1) in the aluminum alloy composition.

比較例20、21では、アルミニウム合金組成においてSi、Fe、Cu、Znが本発明で規定する範囲を外れたため(5)式による(4)式を満たさず、100日後TS−YS、プレス成形性、曲げ性が不合格であった。   In Comparative Examples 20 and 21, in the aluminum alloy composition, Si, Fe, Cu, Zn deviated from the range defined in the present invention, and therefore, the expression (4) according to the expression (5) was not satisfied, and TS-YS after 100 days, press formability The bendability was unacceptable.

比較例22では、アルミニウム合金組成においてSi、Mg、Mn、Znが本発明で規定する範囲を外れたため(3)式、(4)式が満たされず、100日後BHYS、100日後TS−YS、プレス成形性、曲げ性が不合格であった。   In Comparative Example 22, in the aluminum alloy composition, Si, Mg, Mn, and Zn deviated from the ranges defined in the present invention, so the expressions (3) and (4) were not satisfied, and BHYS after 100 days, TS-YS after 100 days, press Formability and bendability were unacceptable.

比較例23では、アルミニウム合金組成においてMg、Mn、Fe、Cuが本発明で規定する範囲を外れたためであったため(4)式が満たされず、プレス成形性、曲げ性が不合格であった。   In Comparative Example 23, Mg, Mn, Fe, and Cu in the aluminum alloy composition deviated from the range specified in the present invention, so that the formula (4) was not satisfied, and press formability and bendability were unacceptable.

本発明に係る成形加工用アルミニウム合金板は、プレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れ、例えば自動車ボディシート、ボディパネルのような各種自動車の部材・部品等の素材として好適に使用可能である。   The aluminum alloy sheet for forming according to the present invention is excellent in press formability, paint bake hardenability, bendability and recyclability, and is suitable as a material for various automobile members and parts such as automobile body sheets and body panels. Can be used.

Claims (2)

