JP6574302B2 - 多層滑り軸受要素 - Google Patents

多層滑り軸受要素 Download PDF

Info

Publication number
JP6574302B2
JP6574302B2 JP2018506861A JP2018506861A JP6574302B2 JP 6574302 B2 JP6574302 B2 JP 6574302B2 JP 2018506861 A JP2018506861 A JP 2018506861A JP 2018506861 A JP2018506861 A JP 2018506861A JP 6574302 B2 JP6574302 B2 JP 6574302B2
Authority
JP
Japan
Prior art keywords
layer
aluminum
strand
metal layer
bearing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018506861A
Other languages
English (en)
Other versions
JP2018532593A (ja
Inventor
ラングバイン ファルコ
ラングバイン ファルコ
Original Assignee
ミバ・グライトラーガー・オーストリア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミバ・グライトラーガー・オーストリア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング filed Critical ミバ・グライトラーガー・オーストリア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Publication of JP2018532593A publication Critical patent/JP2018532593A/ja
Application granted granted Critical
Publication of JP6574302B2 publication Critical patent/JP6574302B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/127Details of intermediate layers, e.g. nickel dams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

本発明は、支持層と、支持層に結合された結合層と、結合層に結合された軸受金属層とを含む複合材料製の多層滑り軸受要素であって、結合層が、アルミニウム製又は第1の軟質相フリーのアルミニウム基合金製であり、軸受金属層が、少なくとも1つの軟質相を含む第2のアルミニウム基合金製であり、結合層及び軸受金属層が溶融冶金結合により互いに結合されていて当該結合層と当該軸受金属層との間に結合ゾーンを形成しており、結晶粒が結合ゾーン内に形成されている、多層滑り軸受要素に関する。
本発明は、更に、多層滑り軸受要素の製造方法であって、二層原材料を製造する工程であって、複合化鋳造によって、当該原材料の第1の層を形成する第1のアルミニウム基合金及び当該原材料の第2の層を形成する第2のアルミニウム基合金から二層原材料を製造する工程と、当該二層原材料を、ロール圧接によって、多層滑り軸受の支持層を形成する基材に結合させる工程と、ロール圧接複合材料を仕上げ加工して多層滑り軸受要素を得る工程とを含む、多層滑り軸受要素の製造方法に関する。
近頃では、スチール−アルミニウム複合材料滑り軸受用の原材料は、主にロール圧接プロセスによって生産されている。この目的に合うように、スズフリーのアルミニウム合金の下部を有する軸受材料が、スチール上に直接ロール圧接される。スズを含有する典型的なアルミニウム合金、例えばAlSn6Cu又はAlSn40Cuなどは、スチールとの結合のために、例えば、スチールと軸受金属との間に配設される純アルミニウムの結合膜を追加的に必要とする。軸受金属と結合膜との間の予備結合は、もっぱらロール圧接という手段によって生成される。しかしながら、ロール圧接された複合材料の欠点は、結合プロセスでは、接着結合だけしか得られない点にある。
例えば欧州特許出願公開第0 966 333 A1号明細書又は独国特許第103 33 589 B4号明細書などの先行技術により、鋳造プロセスによってスチールに軸受金属合金を適用する方法も公知である。しかし、そのような原材料を用いての処理方法は、スチール−アルミニウムの材料の組み合わせでは使用できない。その理由は、鉄は、アルミニウム中に実質的に不溶であるからである(655℃でFeは0.052質量%、600℃でFeは0.025質量%、500℃でFeは0.006質量%)。高温(例えば、400℃超)では、鉄とアルミニウムとの間に、熱力学的に誘起される拡散反応が起こり、続いて、金属間相が形成される。これらは、複合材料の接着強度の著しい低下をもたらすので、望ましくない。
欧州特許出願公開第0 947 260 A1号明細書には、中間層を適用せずにスチール基材を直接的にクラッドするために、脱混合温度より高い温度になるまで加熱された溶融物を高い鋳造及び冷却速度で鋳造することによって滑り軸受を製造するための、偏晶合金の使用について開示されている。非偏晶合金(例えば、標準的なアルミニウム−スズ軸受合金)は除外され、直接クラッド化の用途には使用できない。なぜなら、特に、ロール圧接時には、元素スズがスチールとの結合を形成せず、及び/又は、充分な接着強度を生じないからである。
独国特許出願公開第20 14 497 A号明細書には、第1の工程でAludip法によりスチールストリップをAl−Si合金でコーティングし、その後、別の工程での鋳造によって、Sn及びPbを含有するアルミニウム合金を後者に適用する、滑り軸受の製造方法が開示されている。
英国特許出願公開第749,529 A号明細書には、滑り軸受の製造方法であって、まずアルミニウム板上にアルミニウム−スズ合金を鋳造することによって二層原材料を製造し、次に、この原材料を、アルミニウム−スズ合金が圧延後にスズフリー側を介してスチール基材に結合するように圧延する、滑り軸受けの製造方法が記載されている。
新世代のエンジンの性能レベルは、将来的に最高20%増加することが予測されており、この事実は、軸受にかかる荷重が増大することを意味する。
したがって、本発明の目的は、より高い軸受荷重に対して良好に耐えることのできるアルミニウム基合金を軸受合金層として有する多層滑り軸受要素を提供することにある。
本発明のこの目的は、上で概説した多層滑り軸受要素によって達成される。その理由は、事実上、結合層と軸受金属層との間の結合ゾーンに連続的な粒界勾配が形成されるからである。
また、本発明の目的は、上で概説した方法によって達成される。この方法によれば、少なくとも3つの異なるゾーンを有する装置において、原材料を製造するための複合化鋳造プロセスが実施され、第1のゾーンにおいて、アルミニウムの第1のストランド又はアルミニウム基合金のうちの1種の第1のストランドを第1のアルミニウム(合金)溶融物から製造し、第2のゾーンにおいて、アルミニウム又は第1のアルミニウム(合金)溶融物のストランドを、それが凝固した第1の表面を有するまで冷却し、第3のゾーンにおいて、凝固した第1の表面上に、第2のアルミニウム(合金)溶融物に基づくアルミニウム又は他のアルミニウム基合金の第2のストランドが鋳造される。ただし、アルミニウムを使用する場合には、その他のストランドは、それぞれ第2のアルミニウム基合金から製造される。
支持層と軸受金属層との間に配設された結合層は、結合層と軸受金属層との間の結合強度を向上させ、そして、これらの2つの層間に、製造プロセスの結果として、顕微鏡で見える境界層は生じず、むしろ、粒界の領域における遷移が流れる、つまり、結合層から軸受金属層への連続的な粒界勾配が存在するという事実に起因して、接着強度が改善される。したがって、これらの2つの層間の粒界領域における断絶が回避される。このように得られた層結合の向上した強度は、亀裂伝播の点でも利点を有する。クラッド結合では、軸受金属層で生じた亀裂が結合膜に達したときに、その亀裂は、結合層材料に入り込まず又は必ずしも入り込まず、むしろ、その亀裂は、結合層/軸受金属層の境界面に沿って移動し、結果として層間剥離をもたらしうることが見出された。本発明により得られる層結合の場合、亀裂は、結合ゾーンに沿って伝播するのではなく、連続的な粒界勾配が存在するために結合層中に続き、亀裂は結合層の強度に応じて抑制されることがある。したがって、層間剥離を効果的に防止することが可能である。滑り軸受はそれ自体、トライボロジー用途への適性に乏しい材料に軸受ピンが接触するのを防止するために、もし亀裂による損傷を受けたとしても、依然として機能する確かな能力を有する。より高い強度(軸受材料の強度よりも高い強度)の結合層を使用した場合には、支持複合材料の総強度を具体的に意図された方法で調整することも変更することもできる。しかし、高強度の軸受材料を、幾分より軟らかくより高靭性の結合層と組み合わせることも可能であり、その場合には、制動特性を向上させることができる。これは、適応性及び制動特性などの特性を、それぞれの要求に適応させることが可能であることを意味する。高度の適応性が必要とされる用途の場合には、厚い軸受金属層と僅かに薄い結合層とを含む層構造が使用される。強度の優先度が高い場合には、逆の設計が考えられる。さらに、バイメタル効果(これは軸受シェルの膨張挙動及び耐久性に対して影響を及ぼす)は、結合層(強度、層厚、厚さ比)により影響を受けることがある。
多層滑り軸受要素の一実施形態によれば、結合層の第1のアルミニウム基合金及び/又は軸受金属層の第2のアルミニウム基合金が、少なくとも1種の(他の)合金元素を含有し、当該合金元素が、結合層と軸受金属層との間に形成された結合ゾーンにおいて濃度勾配を有する。また、この合金元素は軟質相元素であってもよく、その場合、当該軟質相元素を、多層滑り軸受要素の半径方向に少なくとも部分的に濃度勾配をもって備えることができる。この(他の)合金元素は、公知の様式で軸受金属に特定の特性し、例えば金属間相を形成する元素、例えばアルミナイドなどによって、例えば向上した潤滑能、より高い硬度などを付与する。硬度勾配を生じさせることによって、結合層及び軸受金属層の特性の遷移が「緩和される」ので、結合層と軸受金属層との間の結合強度をよりいっそう向上させることが可能となる。
多層滑り軸受要素の別の実施形態によると、結合層と軸受金属層との間に形成された結合ゾーン内の結晶粒の結晶粒度は、最大で100μmの平均直径を有する。したがって、結合層と軸受金属層との間のより大きな比表面積によって、結合強度を向上させることができる。
ノッチ効果の回避が原因で起こりうる亀裂伝播については、結合ゾーン内の結晶粒の総計に対して少なくとも25%の割合の結晶粒が、少なくとも結合層と軸受金属層との間に形成された結合ゾーンにおいて、略球状の晶癖を有していれば、有利である。
多層滑り軸受要素の別の実施形態によると、結合層の第1のアルミニウム基合金は、少なくとも1種の軟質相元素を除いて、軸受金属層の第2のアルミニウム基合金と同じ定性的組成を有することができる。したがって、軟質相元素を例外として、2つの層内には同じ元素が存在する。そういう状況であれば、結合層及び軸受合金層のアルミニウム基合金は類似した凝固挙動を示すため、原材料の圧延挙動を向上させることができる。しかし、さらに、これは、かかる複合材料の再生利用性も向上させることができる。なぜなら、2つのアルミニウム基合金の性質が類似しているという事実は、原材料を製造するための回路に鋳造化合物を容易に戻すことができることを意味するからである。
本方法の一実施形態によると、第1のストランドの第1の表面に割り当てられた上部冷却回路と、第1のストランドの第2の表面に割り当てられた下部冷却回路とを有し、上部冷却回路の数が下部冷却回路の数よりも少ない冷却ライン内で、第1のストランドを冷却させることができる。このため、ストランド内の熱的条件に影響が及び易くなり、これにより、その後、第2のストランド上に鋳造された後、結合ゾーンにおける連続的な粒界勾配の形成が改善される。
第1のストランドは、第1の表面の領域において、1℃/s〜15℃/sの範囲から選択される全冷却ラインにわたって平均化された冷却速度で冷却されることが好ましい。第1の表面の領域において、第1のストランドを、第1のゾーンにおいて400℃を下回らない温度に冷却する場合も好ましい。これらの特徴のうちの少なくとも1つによって、特に、これらの特徴の両方によって、結合ゾーンの層厚に影響が及ぶことがある。これは、軸受合金層に結合層を結合する接着強度に対しても、同様にプラスの効果を有する。
第2のストランドを鋳造する前に、第1のストランドを、側面の領域において冷却することが好ましい。横方向の冷却の結果として、一様な凝固前面が生じ、「サンプ深さ」は鋳造幅に依存しない。その結果、その後の鋳造プロセス中に、実質的に同じ熱的条件が鋳造幅に行きわたり、これにより、原材料の結合強度が有意に向上する。
第2のストランドを第1のストランドの第1の表面上に鋳造したら、第2のストランドを他の冷却回路を介して冷却することが可能であり、第2のストランドの凝固前面は、この他の冷却回路の上流で形成される。繰り返しになるが、本方法の本実施形態では、第1のストランド上での第2のストランドの液体溶融物の比較的長い滞留時間を選択することによって、結合強度を更に改善することができる。これは、さらに、第1のストランドから第2のストランドに向かう方向に誘導される片側凝固をもたらし、また、接着強度に対するプラスの効果も有し、この接着強度によって第2のストランドが第1のストランドに結合される。このように凝固が誘導されるという事実は、不純物や、例えば気孔又は鋳巣などの欠陥が、表面の方向に「移行する」、換言すれば、結合ゾーンから除去されることを意味する。それらの不純物及び欠陥が表面に存在していても問題にはならない。なぜなら、通常は、表面に機械的に仕上げ加工が施され、及び/又は、表面から材料が除去され、結果として、多層滑り軸受要素から何らかの不純物等が除去されるからである。この特異的に誘導された凝固を達成できるのは、事実上、第2のストランドに印加された少なくともエネルギーの大部分が、第1のストランドを介して分散し、結果として、第2のストランドが凝固した後、冷却装置によって積極的に冷却されることに起因する。
鋳造構造体における不純物及び/又は欠陥の「移行」に関しては、第1のアルミニウム基合金が実質的に球状構造で製造され、第2のアルミニウム基合金が実質的に樹枝状構造で製造される場合に、これにより反対方向への「逆移行」を防ぐ効果が高まるので有利である。
本方法の別の実施形態によると、第1及び第2のストランドを製造するために使用されるアルミニウム合金は、より高い融点を有するアルミニウム基合金の融点に対して最大で15%異なる融点を有することができ、あるいは、もしアルミニウムを使用して第1又は第2のストランドを製造する場合には、他のストランドに使用されるアルミニウム基合金は、アルミニウムの融点よりも最大で15%高い融点を有する。したがって、各材料を鋳造することによって、鋳造中に、2つの層が形成される際にこれらの2つの層間に起こる拡散プロセスにより結合を形成することを助ける温度まで、第1の材料を加熱できる。
鋳造区域におけるプロセスの速度及び熱的条件に関して、(鋳造状態での)層厚比Dが2:1〜1:10の場合、この層厚比が基材の層厚と鋳造層の層厚との比であるのが有利であることが立証された。
より明解な理解のため、以下、添付の図面を参照しながら、本発明について更に詳しく説明する。これらの図面は、以下をそれぞれ示す単純化された概略図である。
図1は、先行技術により公知の、エッチングなしのいわゆる二材料滑り軸受のマクロ構造の構造である。 図2は、先行技術により公知の、粒界エッチングによる二材料滑り軸受のミクロ構造の構造である(支持体のミクロ構造は示されていない)。 図3は、アルミニウムの粒界エッチングによる、結合層金属と軸受金属との間の界面領域における図2に示した二材料軸受のミクロ構造の詳細である。 図4は、エッチングなしの、二材料滑り軸受用の本発明によって提案される原材料のマクロ構造の構造である。 図5は、粒界のエッチングによる、二材料滑り軸受用の本発明によって提案される原材料のミクロ構造の構造である(支持層のミクロ構造は示されていない)。 図6は、アルミニウムの粒界のエッチングによる、図2に示した原材料の結合層と軸受金属層との間の結合箇所のミクロ構造の詳細である。 図7は、多層滑り軸受要素の側面図である。 図8は、層状複合材料の一実施形態に基づく断面である。 図9は、多層滑り軸受要素用の原材料を製造するための装置の側断面図である。 図10は、本発明によって得られた複合材料の捩り試験により求められた定性的な結合強度を従来の方法で製造された複合材料と比較した図である。 図11は、本発明によって得られた複合材料の曲げ疲労強度を従来の方法で製造された複合材料と比較した図である。 図12は、本発明によって得られた複合材料の曲げ疲労強度を従来の方法で製造された複合材料と比較した図である。 図13は、本発明によって得られた複合材料の最大スカッフィング荷重を従来の方法で製造された複合材料と比較した図である。
最初に、それぞれ異なる実施形態に記載されている同じ部分が、同じ参照番号及び同じ構成要素名により示していることと、本明細書全体でなされる開示を、意味に関して同じ参照番号又は同じ構成要素名を有する同じ部分に置き換え可能であることを注記しておく。更に、説明のために選択された位置、例えば上部、下部、側部などは、具体的に記載されている図面に関するものであり、別の位置が記載されたときに、意味に関して、新たな位置に置き換え可能である。
本発明の理解をより明確にするため、ロール圧接に関連する先行技術について、簡単に説明する。
図1〜図3は、先行技術に基づくスチール−アルミニウム滑り軸受1の構造体の一部(巨視的及び微視的)を概略的に例示している。
この滑り軸受1は、スチール製の支持層2を有する。その上部に適用されているのは、純アルミニウム製の結合層3である。結合層3の上部に配設されているのは、滑り軸受1の減摩層を構成するアルミニウム合金製の軸受金属層4である。このアルミニウム合金は、最高で50質量%のスズ含量を有する。スズ成分は、いわゆる軟質相5であり、混合摩擦を油潤滑では充分に防ぐことができない状況で、及び、滑り軸受1が完全に磨耗するような最悪の場合に、潤滑剤として使用される。スズは、アルミニウム合金中に異種成分として存在する。
結合層3は、支持層2と軸受金属層4との間の結合を生ずるようにもっぱら機能する。軸受金属層4中の軟質相5の割合のために、支持層2との直接的な結合を生じさせることは不可能である。この軸受構造の巨視的構造(図1)は、したがって、3種の異なる材料、つまり、スチール、純アルミニウム及びアルミニウム−スズ合金の組み合わせにより特徴付けられる。
図2及び3は、結合層3と軸受金属層4との間の結合のミクロ構造的な構造を例示している。線図を単純にするために、支持層のミクロ構造2は示されていない。2つの層の結晶粒構造及び軟質相5が概略的に示されている。
軸受金属層4のミクロ構造的な構造は、結合層3と軸受金属層4との間のはっきりした境界層6により特徴付けられる。境界層6は、したがって、結合層3のアルミニウム及び軸受金属層4のアルミニウムの結晶粒9,10の相互に隣接する表面7,8によって形成される(図3)。粒界はもっぱら結晶構造が同じであるが配向が異なる領域を分けるために、結合層の金属結晶粒と軸受金属結晶粒との接触は、別の粒界を構成するわけではない。2つの材料間の接触は、むしろ、合成的に生成された界面であると見なされるべきである。
合成的に生成された界面は、通常、格子構造も配向も互いに一致しないという理由から、エネルギー的平衡状態になく、これは、隣接する結晶子及び/又は結晶粒の不均一性の生成をもたらす。
結合層3と軸受金属層4との間の全体的な結合に関して、この合成的に生成された境界層6は、エネルギー(例えば境界面エネルギー)の観点から、粒界ほど有利でないという欠点がある。巨視的な観点からすれば、これらの境界面との結合形成及び/又は結合の接着強度は有利ではない。
この点に関して、本発明は、結合強度の向上を意図としている。
本発明による多層滑り軸受は、フラットな原材料11を形成することによって製造され、その一部が、例えば図4〜図6に示されている。
原材料11は、結合層3と、結合層3に結合された軸受金属層4とを含み、及び/又は、これらの層からなる。この原材料11は、結合層3を介して支持層3に結合されている。
結合層3は、アルミニウム又は第1のアルミニウム基合金から製造される。軸受金属層4は、第2のアルミニウム基合金から製造される。結合層3と軸受金属層4との間には、溶融冶金結合が形成される。
更に、結合ゾーン及び/又は結合領域12が、結合層3と軸受金属層4との間に形成され、この2つの層間には連続的な粒界勾配が存在する。
図4〜図6を参照しながら後述するように、本発明との関連において連続的な粒界勾配という表現は、軸受金属層4及び結合層3のアルミニウムの少なくとも結晶粒9,10間に光学顕微鏡で識別可能な境界層6(図2及び図3)は形成されないことを意味すると理解されるべきである。この状況では、結合層3と軸受金属層4との間の粒界には、断絶(不連続部)が存在しない。
先行技術との差異が比較しやすいように、図4〜図6には、原材料11の構造(巨視的及び微視的)が例示されている。
図1〜図3に関して説明するように、巨視的構造はスチール−アルミニウム滑り軸受の構造に対応している。したがって、図1及び図4は同じ構造を例示している。
したがって、巨視的に見ると、原材料11は、純アルミニウム製の結合層3とアルミニウム基合金製の軸受金属層4を含む。スズは、アルミニウム基合金中に軟質相5として不均一に組み込まれる。この詳細については、図1に関連する説明を参照されたい。
図5及び図6は、原材料11のミクロ構造的な構造を例示している。図2と同様に、図5においても、支持層のミクロ構造2が示されていない。
先行技術の滑り軸受と比較した差異がすでに図5から明らかであるが、これは特に図6から理解することができる。
図6は結合層3と軸受金属層4との間の移行部についての詳細な説明図を提示する。図2及び図3に例示されている先行技術に基づく滑り軸受1の場合と同様に、原材料11は、結合層3と軸受金属層4との間に、目立った境界層を有しない。むしろ、この実施形態において、結合層3と軸受金属層4とを含んで減摩層を構成する複合材料中に連続的な粒界勾配が形成される。したがって、上記の意味では、粒界が合成界面によって断絶されない。それにもかかわらず、図4に概略的に示されているように、巨視的な観点から見て、原材料11はそれぞれ減摩層が2つの異なる材料、つまり、純アルミニウム及びアルミニウム−スズ合金の結合を有する。
したがって、この原材料11、ひいては、この原材料から製造された多層滑り軸受において、結合層金属と軸受金属との間の結合形成は、もっぱら、2つの材料の個々の結晶子又は結晶粒9,10間の粒界13同士の凝集によって、確実になされる。エネルギーの観点から、これは、好ましい結合形態である。巨視的な観点から、これは、2つの結合パートナーのより高い機械的結合強度をもたらし、その結果、それらから製造された多層滑り軸受要素(図7)が、先行技術に基づく同等な滑り軸受1よりも高い荷重に耐えることができる。同等な滑り軸受とは、巨視的構造及び同じ材料の組み合わせ、例えば、スチール−Al99.9−AlSn20(支持層1−結合層3−軸受金属層4)を意味する。
先行技術の滑り軸受と本発明に基づく滑り軸受との間の巨視的構造に差異が存在しないにもかかわらず、単純な方法(粒界エッチング)によって、生成物に連続的な粒界勾配が存在することを実証することができる。
結合強度が向上した主な理由は境界エネルギーにある。
概して、境界(図2及び3中の境界層6)は、2つの「物体」がそれらの間に実質的に空間なしに互いに重なり合って存在する界面であるが、巨視的に見れば、均質な「物体」の場合に比べて実質的に「フィット性」に乏しい。エネルギーの観点から、境界は、したがって、有利でない状態である。なぜなら、外部の結合が、境界点に位置して「空」の空間内に入り、及び/又は、反対側に位置する他の境界の方向に存在するからである。これは結晶学用語で言う「フィット」ではない。したがって、「過剰」な結合エネルギーを系内で調節しなければならず、結果として有利でないエネルギー状態をもたらす。この状況は、界面エネルギー(J/m2)と呼ばれる。
徹底的なクリーニング及び活性化の後であっても(脱脂、ブラッシング又は研磨プロセスによる)、技術的な表面、例えばロール圧接に使用されるものなどは、吸着層、酸化物層及び化学種特異的な周辺層を有する。ロール圧接時に、これらの表面は、高圧によって結合される。これは、吸着層を破壊し、酸化物反応層を開裂し、化学種特異的な周辺層との接触をもたらす。続いて、これらは、「機械的アンカーリング」によっていわゆる境界層を形成する。厳密に言うと、ベース材料の直接接触はない。機械的アンカーリングは、金属の相互のアンカーリングである。原子的な間隔に近い密接な接触が生じる。接着による結合は、高圧によって、例えば形成プロセス(ロール圧接)によって生じさせることができる。
充分に高い温度での熱処理によって、結合パートナー(機械的アンカーリングにより生成)が結合面内に再配置され、原子レベルで2つの材料が「混合」される。しかし、この境界層には2つの結合パートナーの格子構造のスライディング遷移は存在せず、代わりに分割線が形成される。
この境界層は、適切なエッチングプロセス(例えば、エッチング溶液、100mlのH2O中の5MのHF酸0.5mlを使用、エッチング時間5秒間〜60秒間)によって、金属組織マイクロセクションで可視化することができる。基礎材料とは異なって、内部の種特異的な周辺層は、隣接する格子において局所的に変化した化学組成及び不均質性を含み、エッチング溶液による攻撃されるために、境界層がエッチングされる。同じ原理は、粒界のエッチングに当てはまる。
本発明に基づいて原材料11の層同士を結合することによって、境界層を機械的にアンカーリングさせた場合と比べて多数の効果がもたらされる。それらの効果の一部は上で説明した。
結合は、粒界の凝集力によって確保される。
上述したように、配向が異なるが結晶構造又は格子構造が同じである結晶において、粒界は、定義上、区域(結晶子又は結晶粒)を分ける。
機械的にアンカーリングされた境界、すなわち格子界面の場合に、格子は、もはや正確にフィットしない(同じ格子タイプ、例えば立方晶等の場合でも)。この結合の場合には、非常に複雑な構造がいわゆるミスフィット転位で常に生成されるので、エネルギーの点では不利である。
完全性を期すために、図7は、滑り軸受の半割シェルの形態にある複合材料製の多層滑り軸受要素14を例示する。支持層2と、それに結合された結合層3と、この結合層に結合された軸受金属層4とからなる三層の実施形態が例示されている。しかし、多層滑り軸受要素14は、1/3シェル又は1/4シェル等であってもよい。滑り軸受を得るために、多層滑り軸受シェルを、軸受マウントにおいて、他の(同一又は異なる)軸受シェルと組み合わせてもよい。
しかし、多層滑り軸受要素14の他の実施形態、例えば軸受ブッシュ又はスラストリングの形態も可能である。
支持層2は、通常、硬質材料から製造である。支持シェルとも呼ばれる支持層2に使用することができる材料としては、銅像、黄銅等が挙げられる。好ましい実施形態によれば、支持層2はスチールから製造される。
図7に例示されている実施形態において、軸受金属層4は、運用の際に実装される構成要素、例えばシャフトと直接接触した状態に置かれる。
多層滑り軸受14が3つよりも多くの層を有することも可能であり、その場合、少なくとも1つの他の層を軸受金属層4の上部に設け、例えば、図7に破線で示した減摩層15に結合させることも可能である。軸受金属層4と減摩層15との間に少なくとも1つの中間層、例えば拡散バリア層及び/又は他の結合層を設けることもできる。これらの層は、ガルバニックに又はPVDもしくはCVDプロセスによって配設された層であることができる。同様に、ポリマーに基づく層を、特に減摩ラッカーを適用することができる。これらの組み合わせも可能である。
図8は、原材料11に用いられる層状複合材料の一実施形態の断面を例示した図であり、この層状複合材料は、支持層2と、この支持層上に配設されていてこの支持層に結合された結合層3と、この結合層上に配設されていてこの結合層に結合された軸受金属層4とを含み、及び/又は、これらの層から成る。軸受金属層4は、結合層3の表面全体にわたって延在してもよい。しかし、軸受金属層4は、結合層3のこの表面の一部の領域だけに延在することも可能である。
結合層3及び軸受金属層4は、主成分としてアルミニウムを含み、何れの場合でも、アルミニウムは層のマトリックスを形成する。
例えば、結合層3は、純アルミニウム(Al99又はAl99.9)から成ることができる。結合層3の第1のアルミニウム基合金及び/又は軸受金属層4の第2のアルミニウム基合金は、Si、Sb、Cu、Mn、Mg、Zn、Co、Zr、Ni、Sc、Er、Ti、V、Nb、Taを含む又はこれらからなる群から選択される少なくとも1種の元素を含むことができる。少なくとも1種の合金元素の割合は0.5質量%〜15質量%であることができ、及び/又は、アルミニウム基合金中のこれらの合金元素の総割合は0.5質量%〜25質量%であることができる。Si及びSbは硬質相元素及び/又は硬質相形成剤として機能し、元素Cu、Mn、Mg、Znは主な補強元素として機能し、元素Co、Zr、Ni、Sc、Er、Ti、V、Nb、Taは追加的な補強元素として機能する。したがって、上記3つのグループのそれぞれからの少なくとも1種の元素が結合層3及び/又は軸受金属層4内に含まれてもよい。
軸受金属層4にオーバーレイが設けられる場合には、それは結合層3に使用される材料から製造することができる。この場合、原材料は、2種又は3種の異なるアルミニウム材料を含みうる。
結合層3とは異なり、軸受金属層4のアルミニウム基合金は、Sn、Bi、In、Pb及びこれらの混合物からなる群から選択される少なくとも1種の軟質相元素を含む。軟質相元素の割合及び/又は総割合は、最大で49.9質量%、特に3質量%〜40質量%であることができる。特に、軟質相元素はマトリックス元素と非混和性であるため、合金の不均一構造成分を形成する。軟質相元素は、好ましくはSn及び/又はBiである。
結合層3は軟質相を含まない。
原則として、第1及び第2のアルミニウム基合金は、品質及び量の両方に関して異なっていてもよい。しかし、原材料11、ひいては多層滑り軸受要素14の好ましい一実施形態は、少なくとも1つの軟質相の元素を除いて、結合層3の第1のアルミニウム基合金が、軸受金属層4の第2のアルミニウム基合金と同じの定性的組成を有するというものである。この場合には、アルミニウム基合金同士は、単に少なくとも1種の軟質相元素だけ異なる、すなわち2種のアルミニウム基合金中のその他の合金元素の比率が同じであることが可能である。例えば、結合層3の第1のアルミニウム基合金がAlCuMnであることができ、軸受金属層4の第2のアルミニウム基合金がAlSn20CuMnであることができる。第1及び第2のアルミニウム合金の、定性的な、及び、任意選択的に定量的な類似性のために、それらは、非常に類似の凝固挙動を示し、このため、冷間圧延に対する適合性が著しく改善される。
多層滑り軸受要素14の別の実施形態によると、アルミニウムに加えて、結合層3の第1のアルミニウム基合金及び/又は軸受金属層4の第2のアルミニウム基合金の少なくとも1種の合金元素が、結合層3と軸受金属層4との間に形成される結合ゾーンにおいて濃度勾配を有し、その結果、結合層3及び軸受金属層4により形成された結合において少なくとも1種の合金元素の濃度の急な遷移がない。幾つかの合金元素を使用した場合、これらの合金元素のうちの少なくとも1種及び/又は幾つか、あるいは、合金元素の全てに対して、濃度勾配が与えられる。例えば、少なくとも1種の軟質相元素のみに対して濃度勾配が与えられてもよい。
本発明の文脈において、結合ゾーンという表現は、結合層3と軸受金属層4との間の巨視的に知覚できる界面において、層厚が最大で200μm、特に10μm〜100μmである結合領域12と同義であると解釈することもできる。
多層滑り軸受要素14における結合層3の層厚は100μm〜1000μmであることができる。複合材料鋳物を作製してからそれを処理するまでの間の鋳放し状態では、結合層3の層厚は2mm〜12mmであることができる。
軸受金属層4の層厚は100μm〜3000μmであることができる。鋳放し状態では、軸受金属層4の層厚は、8mm〜20mmであることができる。
更に、結合層3と軸受金属層4との間に形成される結合領域12では、結合層3の結晶粒10及び/又は軸受金属層4の結晶粒9の結晶粒径は、最大で100μmの平均最大直径を有することができる。これは、溶融冶金プロセス中に、先行技術により公知の様式で適切な熱機械プロセス制御と組み合わせて、結晶粒微細化剤を添加することによって達成される。
平均直径とは、平均の線形結晶粒径を意味し、また、ヘイン(Heyn)結晶粒径としても知られている。この構造特性は、定量的な構造解析を優先するガイドラインに従って、先行技術から公知の様式で視覚的に評価される顕微鏡写真に基づいて求められる。
この点に関して、結合領域12中の結晶粒9,10の総計に対して少なくとも25%の割合の結晶粒9,10が、結合層3と軸受金属層4との間の結合領域12内に少なくとも形成されており、略球状の晶癖を有している場合には、有利である。
原材料11は、溶融冶金によって結合層3が軸受金属層4に結合されるように複合化鋳造により製造される。この目的に合うように、軸受金属層4の溶融材料を固体結合層3上に鋳造することができる。しかし、逆に、結合層3の溶融材料を固体軸受金属層4上に鋳造するという別の選択肢もある。
代わりに、結合層3又は軸受金属層4を、少なくともその表面の領域で溶融することも可能であるし、軸受金属層4又は結合層3の材料を、結合層3又は軸受金属層4の少なくとも部分的に溶融した材料上に鋳造することも可能である。
図9は、結合層3及び軸受金属層4から複合材料鋳物を製造するための装置16の好ましい実施形態を例示する。鋳造プロセスの順序を上述したように変えることができるため、以下の説明では、基材17及び鋳造層18についてのみ言及する。基材17は、結合層3又は軸受金属層4であることができ、したがって、鋳造層18は、軸受金属層4又は結合層3であることができる。第1及び第2のアルミニウム基合金は、これらのうちのどちらを対象とするかに応じて選択される。
多層滑り軸受要素14の製造方法は、概して、
− 二層原材料11を製造する工程であって、複合化鋳造によって、原材料11の第1の層を形成する第1のアルミニウム基合金及び原材料11の第2の層を形成する第2のアルミニウム基合金から二層原材料11を製造する工程と、
− 二層原材料11を、ロール圧接によって、多層滑り軸受要素14の支持層2を形成する基材に結合させる工程と、
− ロール圧接複合材料を仕上げ加工して多層滑り軸受要素14を得る工程、
を含む、方法工程を備える。
複合材料鋳物を製造するための装置16は、少なくとも1つの第1のゾーン19と、その第1のゾーンに直接的に隣接する第2のゾーン20と、その第2のゾーンに直接的に隣接する第3のゾーン21とを有する。第1のゾーン19内で、アルミニウムの第1のストランド22又はアルミニウム基合金のうちの1種の第1のストランド22が、第1のアルミニウム(合金)溶融物23から製造される。第2のゾーン20内で、第1のアルミニウム(合金)溶融物23の第1のストランド22が、少なくとも凝固した第1の表面24を有する程度まで冷却される。第3のゾーン21内で、第2のアルミニウム(合金)溶融物26からのアルミニウムの第2のストランド25又は他のアルミニウム基合金の第2のストランド25が、凝固した第1の表面24上に鋳造される。ただし、アルミニウムを使用する場合には、その他のストランド22又は25がそれぞれアルミニウム基合金から製造される。
装置16は、第1の下部エンドレスベルト27と第2の上部ベルト28とを有し、それぞれのベルトはいくつかのローラーにより案内される。第1の下部ベルト27は、装置16の全長にわたって製造方向に延びている。他方、図9から判るように、第2の上部ベルト28は、この全長の一部領域だけに延びている。この一部領域は、本装置の第1のゾーン19を規定する。
垂直距離29は、基材17の鋳造キャビティ、すなわち基材層厚を規定し、この基材層厚は、使用される基材材料に応じて2mmから、特に6mmから、20mmまでに及ぶことができる。鋳造キャビティの幅(図9を上から見下ろす方向で)は、例えば、最大で450mmであることができる。
第1のアルミニウム(合金)溶融物23は、装置16の開始時に水平に配設された鋳造ノズル30によって第1の下部ベルト27に適用される。この目的に合うように、この鋳造ノズル30は、第1の下部ベルト27と第2の上部ベルト28との間に延びている。
第1の下部ベルト27の下部に配設されているものは、少なくとも1つの第1の冷却通路32を有し、この冷却通路を通って冷媒が循環している第1の冷却ユニット31であり、この第1の冷却ユニット31に直接的に隣接して第1の下部ベルト27が配置されていることが好ましい。第1の冷却ユニット31は、例えば、少なくとも1つの第1の冷却通路32が配設された、銅製の冷却板33を備えていてもよい。
更に、第2の上部ベルト28の上部に配設されているものは、少なくとも1つの第2の冷却通路35を有し、この冷却通路を通って冷媒が循環している第2の冷却ユニット34である。この第2の冷却ユニット34に直接的に隣接して第2の上部ベルト28が配置されていることが好ましい。第2の冷却ユニット34は、例えば、少なくとも1つの第2の冷却通路35が配設された、銅製の冷却板36を備えていてもよい。
第1の冷却ユニット31は、多かれ少なかれ装置16の全長にわたって製造方向に延びている。他方、第2の冷却ユニット34は、第1のゾーン20の少なくとも略全長にのみ延びている。結果として、第1のゾーン19に隣接するゾーン20において、第1のストランド22は強制的に冷却されない。これにより、第2のストランド25の鋳造準備を整えて、基材17の第1の上面24における熱的条件を改善することができる。
冷却板33、36は、互いに少なくとも略平行に配設される。
第1及び第2の冷却ユニット31,34によって、第1のストランド25の溶融物から融解熱が引き出される。本方法の好ましい実施形態によると、第1のストランド22の第1の表面24の領域での冷却が、1℃/s〜15℃/sの範囲から選択される冷却速度で起こる。この点に関して、冷却速度がベルト速度に適応されていることが好ましい。この目的に合うように、本方法の別の実施形態によると、第1のゾーン19内で、第1のストランド22は、400℃を下回らない温度、特に400℃〜550℃の温度まで、第1の表面24の領域で冷却されることが好ましい。
鋳造溶融物が製造方向に(図9では、左から右へ)運搬されるように、少なくとも第1の下部ベルト27は駆動される。しかし、第2の上部ベルト28を駆動してもよい。その場合、2つのベルトの速度が、例えば、サーボモーターによって相互に同期される。
ベルト速度に基づいて、鋳造速度を設定し、及び/又は、変更できる。
装置16の端部に配設された鋳造ユニット37によって、第2のストランド25を得るためのアルミニウム(合金)溶融物が第1のストランド22の表面24上に鋳造される。
この鋳造ユニット37の始まりから第2の上部ベルト28の末端までの水平距離(それぞれ製造方向に見たときに)が、装置16の第2のゾーン20の長さを規定する。したがって、装置16の第3のゾーンは、鋳造ユニット37の始まりから第1の下部ベルト27の末端までの長さにより規定される。
鋳造ユニット37が製造方向に変位でき、それにより第2及び第3のゾーン20,21の長さを変更できるように、鋳造ユニット37は設計されている。したがって、これにより、鋳込層18と基材17との間の結合強度に影響が及ぶおそれがあり、特に、原材料11が異なる合金組成物から製造される場合に、第1のストランド22の第1の表面24における熱的条件に影響が及ぶおそれがある。
鋳造ユニット37は、垂直に配設された鋳造ノズル38を有することが好ましい。鋳造ノズル38が鋳造方向で移動可能であることも好ましい。鋳造ノズル38の鋳造出口の厚さは、例えば、4mm〜12mmであることができる。鋳造厚は、好ましくは、鋳造ノズル38の鋳造ギャップ厚と同じである。鋳造ノズル38の鋳造ギャップは、直線状又は円錐状に収束するデザインであることができる。鋳造ノズルの鋳造幅は、好ましくは、基材17の鋳造キャビティの幅と同じである。
鋳込層18は、鋳造ユニット37により基材17上に鋳造される。鋳造ユニット37の上流の少なくとも表面24の領域において、基材17は、好ましくは、既に完全に固体である、すなわち、凝固している)。
本方法の別の好ましい実施形態によると、第1のストランド22の第1の表面24に割り当てられた上部冷却回路と、第1のストランド22の第2の表面39に割り当てられた下部冷却回路とを有し、上部冷却回路の数が下部冷却回路の数よりも少ない冷却ライン内で、第1のストランド22が冷却される。この目的に合うように、下部冷却ユニット31の少なくとも1つの冷却通路32を、幾つか、特に3つの互いに独立な冷却回路に分割しても差し支えない。上部冷却ユニット34は、単一の冷却通路35だけで形成できる。
図9に例示されているように、冷却板33,36は、製造方向に順に配設され、とりわけ製造方向に対して横断的に延びている幾つかの通路を有することができる。しかし、これらの部分通路は、例えば、曲がりくねったレイアウトで延びているという点で、単一の冷却通路を備えてもよいことを指摘しておく。装置16の長手方向の側部に、2つの収集通路を設けてもよく、その収集通路のうちの1つから部分通路が延出し、他の通路に通じていてもよい。これらのデザインは、相互に依存していないが、流体学的には相互に接続していることから、「1つの冷却通路」という概念の一部として解釈されるべきである。
幾つかの独立した冷却通路が設けられている場合、そのような流体接続は、個々の冷却通路間に存在しない。
上記の3:1に分割された独立の冷却通路以外のアレンジメントとしては、例えば、2つの下部通路と1つの上部通路だけや、2つの上部通路と4つの下部通路なども可能である。
下部冷却ユニット31が相互に独立した冷却通路をより多く有するという事実は、第1のストランド22の冷却がより正確に比較的高い精度で影響され、それにより、第1のストランドの熱的条件をより正確に制御することが可能になり、第1の下部ストランドに対する第2の上部ストランド25の接着強度を向上させることを可能にしている。
同様に、別の好ましい実施形態によれば、第1の表面24における第1のストランドの熱的条件に対する制御を改善するために、左側及び右側40の領域において、第1のストランド22を冷却する。これは、第1のストランド22の側面40を、熱伝導性が銅よりも低い材料と接触させることによって達成することが好ましい。側面40を冷却するための方法として特に好ましい方法は、これらの側面を、鋳造ノズル30の側部下流に位置しうるグラファイトストリップと接触させることである。グラファイトストリップを受動的に冷却することもできるし、あるいは、装置1の別の実施形態に基づいて、間接的に冷却することもまた可能である。この目的に合うように、グラファイトストリップを水冷銅ストリップと直接接触させて載置する場合もあれば、あるいは水冷銅ストリップをグラファイトストリップ上に載置する場合もある。したがって、銅ストリップは、グラファイトストリップ用のストリップとして機能することもできる。これにより、第1の表面の領域24,22における第1のストランド中の温度プロファイルが均一化されるため、第1のストランド22の幅全体にわたって(すなわち、図9の平面図で、紙面の平面に対して垂直に見た場合)、第1のストランド22と第2のストランド25との間の結合品質を向上させることができる。この結果として、少なくとも第1の表面24の、少なくとも略線形、特に線形の領域において、第1の下部ストランド22の凝固前面に関して品質が向上する。これにより特に達成されるのは、第2のストランド25の鋳造時に、より均一性の高い熱的条件が鋳造幅にわたって優勢になることである。
第1のストランド22の側部を冷却するために、もしグラファイトストリップの間接水冷を使用する場合、別の実施形態の場合に、水が蒸発点に近い温度になるように0.5リットル/分〜1リットル/分の比較的少容量の水流を使用することが有利である。
代わりに、例えば、繰り返しになるが、直接的に又は間接的に加熱されたグラファイトストリップにより第1のストランド22の側面40を鋳造ノズル30の下流で焼戻すことも可能である。この焼戻しプロセスは、例えば、伝達媒体としてオイルを使用して実施することができる。
本方法の別の実施形態によると、第2のストランド25を、第1のストランド22の第1の表面24上に鋳造したら、別の冷却回路42を有する別の冷却ユニット41により冷却し、この他の冷却回路42の上流で第2のストランド25の凝固前面を形成する。したがって、他の冷却回路42は、鋳造ユニット37の下流に、その鋳造ユニットの鋳造ノズル38から離間して、製造方向に配設される。この場合、鋳込層18を製造するための材料は、できるだけ長期にわたって溶融液体状態にとどまるので、基材17と鋳込層18との間、換言すれば、完成した多層滑り軸受要素14における結合層3と軸受金属層4との間の連続的な粒界勾配の形成を改善することが可能となる。
上に概説した理由から、本方法の別の実施形態によると、2つのストランド22,25の冷却は、第1のアルミニウム基合金が実質的に球状構造で製造され、第2のアルミニウム基合金が実質的に樹枝状構造で製造されるように実施することも有利である。結晶粒径は5μm〜100μmであることができる。
他の冷却ユニット41は、好ましくは、例えば水などの冷媒が循環する銅製冷却機により例えば間接的に冷却されるグラファイト板43を有することが好ましい。グラファイト板43は、第2のストランド25に対する他の冷却ユニット41の密着を低減するので、結果として、追加的な潤滑を必要とせずに済む。更に、グラファイトは、熱伝導性が比較的低い(銅と比較して)ため、連続的な粒界勾配の形成を更に促進する。
第1のストランド22に接触する第1の下部ベルト27及び第2の上部ベルト28の表面トポグラフィは、対応する表面トポグラフィを、第1のストランド22に付与し、これは、支持層2及び/又は上部ストランド25との結合に対してプラスの効果を有することができる。
原材料11は、例えば、以下のようにして製造することができる。
基材17 厚さ12mmのAlSn25Cu1Mn
鋳込層18 厚さ12mmのAl99.5
したがって、D=1
アルミニウム合金溶融物23の溶融温度:780〜820℃
鋳込温度660〜700℃
鋳込速度0.5〜0.6m/分
アルミニウム溶融物26の溶融温度:820〜850℃
鋳込温度750〜800℃
鋳込時の基材ベルト温度500〜550℃
第1のストランド22による側部ストリップを通しての冷却能/循環:5〜10リットル/分
鋳込層18が基材17上に鋳造されるときに、基材17は再び表面的に溶融される。溶融ゾーンは、表面14から測定して、基材17中、1mm〜5mmの深度に達しうる。
このようにして製造された原材料11は、鋳放し状態で、適応引張り試験(厚さ3mmの直方体試料、及び横ねじ式クランピングジョーを使用)で測定された層の接着強度が、少なくとも60N/mmであり、すなわち、この接着強度は、同じ測定条件下で約45N/mmの引張強度を有するより脆弱な構成要素Al99.7の引張強度よりも高い。
同様な結果が、他の材料の組み合わせでも得られた(下表を参照)。
結合強度、すなわち、結合層3と軸受金属層4との間に生ずる結合に関して、第1及び第2のストランド22,25を製造するために使用されるアルミニウム基合金の融点が、融点の高いほうのアルミニウム基合金の融点を基準にして最大で15%異なる場合、あるいはアルミニウムを使用して第1又は第2のストランド22,25を製造するときに、他のストランドを製造するために使用されるアルミニウム基合金が、アルミニウムの融点より最大で15%高い融点を有する場合に、有利であることが立証された。これの例は、約660℃の融点を有するAl99結合層3と約615℃の融点を有するAlSn40Cu1Mn軸受金属層4との組み合わせ、又は約650℃の融点を有するAlZn5MgCu結合層と約630℃の融点を有するAlSn20Cu軸受金属層との組み合わせである。
軸受金属層4に対する結合層3の溶融冶金結合を生じさせる場合、鋳造の観点から、ひいては結合層3と軸受金属層4との結合の結合強度の観点から、層厚比D2:1〜1:10、特に3:2〜2:3を鋳造目的に使用する場合に、この層厚比Dが、基材の層厚と各鋳込層の層厚の比であるのが有利であることが立証された。例えば、基材としての軸受金属層4の層厚(鋳放し状態)は8mmで、鋳込層としての結合層3の層厚は4mmである。
次いで、これらの異なる方法の何れかにより製造された鋳造複合材料を、材料及び厚さに応じて、冷間圧延により、支持層2のロール圧接材料の所要厚さを低減するプロセスにかけることができ、変形性を改善するため及び任意選択的に軸受金属層4と結合層3との間の少なくとも1種の合金元素の濃度プロファイルを調整するために、任意選択的に少なくとも1つの中間アニーリングにかけることもできる。続いて、この方法で得られたストリップを所要長さ及び幅に切断し、配向させ、クリーニングし、脱脂してから、結合層3の側部の表面を研削プロセスによって活性化する。
結合層3及び支持層2により原材料11の結合は、ロール圧接によって達成することが好ましい。
この後、引き続き、軸受金属層4において適切な構造を得るため、及び/又は、異なる層間の結合を向上させるため、及び/又は、軸受金属層4と結合層3との間の少なくとも1種の合金成分について濃度勾配を調整するために、更なる熱処理にかけてもよい。
各鋳込層、換言すれば、軸受金属層4又は結合層3の場合に、別の選択肢は、材料溶融物を1回よりも多く鋳造することにより層を作製することであり、この場合、軸受金属層4又は結合層3が、少なくとも2つの部分層から構成される。
本発明を評価するために実施した試験は、以下のとおりである。
装置16を使用して、結合層3の材料を固体軸受金属層4(基材)(試験番号1〜10)上に鋳造した複合材料と、軸受金属層4の材料を固体結合層3(基材)(試験番号11及び12)上に鋳造した複合材料を製造した。製造した複合材料の選択を以下の表1に示す。
Figure 0006574302
この段階で、比Dは、鋳造プロセス後の複合材料についての厚さの比を表すことを重ねて繰り返し述べる。任意選択的な処理工程を実施することによって、この比は、仕上げ加工された滑り軸受における所要層厚に応じて、及び意図された用途に応じて、望みどおりに調整できる。対応する実施形態を次の表2に示す。
Figure 0006574302
あらゆる試験バリアントについての試験結果を詳細に列挙することは、この説明の範囲を越えることになるであろう。したがって、以下の説明は、幾つかの異なるバリアントに限った。
以下の試験では、捩り試験、繰返し曲げ試験及びスカッフィング荷重試験のために試験片を作製した。比較を行うため、明示する実施例の複合材料と同じ構造及び組成を有するロール圧接複合材料を試験した。
捩り試験の場合には、試料に対し、それぞれ右及び左に90°交互に捩ることに対応する捩り荷重をかける。各捩り後に、試料に剥離が生じたかどうかを調べた。試料の捩り数は、規定形状の剥離及び伸長が最初に発生した時点における捩り数に対応する。
繰返し曲げ試験の場合には、試料に固有周波数で−1のR値(純粋な交番荷重)を有する(経路制御)曲げ荷重をかける。接着した抵抗測定用のストリップを使用して亀裂を検出した。
スカッフィング荷重試験の場合には、一定のシャフト周速度12.6m/s、一定の油流量1.1リットル/分、及び一定の油温120℃で、軸受試験機で、軸受シェルに段階的に増加する荷重をかける。この試験では、それぞれ同等の条件下で、スカッフィングが起こり、及び/又は、最大荷重ステップに達するまで、同じタイプの一シリーズの少なくとも3つの滑り軸受に所定の荷重をかける。次に、各シリーズの全ての滑り軸受について、MPaでのスカッフィング及び/又は最大荷重ステップの開始時にMPaで測定された最大荷重から計算した平均スカッフィング荷重をブロック図形で記録した。
図10は、定性的な接着強度に関する試験としての捩り試験の結果を示す。この試験は、個々の層間の結合の強度(接着強度)についての比較値を決定するために使用した。本試験、及び本試験の基礎となる接着強度についての比較値は、全く同じ試料の状態、形状及び寸法の比較にのみ適用される。動かないように一端で固定した試料を右及び左に交互にそれぞれ90°捩ることによって、試験を実施した。右及び左への90°のたわみ、及び中央位置に対するその後の弾性反撥は、共に、捩れと呼ばれる。試験中に、試料に予め設定した回数の捩りをかけ、設定された捩りを次々に適用した。試験中に引裂き及び/又は剥離が起こった場合は、試験を終了し、その時点までに適用された捩りの数を試験プロトコールで記録した。
図10において、正規確率プロットで、横軸に各試料の捩り数を測定点の列の形態でプロットし、このプロットに試料を記録した。縦軸には、捩りの絶対数がプロットされている。各試験バリアントに対して少なくとも3回の試験を実施した(各バリアントについて、正規確率プロットで少なくとも3つの測定点で)。それぞれの測定値のソートをより効率的にするために、正規確率プロットで理想直線(分離線)をプロットした。
また、これらの試験に関して注意すべき点は、これらの試験では、結合層3と軸受金属層4との間の接着だけを試験したことである。スチール支持層2と結合層3との間の接着強度を試験することも可能であるが、これは表1中の評価したバリアントに当てはまらない。
捩り試験により求められた定性的な接着強度は、アクセプタンスライン44(得られた最低捩り数を表す)を超え、ロール圧接複合材料の領域45を超えることが分かった。曲線46〜50は、本発明による複合材料を表す(表1の試験番号1、2、6、7及び10を参照)。
図11及び図12は、多層滑り軸受要素14の疲労強度に関する試験として、室温でDIN 50142に準拠して実施した交番曲げ試験の結果を示す。この場合、応力がMPaで縦軸に、及び、亀裂が最初に検出された時点(損傷ライン51,52)及び試料破損の時点(破壊ライン/疲労ライン53,54)までの荷重変化の数値が横軸に対数目盛でプロットされている。
現時点で、本明細書中の各規格に関連する全ての図は、本願の出願日で有効な各規格のバージョンに基づくことを指摘しておく。
この試験に関して、本発明に基づく複合材料と先行技術に基づく複合材料との間での接着のクオリティの点での差異を求めるために、結合層3と軸受金属層4とからなり、仕上げ加工後の層厚比が1:1である複合材料に対してのみ試験を実施したことに注意すべきである。
図11及び図12から判るように、損傷ライン52で示される本発明による複合材料の疲労強度は、概して、損傷ライン51で示される先行技術による複合材料の疲労強度と同じレベルにある。しかし、それぞれの複合材料は同じ合金の組み合わせから製造されたものであるので、この結果は驚くに当たらない。一方、先行技術による複合材料と比較した本発明による複合材料の主な利点が、破壊ライン/疲労ライン(曲線53及び54)の位置により示されている。損傷ライン52と破壊ライン/疲労ライン54との間の領域、すなわち、材料損傷を発生させる過度歪み領域は、本発明による複合材料の場合の方が損傷ライン51と破壊ライン/疲労ライン53により区切られた先行技術による複合材料よりも大きい。本発明による複合材料から製造された構成要素の機能性に関して、先行技術による複合材料から製造された軸受シェルの場合よりも後に、軸受シェル及び/又は減摩層の全破壊(例えば、減摩層の剥離)が起こる。換言すれば、本発明による複合材料は、全破壊時点より前の先行する高度な損傷に耐える。
図13に、スカッフィング荷重試験の結果をブロック図形の形態で例示する。本発明による複合材料は、平均最大スカッフィング荷重が100MPaであり、平均最大スカッフィング荷重が68MPaである先行技術による複合材料(ブロック56)よりも著しく高い値(ブロック55)を有する。
比較のために、実施例に明示したものと同一の構造及び同一の組成を有するロール圧接複合材料を作製した。次に、これらの比較例を、熱処理(350℃で3時間及び400℃で120時間の長時間アニーリング)にかけた。この間に、結合層と軸受金属層との間の界面は変化しなかった。換言すれば、ロール圧接結合は、複合化鋳造によって生成されるような結合にはなりえない。
軸受金属層4及び/又は結合層3は、最小平均結晶粒径が20μmである結晶粒9,10で作製することができる。特に、軸受金属層4及び/又は結合層3は、100μmを超える層厚で作製することもできる。
多層滑り軸受14は、あらゆるサイズ及びタイプのエンジン、例えば、重量積載物車両のエンジン、又は大型の2ストローク船舶用エンジン、又は自動車用エンジンに使用できる。
実施例として例示されている実施形態は、多層滑り軸受要素14の可能なバリアント、及びその製造方法を表す。この段階で、個々の実施形態を互いに様々に組み合わせたものも可能であることを指摘しておく。
良好な秩序を保つため、最終的に、多層滑り軸受要素14の構造に関するより明確な理解を与えるために、多層滑り軸受要素及びその構成要素について、一定の縮尺からある程度外れて、及び/又は、拡大スケール、及び/又は、縮小スケールで例示されていることを指摘しておく。
本発明に関連する発明の実施態様の一部を以下に示す。
[態様1]
支持層(2)と、前記支持層(2)に結合された結合層(3)と、前記結合層(3)に結合された軸受金属層(4)とを含む複合材料製の多層滑り軸受要素(14)であって、前記結合層(3)が、アルミニウム製又は第1の軟質相フリーのアルミニウム基合金製であり、前記軸受金属層(4)が、少なくとも1つの軟質相を含む第2のアルミニウム基合金製であり、前記結合層(3)及び前記軸受金属層(4)が溶融冶金結合により互いに結合されていて前記結合層(3)と前記軸受金属層(4)との間に結合ゾーンを形成しており、結晶粒(9,10)が前記結合ゾーン内に形成されており、連続的な粒界勾配が、前記結合層(3)と前記軸受金属層(4)との間の前記結合ゾーン内に形成されている、多層滑り軸受要素(14)。
[態様2]
前記結合層(3)の前記第1のアルミニウム基合金及び/又は前記軸受金属層(4)の前記第2のアルミニウム基合金が、少なくとも1種の(他の)合金元素を含有し、前記合金元素が、前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーンにおいて濃度勾配を有する、態様1に記載の多層滑り軸受要素(14)。
[態様3]
前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーン内の結晶粒(9,10)の結晶粒度が、最大で100μmの平均最大直径を有する、態様1又は2に記載の多層滑り軸受要素(14)。
[態様4]
前記結合ゾーン内の結晶粒(9、10)の総計に対して少なくとも25%の割合の結晶粒(9,10)が、少なくとも前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーンにおいて、略球状の晶癖を有する、態様1〜3のいずれか一つに記載の多層滑り軸受要素(14)。
[態様5]
前記結合層(3)の前記第1のアルミニウム基合金が、少なくとも1種の軟質相元素を除いて、前記軸受金属層(4)の前記第2のアルミニウム基合金と同じ定性的組成を有する、態様1〜4のいずれか一つに記載の多層滑り軸受要素(14)。
[態様6]
多層滑り軸受要素(14)の製造方法であって、
− 二層原材料(11)を製造する工程であって、複合化鋳造によって、前記原材料(11)の第1の層を形成する第1のアルミニウム基合金及び前記原材料(11)の第2の層を形成する第2のアルミニウム基合金から二層原材料(11)製造する工程と、
− 前記二層原材料(11)を、ロール圧接によって、前記多層滑り軸受要素(14)の支持層(2)を形成する基材に結合させる工程と、
− ロール圧接複合材料を仕上げ加工して多層滑り軸受要素(14)を得る工程と、
を含み、前記原材料(11)を製造するための前記複合化鋳造プロセスは、少なくとも3つの異なるゾーンを有する装置(16)において実施され、第1のゾーン(19)内で、アルミニウムの第1のストランド(22)がアルミニウム溶融物から製造されるか、又はアルミニウム基合金のうちの1種の第1のストランド(22)が第1のアルミニウム合金溶融物(23)から製造され、第2のゾーン(20)において、前記アルミニウム溶融物又は第1のアルミニウム基合金溶融物(23)の第1のストランド(22)を、第1のストランド(22)が凝固した第1の表面(24)を有するまで冷却し、第3のゾーン(21)において、アルミニウム溶融物からのアルミニウムの又は第2のアルミニウム合金溶融物(26)からの他のアルミニウム基合金の第2のストランド(25)が、凝固した第1の表面(24)上に鋳造され、ただし、アルミニウムを使用する場合には、その他のストランド(22又は25)はそれぞれ前記第2のアルミニウム基合金から製造される、方法。
[態様7]
前記第1のストランド(22)の第1の表面(24)に割り当てられた上部冷却回路と、前記第1のストランド(22)の第2の表面(39)に割り当てられた下部冷却回路とを有し、前記上部冷却回路の数が前記下部冷却回路の数よりも少ない冷却ライン内で、前記第1のストランド(22)が冷却される、態様6に記載の方法。
[態様8]
前記第1のストランド(22)が1℃/s〜15℃/sの範囲から選択される冷却速度で前記第1の表面(24)の領域において冷却される、態様6又は7に記載の方法。
[態様9]
前記第1のストランド(22)が前記第1の表面(24)の領域において400℃を下回らない温度に冷却される、態様6〜8のいずれか一つに記載の方法。
[態様10]
前記第1のストランド(22)が側面(40)の領域において冷却される、態様6〜9のいずれか一つに記載の方法。
[態様11]
前記第1のストランド(22)の前記第1の表面(24)上に鋳造された第2のストランド(25)が、別の冷却回路により冷却され、前記第2のストランド(25)の凝固前面が、この別の冷却回路の上流に形成される、態様6〜10のいずれか一つに記載の方法。
[態様12]
前記第1のアルミニウム基合金が実質的に球状構造で製造され、前記第2のアルミニウム基合金が実質的に樹枝状構造で製造される、態様6〜11のいずれか一つに記載の方法。
[態様13]
前記第1及び第2のストランド(22,25)を製造するために使用される前記アルミニウム基合金の融点が、融点の高いほうのアルミニウム基合金の融点を基準にして最大で15%異なるか、あるいは、前記第1又は第2のストランド(22又は25)を製造するためにアルミニウムが使用される場合には、他のストランド(25又は22)に使用されるアルミニウム基合金が、アルミニウムの融点よりも最大で15%高い融点を有する、態様6〜12のいずれか一つに記載の方法。
[態様14]
前記原材料(11)が2:1〜1:10の層厚比Dで製造され、この層厚比が、前記鋳造プロセス後の前記第1のストランド(22)の層厚と前記第2のストランド(25)の層厚の比である、態様6〜13のいずれか一つに記載の方法。
1 滑り軸受
2 支持層
3 結合層
4 軸受金属層
5 軟質相
6 境界層
7 表面
8 表面
9 結晶粒
10 結晶粒
11 原材料
12 結合領域
13 粒界
14 多層滑り軸受要素
15 減摩層
16 装置
17 基材
18 鋳込層
19 ゾーン
20 ゾーン
21 ゾーン
22 ストランド
23 アルミニウム(合金)溶融物
24 表面
25 ストランド
26 アルミニウム(合金)溶融物
27 ベルト
28 ベルト
29 距離
30 鋳造ノズル
31 冷却ユニット
32 冷却通路
33 冷却板
34 冷却ユニット
35 冷却通路
36 冷却板
37 鋳造ユニット
38 鋳造ノズル
39 表面
40 側部
41 冷却ユニット
42 冷却回路
43 グラファイト板
44 アクセプタンスライン
45 領域
46 曲線
47 曲線
48 曲線
49 曲線
50 曲線
51 損傷ライン
52 損傷ライン
53 疲労ライン
54 疲労ライン
55 ブロック
56 ブロック

Claims (14)

  1. 支持層(2)と、前記支持層(2)に結合された結合層(3)と、前記結合層(3)に結合された軸受金属層(4)とを含む複合材料製の多層滑り軸受要素(14)であって、前記結合層(3)が、アルミニウム製又は第1の軟質相フリーのアルミニウム基合金製であり、前記軸受金属層(4)が、少なくとも1つの軟質相を含む第2のアルミニウム基合金製であり、前記結合層(3)及び前記軸受金属層(4)が溶融冶金により互いに結合されており、前記結合層(3)と前記軸受金属層(4)との間に層厚が最大で200μmである結合ゾーンが形成されており、結晶粒(9,10)が前記結合ゾーン内に形成されており、前記結合層(3)と前記軸受金属層(4)との間に光学顕微鏡で識別可能な境界層は形成されていない、多層滑り軸受要素(14)。
  2. 前記結合層(3)の前記第1のアルミニウム基合金及び/又は前記軸受金属層(4)の前記第2のアルミニウム基合金が、少なくとも1種の(他の)合金元素を含有し、前記合金元素が、前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーンにおいて濃度勾配を有する、請求項1に記載の多層滑り軸受要素(14)。
  3. 前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーン内の結晶粒(9,10)の結晶粒度が、最大で100μmの平均最大直径を有する、請求項1又は2に記載の多層滑り軸受要素(14)。
  4. 前記結合ゾーン内の結晶粒(9、10)の総計に対して少なくとも25%の割合の結晶粒(9,10)が、少なくとも前記結合層(3)と前記軸受金属層(4)との間に形成された前記結合ゾーンにおいて、略球状の晶癖を有する、請求項1〜3のいずれか一項に記載の多層滑り軸受要素(14)。
  5. 前記結合層(3)の前記第1のアルミニウム基合金が、少なくとも1種の軟質相元素を除いて、前記軸受金属層(4)の前記第2のアルミニウム基合金と同じ定性的組成を有する、請求項1〜4のいずれか一項に記載の多層滑り軸受要素(14)。
  6. 多層滑り軸受要素(14)の製造方法であって、
    − 二層原材料(11)を製造する工程であって、複合化鋳造によって、前記原材料(11)の第1の層を形成する第1のアルミニウム基合金及び前記原材料(11)の第2の層を形成する第2のアルミニウム基合金から二層原材料(11)製造する工程と、
    − 前記二層原材料(11)を、ロール圧接によって、前記多層滑り軸受要素(14)の支持層(2)を形成する基材に結合させる工程と、
    − ロール圧接複合材料を仕上げ加工して多層滑り軸受要素(14)を得る工程と、
    を含み、前記原材料(11)を製造するための前記複合化鋳造プロセスは、少なくとも3つの異なるゾーンを有する装置(16)において実施され、第1のゾーン(19)内で、アルミニウムの第1のストランド(22)がアルミニウム溶融物から製造されるか、又はアルミニウム基合金のうちの1種の第1のストランド(22)が第1のアルミニウム合金溶融物(23)から製造され、第2のゾーン(20)において、前記アルミニウム溶融物又は第1のアルミニウム基合金溶融物(23)の第1のストランド(22)を、第1のストランド(22)が凝固した第1の表面(24)を有するまで冷却し、第3のゾーン(21)において、アルミニウム溶融物からのアルミニウムの又は第2のアルミニウム合金溶融物(26)からの他のアルミニウム基合金の第2のストランド(25)が、凝固した第1の表面(24)上に鋳造され、ただし、アルミニウムを使用する場合には、その他のストランド(22又は25)はそれぞれ前記第2のアルミニウム基合金から製造される、方法。
  7. 前記第1のストランド(22)の第1の表面(24)に割り当てられた上部冷却回路と、前記第1のストランド(22)の第2の表面(39)に割り当てられた下部冷却回路とを有し、前記上部冷却回路の数が前記下部冷却回路の数よりも少ない冷却ライン内で、前記第1のストランド(22)が冷却される、請求項6に記載の方法。
  8. 前記第1のストランド(22)が1℃/s〜15℃/sの範囲から選択される冷却速度で前記第1の表面(24)の領域において冷却される、請求項6又は7に記載の方法。
  9. 前記第1のストランド(22)が前記第1の表面(24)の領域において400℃を下回らない温度に冷却される、請求項6〜8のいずれか一項に記載の方法。
  10. 前記第1のストランド(22)が側面(40)の領域において冷却される、請求項6〜9のいずれか一項に記載の方法。
  11. 前記第1のストランド(22)の前記第1の表面(24)上に鋳造された第2のストランド(25)が、別の冷却回路により冷却され、前記第2のストランド(25)の凝固前面が、この別の冷却回路の上流に形成される、請求項6〜10のいずれか一項に記載の方法。
  12. 前記第1のアルミニウム基合金が実質的に球状構造で製造され、前記第2のアルミニウム基合金が実質的に樹枝状構造で製造される、請求項6〜11のいずれか一項に記載の方法。
  13. 前記第1及び第2のストランド(22,25)を製造するために使用される前記アルミニウム基合金の融点が、融点の高いほうのアルミニウム基合金の融点を基準にして最大で15%異なるか、あるいは、前記第1又は第2のストランド(22又は25)を製造するためにアルミニウムが使用される場合には、他のストランド(25又は22)に使用されるアルミニウム基合金が、アルミニウムの融点よりも最大で15%高い融点を有する、請求項6〜12のいずれか一項に記載の方法。
  14. 前記原材料(11)が2:1〜1:10の層厚比Dで製造され、この層厚比が、前記鋳造プロセス後の前記第1のストランド(22)の層厚と前記第2のストランド(25)の層厚の比である、請求項6〜13のいずれか一項に記載の方法。
JP2018506861A 2015-08-13 2015-08-13 多層滑り軸受要素 Expired - Fee Related JP6574302B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AT2015/050201 WO2017024326A1 (de) 2015-08-13 2015-08-13 Mehrschichtgleitlagerelement

Publications (2)

Publication Number Publication Date
JP2018532593A JP2018532593A (ja) 2018-11-08
JP6574302B2 true JP6574302B2 (ja) 2019-09-11

Family

ID=54251889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506861A Expired - Fee Related JP6574302B2 (ja) 2015-08-13 2015-08-13 多層滑り軸受要素

Country Status (7)

Country Link
US (1) US20180200991A1 (ja)
EP (1) EP3334596B1 (ja)
JP (1) JP6574302B2 (ja)
KR (1) KR20180041690A (ja)
CN (1) CN107848257B (ja)
BR (1) BR112018002251A2 (ja)
WO (1) WO2017024326A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420091B1 (ko) 2018-04-10 2022-07-12 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
AT522440B1 (de) * 2019-05-07 2020-11-15 Miba Gleitlager Austria Gmbh Mehrschichtgleitlagerelement
CN110508784B (zh) * 2019-09-18 2021-04-09 北京遥感设备研究所 一种可精确控制成分的梯度金属材料制备方法
AT16900U1 (de) * 2019-11-19 2020-11-15 Miba Gleitlager Austria Gmbh Mehrschichtgleitlagerelement
GB2602039B (en) * 2020-12-16 2024-04-24 Mahle Engine Systems Uk Ltd Method of manufacturing a strip for a bearing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB749529A (en) 1953-08-26 1956-05-30 Cyril James Faulkner Composite bearing structures and method of making the same
GB1275431A (en) 1969-03-26 1972-05-24 Vandervell Products Ltd A metal laminate suitable for use in the manufacture of plain bearings
JPS61135463A (ja) * 1984-12-04 1986-06-23 Kawasaki Steel Corp 金属クラツド材の連続鋳造方法ならびにその装置
DE3829423C1 (ja) * 1988-08-31 1989-05-03 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden, De
DE19861160C5 (de) 1998-01-14 2005-05-25 Federal-Mogul Wiesbaden Gmbh & Co. Kg Schichtverbundwerkstoff für Gleitelemente
EP0947260A1 (de) 1998-02-04 1999-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gleitlager aus monotektischen Legierungen
JP2004514097A (ja) * 2000-11-15 2004-05-13 フェデラル−モーグル コーポレイション 性能を向上させた中間層を有する、非めっきアルミニウムベースの軸受合金
DE10333589B9 (de) 2003-07-24 2010-06-10 Federal-Mogul Wiesbaden Gmbh & Co. Kg Verfahren zur Herstellung eines bandförmigen Verbundwerkstoffes für die Gleitlagerherstellung und Vorrichtung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
WO2017024326A1 (de) 2017-02-16
KR20180041690A (ko) 2018-04-24
EP3334596B1 (de) 2020-03-04
JP2018532593A (ja) 2018-11-08
CN107848257B (zh) 2020-05-05
CN107848257A (zh) 2018-03-27
US20180200991A1 (en) 2018-07-19
BR112018002251A2 (pt) 2018-09-18
EP3334596A1 (de) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6574302B2 (ja) 多層滑り軸受要素
KR100600075B1 (ko) 알루미늄기 합금으로 제조된 중간 층, 특히 결합 층을 구비한 마찰 베어링
US7790295B2 (en) Composite material in strip form and its use, composite sliding element
US6517954B1 (en) Aluminium alloy, notably for a layer
TWI658151B (zh) 鋼板及其製造方法
JP5399645B2 (ja) アルミニウム基軸受合金
PL187646B1 (pl) Sposób wytwarzania materiału warstwowego na elementy ślizgowe oraz materiał warstwowy na elementy ślizgowe
CN109477167B (zh) 铜-镍-锡合金、其生产方法和其用途
CN109477166B (zh) 铜-镍-锡合金、其生产方法和其用途
CN102878204A (zh) 多层轴瓦
JPH036345A (ja) 耐疲労性と非焼付性にすぐれた摺動用アルミニウム基合金
JP2008542548A (ja) アルミニウム滑り軸受合金
KR20190009366A (ko) 무연 고장력 황동 합금 및 고장력 황동 합금 제품
WO2002040883A1 (en) Non-plated aluminum based bearing alloy with performance-enhanced interlayer
KR101057264B1 (ko) 알루미늄합금 시트 및 그 제조방법
Abbasi et al. Mechanical properties and interface evaluation of Al/AZ31 multilayer composites produced by ARB at different rolling temperatures
KR101431355B1 (ko) 미끄럼 베어링용 알루미늄 합금, 미끄럼 베어링 및 그 제조 방법
JP6679742B2 (ja) スズ含有銅合金、その製造方法、ならびにその使用法
JP4799294B2 (ja) 高成形性Al−Mg系合金板の製造方法
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
Reihanian et al. Wear-resistant Al/SiC-Gr hybrid metal matrix composite fabricated by multiple annealing and roll bonding
JP6830319B2 (ja) 銅−亜鉛合金、銅−亜鉛合金から成るストリップ状の材料、銅−亜鉛合金から成る半製品を製造するための方法及び銅−亜鉛合金から成るすべり要素
JP3776228B2 (ja) 熱処理強化型アルミニウム系摺動材料およびその製造方法
JP5815630B2 (ja) アルミニウム合金および摺動部材
GB2485007A (en) Aluminium-silicon bearing alloy and method of making such an alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190815

R150 Certificate of patent or registration of utility model

Ref document number: 6574302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees