JP6581845B2 - Water absorption sheet - Google Patents
Water absorption sheet Download PDFInfo
- Publication number
- JP6581845B2 JP6581845B2 JP2015170262A JP2015170262A JP6581845B2 JP 6581845 B2 JP6581845 B2 JP 6581845B2 JP 2015170262 A JP2015170262 A JP 2015170262A JP 2015170262 A JP2015170262 A JP 2015170262A JP 6581845 B2 JP6581845 B2 JP 6581845B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mol
- water
- deodorant
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 39
- 238000010521 absorption reaction Methods 0.000 title description 10
- 239000011521 glass Substances 0.000 claims description 59
- 239000002781 deodorant agent Substances 0.000 claims description 53
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 27
- 229910052802 copper Inorganic materials 0.000 claims description 27
- 239000010949 copper Substances 0.000 claims description 27
- 239000002250 absorbent Substances 0.000 claims description 16
- 230000002745 absorbent Effects 0.000 claims description 12
- 230000003197 catalytic effect Effects 0.000 claims description 11
- 239000005388 borosilicate glass Substances 0.000 claims description 8
- 239000006107 alkali alkaline earth silicate glass Substances 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 4
- 230000001877 deodorizing effect Effects 0.000 description 44
- 239000000203 mixture Substances 0.000 description 22
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 13
- 239000007789 gas Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 8
- 235000019645 odor Nutrition 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 6
- 241000251468 Actinopterygii Species 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000004332 deodorization Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- VCUVETGKTILCLC-UHFFFAOYSA-N 5,5-dimethyl-1-pyrroline N-oxide Chemical compound CC1(C)CCC=[N+]1[O-] VCUVETGKTILCLC-UHFFFAOYSA-N 0.000 description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- -1 silver ions Chemical class 0.000 description 3
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- BSAIUMLZVGUGKX-BQYQJAHWSA-N (E)-non-2-enal Chemical compound CCCCCC\C=C\C=O BSAIUMLZVGUGKX-BQYQJAHWSA-N 0.000 description 2
- 208000035985 Body Odor Diseases 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 206010040904 Skin odour abnormal Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000004667 medium chain fatty acids Chemical class 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- General Preparation And Processing Of Foods (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、鮮魚類や肉類から出る水分を吸収したり、野菜の水分を取り除いたりすることができる吸水シートに関するものである。 The present invention relates to a water-absorbing sheet that can absorb moisture from fresh fish and meat and remove moisture from vegetables.
鮮魚類や肉類から出る水分を吸収して鮮度を維持するために、従来から吸水シートが使用されている。吸水シートは鮮魚類、肉類の販売用トレーの底に敷いて用いられるほか、水分を含む果物や野菜類のトレーにも使用されている。このような吸水シートは、吸水性ポリマーや多孔質樹脂を吸水層とするものである。 Conventionally, water-absorbing sheets have been used to maintain the freshness by absorbing moisture from fresh fish and meat. The water-absorbing sheet is used on the bottom of a tray for selling fresh fish and meat, and is also used for trays of water-containing fruits and vegetables. Such a water absorbing sheet uses a water absorbing polymer or a porous resin as a water absorbing layer.
しかし鮮魚類や肉類から滲出する水分中には微生物が繁殖し易いので、吸水効果のほかに抗菌効果を付与した吸水シートが、従来から提案されている。例えば特許文献1には、銀イオンを放出できる溶解性ガラスの粉末を含有させた抗菌性吸水シートが開示されている。また特許文献2には、水酸化カルシウムのようなアルカリ性の抗菌剤を含有させた抗菌性吸水シートが開示されている。しかしこれらは微生物の繁殖抑制を主目的としたものであり、それによって腐敗臭を防止できる効果を多少は期待できるものの、優れた消臭効果を備えたものではない。 However, since microorganisms are easy to propagate in the moisture exuded from fresh fish and meat, water-absorbing sheets having an antibacterial effect in addition to the water-absorbing effect have been proposed. For example, Patent Document 1 discloses an antibacterial water-absorbing sheet containing a soluble glass powder capable of releasing silver ions. Patent Document 2 discloses an antibacterial water-absorbing sheet containing an alkaline antibacterial agent such as calcium hydroxide. However, these are mainly aimed at suppressing the growth of microorganisms, and although they can be expected to have some effect of preventing spoilage odor, they do not have an excellent deodorizing effect.
なお特許文献1の溶解性ガラスは、放出された銀イオンが悪臭成分を化学吸着することによって、硫化水素、メチルメルカプタン等の硫黄系悪臭物質に対する消臭効果を期待できるものである。しかし、フィルム中に保持されたガラス質消臭剤は粒径がD96=40μm以下の微細な粉体であるから銀の総含有量も小さく、しかもその効果は表面露出量に依存する。このため、特許文献1の吸水シートは、銀イオンの放出が進行すると次第に消臭効果が低下することが避けられない。また低級脂肪酸等の悪臭物質に対する消臭効果はない。 In addition, the soluble glass of patent document 1 can expect the deodorizing effect with respect to sulfur type malodor substances, such as hydrogen sulfide and methyl mercaptan, because the emitted silver ion chemisorbs a malodor component. However, since the vitreous deodorant held in the film is a fine powder having a particle size of D 96 = 40 μm or less, the total silver content is small, and the effect depends on the surface exposure. For this reason, it is inevitable that the deodorizing effect of the water-absorbent sheet of Patent Document 1 gradually decreases as the release of silver ions proceeds. In addition, there is no deodorizing effect on malodorous substances such as lower fatty acids.
特許文献2のアルカリ性の抗菌剤も、悪臭成分との中和反応等によって悪臭を防止できる可能性はあるが、やはりアルカリ成分の放出が進行すると、次第に消臭効果が低下することが避けられない。 Although the alkaline antibacterial agent of Patent Document 2 may also be able to prevent malodor by neutralization reaction with the malodorous component, it is inevitable that the deodorizing effect gradually decreases as the release of the alkali component proceeds. .
従って本発明の目的は上記した従来の問題点を解決し、消臭効果の持続性に優れ、硫化水素、メチルメルカプタン等の硫黄系悪臭物質のみならず、低級脂肪酸等の悪臭物質をも消臭する機能を備えた吸水シートを提供することである。 Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and has a superior deodorizing effect, and deodorizes not only sulfur-based malodorous substances such as hydrogen sulfide and methyl mercaptan but also malodorous substances such as lower fatty acids. It is providing the water absorption sheet | seat provided with the function to do.
上記の課題を解決するためになされた本発明は、吸水層を備え、食品用トレーに使用されるシート本体にガラス質消臭剤を保持させた吸水シートであって、このガラス質消臭剤は銅成分及び2〜7モル%のR´O(R´=Mg、Ca、Sr、Ba)を含有するアルカリ−アルカリ土類−ホウケイ酸ガラス、または銅成分及び2〜10モル%のR´Oを含有するアルカリ−アルカリ土類−ケイ酸塩ガラスからなり、銅成分を溶出させることなくガラス中に保持させたまま、ガラス中に保持された銅成分の触媒作用により、悪臭成分を分解する機能を有することを特徴とするものである。 The present invention made in order to solve the above-mentioned problems is a water-absorbent sheet comprising a water-absorbing layer and having a glass body deodorant held in a sheet body used for a food tray, and this glassy deodorant Is an alkali-alkaline earth-borosilicate glass containing a copper component and 2-7 mol% R′O (R ′ = Mg, Ca, Sr, Ba), or a copper component and 2-10 mol% R ′ It consists of an alkali-alkaline earth-silicate glass containing O and decomposes malodorous components by the catalytic action of the copper component held in the glass while it is kept in the glass without eluting the copper component. It has a function.
なお請求項2のように、ガラス質消臭剤の含有量を1〜100g/m2とすることが好ましく、また請求項3のように、ガラス質消臭剤が、D96=100μm以下の粉体であることが好ましい。 As in claim 2, the content of the vitreous deodorant is preferably 1 to 100 g / m 2, and as in claim 3, the vitreous deodorant has a D 96 of 100 μm or less. A powder is preferred.
さらに請求項4のように、吸水層が、吸水性ポリマーを含有するものであることが好ましい。 Furthermore, it is preferable that the water absorbing layer contains a water absorbing polymer.
本発明の吸水シートは、銅成分及び2〜7モル%のR´O(R´=Mg、Ca、Sr、Ba)を含有するアルカリ−アルカリ土類−ホウケイ酸ガラス、または銅成分及び2〜10モル%のR´Oを含有するアルカリ−アルカリ土類−ケイ酸塩ガラスからなるガラス質消臭剤を、吸水層を備え、食品用トレーに使用されるシート本体に保持させたものであり、銅成分を溶出させることなくガラス中に保持させたまま、ガラス中に保持された銅成分の触媒作用により、悪臭成分を分解する。 The water-absorbing sheet of the present invention comprises a copper component and an alkali-alkaline earth-borosilicate glass containing 2 to 7 mol% R′O (R ′ = Mg, Ca, Sr, Ba), or a copper component and 2 to 2 mol%. A glassy deodorant comprising alkali-alkaline earth-silicate glass containing 10 mol% R′O is provided with a water absorption layer and held on a sheet body used for a food tray. The malodorous component is decomposed by the catalytic action of the copper component retained in the glass while being retained in the glass without eluting the copper component.
溶解性ガラスを用いた消臭剤は各種開発されていたのに対し、従来、「触媒作用による消臭効果を示すガラス剤」は知られていなかった。本発明者らは、長年による研究の結果、上記組成のガラス中に含有させた銅成分が触媒として機能して、硫黄系悪臭物質の分解反応を促進し、硫黄系悪臭物質の消臭効果を奏する」という新たな知見を見出した。 While various deodorants using soluble glass have been developed, conventionally, a “glass agent showing a deodorizing effect by catalytic action” has not been known. As a result of many years of research, the inventors of the present invention, the copper component contained in the glass of the above composition functions as a catalyst, promotes the decomposition reaction of the sulfur-based malodorous substance, the deodorizing effect of the sulfur-based malodorous substance I found a new finding that "I play".
本発明では、このように、ガラス中に含まれる銅成分を触媒として硫黄系悪臭物質の分解反応を促進するメカニズムを有するものであるため、化学吸着、物理吸着を利用した従来技術に比べて、消臭容量を増大させることができ、消臭効果を長期間に亘って安定して発揮することができる。すなわち、従来の化学吸着、物理吸着は何れも吸着剤の表面露出量に依存し、露出量によって消臭限界が決定されるのであるが、本発明では触媒反応を利用するため、露出量が少量であっても大きい消臭総量を得ることができる。このため消臭量のみに着目すればガラス質消臭剤の添加量は少量添加でもよいが、消臭スピードを加えるためには前記したように1〜100g/m2を含有させることが好ましい。 In the present invention, as described above, since it has a mechanism for promoting the decomposition reaction of the sulfur-based malodorous substance using the copper component contained in the glass as a catalyst, compared to the conventional technology using chemical adsorption and physical adsorption, The deodorizing capacity can be increased, and the deodorizing effect can be exhibited stably over a long period of time. That is, both conventional chemical adsorption and physical adsorption depend on the surface exposure amount of the adsorbent, and the deodorization limit is determined by the exposure amount. However, in the present invention, since the catalytic reaction is used, the exposure amount is small. Even so, a large total deodorizing amount can be obtained. For this reason, if paying attention only to the deodorizing amount, a small amount of the glassy deodorant may be added, but in order to add a deodorizing speed, it is preferable to contain 1 to 100 g / m 2 as described above.
本発明で用いたガラス質消臭剤は、特にメチルメルカプタンに対し、優れたな消臭効果を発揮することができる。すなわちこのガラス質消臭剤は、メチルメルカプタンを触媒的に酸化分解し、二量体のジメチルジスルフィドを生成する。このときラジカルが発生し、酸化分解される。同様に、他のガスに対しても同様の酸化分解が可能である。なお、この点については後記する実施例においても言及する。しかし、消臭可能な悪臭は硫黄系悪臭物質に限られるものではない。具体的には、低級脂肪酸や、体臭(汗、足臭)として知られる酢酸、イソ吉草酸を始め、悪臭防止法で定められるプロピオン酸、ノルマル酪酸、ノルマル吉草酸や、中鎖脂肪酸のカプロン酸、エナント酸や、加齢臭として知られるトランス−2−ノネナールも消臭可能である。一般的に、炭素数2〜4個のものを短鎖脂肪酸(低級脂肪酸)というが、本明細書においては炭素数1個の酢酸、5個の吉草酸も低級脂肪酸として取り扱う。 The vitreous deodorant used in the present invention can exhibit an excellent deodorizing effect particularly with respect to methyl mercaptan. That is, this glassy deodorant catalytically oxidatively decomposes methyl mercaptan to produce dimeric dimethyl disulfide. At this time, radicals are generated and oxidatively decomposed. Similarly, similar oxidative decomposition is possible for other gases. This point is also referred to in examples described later. However, the odor that can be deodorized is not limited to sulfur-based odor substances. Specific examples include lower fatty acids, acetic acid known as body odor (sweat, foot odor), isovaleric acid, propionic acid, normal butyric acid, normal valeric acid, and medium chain fatty acid caproic acid Also, enanthic acid and trans-2-nonenal, known as an aging odor, can be deodorized. Generally, those having 2 to 4 carbon atoms are referred to as short-chain fatty acids (lower fatty acids), but in this specification, acetic acid having 1 carbon atom and 5 valeric acids are also treated as lower fatty acids.
なお、本発明の消臭機能を持つ吸水紙は、前記したように鮮魚類、肉類の販売用トレーの底に敷いて用いたり、果物や野菜類のトレーに使用するに適したものである。 The water-absorbent paper having a deodorizing function of the present invention is suitable for use on the bottom of a tray for selling fresh fish and meat as described above, or for a fruit or vegetable tray .
以下に本発明の実施形態を説明する。
本発明の吸水シートは、吸水層を備え、食品用トレーに使用されるシート本体にガラス質消臭剤を保持させたものである。このガラス質消臭剤は、後記する実施例Fに示すように、安全性に優れた物質である。
Embodiments of the present invention will be described below.
The water-absorbing sheet of the present invention comprises a water-absorbing layer, and a glass body deodorant held on a sheet body used for a food tray . This glassy deodorant is a substance having excellent safety as shown in Example F described later.
吸水層の材質としては、ポリアクリル酸・ポリアクリル酸ナトリウム共重合体、デンプン・アクリル酸共重合体、セルロース・アクリル酸共重合体、ポリエチレンオキサイド、ポリビニルアルコール・アクリル酸共重合体、イソブチレン・無水マレイン酸共重合体が代表的であるが、合成ポリマー系では、ポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系、ポリアクリルアミド系、ポリビニルアルコール系、ポリエチレンオキシド系、天然物由来系では、ポリアスパラギン酸塩系、ポリグルタミン酸塩系、ポリアルギン酸塩系、デンプン系、セルロース系などを挙げることができる。このほか、吸水スポンジとして用いられるポリビニルアルコール、ウレタンでもよい。 Materials for the water absorption layer include polyacrylic acid / sodium polyacrylate copolymer, starch / acrylic acid copolymer, cellulose / acrylic acid copolymer, polyethylene oxide, polyvinyl alcohol / acrylic acid copolymer, isobutylene / anhydrous Maleic acid copolymers are typical, but synthetic polymer systems are polyacrylates, polysulfonates, maleic anhydrides, polyacrylamides, polyvinyl alcohols, polyethylene oxides, natural products Examples include polyaspartate, polyglutamate, polyalginate, starch, and cellulose. In addition, polyvinyl alcohol and urethane used as a water absorbing sponge may be used.
ガラス質消臭剤は、吸水層部分に担持(分散、あるいは不織布100%の場合は添着)させてもよく、吸水層部分を覆う不織布に添着してもよい。あるいは、水漏れを防止するシート部に配合または添着してもよい。なお、必ずしも上記構造体全てを兼ね備えたシートでなくても、吸収層だけのシートであってもよいことは勿論である。パルプ紙をシート本体としてあるものについては、パルプ紙にガラス質消臭剤を添着してもよい。なお、吸収剤として知られているゼオライトや活性炭をガラス質消臭剤とともに用いることもできる。 The glassy deodorant may be supported (dispersed or attached in the case of 100% nonwoven fabric) on the water absorption layer portion, or may be attached to the nonwoven fabric covering the water absorption layer portion. Or you may mix | blend or attach to the sheet | seat part which prevents a water leak. Needless to say, the sheet may not be a sheet having all of the above structures, but may be a sheet having only an absorbent layer. For those having pulp paper as the sheet body, a vitreous deodorant may be attached to the pulp paper. Note that zeolite or activated carbon known as an absorbent can be used together with a glassy deodorant.
ガラス質消臭剤は、銅成分を含有するアルカリ−アルカリ土類−ホウケイ酸ガラスまたは銅成分を含有するアルカリ−アルカリ土類−ケイ酸塩ガラスからなり、D96=100μm以下の粉体であることが望ましい。ここでD96は粒度分布測定を行い、累積分布させたときの積分値が96%に当たる粒径を意味する。より好ましい粒径はD96=40μm以下である。D96が100μmを超えるとガラス質消臭剤の比表面積が低下して触媒効果が低減する。粒径が1μm未満になるとガラスの粉砕や分級の効率が極端に低下するので、製造上好ましくない。1〜25μm程度の粒径が実用的であるが、不織布に添着する場合には40μm程度が扱いやすい。このようなガラス質消臭剤は、調合原料を溶融したうえ急冷してプレ成形体を得た後、粉砕を行なう方法で製造することができる。粉砕には一般的に知られる粉砕機(例えば、ボールミル、ビーズミル、ジェットミル、CFミル等)を用いることができ、乾式でも湿式でも構わない。 The vitreous deodorant is composed of an alkali-alkaline earth-borosilicate glass containing a copper component or an alkali-alkali earth-silicate glass containing a copper component, and is a powder having a D 96 of 100 μm or less. It is desirable. Here, D 96 means a particle size at which the integral value when the particle size distribution measurement is performed and the cumulative distribution is 96%. More preferred particle size is D 96 = 40 [mu] m or less. If D 96 exceeds 100μm decreases the specific surface area of the vitreous deodorant catalytic effect is reduced. When the particle size is less than 1 μm, the efficiency of pulverizing and classifying glass is extremely lowered, which is not preferable in production. A particle size of about 1 to 25 μm is practical, but about 40 μm is easy to handle when attached to a nonwoven fabric. Such a vitreous deodorant can be produced by a method in which the raw material for preparation is melted and rapidly cooled to obtain a pre-molded product, and then pulverized. For the pulverization, a generally known pulverizer (for example, a ball mill, a bead mill, a jet mill, a CF mill, etc.) can be used, and it may be dry or wet.
ガラス質消臭剤の量は、1〜100g/m2程度が好ましい。これより少量であると消臭効果が不十分となり、これより多量としてもコストの増加に見合う消臭効果の増加が認められないからである。 The amount of vitreous deodorant is about 1 to 100 g / m 2 is preferred. If the amount is less than this, the deodorizing effect becomes insufficient, and even if the amount is larger than this, an increase in the deodorizing effect commensurate with the increase in cost is not recognized.
図1に示すように、本発明の吸水シートは、例えばトレー1の底に敷いて用いることができる。吸水シートのシート本体2の内部または表面に、ガラス質消臭剤3が保持されている。しかし前記したように、本発明の吸水シートは様々な用途に使用することができる。以下に、ガラス質消臭剤の組成について詳細に説明する。 As shown in FIG. 1, the water absorbent sheet of the present invention can be used by laying on the bottom of a tray 1, for example. A glassy deodorant 3 is held inside or on the surface of the water absorbent sheet main body 2. However, as described above, the water absorbent sheet of the present invention can be used for various applications. Hereinafter, the composition of the vitreous deodorant will be described in detail.
(アルカリ−アルカリ土類−ホウケイ酸ガラス)
上記した銅成分を含有するアルカリ−アルカリ土類−ホウケイ酸ガラスは、SiO2:46〜70モル%、B2O3+R2O(R:アルカリ金属):15〜50モル%、R´O(R´:アルカリ土類金属):2〜7モル%、Al2O3:0〜6%、CuO:0.01〜23モル%含有するガラスである。ここで、B2O3:5〜20モル%、R2O:10〜30モル%とすることができる。
(Alkali-alkaline earth-borosilicate glass)
The alkali-alkaline earth-borosilicate glass containing the above-described copper component is SiO 2 : 46 to 70 mol%, B 2 O 3 + R 2 O (R: alkali metal): 15 to 50 mol%, R′O. (R': alkaline earth metal): 2 to 7 mol%, Al 2 O 3: 0~6 %, CuO: 0.01~23 a glass containing mol%. Here, B 2 O 3: 5~20 mol%, R 2 O: can be 10 to 30 mol%.
このガラス質消臭剤3の好ましい組成は、SiO2:51〜63モル%、B2O3+R2O:21〜39モル%、R´O:2〜7モル%、Al2O3:0〜5.5%、CuO:1〜13モル%である。ここで、B2O3:8〜17モル%、R2O:13〜22モル%とすることができる。 A preferred composition of this vitreous deodorant 3, SiO 2: 51~63 mol%, B 2 O 3 + R 2 O: 21~39 mol%, R'O: 2 to 7 mol%, Al 2 O 3: 0 to 5.5%, CuO: 1 to 13 mol%. Here, B 2 O 3: 8~17 mol%, R 2 O: can be 13 to 22 mol%.
またこのガラス質消臭剤3の最も好ましい組成は、SiO2:53〜62モル%、B2O3:10〜17モル%、R2O:13〜19モル%、R´O:3〜6モル%、Al2O3:0〜4.5%、CuO:4〜13モル%である。以下に、各ガラス組成について詳細に説明する。 The most preferred composition of this vitreous deodorant 3, SiO 2: 53-62 mol%, B 2 O 3: 10~17 mol%, R 2 O: 13~19 mol%, R'O: 3~ 6 mol%, Al 2 O 3: 0~4.5 %, CuO: 4~13 are mole%. Below, each glass composition is demonstrated in detail.
(SiO2)
SiO2は、ガラスの構造骨格を形成する主成分であり、その含有量は46〜70モル%、好ましくは、51〜63モル%、更に好ましくは53〜62モル%とする。46モル%未満の場合、ガラスの化学的耐久性が不十分となり、またガラスが失透しやすくなり好ましくない。更に、46モル%未満の場合、ガラスの耐水性が不十分となり、水分存在下(大気中の水分を含む)で銅イオンが溶出しやすくなる結果、触媒作用による消臭効果よりも、イオン溶出によって起こる硫化反応による消臭効果が強くなるため好ましくない。70モル%を超える場合、融点が上昇することにより、ガラスの溶融性が困難となる他、粘度上昇も起こるため好ましくない。
(SiO 2)
SiO 2 is a main component that forms the structural skeleton of glass, and its content is 46 to 70 mol%, preferably 51 to 63 mol%, and more preferably 53 to 62 mol%. If it is less than 46 mol%, the chemical durability of the glass becomes insufficient, and the glass tends to devitrify, which is not preferable. Furthermore, if it is less than 46 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by the sulfurization reaction which occurs by this becomes strong, it is not preferable. If it exceeds 70 mol%, the melting point increases, which makes glass melting difficult and also causes an increase in viscosity.
(B2O3)
B2O3は、ガラスの溶解性、清澄性を向上させる成分であり、特定の組成においてはガラスの構造骨格を形成する成分ともなる。B2O3は、その含有量によって、ガラスの安定性を大きく左右するものであり、本願発明ではガラスの融剤としての意味合いが大きい。その含有量は、B2O3の揮発量を勘案して、5〜20モル%、好ましくは8〜17モル%、さらに好ましくは10〜17モル%とする。20モル%を超える場合、B2O3は溶融過程において揮発しやすく、組成制御が困難となるため好ましくない。
(B 2 O 3 )
B 2 O 3 is a component that improves the solubility and clarity of the glass, and in a specific composition, it also becomes a component that forms the structural skeleton of the glass. B 2 O 3 greatly affects the stability of the glass depending on its content, and in the present invention, the meaning as a flux of glass is large. Its content, in consideration of the volatilization amount of B 2 O 3, 5 to 20 mol%, preferably 8 to 17 mol%, further preferably 10 to 17 mol%. When it exceeds 20 mol%, B 2 O 3 is not preferred because it tends to volatilize in the melting process and the composition control becomes difficult.
(R2O)
R2O(R=Li、Na、K)は、ガラスの構造骨格におけるSiとOの結合を切断して非架橋酸素を形成し、その結果、ガラスの粘性を低下させ、成形性や溶解性を向上させる成分であり、B2O3同様の融剤である。その含有量は、R2Oの一種もしくは二種以上を、多成分との含有比も考慮しつつ、合計10〜30モル%、好ましくは13〜22モル%、更に好ましくは13〜19モル%とする。30モル%を超える場合、ガラスの化学的耐久性が不十分となる。具体的には、ガラス剤と大気中の水分が反応してブルームと称される白化現象が引き起こされる。ブルームが発生することにより、悪臭ガスとの接触面積が減少するため望ましくない。
(R 2 O)
R 2 O (R = Li, Na, K) breaks the bond between Si and O in the glass structure skeleton to form non-crosslinked oxygen, resulting in a decrease in glass viscosity, moldability and solubility. And a flux similar to B 2 O 3 . The content of one or more of R 2 O is 10 to 30 mol% in total, preferably 13 to 22 mol%, more preferably 13 to 19 mol%, considering the content ratio with multiple components. And When it exceeds 30 mol%, the chemical durability of the glass becomes insufficient. Specifically, a whitening phenomenon called bloom is caused by a reaction between the glass agent and moisture in the atmosphere. The occurrence of bloom is undesirable because it reduces the contact area with malodorous gas.
(B2O3+R2O)
前記のように、B2O3とR2Oは、共に、融剤として使用される。B2O3とR2Oの合計含有量が、15〜50モル%、好ましくは21〜39モル%の範囲が、安全に消臭効果を示す領域となる。15モル%未満の場合、ガラスの溶融性が不十分となり、成形の際に失透が発生しやすくなるため好ましくない。50モル%を超えると、ガラスの耐水性が不十分となり、水分存在下(大気中の水分を含む)で銅イオンが溶出しやすくなる結果、触媒作用による消臭効果よりも、イオン溶出によって起こる硫化反応による消臭効果が強くなるため好ましくない。また、50モル%を超えると、溶融の際に分相を起こしやすく、それに伴いガラス剤の消臭効果が不十分となるため好ましくない。
(B 2 O 3 + R 2 O)
As mentioned above, both B 2 O 3 and R 2 O are used as fluxing agents. The range in which the total content of B 2 O 3 and R 2 O is 15 to 50 mol%, preferably 21 to 39 mol%, is a region that safely exhibits the deodorizing effect. If it is less than 15 mol%, the meltability of the glass becomes insufficient, and devitrification tends to occur during molding, which is not preferable. If it exceeds 50 mol%, the water resistance of the glass becomes insufficient, and copper ions are likely to elute in the presence of moisture (including moisture in the atmosphere), resulting in ion elution rather than deodorizing effect due to catalysis. Since the deodorizing effect by a sulfurization reaction becomes strong, it is not preferable. On the other hand, if it exceeds 50 mol%, phase separation is likely to occur during melting, and the deodorizing effect of the glass agent becomes insufficient accordingly.
(R´O)
R´O(R´=Mg、Ca、Sr、Ba)は、ガラスの化学的耐久性を向上させる成分である。その含有量は、R´O(R´=Mg、Ca、Sr、Ba)の一種もしくは二種以上を、合計2〜7モル%、更に好ましくは3〜6モル%とする。10モル%を超えると溶融時の粘性が高くなるとともに、ガラスが失透しやすくなるため好ましくない。
(R'O)
R′O (R ′ = Mg, Ca, Sr, Ba) is a component that improves the chemical durability of the glass. The content of R′O (R ′ = Mg, Ca, Sr, Ba) is 1 to 2 mol%, more preferably 3 to 6 mol%, in total, with one or more of R′O (R ′ = Mg, Ca, Sr, Ba). More than 10 mol% and with the viscosity at the time of melting increases, undesirable because the glass tends to be devitrified.
(Al2O3)
Al2O3は、ガラスの化学的耐久性を向上させ、結晶構造安定性に影響を与える成分である。また、Al2O3は、ガラスの分相を抑制しガラス剤の均質性を高める働きをする。粘性を上げること、添加によってガラス中の銅イオンの酸化還元状態に影響を与える可能性があることから、その含有量は、6モル%以下、好ましくは5.5モル%以下、最も好ましくは4.5モル%以下とする。
(Al 2 O 3 )
Al 2 O 3 is a component that improves the chemical durability of the glass and affects the crystal structure stability. Further, Al 2 O 3 functions to suppress the phase separation of the glass and increase the homogeneity of the glass agent. Since the viscosity and the addition may affect the redox state of copper ions in the glass, its content is 6 mol% or less, preferably 5.5 mol% or less, most preferably 4 .5 mol% or less.
(CuO)
CuOは、触媒として機能して、硫黄系悪臭物質の分解反応を促進し、硫黄系悪臭物質の消臭効果を奏するものである。その含有量は、0.01〜23モル%、好ましくは1〜13モル%、さらに好ましくは4〜13モル%とする。23モル%を超えると未溶解物が残留しやすくなる他、急冷の際や加工時に金属銅が析出しやすくなるため好ましくない。金属銅の析出に伴いガラスに変色を生じるため、ガラスの変色が問題となる用途には適さない。また、金属銅として析出した場合、被毒が進行してしまう。これに対し、CuOをガラス成分として含ませれば被毒が進行し難く、触媒機能を長期間に亘って安定して発揮することができる。
(CuO)
CuO functions as a catalyst, accelerates the decomposition reaction of the sulfurous malodorous substance, and exhibits the deodorizing effect of the sulfurous malodorous substance. The content is 0.01 to 23 mol%, preferably 1 to 13 mol%, more preferably 4 to 13 mol%. If it exceeds 23 mol%, undissolved material tends to remain, and metal copper tends to precipitate during rapid cooling or processing, which is not preferable. Since the glass is discolored with the deposition of metallic copper, it is not suitable for applications where discoloration of the glass is a problem. Moreover, when it precipitates as metallic copper, poisoning will advance. On the other hand, if CuO is included as a glass component, poisoning does not proceed easily, and the catalytic function can be stably exhibited over a long period of time.
(その他の微量成分)
上記成分以外にも、微量成分として、ZnO、SrO、BaO、TiO2、ZrO2、Nb2O5、P2O5、Cs2O、Rb2O、TeO2、BeO、GeO2、Bi2O3、La2O3、Y2O3、WO3、MoO3、またはFe2O3等も含めることができる。さらに、F、Cl、SO3、Sb2O3、SnO2、あるいはCe等を清澄剤として添加してもよい。
(Other trace components)
In addition to the above components, ZnO, SrO, BaO, TiO 2 , ZrO 2 , Nb 2 O 5 , P 2 O 5 , Cs 2 O, Rb 2 O, TeO 2 , BeO, GeO 2 , Bi 2 can be used as trace components. O 3 , La 2 O 3 , Y 2 O 3 , WO 3 , MoO 3 , Fe 2 O 3 or the like can also be included. Furthermore, F, Cl, SO 3 , Sb 2 O 3 , SnO 2 , Ce, or the like may be added as a clarifier.
(アルカリ−アルカリ土類−ケイ酸塩ガラス)
また本発明ではガラス質消臭剤3として、銅成分を含有するアルカリ−アルカリ土類−ケイ酸塩ガラスを用いることもできる。このガラスは、SiO2:50〜70モル%、R2O:10〜33モル%、R´O:2〜10モル%、Al2O3:0〜6%、CuO:0.01〜23モル%含有するガラスである。
(Alkali-alkaline earth-silicate glass)
In the present invention, an alkali-alkaline earth-silicate glass containing a copper component can also be used as the vitreous deodorant 3. This glass, SiO 2: 50-70 mol%, R 2 O: 10~33 mol%, R'O: 2 to 10 mol%, Al 2 O 3: 0~6 %, CuO: 0.01~23 It is a glass containing mol%.
このガラス質消臭剤3の好ましい組成は、SiO2:55〜70モル%、R2O:12〜24モル%、R´O:2〜10モル%、Al2O3:0〜5.5%、CuO:1〜20モル%である。またこのガラス質消臭剤3の最も好ましい組成は、SiO2:55〜65モル%、R2O:12〜20モル%、R´O:3〜7モル%、Al2O3:0〜5%、CuO:4〜13モル%である。 A preferred composition of the vitreous deodorant 3, SiO 2: 55 to 70 mol%, R 2 O: 12~24 mol%, R'O: 2 to 10 mol%, Al 2 O 3: 0~5 . 5%, CuO: 1 to 20 mol%. The most preferred composition of this vitreous deodorant 3, SiO 2: 55 to 65 mol%, R 2 O: 12~20 mol%, R'O: 3 to 7 mol%, Al 2 O 3: 0~ 5%, CuO: 4 to 13 mol%.
アルカリ−アルカリ土類−ケイ酸塩ガラスは、上記したアルカリ−アルカリ土類−ホウケイ酸ガラスとは異なりB2O3を含有しないため組成の数値範囲が多少変化しているが、数値限定の理由はアルカリ−アルカリ土類−ホウケイ酸ガラスと同様である。 Unlike the alkali-alkaline earth-borosilicate glass described above, the alkali-alkaline earth-silicate glass does not contain B 2 O 3 , so the numerical range of the composition is slightly changed. Is the same as alkali-alkaline earth-borosilicate glass.
吸水シート中のガラス質消臭剤3の含有率は0.1〜15質量%とすることが好ましい。この範囲より少ないと消臭効果が不足し、逆に15質量%を超えるコスト高となる。好ましい含有率は0.1〜10質量%である。本発明において、ガラス質消臭剤は触媒効果によって消臭機能を発揮するため、消臭量がガラス質消臭剤の露出量に依存しない。このため長期的には、少量が表面に露出していればよく、15%を超えて含有させても消臭量の増加を見込むことができない。 The content of the glassy deodorant 3 in the water absorbent sheet is preferably 0.1 to 15% by mass. If it is less than this range, the deodorizing effect is insufficient, and conversely, the cost exceeds 15% by mass. A preferable content rate is 0.1-10 mass%. In the present invention, since the vitreous deodorant exhibits a deodorizing function due to a catalytic effect, the deodorizing amount does not depend on the exposure amount of the vitreous deodorant. For this reason, in the long term, a small amount may be exposed on the surface, and even if the content exceeds 15%, an increase in deodorizing amount cannot be expected.
本発明の吸水シートは、ガラス質消臭剤のガラス中に保持された銅成分の触媒作用により、悪臭成分を分解する機能を有するものである。溶解性ガラスとは異なり、銅成分はガラス中に保持されたままで触媒作用により悪臭成分を分解するため、長期間にわたり消臭効果が維持され、持続性に優れる。また、溶解性ガラスは酸性ガラスであるため酸性悪臭である低級脂肪酸に対する消臭効果はないが、本発明におけるガラス質消臭剤は、低級脂肪酸や体臭成分等の悪臭物質に対する消臭効果を持つ。 The water-absorbing sheet of the present invention has a function of decomposing malodorous components by the catalytic action of the copper component held in the glass of the vitreous deodorant. Unlike the soluble glass, the copper component decomposes the malodorous component by the catalytic action while being retained in the glass, so that the deodorizing effect is maintained over a long period of time and the durability is excellent. Further, since the soluble glass is an acidic glass, it does not have a deodorizing effect on lower fatty acids that are acidic malodors, but the vitreous deodorant in the present invention has a deodorizing effect on malodorous substances such as lower fatty acids and body odor components. .
なお、上記した実施形態ではガラス質消臭剤を単独で使用したが、汎用のシリカゲル、ゼオライト、活性炭、粘土鉱物、光触媒(二酸化チタン)等の無機系消臭剤と複合使用することもできる。また特許文献1に記載の銀を含有するリン酸ガラスとともに使用することもできる。このような複合使用により、消臭速度のスピードアップや対象ガス拡大、コストダウン等の効果を狙うことが可能となる。 In the above-described embodiment, the vitreous deodorant is used alone, but it can also be used in combination with an inorganic deodorant such as general-purpose silica gel, zeolite, activated carbon, clay mineral, photocatalyst (titanium dioxide). Moreover, it can also be used with the phosphate glass containing the silver of patent document 1. Such combined use makes it possible to aim at effects such as speeding up the deodorization speed, expanding target gas, and reducing costs.
本発明の吸水シートは、ドリップシート、鮮度保持シート、水分調整シート、機能性吸水シートなどと称されるどの目的にも使用可能である。その他用途として、野菜や漬物保管向けの中敷きとして適している。玉ねぎや漬物などは硫黄臭を発生するためである。この場合、冷蔵庫で数日間保管するため、消臭効果の持続性も要求されることとなり、本発明の吸水シートの利点が発揮される。このほか、生理用品、紙おむつ、ペットシート、水分分離シート、結露防止シート等にも使用でき、室内の消臭にも効果がある。 The water absorbent sheet of the present invention can be used for any purpose called a drip sheet, a freshness maintaining sheet, a moisture adjusting sheet, a functional water absorbent sheet, or the like. For other uses, it is suitable as an insole for storing vegetables and pickles. This is because onions and pickles generate sulfur odor. In this case, since it is stored in the refrigerator for several days, the sustainability of the deodorizing effect is also required, and the advantages of the water absorbent sheet of the present invention are exhibited. In addition, it can be used for sanitary products, disposable diapers, pet sheets, moisture separation sheets, anti-condensation sheets, etc., and is also effective for deodorizing indoors.
以下に本発明の実施例を示す。なお、表中のn.d.は未検出を意味する。 Examples of the present invention are shown below. In the table, n.d. means not detected.
表1に示す組成となるようにガラス原料を調合し、溶融急冷法により溶融、成形、粉砕してガラス質消臭剤を製造した。得られたガラス質消臭剤を表2に示す条件で吸水シートに保持させた。この吸水シートを用い、消臭効果の確認試験を行った。
吸水シートは、吸水層が粒状ポリアクリル酸塩系の高吸水性ポリマーとし、通水層がレーヨン不織布、非通水層はポリエチレンフィルムとして、吸水部が10cm×10cmとなるように、端部を封止した。吸水層への分散、通水層には担持を検討した。また、吸水層の上下に綿パルプ層を介在させた吸水シートも作製し、パルプ層には担持を検討した。通水層、パルプ層への担持は、ウレタンエマルジョンバインダーでスプレーして添着した。
Glass raw materials were prepared so as to have the composition shown in Table 1, and melted, molded, and pulverized by a melt quenching method to produce a glassy deodorant. The obtained glassy deodorant was held on the water absorbent sheet under the conditions shown in Table 2. Using this water absorbent sheet, a deodorizing effect confirmation test was conducted.
The water-absorbing sheet has a water-absorbing layer made of a granular polyacrylate-based highly water-absorbing polymer, the water-permeable layer is a rayon nonwoven fabric, the non-water-permeable layer is made of a polyethylene film, and the end portion thereof is 10 cm × 10 cm. Sealed. Dispersion in the water-absorbing layer and loading on the water-passing layer were studied. Moreover, the water absorption sheet | seat which made the cotton pulp layer interpose on the upper and lower sides of a water absorption layer was also produced, and carrying | support was investigated to the pulp layer. The water-passing layer and the pulp layer were loaded by spraying with a urethane emulsion binder.
(実施例A:消臭効果の確認)
表2の実験例1〜21の吸水シートを1Lのテドラーバッグに悪臭成分とともに封入し、室温で、経過時間に伴う袋内の悪臭濃度を測定した。硫化水素、メチルメルカプタンはガスクロマトグラフで、酢酸、プロピオン酸はガス検知管で測定した。比較として、表3に示す溶解性ガラス1〜3からなるガラス質消臭剤を製造し、D96=25μm以下まで粉砕し、実験例と同様に吸水層に1g/m2の含有量となるように分散した。なお、銅成分を含まないガラスを用いた実験例3がブランクに該当する。その結果、表4に示すように、ブランクを除いて、いずれの悪臭にも消臭効果を示すことが確認された。また、溶解性ガラスは、低級脂肪酸に対して消臭効果がないことが確認された。
(Example A: Confirmation of deodorizing effect)
The water-absorbing sheets of Experimental Examples 1 to 21 in Table 2 were enclosed in a 1 L Tedlar bag together with a malodor component, and the malodor concentration in the bag with the elapsed time was measured at room temperature. Hydrogen sulfide and methyl mercaptan were measured with a gas chromatograph, and acetic acid and propionic acid were measured with a gas detector tube. As a comparison, a glassy deodorant composed of the soluble glasses 1 to 3 shown in Table 3 was produced and pulverized to D 96 = 25 μm or less, and the water absorption layer had a content of 1 g / m 2 as in the experimental example. As distributed. In addition, Experimental example 3 using the glass which does not contain a copper component corresponds to a blank. As a result, as shown in Table 4, it was confirmed that any offensive odors had a deodorizing effect except for the blank. It was also confirmed that the soluble glass has no deodorizing effect on lower fatty acids.
(実施例B:溶解性ガラスに対する持続性)
表2の実験例1、2、5、6の吸水シートを1Lのテドラーバッグに悪臭成分とともに封入し、室温で、経過時間に伴う袋内の悪臭濃度をガスクロマトグラフで測定した。比較として、表3に示す溶解性ガラス2〜4からなるガラス質消臭剤を製造し、D96=25μm以下まで粉砕し、実験例と同様に吸水層に1g/m2の含有量となるように分散した。その結果、表5に示すように、溶解性ガラスを含有する吸水シートは化学吸着反応のため消臭スピードは速いものの、消臭限界に達したことが確認されたのに対し、本発明の吸水シートでは持続的に触媒作用による消臭効果を示し、消臭総量に優れることが確認された。しかし、ガラスは組成によって連続的に変化し、その効果も触媒反応から溶解性ガラスの吸着反応まで連続的に変化する。実験例5は耐久性が低下した組成のため(溶解性ガラスに近づいた組成のため)、溶解性ガラス同様の吸着反応の傾向が強くなり、消臭限界に達したことが確認された。
なお、サンプルは調整後、光を遮断して保管し、蒸留水を1ml含有させた状態で上記の消臭試験を実施した。これによって、水分存在下でも消臭効果を示すこと、光がなくとも触媒効果を示すことが確認された。
(Example B: Sustainability to soluble glass)
The water-absorbing sheets of Experimental Examples 1, 2, 5, and 6 in Table 2 were sealed in a 1 L Tedlar bag together with malodor components, and the malodor concentration in the bag was measured with a gas chromatograph at room temperature. For comparison, a glassy deodorant composed of the soluble glasses 2 to 4 shown in Table 3 was produced and pulverized to D 96 = 25 μm or less, and the water absorption layer had a content of 1 g / m 2 as in the experimental example. As distributed. As a result, as shown in Table 5, it was confirmed that the water-absorbing sheet containing the soluble glass reached the deodorizing limit although the deodorizing speed was high because of the chemical adsorption reaction, whereas the water-absorbing sheet of the present invention was confirmed. It was confirmed that the sheet showed a deodorizing effect by catalytic action and was excellent in total deodorizing amount. However, the glass changes continuously depending on the composition, and the effect also changes continuously from the catalytic reaction to the adsorption reaction of the soluble glass. Since Experimental Example 5 had a composition with reduced durability (because it was a composition approaching soluble glass), it was confirmed that the tendency of the adsorption reaction was the same as that of soluble glass and reached the deodorization limit.
In addition, after adjusting the sample, the light was blocked and stored, and the above deodorization test was performed in a state where 1 ml of distilled water was contained. Thus, it was confirmed that the deodorizing effect was exhibited even in the presence of moisture, and the catalytic effect was exhibited even without light.
(実施例C:ガラス質消臭剤の基本特性・分解作用)
D50=4.2μmまで粉砕した表1の組成番号6からなるガラス1gとメチルメルカプタンを5Lのテドラーバッグに封入し、室温で、経過時間に伴う袋内のメチルメルカプタン、ジメチルジスルフィドをガスクロマトグラフで測定した。またブランクとして、ガラス質消臭剤なしで同様の操作を行った。なお、事前にガスクロマトグラフ質量分析計にて、袋内に存在するガス成分がこの二成分のみであることを確認していた。その結果、図2に示すように、本発明のガラス質消臭剤がメチルメルカプタンを分解し、ジメチルジスルフィドを生成する作用を示すことを確認した。ガラス質消臭剤の基本特性は、フィルム等に練りこんでも、当然保持される。
(Example C: Basic characteristics and decomposition action of glassy deodorant)
D 50 = 4.2 μm ground glass 1g consisting of composition number 6 in Table 1 and methyl mercaptan were sealed in a 5 L Tedlar bag, and methyl mercaptan and dimethyl disulfide in the bag over time were measured with a gas chromatograph at room temperature. did. Moreover, the same operation was performed as a blank, without a glassy deodorant. In addition, it was confirmed in advance by a gas chromatograph mass spectrometer that the gas components present in the bag were only these two components. As a result, as shown in FIG. 2, it was confirmed that the vitreous deodorant of the present invention has an action of decomposing methyl mercaptan and generating dimethyl disulfide. The basic characteristics of the glassy deodorant are naturally maintained even when kneaded into a film or the like.
(実施例D:ガラス質消臭剤の基本特性・ラジカル発生)
D50=5.0μmまで粉砕した表1の組成番号6、9、表3の溶解性ガラス1からなるガラス200mgに対し、pH=7.4の0.1mоl・L−1のリン酸緩衝溶液200μLを添加した。そこに9.2mоl・L−1のDMPO(LABOTEC.製、LM−2110)10μLを添加し、シェイクした。DMPO添加時点から10秒後、1分後、5分後にシェイクをやめ、溶液のみをヘマトクリット管で採取し、ESR(日本電子株式会社製、FR−30、Xバンド)測定を実施した。また、ガラスを除いたものをブランクとした。全て、室温、蛍光灯下で実施した。当手法は、ラジカル測定の一般的手法であるスピントラップ法に該当し、DMPOがラジカルを補足するとスピンアダクトが生成する。この生成物(DMPO−OH)をESRで検出した。なお、検出値の単位は、基準物質Mn2+に対するピーク面積値比率(エリアシングル/エリアマンガン、S/M)である。その結果を表6に示す。組成番号6のガラスはDMPO−OHの生成が確認されたのに対し、組成番号9、溶解性ガラス1はブランクと同様にバックグラウンドの値を示しただけであった。本発明のガラス質消臭剤がラジカルを発生する可能性が高いことが確認された。
(Example D: Basic characteristics of glassy deodorant / radical generation)
D 50 = 0.1 mol·L −1 phosphate buffer solution of pH = 7.4 with respect to 200 mg of the glass composed of the soluble glass 1 of composition numbers 6 and 9 and table 3 of Table 1 ground to 5.0 μm 200 μL was added. Thereto, 10 μL of 9.2 mol·L −1 DMPO (manufactured by LABOTEC, LM-2110) was added and shaken. Shake was stopped 10 seconds, 1 minute, and 5 minutes after DMPO addition, and only the solution was collected with a hematocrit tube, and ESR (manufactured by JEOL Ltd., FR-30, X band) measurement was performed. Moreover, the thing except glass was made into the blank. All were performed at room temperature under fluorescent light. This technique corresponds to the spin trap method, which is a general technique for measuring radicals, and spin adducts are generated when DMPO captures radicals. This product (DMPO-OH) was detected by ESR. The unit of the detected value is a peak area value ratio (area single / area manganese, S / M) with respect to the reference material Mn 2+ . The results are shown in Table 6. The composition No. 6 glass was confirmed to produce DMPO-OH, whereas the composition No. 9 and the soluble glass 1 only showed a background value as in the blank. It was confirmed that the vitreous deodorant of the present invention has a high possibility of generating radicals.
(実施例E:ガラス質消臭剤の基本特性・触媒劣化の抑制)
D50=4.2μmまで粉砕した表2の組成番号6からなるガラス0.1gとCuO試薬(平均粒径4μm)0.1gのそれぞれを1Lのテドラーバッグに封入し、室温で、経過時間に伴う袋内のメチルメルカプタン濃度をガスクロマトグラフで測定した。メチルメルカプタンの初期濃度は55ppmとし、繰返し10回まで実施した。また、ブランクとしてガラスなしで同様の操作を行った。その結果、表7に示すように、CuO試薬は、繰返しに伴い消臭効果が低減している。これは、一般的に知られるCuOの触媒劣化(硫黄吸着)である。それに対し、ガラスは消臭効果を維持しており、持続性が高いことが確認された。このメカニズム解明は課題が残るが、ガラス化することで触媒劣化が抑制されることが確認された。このときのガラス表面をXPS(アルバックファイ(株)製、PHI 5000 VersaProbe)で解析したところ、表8に示すように、確かに消臭後に硫黄の吸着がないことが確認された。ガラス質消臭剤の基本特性は、フィルム等に練りこんでも、当然保持される。
(Example E: Basic characteristics of glassy deodorant and suppression of catalyst deterioration)
D 50 = 4.2 μm crushed glass of composition number 6 in Table 2 0.1 g and CuO reagent (average particle size 4 μm) 0.1 g each was sealed in a 1 L Tedlar bag at room temperature with time The methyl mercaptan concentration in the bag was measured with a gas chromatograph. The initial concentration of methyl mercaptan was 55 ppm and repeated up to 10 times. Moreover, the same operation was performed without glass as a blank. As a result, as shown in Table 7, the deodorizing effect of the CuO reagent is reduced with repetition. This is a generally known catalyst deterioration (sulfur adsorption) of CuO. On the other hand, it was confirmed that the glass maintained the deodorizing effect and was highly sustainable. Although elucidation of this mechanism remains, it has been confirmed that catalyst degradation is suppressed by vitrification. When the glass surface at this time was analyzed by XPS (manufactured by ULVAC-PHI Co., Ltd., PHI 5000 VersaProbe), as shown in Table 8, it was confirmed that there was certainly no sulfur adsorption after deodorization. The basic characteristics of a glassy deodorant are naturally maintained even when kneaded into a film or the like.
(実施例F:ガラス質消臭剤の安全性)
蒸留水100mlに対し、D50=4.2μmまで粉砕した表1の組成番号6からなるガラスを0.1g浸漬し、室温・24時間後の溶出量をICP発光分光分析装置で測定したところ、その溶出量は定量下限値0.1ppm以下であった。また、浸漬前後のガラスの重量を確認したところ、溶解量は0.0%であった。銅そのものの安全性は公知であり、栄養機能食品として厚生労働省に認定されている。1日あたり0.5〜5mgの接種が適量とされている。水道水の水質基準は1ppmであるが、1ppmの水道水を5L飲むと、5mgの摂取に相当する。以上の通り、ガラスからの銅成分の溶出や適量接種等勘案すると、十分安全であることがわかる。なお、本発明で用いるガラス質消臭剤は、通常の使用方法においては溶出することなく消臭効果を発揮する非溶出系の消臭剤であるから、銅の溶出規制の厳しい国においても、使用可能である。
(Example F: Safety of glassy deodorant)
When 100 g of distilled water was immersed in 0.1 g of the glass of composition number 6 in Table 1 pulverized to D 50 = 4.2 μm, and the elution amount after 24 hours at room temperature was measured with an ICP emission spectrometer, The amount of elution was not more than the lower limit of quantification of 0.1 ppm. Moreover, when the weight of the glass before and behind immersion was confirmed, the amount of melt | dissolution was 0.0%. The safety of copper itself is publicly known and certified as a nutritional functional food by the Ministry of Health, Labor and Welfare. An appropriate dose is 0.5 to 5 mg inoculated per day. The quality standard of tap water is 1 ppm, but if 5 L of 1 ppm tap water is consumed, it is equivalent to intake of 5 mg. As described above, it can be seen that it is sufficiently safe when considering elution of a copper component from glass and inoculation of an appropriate amount. The vitreous deodorant used in the present invention is a non-eluting deodorant that exhibits a deodorizing effect without eluting in a normal method of use, so even in countries with strict copper elution regulations, It can be used.
1 トレー
2 シート本体
3 ガラス質消臭剤
1 tray 2 sheet body 3 glassy deodorant
Claims (4)
このガラス質消臭剤は銅成分及び2〜7モル%のR´O(R´=Mg、Ca、Sr、Ba)を含有するアルカリ−アルカリ土類−ホウケイ酸ガラス、または銅成分及び2〜10モル%のR´Oを含有するアルカリ−アルカリ土類−ケイ酸塩ガラスからなり、銅成分を溶出させることなくガラス中に保持させたまま、ガラス中に保持された銅成分の触媒作用により、悪臭成分を分解する機能を有することを特徴とする吸水シート。 A water absorbing sheet comprising a water absorbing layer and having a glassy deodorant held in a sheet body used for food trays,
This glassy deodorant is an alkali-alkaline earth-borosilicate glass containing a copper component and 2-7 mol% R′O (R ′ = Mg, Ca, Sr, Ba), or a copper component and 2- It consists of an alkali-alkaline earth-silicate glass containing 10 mol% R′O, and it is retained in the glass without eluting the copper component, but by the catalytic action of the copper component held in the glass. A water absorbent sheet characterized by having a function of decomposing malodorous components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015170262A JP6581845B2 (en) | 2015-08-31 | 2015-08-31 | Water absorption sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015170262A JP6581845B2 (en) | 2015-08-31 | 2015-08-31 | Water absorption sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017047341A JP2017047341A (en) | 2017-03-09 |
JP6581845B2 true JP6581845B2 (en) | 2019-09-25 |
Family
ID=58278069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015170262A Active JP6581845B2 (en) | 2015-08-31 | 2015-08-31 | Water absorption sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6581845B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2693813B2 (en) * | 1989-03-28 | 1997-12-24 | 大日本印刷株式会社 | Method for producing water-absorbent sheet having functionality |
JP3105290B2 (en) * | 1991-04-18 | 2000-10-30 | 石塚硝子株式会社 | Antibacterial water-absorbing sheet used for keeping food fresh |
JP2004215693A (en) * | 2003-01-09 | 2004-08-05 | Toray Ind Inc | Water absorption material and diapers |
JP2006520311A (en) * | 2003-02-25 | 2006-09-07 | ショット アクチエンゲゼルシャフト | Antimicrobial action borosilicate glass |
JP6009404B2 (en) * | 2012-06-01 | 2016-10-19 | 石塚硝子株式会社 | Antibacterial glass and method for producing antibacterial glass |
JP2015145475A (en) * | 2014-02-03 | 2015-08-13 | リンテック株式会社 | Hot-melt adhesive composition and pseudo-adhesive label |
-
2015
- 2015-08-31 JP JP2015170262A patent/JP6581845B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017047341A (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6514595B2 (en) | Deodorant film and bag with deodorizing function | |
ES2427352T3 (en) | Use of fragrance compositions to restrict the formation of indole from dirt based on fecal substances and urine | |
JP2015520619A (en) | Odor reducing composition | |
JPS62142559A (en) | Structure having deodorizing and antibacterial functions | |
JP6594405B2 (en) | Deodorant glass agent | |
JP5191095B2 (en) | Aroma deodorizer and wicking volatilization member for aroma deodorizer | |
US7163737B2 (en) | Absorbent composition of matter for odoriferouse substances and releaser of diverse active ingredients and articles incorporating same | |
JP6581845B2 (en) | Water absorption sheet | |
JP6441185B2 (en) | Deodorant plate | |
JP2017046746A (en) | Deodorant spray | |
JP6441187B2 (en) | Filter with deodorizing function | |
JP6514604B2 (en) | Deodorant fiber and deodorant cloth | |
JP6472727B2 (en) | Absorbent pad | |
JP6441182B2 (en) | Masterbatch and method for producing deodorant resin composition | |
JP2824594B2 (en) | Deodorant composition and deodorant sheet | |
KR101532937B1 (en) | Refrigerator deodorizer and the method of manufacturing the same | |
JPWO2018185948A1 (en) | Material showing deodorant effect | |
JP2017046745A (en) | Shoe having deodorant function | |
JP2006061249A (en) | Ashtray having fire extinguishing action, and gel for fire extinguishment | |
JP2016043251A (en) | Aqueous solution having malodor deodorizing action | |
JP6422833B2 (en) | Deodorant paper | |
JP6408439B2 (en) | Deodorant resin container | |
JPH0366900B2 (en) | ||
JP6399977B2 (en) | Deodorant glass container | |
JPH0985082A (en) | Deodorizing water absorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150902 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6581845 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |