JP6582766B2 - シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法 - Google Patents

シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法 Download PDF

Info

Publication number
JP6582766B2
JP6582766B2 JP2015174874A JP2015174874A JP6582766B2 JP 6582766 B2 JP6582766 B2 JP 6582766B2 JP 2015174874 A JP2015174874 A JP 2015174874A JP 2015174874 A JP2015174874 A JP 2015174874A JP 6582766 B2 JP6582766 B2 JP 6582766B2
Authority
JP
Japan
Prior art keywords
vector
magnetization vector
integration point
magnetization
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015174874A
Other languages
English (en)
Other versions
JP2017049938A (ja
Inventor
清水 香壱
香壱 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015174874A priority Critical patent/JP6582766B2/ja
Priority to US15/253,912 priority patent/US20170068762A1/en
Publication of JP2017049938A publication Critical patent/JP2017049938A/ja
Application granted granted Critical
Publication of JP6582766B2 publication Critical patent/JP6582766B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Computing Systems (AREA)

Description

本発明は、シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法に関する。
有限要素法を使用して磁場解析を行う方法が開示されている(非特許文献1、非特許文献2)。
有限要素法を使用した磁場解析と、LLG(Landau-Lifshitz-Gilbert)方程式に基づく磁化ベクトルの算出とを交互に行い、磁性体の特性を解析する解析方法が開示されている(特許文献1)。ここで、LLG方程式は強磁性を有する物質に対する磁場の効果を記述することができる方程式である。
LLG方程式に基づく反復計算を使用するにあたり、算出した磁化ベクトルの変化量が所定の値を超えた場合にその時点の磁化ベクトルを記録する解析方法が開示されている(特許文献2)。
特開2013−131072号公報 特開2015−103189号公報
高橋則雄著、「磁界系有限要素法を用いた最適化」、森北出版株式会社、2001年5月 本間利久、五十嵐一、川口秀夫著、「計算電気・電子工学シリーズ14数値電磁力学―基礎と応用―」、森北出版株式会社、2002年7月
磁性体材料に外部から与える磁界の強さとその磁性体材料に生じる磁化の強さとの関係は、過去にその磁性体材料に与えた外部磁界の強さの履歴に依存する。この性質を、磁気ヒステリシスという。非特許文献1および非特許文献1の解析方法では、磁場解析を行う際に、磁気ヒステリシスを高い精度で考慮することができない。
特許文献1および特許文献2の解析方法では、解析精度は解析対象をモデル化する際の分割数に大きく依存する。そのため、精度の高い解析を行うためにはモデルの分割数を決定する段階で、分割数の異なる複数のモデルを使用して予備解析を行う必要がある。そのため、解析過程全体での総計算量が多くなる。
一つの側面では、精度の高いシミュレーションを少ない計算量で行うシミュレーション方法等を提供することを目的とする。
一態様では、本発明のシミュレーション装置は、計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス求積における積分点の情報を取得する第1取得部と、前記辺要素に関連づけられた情報に基づき有限要素法を用いて前記積分点ごとの磁束密度ベクトルを算出する第1算出部と、前記積分点に関連づけられた複数の微視的磁化ベクトルを取得する第2取得部と、前記磁束密度ベクトルおよび前記微視的磁化ベクトルに基づいて、前記積分点ごとの磁化ベクトルを算出する第2算出部とを備える。
一つの側面では、精度の高いシミュレーションを少ない計算量で行うシミュレーション方法等を提供することができる。
シミュレーション装置の構成を示す説明図である。 解析対象の例を示す説明図である。 解析対象を分割した例を示す説明図である。 辺要素を示す説明図である。 ガウス型数値積分点および分割要素を示す説明図である。 微視的磁化ベクトルmを示す説明図である。 ベクトルポテンシャルA、磁束密度ベクトルBおよび磁化ベクトルMを示す説明図である。 磁化ベクトルDBのレコードレイアウトを示す説明図である。 磁束密度ベクトルDBのレコードレイアウトを示す説明図である。 微視的磁化ベクトルDBのレコードレイアウトを示す説明図である。 ベクトルポテンシャルDBのレコードレイアウトを示す説明図である。 シミュレーション方法の概要を示す説明図である。 プログラムの処理の流れを示すフローチャートである。 磁場解析のサブルーチンの処理の流れを示すフローチャートである。 ヒステリシスモデルの計算のサブルーチンの処理の流れを示すフローチャートである。 解析対象の分割数を変更した例を示す説明図である。 解析結果の収束状態を示す説明図である。 実施の形態2のプログラムの処理の流れを示すフローチャートである。 実施の形態2のヒステリシスモデルの計算のサブルーチンの処理の流れを示すフローチャートである。 実施の形態3のシミュレーション装置の動作を示す機能ブロック図である。 実施の形態4のシミュレーション装置の構成を示す説明図である。
[実施の形態1]
図1は、シミュレーション装置10の構成を示す説明図である。シミュレーション装置10は、CPU(Central Processing Unit)12、主記憶装置13、補助記憶装置14、通信部15、入力部16、表示部17およびバスを備える。本実施の形態のシミュレーション装置10は、汎用のパーソナルコンピューター、タブレット等の情報機器を使用する。
CPU12は、本実施の形態に係るプログラムを実行する演算制御装置である。CPU12には、一または複数のCPUまたはマルチコアCPU等が使用される。CPU12は、バスを介してシミュレーション装置10を構成するハードウェア各部と接続されている。
主記憶装置13は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の記憶装置である。主記憶装置13には、CPU12が行う処理の途中で必要な情報およびCPU12で実行中のプログラムが一時的に保存される。
補助記憶装置14は、SRAM、フラッシュメモリ、ハードディスクまたは磁気テープ等の記憶装置である。補助記憶装置14には、CPU12に実行させるプログラム、磁化ベクトルDB(DataBase)31、磁束密度ベクトルDB32、微視的磁化ベクトルDB33およびベクトルポテンシャルDB34等、プログラムの実行に必要な各種情報が保存される。
通信部15は、図示しないインターネットまたはイントラネット等のネットワークとの通信を行うインターフェイスである。
入力部16は、マウス、キーボード、タッチパネル、ペンタブレット、マイク等の機器であり、ユーザによる操作をシミュレーション装置10が受け付ける際に使用する。表示部17は、ディスプレイ、プリンタ、プロッタ等の機器であり、シミュレーション結果等を表示する。
図2は、解析対象の例を示す説明図である。図2は、インダクタ41の一部を破断して内部構造が見えるようにした図を示している。インダクタ41は、様々な電気回路に使用される受動部品である。本実施の形態においては、インダクタ41の3次元磁場解析を行う。
インダクタ41は、コア42および導線43を有する。コア42は、二枚の正方形の板とその間に挟まれた正方形の柱とが一体になった形状である。コア42の材質には、たとえばフェライトが使用される。導線43は、コア42の周囲に巻き付けられた金属線である。導線43には、絶縁被覆を有する銅線またはアルミニウム線等が使用される。
なお、シミュレーション装置10が解析する対象は、図2に示すインダクタ41に限定されない。シミュレーション装置10は、モータ、トランス、磁気ヘッド、メモリデバイス、非接触給電装置等、磁気を利用する様々な装置および部品の解析を行う事ができる。
図3は、解析対象を分割した例を示す説明図である。本実施の形態では、インダクタ41は立体網目状の辺要素51および12本の辺要素51によって囲まれた六面体のセル要素52に分割されている。なお、インダクタ41の周囲の空気もインダクタ41と同様に分割されている。空気の分割については図示を省略する。
分割は、有限要素法を用いた磁性体の解析に従来から使用されているメッシュ分割ツールを使用して行う。メッシュ分割ツールは、解析対象の寸法、物性値、拘束条件、初期条件および分割数等の解析条件の入力を受け付け、辺要素51同士の連結関係と拘束条件、辺要素51と後述するガウス型数値積分点54(図5参照)との位置関係および各ガウス型数値積分点54と辺要素51とに関連づけられた値を要素とする配列を出力する。出力された配列は、補助記憶装置14に記憶される。以後の説明では、メッシュ分割ツールに解析条件を入力し、以後の解析に必要な情報を記憶する作業を、モデル化と呼ぶ。
メッシュ分割ツールは、たとえば5面体要素または4面体要素を使用して解析対象を分割しても良い。また、メッシュ分割ツールは、たとえば6面体要素、5面体要素および4面体要素を組み合わせて解析対象を分割しても良い。
図4は、辺要素51を示す説明図である。図4は、連続する3個のセル要素52を取り出した図である。隣接するセル要素52は辺要素51を共有している。辺要素51には、連番が付与されている。
図5は、ガウス型数値積分点54および分割要素56を示す説明図である。図5は、1個のセル要素52を取り出した図である。セル要素52は、内部に8個のガウス型数値積分点54を有する。ガウス型数値積分点54には連番が付与されている。ガウス型数値積分点54は、有限要素法の計算を効率的に行う為に使用する仮想的な点である。
セル要素52は、ガウス型数値積分点54を1個ずつ含む8個の分割要素56に分割されている。1個の分割要素56を、二点鎖線で示す。
なお、ガウス型数値積分点54の数は、使用するセル要素52の形状により異なる。たとえば、2次元解析に使用される四角形要素は4個のガウス型数値積分点54を有する。したがって、四角形要素は4個の分割要素56に分割される。
図6は、微視的磁化ベクトルm61を示す説明図である。図6は、1個の分割要素56を取り出した図である。1個の分割要素56には、50万個程度の要素58が配置されている。本実施の形態においては、要素58の配置はランダムである。
要素58は、微視的磁化ベクトルm61を有する。微視的磁化ベクトルm61は、x、yおよびzの3方向の成分を有する1次元ベクトルである。微視的磁化ベクトルm61には、分割要素56ごとに1からはじまる連番が付与されている。
1個の分割要素56内の微視的磁化ベクトルm61の平均ベクトルを求めることにより、その分割要素56内のガウス型数値積分点54に関連づけられた磁化ベクトルMを求めることができる。ここで、磁化ベクトルMは外部から磁界が与えられた場合に分割要素56に発生する磁化の強さおよび磁化の向きを示すベクトルである。また平均ベクトルは、各ベクトルのx、yおよびzの3方向の成分を、方向ごとに平均して求めたベクトルである。磁化ベクトルMは、x、yおよびzの3方向の成分を有する1次元ベクトルである。
また、ガウス型数値積分点54を含むセル要素52内に含まれる全ての微視的磁化ベクトルm61の平均ベクトルを求めることにより、そのセル要素52に関連づけられた磁化ベクトル<M>を求めることができる。
なお、要素58は分割要素56を六面体、五面体または四面体などに分割したものであっても良い。このようにすることにより、要素58間の静磁界および交換結合磁界を考慮した高精度の解析を行うことができる。
図7は、ベクトルポテンシャルA、磁束密度ベクトルBおよび磁化ベクトルMを示す説明図である。図7は、1個のセル要素52を取り出した図である。図7Aは、n回目の反復計算の初期状態を、図7Bは、n+1回目の反復計算の初期状態を示す。
前述の通り、1個のセル要素52は、12個の辺要素51により囲まれている。また、1個のセル要素52の内部には、8個のガウス型数値積分点54が含まれている。辺要素51には、ベクトルポテンシャルAが関連づけられている。ガウス型数値積分点54には、磁束密度ベクトルBおよび磁化ベクトルMが関連づけられている。
ここで、ベクトルポテンシャルAは、有限要素法を用いて磁場解析を行う際に使用する未知数である。磁束密度ベクトルBは、磁束の面密度を示すベクトルである。磁束密度ベクトルBは、x、yおよびzの3方向の成分を有する1次元ベクトルである。
S番目の辺要素51S、T番目の辺要素51T、U番目のガウス型数値積分点54UおよびV番目のガウス型数値積分点54Vを例にして説明する。以下の説明では、下付添字は辺要素51またはガウス型数値積分点54の番号を、上付添字は計算回数を示す。たとえば、ベクトルポテンシャルAT nは、n回目の繰り返し計算の初期状態においてT番目の辺要素51Tに関連づけられたベクトルポテンシャルAを意味する。磁束密度ベクトルBu nは、n回目の繰り返し計算の初期状態においてU番目のガウス型数値積分点54に関連づけられた磁束密度ベクトルBを意味する。磁化ベクトルMv nは、n回目の繰り返し計算の初期状態においてV番目のガウス型数値積分点54に関連づけられた磁化ベクトルMを意味する。
繰り返し計算が1回分進むと図7Bに示すように、ベクトルポテンシャルAT nはベクトルポテンシャルAT n+1に、磁束密度ベクトルBu nは磁束密度ベクトルBu n+1に、磁化ベクトルMv nは、磁化ベクトルMv n+1にそれぞれ変化する。なお、要素の番号が明確である場合および区別する必要が無い場合には、下付添字の記載を省略する場合がある。また、繰り返し計算の回数が明確である場合および区別する必要が無い場合には、上付添字の記載を省略する場合がある。
図8は、磁化ベクトルDB31のレコードレイアウトを示す説明図である。磁化ベクトルDB31は、繰り返し計算の回数と、磁化ベクトルMとを関連づけるDBである。磁化ベクトルDB31は、番号フィールドおよび要素1フィールドから連番で要素Gフィールドまでの各フィールドを有する。ここでGは解析対象に含まれるガウス型数値積分点54の総数を意味する。磁化ベクトルDB31は、1回の繰り返し計算ごとに1つのレコードを有する。
番号フィールドには、繰り返し計算の回数が記録されている。要素1フィールドから要素Gフィールドまでには、各番号のガウス型数値積分点54に関連づけられた磁化ベクトルMのx、yおよびz方向の各要素が記録されている。
図9は、磁束密度ベクトルDB32のレコードレイアウトを示す説明図である。磁束密度ベクトルDB32は、繰り返し計算の回数と、磁束密度ベクトルBとを関連づけるDBである。磁束密度ベクトルDB32は、番号フィールドおよび要素1フィールドから連番で要素Gフィールドまでの各フィールドを有する。磁束密度ベクトルDB32は、1回の繰り返し計算ごとに1つのレコードを有する。
番号フィールドには、繰り返し計算の回数が記録されている。要素1フィールドから要素Gフィールドまでには、各番号のガウス型数値積分点54に関連づけられた磁束密度ベクトルBのx、yおよびz方向の各要素が記録されている。
図10は、微視的磁化ベクトルDB33のレコードレイアウトを示す説明図である。微視的磁化ベクトルDB33は、要素の番号と、微視的磁化ベクトルm61とを関連づけるDBである。微視的磁化ベクトルDB33は、ガウス型数値積分点番号フィールドおよび要素1フィールドから連番で要素Nmフィールドまでの各フィールドを有する。ここでNmはガウス型数値積分点番号フィールドに記録された番号のガウス型数値積分点54を含む分割要素56内の要素58の数を意味する。微視的磁化ベクトルDB33は、1個のガウス型数値積分点54について1つのレコードを有する。なお、異なる形状の分割要素56が混在する場合には、レコードによって要素フィールドの数が異なるようにしても良い。
ガウス型数値積分点フィールドには、ガウス型数値積分点54の番号が記録されている。要素1フィールドから要素Nmフィールドまでには、ガウス型数値積分点フィールドに記録された番号のガウス型数値積分点54を含む分割要素56内の要素に関連づけられた微視的磁化ベクトルm61のx、yおよびz方向の各要素が記録されている。なお、微視的磁化ベクトルm61の番号を表示する場合には、要素58に付与された番号と分割要素56が関連づけられたガウス型数値積分点54の番号とをカンマで区切って下付添字とする。たとえば微視的磁化ベクトルmNm,G n61は、n回目の繰り返し計算の初期状態において、G番目のガウス型数値積分点54を含む分割要素56内のNm番目の要素58に関連づけられた微視的磁化ベクトルm61を意味する。微視的磁化ベクトルDB33は、繰り返し計算の都度最新の値に書き換えられる。
図11は、ベクトルポテンシャルDB34のレコードレイアウトを示す説明図である。ベクトルポテンシャルDB34は、辺要素51の番号とベクトルポテンシャルAとを関連づけるDBである。ベクトルポテンシャルDB34は、要素1フィールドから連番で要素Jフィールドまでの各フィールドを有する。ここでJは解析対象に含まれる辺要素51の総数を意味する。ベクトルポテンシャルDB34は1個のレコードを有する。
要素1フィールドから要素Jフィールドまでには、各番号の辺要素51に関連づけられたベクトルポテンシャルAが記録されている。ベクトルポテンシャルDB34は、反復計算を行う都度、新たに算出したベクトルポテンシャルAの値に更新する。
図12は、シミュレーション方法の概要を示す説明図である。本実施の形態においては、有限要素法による磁場解析と、ヒステリシスモデルの計算とを交互に実行する。有限要素法による磁場解析の出力は、各ガウス型数値積分点54に関連づけられた磁束密度ベクトルBである。ヒステリシスモデルの計算の出力は、各ガウス型数値積分点54に関連づけられた磁化ベクトルMである。
有限要素法による磁場解析の概要について説明する。CPU12は、既知であるn番目のベクトルポテンシャルAn、磁化ベクトルMnおよび解析対象の特性を示す透磁率等のパラメーターを使用して式(1)のJ本の連立方程式を解き、未知数であるn+1番目のベクトルポテンシャルAJ n+1を算出する。
Figure 0006582766
なお、以後に説明する数式において同一の記号は同一の意味で使用する。したがって、
一度説明した記号の意味は、2回目以降は記載を省略する。
CPU12は、ベクトルポテンシャルDB34から前回の反復計算で得たベクトルポテンシャルAJ nを取得する。なお、1回目の反復計算でベクトルポテンシャルDB34に記録されたレコードが存在しない場合には、ベクトルポテンシャルAJ nの要素をたとえば全てゼロに設定する。第1時間Δtは、解析対象および解析を行う目的に応じてユーザが選択した、1ナノ秒から1秒程度の時間である。
CPU12は、式(1)に基づいて算出したベクトルポテンシャルAをベクトルポテンシャルDB34に記録する。
CPU12は、式(2)に基づいてg番目のガウス型数値積分点54に関連づけられたn+1番目の磁束密度ベクトルBg n+1を算出する。
Figure 0006582766
補完関数Nは、辺要素51上の任意の点の物理量を示すために使用される関数である。補完関数Nは、従来から有限要素法による解析に使用されている関数であるので、説明を省略する。
以上により、CPU12は、有限要素法による磁場解析の反復計算を1回完了する。CPU12は、式(2)に基づいて算出した磁束密度ベクトルBを磁束密度ベクトルDB32に記録する。その後、CPU12は、以下に概要を説明するヒステリシスモデルの計算の処理に移る。
CPU12は、式(3)に基づいてg番目のガウス型数値積分点54に関連づけられたn+1番目の有効磁界Heff,g n+1を算出する。
Figure 0006582766
結晶磁気異方性磁界Hani,gおよび外部磁界Hexternal,g は、解析対象のモデル化を行う際に、解析対象の物性値および初期条件に基づいて定められ、補助記憶装置14に記憶されている。真空の透磁率μ0は物理定数であり、補助記憶装置14に記憶されている。
CPU12は、式(3)に基づいて算出した有効磁界Heff,g n+1を記録するDBを作成して、補助記憶装置14に記憶しても良い。
CPU12は、式(4)に示すLLG方程式の数値積分を行い、第2時間dt後の微視的磁化ベクトルmi,g61を算出する。ここで微視的磁化ベクトルmi,g61は、g番目のガウス型数値積分点54を含む分割要素56内のi番目の要素に関連づけられた微視的磁化ベクトルm61を意味する。
Figure 0006582766
CPU12は、微視的磁化ベクトルDB33に記録されている情報を、式(4)に基づいて算出した微視的磁化ベクトルm61により更新する。
ジャイロ磁気定数γは物理定数であり、補助記憶装置14に記憶されている。ダンピング定数αは、LLG方程式で使用される定数であり、補助記憶装置14に記憶されている。第2時間dtには、1ピコ秒から数ピコ秒程度の時間を使用することが望ましい。
CPU12は、式(5)に基づいて、各分割要素56内の微視的磁化ベクトルm61を平均した磁化ベクトルMgを算出する。
Figure 0006582766
CPU12は、式(5)で算出した磁化ベクトルMgを使用して、再度式(3)に基づいて有効磁界有効磁界Heff,g n+1を算出し、式(4)および式(5)を順次使用して次の磁化ベクトルMgを算出する反復計算を行う。
所定の条件に基づいて磁化ベクトルMgが収束したと判定した場合には、CPU12はヒステリシスモデルの計算の反復処理を終了する。CPU12は、式(5)に基づいて算出した磁化ベクトルMを磁化ベクトルDB31に記録する。その後、CPU12は有限要素法による磁場解析に戻り、ヒステリシスモデルの計算で得た磁化ベクトルMgを使用して、式(1)の連立方程式に基づいて新たなベクトルポテンシャルAJを算出する。
以上に説明した有限要素法による磁場解析と、ヒステリシスモデルの計算とを交互に行う反復計算により、CPU12は第1時間Δtごとの磁化ベクトルMおよび磁束密度ベクトルBを算出し、記録する。所定の条件が満たされた場合に、CPU12は処理を終了する。
磁化ベクトルDB31に記録されている磁化ベクトルMまたは磁束密度ベクトルDB32に記録されている磁束密度ベクトルBを可視化することにより、ユーザは解析対象であるインダクタ41が発生する磁力の分布状態、磁力の強さ等を知る事ができる。また、磁束密度ベクトルBからインダクタ41を貫く全磁束を求め、導線43に流す励起電流J0で除することにより、インダクタ41のインダクタンスを算出することができる。
図13は、プログラムの処理の流れを示すフローチャートである。図13を使用して、プログラムの処理の流れを説明する。
CPU12はカウンタkを初期値0に設定する(ステップS501)。CPU12は、磁化ベクトルDB31から最後に記録されたレコードを取得して、変数ベクトルMoldに記録する(ステップS502)。なお、1回目の反復計算で磁化ベクトルDB31に記録されたレコードが存在しない場合には、変数ベクトルMoldの要素をたとえば全てゼロに設定する。
CPU12は、磁場解析のサブルーチンを起動する(ステップS503)。磁場解析のサブルーチンは、図12を使用して説明した有限要素法による磁場解析を行うサブルーチンである。磁場解析のサブルーチンの処理の流れは後述する。CPU12は、ヒステリシスモデルの計算のサブルーチンを起動する(ステップS504)。ヒステリシスモデルの計算のサブルーチンは、図12を使用して説明したヒステリシスモデルの計算を行うサブルーチンである。ヒステリシスモデルの計算のサブルーチンの処理の流れは後述する。
CPU12は、式(6)に基づいて磁化ベクトルMの変化量の最大値ΔMを算出する(ステップS505)。具体的には、ステップS504のヒステリシスモデルの計算のサブルーチンで算出した磁化ベクトルMkと、ステップS502で記録した変数ベクトルMoldとの差分ベクトルをガウス型数値積分点54ごとに求める。各差分ベクトルの絶対値を求め、その最大値ΔMを抽出する。
Figure 0006582766
CPU12は、ステップS505で算出したΔMが所定の閾値未満であるか否かを判定する(ステップS506)。所定の閾値未満ではない場合は(ステップS506でNO)、CPU12はステップS502に戻る。
所定の閾値未満である場合は(ステップS506でYES)、CPU12は計算を終了するか否かを判定する(ステップS507)。計算を終了するか否かは、たとえばカウンタkが所定の値を超えているか否かにより判定する。また、前回のステップS507と比較して、磁化ベクトルMおよび磁束密度ベクトルBの変化量が所定の値以下に収束しているか否かにより、計算を終了するか否かを判定しても良い。
計算を終了しないと判定した場合は(ステップS507でNO)、CPU12はカウンタkに1を加算する(ステップS508)。CPU12はステップS502に戻る。計算を終了すると判定した場合は(ステップS507でYES)、CPU12は処理を終了する。
図14は、磁場解析のサブルーチンの処理の流れを示すフローチャートである。磁場解析のサブルーチンは、図12を使用して説明した有限要素法による磁場解析を行うサブルーチンである。図14を使用して、磁場解析のサブルーチンの処理の流れを説明する。
CPU12は、ベクトルポテンシャルDB34から記録されているベクトルポテンシャルAを取得する(ステップS521)。ステップS521で取得したベクトルポテンシャルはカウンタkに対応する反復計算のベクトルポテンシャルAの初期値であるので、以後の説明ではベクトルポテンシャルAkと記載する。
CPU12は、有限要素法の連立方程式を構築する(ステップS522)。具体的には、メッシュ配列ツールが出力した配列を使用して、前述の式(1)の各稿の係数を算出する。CPU12は、式(1)に基づいてk+1番目のベクトルポテンシャルAk+1を算出する(ステップS523)。CPU12は、ステップS523で算出したベクトルポテンシャルAk+1をベクトルポテンシャルDB34に記録する(ステップS524)。
CPU12は、前述の式(2)に基づいてk+1番目の磁束密度ベクトルBk+1を算出する(ステップS525)。CPU12は、ステップS525で算出した磁束密度ベクトルBk+1を磁束密度ベクトルDB32に記録する(ステップS526)。CPU12は、以上で処理を終了する。
図15は、ヒステリシスモデルの計算のサブルーチンの処理の流れを示すフローチャートである。ヒステリシスモデルの計算のサブルーチンは、図12を使用して説明したヒステリシスモデルの計算を行うサブルーチンである。図15を使用して、ヒステリシスモデルの計算の処理の流れを説明する。
CPU12は、カウンタgを初期値1に設定する(ステップS541)。CPU12は、微視的磁化ベクトルDB33からg番目のガウス型数値積分点54に関連づけられた微視的磁化ベクトルm61を取得する(ステップS542)。具体的には、CPU12は、微視的磁化ベクトルDB33からg番目のレコードを取得する。CPU12は、式(3)に基づいてg番目の有効磁界Heffを算出する(ステップS543)。ここで、式(3)中のBg n+1には、磁束密度ベクトルDB32に最後に記録されたレコードを取得して使用する。式(3)中の<Mg>には、ステップS541で取得した微視的磁化ベクトルm61をセル要素52ごとに平均したベクトルを使用する。
CPU12は、カウンタiを初期値1に設定する(ステップS544)。CPU12は、i番目のLLG方程式の時間積分を行う(ステップS545)。具体的には、CPU12は、式(4)に基づいて第2時間dtの間の微視的磁化ベクトルm61の増分であるdmi,gを算出して、ステップS542で取得した微視的磁化ベクトルmi,g61に加算する。
CPU12は、g番目のガウス型数値積分点54に関係付けられた微視的磁化ベクトルm61の処理が終了したか否かを判定する(ステップS546)。具体的には、g番目のガウス型数値積分点54が含まれる分割要素56内の要素58に関連づけられたすべての微視的磁化ベクトルm61についての式(4)に基づく時間積分が終了したか否かを判定する。
処理が終了していないと判定した場合(ステップS546でNO)、CPU12はカウンタiに1を加算する(ステップS547)。その後、CPU12はステップS545に戻る。処理が終了したと判定した場合(ステップS546でYES)、CPU12は微視的磁化ベクトルDB33のg番目のレコードに記録された微視的磁化ベクトルm61をステップS545で算出した値に更新する(ステップS548)。
CPU12は、すべてのガウス型数値積分点54について処理が終了したか否かを判定する(ステップS551)。処理が終了していないと判定した場合は(ステップS551でNO)、CPU12はカウンタgに1を加算する(ステップS552)。その後、CPU12はステップS542に戻る。
処理が終了したと判定した場合は(ステップS551でYES)、CPU12は磁化ベクトルDB31に磁化ベクトルMを記録する(ステップS553)。具体的には、CPU12は微視的磁化ベクトルm61を分割要素56ごとに平均して磁化ベクトルMを算出する。CPU12は、磁化ベクトルDB31に新しいレコードを作成して、磁化ベクトルMを記録する。
CPU12は所定の回数の反復計算が終了したか否かを判定する(ステップS554)。所定の回数は、たとえば300回から400回程度とする。処理が終了していないと判定した場合は(ステップS554でNO)、CPU12はステップS541に戻る。処理が終了したと判定した場合は(ステップS554でYES)、CPU12は処理を終了する。
図16は、解析対象の分割数を変更した例を示す説明図である。図17は、解析結果の収束状態を示す説明図である。図16および図17を使用して、本実施の形態のプログラムの特性について説明する。
一般的に、有限要素法を使用した解析は解析対象の分割数を多くするほど計算精度が高くなり、一定以上の分割数では計算結果が収束する。その一方、解析対象の分割数を多くするほど、計算量が多くなる。そのため、有限要素法を使用して解析を行う場合には、事前に予備解析を行い使用する分割数を決定する。
図16は、予備検討に使用したモデルの例を示す。図16は、本実施の形態の解析対象のうち、コア42のみを抜き出した正面図を示す。分割数は、コア42のくびれた部分を図16の横方向に分割した分割数Nwにより表す。図16Aは分割数Nw=4、図16Bは分割数Nw=6、図16Cは分割数Nw=8、図16Dは分割数Nw=10、図16Eは分割数Nw=14、図16Fは分割数Nw=20である場合をそれぞれ示す。なお、正面以外の面から見たコア42も、図16と同様に分割されている。また、導線43および周囲の空気も、コア42と同様に分割されている。
図17は、図16に示した各モデルを本実施の形態のプログラムに入力して解析対象のインダクタ41のインダクタンスを計算した解析結果を示す。横軸は分割数Nwを示す。縦軸はインダクタンスを示す。縦軸の単位は、ナノヘンリーである。黒丸は、本実施の形態のプログラムを使用した計算結果を示す。黒四角形は、同じモデルを特許文献1に記載された従来の手法を使用して解析した比較例を示す。
本実施の形態では、分割数Nwが4から20まで解析結果のインダクタンスはほぼ同一である。したがって、分割数Nwは4を使用することが望ましい。一方、比較例では、分割数Nwが4から14までの間は解析結果のインダクタンスが大きく変化している。したがって、分割数Nwは16を使用することが望ましい。
このように、本実施の形態のプログラムでは分割数Nwの値による解析結果の変動が比較例に比べて少ない。したがって、分割数を定める予備検討を短時間で終了して、適切な分割数を定めることができる。
次に、本実施の形態のプログラムと比較例の計算量の相違の概算について説明する。前述の通り、本実施の形態のプログラムを使用する場合には分割数Nwを4に、比較例では分割数Nwを16にする場合を例にして説明する。本実施の形態の分割数Nwは、比較例の4分の1である。辺要素51およびセル要素52の数は、分割数の3乗に比例する。したがって、本実施の形態の辺要素51およびセル要素52の数は比較例の辺要素51およびセル要素52の数の64分の1である。有限要素法の計算量は、要素の数に比例する。したがって、本実施の形態の有限要素法の計算量は分割数Nwの相違に起因して比較例の64分の1倍になる。
本実施の形態では、磁化ベクトルMおよび磁束密度ベクトルBをガウス型数値積分点54ごとに計算する。前述の通り1個のセル要素52は8個のガウス型数値積分点54を有する。一方、比較例では、磁化ベクトルMおよび磁束密度ベクトルBをセル要素52ごとに計算する。ヒステリシスモデルの計算の量は、磁化ベクトルMおよび磁束密度ベクトルBを計算する点の数に比例する。したがって、本実施の形態のヒステリシスモデルの計算の量はガウス型数値積分点54ごとの計算を行うことに起因して比較例の8倍となる。
有限要素法の計算量の比率である64分の1倍と、ヒステリシスモデルの計算の量の比率である8倍を積算して、本実施の形態の計算量は比較例の8分の1になる。
以上により、本実施の形態のプログラムは比較例に比べて少ない予備検討量で適切な分割数を決定できる上、適切な分割数で解析した場合の計算量が比較例の8分の1に低減される。すなわち、精度の高いシミュレーションを少ない計算量で行うことができる。
同様の計算対象について四角形要素を使用して二次元解析を行う場合の計算量の概算について、適切な分割数Nwが4分の1になる場合を例にして説明する。二次元解析の辺要素51およびセル要素52の数は、分割数の二乗に比例する。したがって、有限要素法の計算量は16分の1になる。また、前述の通り1個の四角形要素は、4個のガウス型数値積分点54を有するので、ヒステリシスモデルの計算の量は4倍になる。したがって、四角形用を使用する場合には、計算量が比較例の4分の1に低減される。
[実施の形態2]
本実施の形態は、ヒステリシスモデルの計算の反復処理の終了を磁化ベクトルMの収束有無に基づいて判定するプログラム等に関する。なお、実施の形態1と共通する部分については説明を省略する。
図18は、実施の形態2のプログラムの処理の流れを示すフローチャートである。図18を使用して、本実施の形態の処理の流れを説明する。
CPU12はカウンタkを初期値0に設定する(ステップS501)。CPU12は、磁場解析のサブルーチンを起動する(ステップS503)。磁場解析のサブルーチンは、図14を使用して説明したサブルーチンと同一のサブルーチンを使用する。
CPU12は、ヒステリシスモデルの計算のサブルーチンを起動する(ステップS571)。ヒステリシスモデルの計算のサブルーチンは、図12を使用して説明したヒステリシスモデルの計算を行うサブルーチンである。本実施の形態のヒステリシスモデルの計算のサブルーチンの処理の流れは後述する。
CPU12は計算を終了するか否かを判定する(ステップS507)。計算を終了するか否かは、たとえばカウンタkが所定の値を超えているか否かにより判定する。
計算を終了しないと判定した場合は(ステップS507でNO)、CPU12はカウンタkに1を加算する(ステップS508)。CPU12はステップS503に戻る。計算を終了すると判定した場合は(ステップS507でYES)、CPU12は処理を終了する。
図19は、実施の形態2のヒステリシスモデルの計算のサブルーチンの処理の流れを示すフローチャートである。ヒステリシスモデルの計算のサブルーチンは、図12を使用して説明したヒステリシスモデルの計算を行うサブルーチンである。図19を使用して、本実施の形態のヒステリシスモデルの計算の処理の流れを説明する。
ステップS552までは、図15を使用して説明した実施の形態1のヒステリシスモデルの計算のサブルーチンと同一の処理であるので、説明を省略する。
すべてのガウス型数値積分点54について処理が終了したと判定した場合は(ステップS551でYES)、CPU12は式(7)に基づいて磁化ベクトルMの変化量の最大値ΔMを算出する(ステップS591)。具体的には、まずステップS548で更新した微視的磁化ベクトルDB33に基づいて磁化ベクトルMkを算出する。磁化ベクトルDB31から最後に記録された磁化ベクトルMk-1を取得する。MとMk-1との差分ベクトルをガウス型数値積分点54ごとに求める。各差分ベクトルの絶対値を求め、その最大値ΔMを抽出する。
Figure 0006582766
CPU12は、ステップS505で算出したΔMが所定の閾値未満であるか否かを判定する(ステップS592)。所定の閾値未満ではない場合は(ステップS592でNO)、CPU12はステップS541に戻る。所定の閾値未満である場合は(ステップS592でYES)、CPU12は磁化ベクトルDB31に磁化ベクトルMを記録する(ステップS593)。その後、CPU12は処理を終了する。
本実施の形態によると、ヒステリシスモデルの計算の繰り返し回数を必要最低限の数にすることができる。
なお、ステップS592でΔMが閾値未満であるか否かと、ステップS541からステップS592までのループの反復回数とを組み合わせてループの終了可否を判定しても良い。たとえば、ΔMが閾値未満であり、かつループの反復回数が所定の回数を超える場合にステップS592でYESと判定しても良い。また、ΔMが閾値未満である場合またはループの反復回数が所定の回数を超える場合にステップS592でYESと判定しても良い。
[実施の形態3]
図20は、実施の形態3のシミュレーション装置10の動作を示す機能ブロック図である。シミュレーション装置10は、CPU12による制御に基づいて以下のように動作する。
第1取得部71は、計算対象物をモデル化した辺要素51に関連づけられた情報および複数の辺要素51により囲まれたセル要素52内のガウス型数値積分点54の情報を取得する。第1算出部72は、辺要素51に関連づけられた情報に基づき有限要素法を用いて所定の第1時間Δtが経過した後のガウス型数値積分点54ごとの磁束密度ベクトルBを算出する。第2取得部73は、ガウス型数値積分点54に関連づけられた複数の要素58の微視的磁化ベクトルm61を取得する。第2算出部74は、磁束密度ベクトルBおよび微視的磁化ベクトルm61に基づいて、前記第1時間Δtよりも短い第2時間dtが経過した後のガウス型数値積分点54ごとの磁化ベクトルMを算出する。
[実施の形態4]
実施の形態4は、汎用のコンピュータとプログラム28とを組み合わせて動作させることにより、シミュレーション装置10を実現する形態に関する。図21は、実施の形態4のシミュレーション装置10の構成を示す説明図である。図21を使用して、本実施の形態の構成を説明する。なお、実施の形態1と共通する部分の説明は省略する。
本実施の形態のシミュレーション装置10は、CPU12、主記憶装置13、補助記憶装置14、通信部15、入力部16、表示部17、読取部25およびバスを備える。シミュレーション装置10は、汎用のパソコン等の情報処理装置である。
プログラム28は、可搬型記録媒体27に記録されている。CPU12は、読取部25を介してプログラム28を読み込み、補助記憶装置14に保存する。またCPU12は、シミュレーション装置10内に実装されたフラッシュメモリ等の半導体メモリ26に記憶されたプログラム28を読出しても良い。さらに、CPU12は、通信部15および図示しないネットワークを介して接続される図示しない他のサーバコンピュータからプログラム28をダウンロードして補助記憶装置14に保存しても良い。
プログラム28は、入力装置10の制御プログラムとしてインストールされ、主記憶装置13にロードして実行される。これにより、情報処理装置は上述したシミュレーション装置10として機能する。
各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(付記1)
計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス型数値積分点の情報を取得する第1取得部と、
前記辺要素に関連づけられた情報に基づき有限要素法を用いて前記ガウス型数値積分点ごとの磁束密度ベクトルを算出する第1算出部と、
前記ガウス型数値積分点に関連づけられた複数の微視的磁化ベクトルを取得する第2取得部と、
前記磁束密度ベクトルおよび前記微視的磁化ベクトルに基づいて、前記ガウス型数値積分点ごとの磁化ベクトルを算出する第2算出部と
を備えるシミュレーション装置。
(付記2)
前記第1算出部は所定の第1時間が経過した後の磁束密度ベクトルを算出し、
前記第2算出部は、前記第1時間よりも短い第2時間が経過した後の磁化ベクトルを算出する
付記1に記載のシミュレーション装置。
(付記3)
前記セル要素は、前記ガウス型数値積分点を1個ずつ含む分割要素に分割され、
前記ガウス型数値積分点は、該ガウス型数値積分点を含む分割要素内に配置された微視的磁化ベクトルと関連づけられている
付記1または付記2に記載のシミュレーション装置。
(付記4)
前記第2算出部は、前記第1算出部が算出した磁束密度ベクトルおよび前記第2取得部が取得した微視的磁化ベクトルに基づいて所定の第2時間が経過した後の微視的磁化ベクトルを算出し、該微視的磁化ベクトルと関連づけられたガウス型数値積分点ごとに該微視的磁化ベクトルを平均することにより磁化ベクトルを算出する
付記1から付記3のいずれか一つに記載のシミュレーション装置。
(付記5)
前記第1取得部は、前記辺要素に関連づけられたベクトルポテンシャルおよび前記ガウス型数値積分点に関連づけられた磁化ベクトルを取得する
付記1から付記4のいずれか一つに記載のシミュレーション装置。
(付記6)
前記第1取得部は、前記第2算出部が算出した磁化ベクトルを取得する
付記1から付記5にいずれか一つに記載のシミュレーション装置。
(付記7)
前記第2算出部は、磁気ヒステリシス特性を表現した磁性体モデルに基づいて前記磁化ベクトルを算出する
付記1から付記6のいずれか一つに記載のシミュレーション装置。
(付記8)
前記第2算出部は、前記第2時間よりも短い第3時間後の磁化ベクトルの算出を所定回数反復して行う第1反復部と、
前記磁化ベクトルが収束したか否かを判定する収束判定部と、
を備え、
前記収束判定部が収束していないと判定した場合には、再度第1反復部で処理を行う
付記1から付記7のいずれか一つに記載のシミュレーション装置。
(付記9)
前記第2算出部は、前記第2時間よりも短い第3時間後の磁化ベクトルの算出を行う第3算出部と、
前記磁化ベクトルが収束したか否かを判定する収束判定部と、
を備え、
前記収束判定部が収束していないと判定した場合には、第3算出部および収束判定部の処理を反復する第2反復部を備える
付記1から付記7のいずれか一つに記載のシミュレーション装置。
(付記10)
前記第2取得部は、前記ガウス型数値積分点に関連づけられた複数の微視的磁化ベクトルの数および前記ガウス型数値積分点に関連づけられた磁化ベクトルを取得する第3取得部と、
前記微視的磁化ベクトルのそれぞれに対して、平均した場合に前記磁化ベクトルに一致する成分を割り当てる割当部と
を備える、付記1から付記9のいずれか一つに記載のシミュレーション装置。
(付記11)
前記セル要素は6面体である付記1から付記10のいずれか一つに記載のシミュレーション装置。
(付記12)
前記セル要素は4辺形である付記1から付記10のいずれか一つに記載のシミュレーション装置。
(付記13)
取得した計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス型数値積分点の情報に基づいて有限要素法を用いて前記ガウス型数値積分点ごとの磁束密度ベクトルを算出し、
前記磁束密度ベクトルおよび取得した前記ガウス型数値積分点に関連づけられた複数の微視的磁化ベクトルに基づいて、前記ガウス型数値積分点ごとの磁化ベクトルを算出する
処理をコンピュータに実行させるシミュレーションプログラム。
(付記13)
取得した計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス型数値積分点の情報に基づいて有限要素法を用いて前記ガウス型数値積分点ごとの磁束密度ベクトルを算出し、
前記磁束密度ベクトルおよび取得した前記ガウス型数値積分点に関連づけられた複数の微視的磁化ベクトルに基づいて、前記ガウス型数値積分点ごとの磁化ベクトルを算出する
処理をコンピュータに実行させるシミュレーション方法。
10 シミュレーション装置
12 CPU
13 主記憶装置
14 補助記憶装置
15 通信部
16 入力部
17 表示部
25 読取部
26 半導体メモリ
27 可搬型記録媒体
28 プログラム
31 磁化ベクトルDB
32 磁束密度ベクトルDB
33 微視的磁化ベクトルDB
41 インダクタ
42 コア
43 導線
51 辺要素
52 セル要素
54 ガウス型数値積分点
56 分割要素
58 要素
61 微視的磁化ベクトルm
71 第1取得部
72 第1算出部
73 第2取得部
74 第2算出部

Claims (10)

  1. 計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス求積における積分点の情報を取得する第1取得部と、
    前記辺要素に関連づけられた情報に基づき有限要素法を用いて前記積分点ごとの磁束密度ベクトルを算出する第1算出部と、
    前記積分点に関連づけられた複数の微視的磁化ベクトルを取得する第2取得部と、
    前記磁束密度ベクトルおよび前記微視的磁化ベクトルに基づいて、前記積分点ごとの磁化ベクトルを算出する第2算出部と
    を備えるシミュレーション装置。
  2. 前記第1算出部は所定の第1時間が経過した後の磁束密度ベクトルを算出し、
    前記第2算出部は、前記第1時間よりも短い第2時間が経過した後の磁化ベクトルを算出する
    請求項1に記載のシミュレーション装置。
  3. 前記セル要素は、前記積分点を1個ずつ含む分割要素に分割され、
    前記積分点は、該積分点を含む分割要素内に配置された微視的磁化ベクトルと関連づけられている
    請求項1または請求項2に記載のシミュレーション装置。
  4. 前記第2算出部は、前記第1算出部が算出した磁束密度ベクトルおよび前記第2取得部が取得した微視的磁化ベクトルに基づいて所定の第2時間が経過した後の微視的磁化ベクトルを算出し、該微視的磁化ベクトルと関連づけられたガウス求積における積分点ごとに該微視的磁化ベクトルを平均することにより磁化ベクトルを算出する
    請求項1から請求項3のいずれか一つに記載のシミュレーション装置。
  5. 前記第2算出部は、前記第2時間よりも短い第3時間後の磁化ベクトルの算出を所定回数反復して行う第1反復部と、
    前記磁化ベクトルが収束したか否かを判定する収束判定部と、
    を備え、
    前記収束判定部が収束していないと判定した場合には、再度第1反復部で処理を行う
    請求項4に記載のシミュレーション装置。
  6. 前記第1取得部は、前記辺要素に関連づけられたベクトルポテンシャルおよび前記積分点に関連づけられた磁化ベクトルを取得する
    請求項1から請求項のいずれか一つに記載のシミュレーション装置。
  7. 前記第1取得部は、前記第2算出部が算出した磁化ベクトルを取得する
    請求項1から請求項6のいずれか一つに記載のシミュレーション装置。
  8. 前記第2算出部は、磁気ヒステリシス特性を表現した磁性体モデルに基づいて前記磁化ベクトルを算出する
    請求項1から請求項のいずれか一つに記載のシミュレーション装置。
  9. 取得した計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス求積における積分点の情報に基づいて有限要素法を用いて前記積分点ごとの磁束密度ベクトルを算出し、
    前記磁束密度ベクトルおよび取得した前記積分点に関連づけられた複数の
    微視的磁化ベクトルに基づいて、前記積分点ごとの磁化ベクトルを算出する
    処理をコンピュータに実行させるシミュレーションプログラム。
  10. 取得した計算対象物をモデル化した辺要素に関連づけられた情報および複数の該辺要素により囲まれたセル要素内のガウス求積における積分点の情報に基づいて有限要素法を用いて前記積分点ごとの磁束密度ベクトルを算出し、
    前記磁束密度ベクトルおよび取得した前記積分点に関連づけられた複数の微視的磁化ベクトルに基づいて、前記積分点ごとの磁化ベクトルを算出する
    処理をコンピュータに実行させるシミュレーション方法。
JP2015174874A 2015-09-04 2015-09-04 シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法 Active JP6582766B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015174874A JP6582766B2 (ja) 2015-09-04 2015-09-04 シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法
US15/253,912 US20170068762A1 (en) 2015-09-04 2016-09-01 Simulation device, simulation program, and simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174874A JP6582766B2 (ja) 2015-09-04 2015-09-04 シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2017049938A JP2017049938A (ja) 2017-03-09
JP6582766B2 true JP6582766B2 (ja) 2019-10-02

Family

ID=58190097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174874A Active JP6582766B2 (ja) 2015-09-04 2015-09-04 シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法

Country Status (2)

Country Link
US (1) US20170068762A1 (ja)
JP (1) JP6582766B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819963B2 (ja) * 2017-06-13 2021-01-27 日本コントロールシステム株式会社 シミュレーション装置、シミュレーション方法、およびプログラム
CN111007113B (zh) * 2019-11-22 2020-09-01 湖南城市学院 一种金属氧化物半导体气体传感器结构优化设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778522B2 (ja) * 1988-09-30 1995-08-23 アルプス電気株式会社 3次元磁場解析装置
JP2007213384A (ja) * 2006-02-10 2007-08-23 Fujitsu Ltd マイクロ磁化解析プログラム、方法及び装置
JP5589665B2 (ja) * 2010-08-18 2014-09-17 富士通株式会社 解析装置、解析プログラムおよび解析方法
JP5906717B2 (ja) * 2011-12-21 2016-04-20 富士通株式会社 磁性体特性解析プログラム、磁性体特性解析装置、及び磁性体特性解析方法
JP5915157B2 (ja) * 2011-12-21 2016-05-11 富士通株式会社 磁性体特性解析プログラム、磁性体特性解析装置、及び磁性体特性解析方法

Also Published As

Publication number Publication date
JP2017049938A (ja) 2017-03-09
US20170068762A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
Long et al. Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations
JP4484914B2 (ja) シミュレーション装置、シミュレーションプログラム、およびシミュレーションプログラムが格納された記録媒体
Park Design sensitivity analysis and optimization of electromagnetic systems
Bielewicz et al. Shells with random geometric imperfections simulation—based approach
Dehghan et al. Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local Radial Basis Functions–Differential Quadrature (RBF–DQ) technique on non-rectangular computational domains
JP5785533B2 (ja) 脳内電流の算出方法、算出装置およびコンピュータプログラム
US9117041B2 (en) Magnetic property analyzing apparatus and method
JP6582766B2 (ja) シミュレーション装置、シミュレーションプログラムおよびシミュレーション方法
JP5412982B2 (ja) 磁界解析装置および磁界解析プログラム
Sevilla et al. The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations
Soll et al. Sample selection based on sensitivity analysis in parameterized model order reduction
JP2018124831A (ja) 電磁界解析装置、方法及びプログラム
EP2051175A1 (en) Method and device for generating a model of a multiparameter system
EP3485404A1 (en) Eigen augmentation methods for electromagnetic modelling and simulation
Hu et al. A multi-mesh adaptive finite element approximation to phase field models
Shen et al. Evaluation of multi-order derivatives by local radial basis function differential quadrature method
Malik et al. Statistically inspired multi-shift Arnoldi projection for on-chip interconnects
JP2005083764A (ja) ヒステリシス磁界解析法及びシステム
Clénet Approximation methods to solve stochastic problems in computational electromagnetics
Ioan et al. Complexity reduction of electromagnetic systems
Kovvali et al. Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations
Vuik et al. Scientific computing (wi4201)
Aiello et al. A GMRES iterative solution of FEM‐BEM global systems in skin effect problems
Cho et al. An eigenvalue perturbation solution for the multiphysics simulation of antenna strain sensors
JP2015022693A (ja) 解析方法、解析装置、及び解析プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150