Mg:0.30〜0.80mass%、Si:0.80〜1.40mass%、Mn:0.20〜0.65mass%、Zn:0.44〜0.60mass%、Fe:0.25〜0.40mass%、Cu:0.17〜0.25mass%を含有するとともに下記(1)〜(3)式を満たし、残部Al及び不純物からなるアルミニウム合金からなり、ランクフォード値(r値)の異方性を示すΔrが下記(4)及び(5)式を満たし、溶体化処理の3ヶ月後において、塗装焼付け処理を施した後の耐力が200MPa以上であり、かつ、引張強度から耐力を差し引いた値が110MPa以上であり、JISH7701:2008に基づくヘミング試験における判定基準で規定される評点が0〜2点であることを特徴とするプレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れた成形加工用アルミニウム合金板。
CSi+CFe+CMn≦2.30 (1)
CSi/CMg<1.60のとき、
{1.60−(CSi/CMg)}/(CMg +CFe+CMn≦1.90 (2)
CSi/CMg≧1.60のとき、
{0.1/(CMg)}+CFe+CMn≦1.70 (3)
−0.50≦Δr≦−0.01 (4)
Δr=1/2(r0°+r90°−2×r45°) (5)
ここで、CSi、CFe、CMn、CMgは、Si、Fe、Mn、Mgの含有量をそれぞれ示し、r0°は、アルミニウム合金板の圧延方向と平行方向のr値、r90°は、アルミニウム合金板の圧延方向と直角方向のr値、r45°は、アルミニウム合金板の圧延方向から45°回転した方向のr値を示す。
Mg: 0.30 to 0.80 mass%, Si: 0.80 to 1.40 mass%, Mn: 0.20 to 0.65 mass%, Zn: 0.44 to 0.60 mass%, Fe: 0.25 0.40%, Cu: with containing 0.17~0.25Mass% satisfies the following (1) to (3), made of aluminum alloy and the balance Al and impurities, rank Ford value (r value) Δr which shows the anisotropy of the following satisfies the following formulas (4) and (5), the proof stress after the coating baking treatment is 200 MPa or more after 3 months of the solution treatment, and the proof strength from the tensile strength: minus the the Ri der least 110MPa, JISH7701: press formability score defined by criteria of hemming tests based on 2008 and wherein 0-2 Tendea Rukoto, painting Give curable, bendability and recycling excellent in molding an aluminum alloy plate.
CSi + CFe + CMn ≦ 2.30 (1)
When CSi / CMg <1.60,
{1.60− (CSi / CMg)} / (CMg 2 ) + CFe + CM n ≦ 1.90 (2)
When CSi / CMg ≧ 1.60,
{0.1 / (CMg 2 )} + CFe + CM n ≦ 1.70 (3)
−0.50 ≦ Δr ≦ −0.01 (4)
Δr = 1/2 (r0 ° + r90 ° -2 × r45 °) (5)
Here, CSi, CFe, CMn, and CMg indicate the contents of Si, Fe, Mn, and Mg, respectively, r0 ° is an r value in a direction parallel to the rolling direction of the aluminum alloy plate, and r90 ° is an aluminum alloy plate. The r value in the direction perpendicular to the rolling direction, r45 °, indicates the r value in the direction rotated 45 ° from the rolling direction of the aluminum alloy sheet.
請求項1に記載の成形加工用アルミニウム合金板の製造方法であって、前記アルミニウム合金を鋳造する鋳造工程と、鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板の中間焼鈍工程と、中間焼鈍した圧延板を冷間圧延する冷間圧延工程と、冷間圧延板を溶体化処理する溶体化処理工程と、溶体化処理した圧延板を安定化処理する安定化処理工程とを含み、前記溶体化処理の温度が480℃以上で前記アルミニウム合金の融点未満であり、前記安定化処理工程が前記溶体化処理工程の終了後1時間以内に、圧延板を80〜120℃の温度で1時間以上加熱保持することを特徴とするプレス成形性、塗装焼付け硬化性、曲げ性及びリサイクル性に優れた成形加工用アルミニウム合金板の製造方法。It is a manufacturing method of the aluminum alloy plate for shaping | molding of Claim 1, Comprising: The casting process which casts the said aluminum alloy, the homogenization process process which homogenizes an ingot, and heats the ingot which homogenized process A hot rolling step for hot rolling, an intermediate annealing step for the hot rolled plate, a cold rolling step for cold rolling the intermediate annealed rolled plate, a solution treatment step for solution treating the cold rolled plate, A stabilization treatment step of stabilizing the solution-treated rolled sheet, wherein the temperature of the solution treatment is 480 ° C. or higher and lower than the melting point of the aluminum alloy, and the stabilization treatment step is the solution treatment step Within 1 hour after the completion of the process, the rolled plate is heated and held at a temperature of 80 to 120 ° C. for 1 hour or longer, and is excellent in press formability, paint bake hardenability, bendability and recyclability. Alloy plate Production method.
JP2015175242A 2015-09-05 2015-09-05 Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof Active JP6585435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175242A JP6585435B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175242A JP6585435B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017048451A JP2017048451A (en) 2017-03-09
JP6585435B2 true JP6585435B2 (en) 2019-10-02

Family

ID=58280965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175242A Active JP6585435B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6585435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023061246A (en) * 2021-10-19 2023-05-01 株式会社Uacj Rolled sheet of aluminum alloy and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721946B2 (en) * 1993-04-14 1998-03-04 住友軽金属工業株式会社 Aluminum alloy material for blinds and method of manufacturing the same
JP2006257475A (en) * 2005-03-16 2006-09-28 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP5203772B2 (en) * 2008-03-31 2013-06-05 株式会社神戸製鋼所 Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
CN104372210B (en) * 2014-12-01 2017-11-17 北京科技大学 A kind of automobile using low cost high formability aluminum alloy materials and preparation method thereof

Also Published As

Publication number Publication date
JP2017048451A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP6585435B2 (en) Aluminum alloy plate for forming process excellent in press formability, paint bake hardenability, bendability and recyclability, and manufacturing method thereof
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP6619919B2 (en) Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
JP7153469B2 (en) Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP5160044B2 (en) Method for producing rolled aluminum alloy sheet for battery case with excellent multi-stage workability
JP2015010259A (en) Aluminum alloy sheet
JP6335745B2 (en) High strength aluminum alloy plate excellent in formability and method for producing the same
JP6085473B2 (en) Aluminum alloy plate with excellent press formability
TW201738390A (en) Method for producing al-mg-Si alloy plate
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250