JP6573571B2 - 漏電継電器、漏電遮断器及びそれらの制御方法 - Google Patents

漏電継電器、漏電遮断器及びそれらの制御方法 Download PDF

Info

Publication number
JP6573571B2
JP6573571B2 JP2016086944A JP2016086944A JP6573571B2 JP 6573571 B2 JP6573571 B2 JP 6573571B2 JP 2016086944 A JP2016086944 A JP 2016086944A JP 2016086944 A JP2016086944 A JP 2016086944A JP 6573571 B2 JP6573571 B2 JP 6573571B2
Authority
JP
Japan
Prior art keywords
harmonic component
circuit
leakage
phase
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016086944A
Other languages
English (en)
Other versions
JP2017200255A (ja
Inventor
佳正 渡邊
佳正 渡邊
泰行 岡田
泰行 岡田
白附 晶英
晶英 白附
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016086944A priority Critical patent/JP6573571B2/ja
Publication of JP2017200255A publication Critical patent/JP2017200255A/ja
Application granted granted Critical
Publication of JP6573571B2 publication Critical patent/JP6573571B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば三相電路に設けた漏電継電器、漏電遮断器及びそれらの制御方法に関する。
電気機器や配線ケーブルは十分絶縁対策が施されているものの、経年劣化、ケーブルへの応力、機器の異なる取扱いなどにより絶縁劣化が生じ、絶縁劣化箇所を介して漏洩電流が流れ、人体への感電や発熱による火災事故が発生する要因となる。それら事故は、漏電検出センサである零相変流器(ZCT:Zero−phase−sequence Current Transformer)が内蔵された漏電継電器や漏電遮断器を電路に備えることで対策することができる。
零相電流の計測手段は、主に2通りに大別できる。まず、1つ目として、例えば、特許文献1の図2に記載の通り、電流センサである変流器(CT:Current Transformer)を三相電路の各電流線に設け、各相の電流計測値を和算することにより零相電流を求める手段である。2つ目として、例えば、特許文献2の図1に記載の通り、漏電センサである零相変流器に電路の各電流線を一括して貫通させ、零相変流器の出力から零相電流を求める手段である。変流器及び零相変流器の計測精度を鑑みると、高精度に零相電流を計測したい目的であれば、零相変流器が用いられることが一般的である。部品点数の観点でも、零相変流器を用いた方が変流器を3個用いるよりも少なくて済む。
感電事故や火災事故を未然に事故を防ぐため、零相電流がしきい値を超えたか否かを判定し、しきい値を超えている場合は何かしらの対処が必要となる。警報を出す機器であれば漏電継電器、電路に設けた接点を開閉制御する機器であれば漏電遮断器となり、一般的に、しきい値の判定には求めた零相電流波形の実効値を用いることが多い。
しかしながら、電路には歪みを含まない正弦波波形のみならず、変圧器等を電源とした場合の電源投入時に発生する励磁突入電流(インラッシュ電流)などの歪みを含む波形が流れる場合もある。特に、励磁突入電流波形には直流成分や第2次高調波成分が含まれるため、零相変流波形にもこれらの成分が重畳することになる。そのため、漏電継電器もしくは漏電遮断器では、零相電流のしきい値判定時にしきい値を超えていると誤判定してしまい、漏電が発生していない状態にも関わらず、警報を実施したり、電路に設けた接点を開放してしまうといった問題があった。
上記の問題に対し、従来、例えば、特許文献3の図1、特許文献4の図1、特許文献5の図1に記載の通り、零相電流波形にフィルタ処理を施し、零相電流波形に含まれる歪み成分を抽出したり、遮断器や継電器が誤作動しないように信号処理を行うといった対策手段が提案されている。
また、零相電流の計測手段に零相変流器を用いる場合、貫通させる各相の電流線や導体に大きな電流が流れることによって生じる零相変流器の主要構成部材(磁性体コア)の磁気飽和を防ぐため、特許文献6の図1に記載の通り、磁性体コアの周辺に磁気シールドを配置する事例も知られている。
従来技術に係る漏電継電器や漏電遮断器における誤作動防止策として、上述のように、励磁突入電流の歪み成分を反映した零相電流波形にフィルタ処理などの信号処理を行うことが知られていた。
特開平1−008822号公報(図2) 特開平6−290977号公報(図1) 特開昭63−011019号公報(図1) 特開平3−060321号公報(図1) 特開2006−197679号公報(図1) 特開平7−083960号公報(図1)
しかしながら、励磁突入電流は点検などで稼働停止中の変圧器設備を立ち上げた際など、過渡的に流れるものである。つまり、従来の漏電継電器や漏電遮断器における誤作動防止策は瞬時状態での過電流を対象にしたものであった。
一方、負荷を駆動している定常状態で、電路に流れる電流は歪み成分を含まない交流電流である。交流電流の大きさは負荷の変動により変化するが、負荷の変動によっては、電路に流れる電流が漏電継電器や漏電遮断器の定格仕様電流を超えた過電流となる場合もある。
このような定常状態で、かつ電路に過電流が流れている場合の誤作動防止策として有効な手段は、既に述べたように、零相変流器の磁性体コアの周辺に磁気シールドを配置することであるが、磁気シールドを配置することは零相変流器の寸法面、重量面、コスト面で問題があった。また、零相変流器は電路の各電流線を一括して貫通させる必要があり、貫通穴の壁面、すなわち磁性体コアの内周箇所に磁気シールドが配置されている場合、貫通時の作業効率も悪化するといった問題もあった。
本発明の目的は以上の問題点を解決し、従来技術に比較して簡単な構成で確実に漏電継電器の誤作動を防止することができる漏電継電器、漏電遮断器とそれらの制御方法を提供することにある。
本発明の一態様に係る漏電継電器は、三相電路に設けた零相変流器の2次電圧波形の実効値が所定の値を超えているか否かで電路の漏電の有無を判定して警報する漏電継電器において、
上記零相変流器の2次電圧波形の第3次高調波成分を求め、当該第3次高調波成分値が所定のしきい値を超えているか否かを判定する判定手段を備え、
上記第3次高調波成分値が上記しきい値を超えているときに上記漏電継電器の警報機能を停止させることを特徴とする。
従って、本発明に係る漏電継電器によれば、従来技術に比較して簡単な構成で確実に漏電継電器の誤作動を防止することができる。また、定常状態で誤作動を防止するために必要不可欠であった磁気シールドの使用量を削減することができる。
本発明の実施の形態1に係る漏電継電器101の構成例を示すブロック図である。 図1の漏電継電器101において警報を出力する条件を示す表である。 図1の漏電継電器101の零相変流器2の構成例を示す断面図である。 図1の漏電継電器101の零相変流器2の別の構成例を示す断面図である。 図1の漏電継電器101の零相変流器2で用いる磁性体コアにおける磁界強度Hに対する磁束密度の磁気飽和特性を示すグラフである。 三相交流電流を流したときに、零相変流器2の磁性体コアに局所的な磁気飽和が発生することを示す三相交流電流の波形図である。 本発明の実施の形態1の変形例に係る漏電継電器102の構成例を示すブロック図である。 実施の形態1及び2において過電流判定を行うときに必要となる被測定電流値と零相変流器の2次電圧波形に含まれる第3次高調波成分値との相関関係を示すグラフである。 本発明の実施の形態2に係る漏電遮断器103の構成例を示すブロック図である。 図8の漏電継電器において電路に設けたブレーカ6を開放する条件を示す表である。 本発明の実施の形態2の変形例に係る漏電遮断器104の構成例を示すブロック図である。
以下、本発明に係る実施の形態について図面を参照して説明する。なお、以下の各実施の形態において、同様の構成要素については同一の符号を付している。
実施の形態1.
図1は本発明の実施の形態1に係る漏電継電器101の構成例を示すブロック図である。実施の形態1に係る漏電継電器101は、三相電路における各相の被測定電流線1を貫通するように設けられた零相変流器2の2次電圧波形(零相電流波形)に含まれる歪み成分に着目し、その歪み成分の大きさに基づいて、漏電継電器の誤作動を防止することを特徴としている。
図1において、三相電路における各相の被測定電流線1は零相変流器2に貫通されており、ここで、被測定電流線1は零相変流器2の1次巻線となる。零相変流器2の2次巻線22には負担抵抗Rmが接続されており、2次巻線22に流れる2次電流を負担抵抗を介して電流−電圧変換し、負担抵抗Rmの両端には2次電圧が発生する。
負担抵抗Rmの両端に発生した2次電圧(波形)は漏電判定回路3及び第3次高調波成分検出回路11にそれぞれ入力される。零相変流器2の基本動作原理は公知の変流器と同じであるため、2次電圧からオームの法則に従って2次電流を求め、さらに求めた2次電流に対して2次巻線22の巻線数を乗算することで1次電流、すなわち零相電流を算出することができる。2次電圧と零相電流との関係は容易に換算可能であるが、実用上、電圧信号のまま取り扱うことが多いため、以下では電圧信号のまま説明を続ける。
漏電判定回路3は入力された2次電圧(波形)の実効値を求め、求めた実効値が所定のしきい値に達しているか否かを判定し、判定結果信号を警報判定回路13に出力する。ここで、漏電判定回路3は、求めた実効値がしきい値に達していれば判定結果信号としてハイレベル信号を出力する一方、しきい値に達していなければ判定結果信号としてローレベル信号を出力する。
第3次高調波成分検出回路11は、漏電判定回路3と同様に、入力された2次電圧波形の第3次高調波成分をフィルタを用いて求め、求めた2次電圧波形の第3次高調波成分値を示す信号を、後段の過電流判定回路12に出力する。過電流判定回路12は、入力された2次電圧波形の第3次高調波成分値が所定のしきい値に達しているか否かを判定して判定結果信号を警報判定回路13に出力する。過電流判定回路12は、第3次高調波成分値がしきい値に達していれば判定結果信号としてハイレベル信号を出力する一方、しきい値に達していなければ判定結果信号としてローレベル信号を出力する。なお、過電流判定回路12からハイレベル信号が出力されていれば、三相電路において、過電流が流れていることを意味する。過電流とは、漏電継電器101の定格仕様の電流値を超えた電流のことを意味する。
警報判定回路13は入力された2つの判定結果信号に基づいて、警報を実施する否かを判定して判定結果信号を警報装置5に出力する。ここで、警報判定回路13は警報を実施する場合はハイレベル信号を出力する一方、警報を実施しない場合はローレベル信号を出力する。
図2は図1の漏電継電器101において警報を出力する条件を示す表である。警報の実施は、具体的には図2に示すケースC1〜C4のうちのケースC2のみとなる。つまり、漏電判定回路3からハイレベル信号が出力されかつ過電流判定回路12からローレベル信号が出力される場合のみ警報を実施する。言い換えれば、過電流判定回路12から出力される判定結果信号がハイレベル信号である場合、漏電判定回路3の判定結果信号に関わらず、警報を実施することを停止させる。従来技術に係る漏電継電器であれば、漏電判定回路3の判定結果信号のみで警報を実施するか否かを判定したのに対し、本実施の形態では、警報を実施するか否かを判定するためには、過電流判定回路12の判定結果信号を必須としている。
警報装置5はハイレベル信号に応答して、漏電継電器101が設置された環境において、警報を実施する。例えば、音であればブザー音、光であればLEDランプの点灯といった警報手段があり、警報後の運用方法は漏電継電器101を設置した管理者によって様々である。
さて、過電流判定回路12は第3次高調波成分検出回路11にて求めた2次電圧波形の第3次高調波成分値に基づいて判定しているが、2次電圧波形の第3次高調波成分に着目した理由について説明する。
図3Aは図1の漏電継電器101の零相変流器2の構成例を示す断面図である。また、図3Bは図1の漏電継電器101の零相変流器2の別の構成例を示す断面図である。ここで、図3A及び図3Bの構成例では、磁性体コア21の内周面及び外周面にそれぞれ2次巻線22を巻回しており、図3Aの構成例は内周の2次巻線22の内周面及び外周の2次巻線22の外周面にそれぞれ磁気シールド23,23を設けた場合を示し、図3Bは磁気シールド23を設けていない場合を示している。
図3A及び図3Bのいずれの図も三相電路の場合を想定しており、2次巻線22は磁性体コア21の全周にわたって巻回されている。被測定電流線1は磁性体コア21の内周側に近接した箇所に配置されており、被測定電流線1には位相が120度互いに異なる三相交流電流(U相、V相、W相)が流れている。
ここで、例えば、同一振幅であるものの、位相が120度異なる三相交流電流が被測定電流線1に流れている場合(漏電がない場合)を考える。被測定電流線1の各相からはそれぞれ瞬時的な電流値に応じた磁界が電流線の周りに形成されており、ビオ・サバールの法則より、被測定電流線1に近いほど磁界は大きくなる。そのため、図3Bに示すように、V相電流であればA点、W相電流であればB点、U相電流であればC点で、磁界が大きくなる。
図4は図1の漏電継電器101の零相変流器2で用いる磁性体コアにおける磁界強度Hに対する磁束密度の磁気飽和特性を示すグラフである。磁性体は一般的に、図4に示すように、印加した磁界Hに対して、磁性体の磁束密度Bは飽和する。つまり、磁性体コア21において印加磁界が大きい箇所では、局所的な磁気飽和が発生する。
図5は三相交流電流を流したときに、零相変流器2の磁性体コアに局所的な磁気飽和が発生することを示す三相交流電流の波形図である。被測定電流線1の各相に流れる電流は三相交流電流であるため、図5に示すように、一周期に対して3倍の周期で磁性体コア21が局所的に磁気飽和することになる。局所的な磁気飽和が磁性体コア21に発生していると、磁性体コア21の中でU相、V相、W相から発生した磁界(磁束)を相殺できず、漏電がない状態であるにも関わらず、零相変流器2から第3次高調波成分を含んだ2次電圧が出力される。
図3Aに示すように、磁気シールド23を設けることで、磁性体コア21の局所的な磁気飽和を抑制することができるが、被測定電流が大きくなると、磁気シールド23も磁性体コア21と同様に、局所的な磁気飽和が発生するため、根本的な解決にならない。従来技術に係る零相変流器では、瞬時的に被測定電流が大きくなった過電流に対しても、磁気シールド23が局所的に磁気飽和しないよう、磁気シールド23の厚み(使用量)を調整していた。
磁性体コア21が局所的に磁気飽和した場合に零相変流器2から出力される第3次高調波成分を含んだ2次電圧において、その実効値が大きい場合、従来技術に係る漏電継電器であれば、漏電判定回路3の判定結果信号のみで警報を実施するため、漏電がない状態であるにも関わらず、警報を行い、漏電継電器が誤作動する要因となる。この誤作動の要因は、図1の第3次高調波成分検出回路11と過電流判定回路12を用いることで、防止することができる。
以上のように構成された漏電継電器101において、被測定電流が定格仕様の範囲の場合、漏電の有無に関わらず、零相変流器2の2次電圧波形には第3次高調波成分は含まれないため、第3次高調波成分検出回路11にて求めた2次電圧波形の第3次高調波成分値はなく、後段の過電流判定回路12の判定結果信号はローレベル信号となる。もし、漏電がある場合は、漏電判定回路3の判定結果信号はハイレベル信号となるため、図2に示したように、警報判定回路13の判定結果信号はハイレベル信号となり、正常に警報を実施することができる。一方、被測定電流が定格仕様の範囲を超える過電流の場合、漏電の有無に関わらず、零相変流器2の2次電圧波形には第3次高調波成分が含まれるため、過電流判定回路12の出力はハイレベル信号となる。この場合、漏電判定回路3の出力ハイレベル信号、ローレベル信号に関わらず、警報判定回路13の出力はローレベル信号となり、警報を実施することを停止させる。
以上説明したように、本実施の形態では、被測定電流が過電流の場合に零相変流器2の2次電圧波形における第3次高調波成分値をモニタリングすることによって、漏電継電器が誤作動する要因を排除でき、誤作動を防止することができる。
なお、図3において、磁気シールド23は磁性体コア21の内周側及び外周側に配置したが、本発明はこれに限らず、必ずしも外周側に配置しなくてもよい。例えば、磁性体コア21の上面もしくは下面、上面及び下面に磁気シールド23が配置される場合もある。2次電圧波形の実効値や第3次高調波成分値を求める信号処理回路はアナログ処理回路、デジタル処理回路のいずれの回路でも構わない。さらに、零相変流器2の2次電圧波形における第3次高調波成分値が所定のしきい値を超えた場合はハイレベル信号を出力し、超えない場合はローレベル信号を出力するように、過電流判定回路12の判定結果信号の形態を2値の場合で表現したが、第3次高調波成分検出回路11により求めた第3次高調波成分値を示す信号を出力してもよい。
図6は本発明の実施の形態1の変形例に係る漏電継電器102の構成例を示すブロック図である。図6に示すように、過電流判定回路12により得られた過電流値を表示するディスプレイ7を追加してもよい。
図7は実施の形態1及び2において過電流判定を行うときに必要となる被測定電流値と零相変流器の2次電圧波形に含まれる第3次高調波成分値との相関関係を示すグラフである。図7に示すように、被測定電流値と第3次高調波成分値との相関関係を事前に入手しておき、第3次高調波成分検出回路11により求めた第3次高調波成分値から被測定電流値を求める。
実施の形態2.
図8は本発明の実施の形態2に係る漏電遮断器103の構成例を示すブロック図である。実施の形態2に係る漏電遮断器103は、図8に示すように、実施の形態1に係る漏電継電器101に比較して、三相電路の被測定電流線1にブレーカ6を設け、漏電を検知したときブレーカ6の接点を開放することが異なることを特徴としている。
図8において、漏電判定回路3は実施の形態1と同様に発生した判定結果信号を接点開閉判定回路14に出力する。また、第3次高調波成分検出回路11は実施の形態1と同様に、入力された2次電圧波形の第3次高調波成分を求め、求めた2次電圧波形の第3次高調波成分値を示す信号を後段の過電流判定回路12に出力する。過電流判定回路12は、入力された2次電圧波形の第3次高調波成分値が所定のしきい値に達しているか否かを判定し、しきい値に達していれば判定結果信号としてハイレベル信号を出力する一方、しきい値に達していなければ判定結果信号としてローレベル信号を接点開閉判定回路14に出力する。
接点開閉判定回路14は、入力された2つの判定結果信号に基づいて、三相電路に設けたブレーカ6の接点を開放するか否かを判定する。接点開閉判定回路14は、ブレーカ6の接点を開放する場合は判定結果信号としてハイレベル信号を出力する一方、開放しない場合は判定結果信号としてローレベル信号を接点開閉制御装置8に出力する。
図9は図8の漏電遮断器103において電路に設けたブレーカ6を開放する条件を示す表である。図9において、ブレーカ6の接点開放の実施は、具体的には、4つのケースC1〜C4のうちのケースC2のみとなる。つまり、過電流判定回路12の判定結果信号がハイレベル信号である場合、漏電判定回路3の判定結果信号に関わらず、ブレーカ6の接点は開放しない。従来技術に係る漏電遮断器であれば、漏電判定回路3の判定結果信号のみで接点を開放するか否かを判定したのに対し、本実施の形態では、ブレーカ6の接点を開放するか否かを判定するためには、過電流判定回路12の判定結果信号を必須としている。
接点開閉制御装置8は、ハイレベル信号に応答して、三相電路に設けたブレーカ6の接点を開放するように制御する。接点開閉制御装置8は、例えば、電磁コイルに電流を通電することで、電磁力を用いて三相電路に設けたブレーカ6の接点を機械的に引き外す機構からなる。
なお、漏電遮断器103の誤作動防止方法に関する各回路の役割は実施の形態1と同じである。
被測定電流が定格仕様の範囲の場合、漏電の有無に関わらず、零相変流器2の2次電圧波形には第3次高調波成分は含まれないため、第3次高調波成分検出回路11にて求めた2次電圧波形の第3次高調波成分値はなく、後段の過電流判定回路12の判定結果信号はローレベル信号となる。もし、漏電がある場合は、漏電判定回路3の判定結果信号はハイレベル信号となるため、図2に示したように、接点開閉判定回路14の判定結果信号はハイレベル信号となり、正常に接点を開放することができる。一方、被測定電流が定格仕様の範囲を超える過電流の場合、漏電の有無に関わらず、零相変流器2の2次電圧波形には第3次高調波成分が含まれるため、過電流判定回路12の判定結果信号はハイレベル信号となる。この場合、漏電判定回路3の判定結果信号に関わらず、接点開閉判定回路14の判定結果信号はローレベル信号となり、ブレーカ6の接点を開放しない。
以上説明したように、本実施の形態によれば、被測定電流が過電流の場合に零相変流器2の2次電圧波形における第3次高調波成分値をモニタリングすることによって、漏電遮断器103が誤作動する要因を排除でき、誤作動を防止することができる。
なお、2次電圧波形の実効値及び第3次高調波成分値を求める信号処理回路はアナログ処理回路、デジタル処理回路のいずれの回路で構成しても構わない。
さらに、過電流判定回路12は、零相変流器2の2次電圧波形における第3次高調波成分値が所定のしきい値を超えた場合はハイレベル信号を出力する一方、超えない場合はローレベル信号を出力するように、判定結果信号の出力形態を2値の場合で表現したが、本発明はこれに限らず、求めた第3次高調波成分値を示す信号をそのまま出力してもよい。
図10は本発明の実施の形態2の変形例に係る漏電遮断器104の構成例を示すブロック図である。図10において、実施の形態2の変形例に係る漏電遮断器104は、実施の形態2に係る漏電遮断器103に比較して、過電流値を表示するディスプレイ7を追加して設けてもよい。この場合、図7に示すように、被測定電流値と第3次高調波成分値との相関関係を事前に入手しておき、求めた第3次高調波成分値から被測定電流値を求める。
以上詳述したように、本発明によれば、零相変流器の2次電圧波形に含まれる第3次高調波成分の大きさに関する情報を警報や接点開閉制御の判定条件に加えたことにより、定常状態で、かつ過電流が流れた場合に対し、漏電継電器及び漏電遮断器の誤作動を防止することができる。また従来技術において、定常状態で、誤作動を防止するために必要不可欠であった磁気シールドの使用量を削減することができる。
1 被測定電流線、2 零相変流器、3 漏電判定回路、5 警報装置、6 ブレーカ、7 ディスプレイ、8 接点開閉制御装置、11 第3次高調波成分検出回路、12 過電流判定回路、13 警報判定回路、14 接点開閉判定回路、21 磁性体コア、22 2次巻線、23 磁気シールド、101,102 漏電継電器、103,104 漏電遮断器、Rm 負担抵抗。

Claims (8)

  1. 三相電路に設けた零相変流器の2次電圧波形の実効値が所定の値を超えているか否かで電路の漏電の有無を判定して警報する漏電継電器において、
    上記零相変流器の2次電圧波形の第3次高調波成分を求め、当該第3次高調波成分値が所定のしきい値を超えているか否かを判定する判定手段を備え、
    上記第3次高調波成分値が上記しきい値を超えているときに上記漏電継電器の警報機能を停止させることを特徴とする漏電継電器。
  2. 上記判定手段は、上記第3次高調波成分値から上記三相電路に流れている電流値を求めて出力することを特徴とする請求項1記載の漏電継電器。
  3. 三相電路に設けた零相変流器の2次電圧波形の実効値が所定の値を超えているか否かで電路の漏電の有無を判定して上記三相電路の接点を開閉制御する漏電遮断器において、
    上記零相変流器の2次電圧波形の第3次高調波成分を求め、当該第3次高調波成分値が所定のしきい値を超えているか否かを判定する判定手段を備え、
    上記第3次高調波成分値が上記しきい値を超えているときに上記接点の開放機能を停止させることを特徴とする漏電遮断器。
  4. 上記判定手段は、上記第3次高調波成分値から上記三相電路に流れている電流値を求めて出力することを特徴とする請求項3記載の漏電遮断器。
  5. 三相電路に設けた零相変流器の2次電圧波形の実効値が所定の値を超えているか否かで電路の漏電の有無を判定して警報する漏電継電器の制御方法において、
    上記零相変流器の2次電圧波形の第3次高調波成分を求め、当該第3次高調波成分値が所定のしきい値を超えているか否かを判定するステップと、
    上記第3次高調波成分値が上記しきい値を超えているときに上記漏電継電器の警報機能を停止させるステップとを含むことを特徴とする漏電継電器の制御方法。
  6. 上記第3次高調波成分値から上記三相電路に流れている電流値を求めて出力するステップをさらに含むことを特徴とする請求項5記載の漏電継電器の制御方法。
  7. 三相電路に設けた零相変流器の2次電圧波形の実効値が所定の値を超えているか否かで電路の漏電の有無を判定して上記三相電路の接点を開閉制御する漏電遮断器の制御方法において、
    上記零相変流器の2次電圧波形の第3次高調波成分を求め、当該第3次高調波成分値が所定のしきい値を超えているか否かを判定するステップと、
    上記第3次高調波成分値が上記しきい値を超えているときに上記接点の開放機能を停止させるステップとを含むことを特徴とする漏電遮断器の制御方法。
  8. 上記第3次高調波成分値から上記三相電路に流れている電流値を求めて出力するステップをさらに含むことを特徴とする請求項7記載の漏電遮断器の制御方法。
JP2016086944A 2016-04-25 2016-04-25 漏電継電器、漏電遮断器及びそれらの制御方法 Active JP6573571B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086944A JP6573571B2 (ja) 2016-04-25 2016-04-25 漏電継電器、漏電遮断器及びそれらの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086944A JP6573571B2 (ja) 2016-04-25 2016-04-25 漏電継電器、漏電遮断器及びそれらの制御方法

Publications (2)

Publication Number Publication Date
JP2017200255A JP2017200255A (ja) 2017-11-02
JP6573571B2 true JP6573571B2 (ja) 2019-09-11

Family

ID=60239682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086944A Active JP6573571B2 (ja) 2016-04-25 2016-04-25 漏電継電器、漏電遮断器及びそれらの制御方法

Country Status (1)

Country Link
JP (1) JP6573571B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017805B1 (ko) 2018-03-28 2019-09-03 엘에스산전 주식회사 누전 차단기
JP2020183879A (ja) * 2019-05-01 2020-11-12 株式会社辰巳菱機 負荷試験装置
JP7257913B2 (ja) * 2019-08-02 2023-04-14 株式会社日立製作所 電力供給装置および電力供給方法並びに当該電力供給装置を用いる鉄道車両用監視システム
JP6818955B1 (ja) * 2020-03-18 2021-01-27 三菱電機株式会社 漏電センサおよび電路保護システム
CN116626533B (zh) * 2023-07-20 2023-10-13 山东云开电力有限公司 一种电力开关柜漏电智能检测电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141146U (ja) * 1974-05-09 1975-11-20
JPH01153977A (ja) * 1987-12-11 1989-06-16 Toko Denki Kk 多重接地配電線の事故箇所探査装置
JPH04372519A (ja) * 1991-06-18 1992-12-25 Matsushita Electric Works Ltd 遮断器
JPH10285788A (ja) * 1997-03-31 1998-10-23 Mitsubishi Electric Corp 漏電警報機能付き配線用遮断器
JP2011250486A (ja) * 2010-05-21 2011-12-08 Panasonic Electric Works Co Ltd 漏電遮断装置

Also Published As

Publication number Publication date
JP2017200255A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6573571B2 (ja) 漏電継電器、漏電遮断器及びそれらの制御方法
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
JP4757721B2 (ja) 差動電流を測定する測定装置、1つの該測定装置を備えるトリップモジュール、及び1つの該モジュールを備えるスイッチギヤユニット
JP5989136B2 (ja) 大きな電磁気変動から電力変圧器を保護する方法および装置
KR101454203B1 (ko) 저전류 아크 검출 시스템
US5075628A (en) Insulation monitoring system of a direct current power supply system
US20130070374A1 (en) Electrical monitoring device and method for safeguarding the protective function of a type a residual current device (rcd)
US7359167B2 (en) Corded leakage-current detection and interruption apparatus
US20090154033A1 (en) Electrical Arc Fault Circuit Interrupter Apparatus and Method
CA2660382A1 (en) Ground fault detection
US20120187883A1 (en) Choke with current sensor
AU2013285296B2 (en) Differential protection device
US11009557B2 (en) Method and device for short-circuit monitoring of a three-phase load
JP4935455B2 (ja) 漏電検出装置
JP2012189403A (ja) 回転電機
JP2014196920A (ja) 漏電検出装置
RU2638299C2 (ru) Устройство защиты обмоток однофазного трансформатора от повреждений
JP6461698B2 (ja) 漏電検出装置及び漏電検出方法
Apostolopoulos et al. Design and performance evaluation of a high-impedance REF scheme for MV/LV transformers
US7292420B2 (en) Apparatus for improved ground fault equipment protection
WO2014155957A1 (ja) 漏電検出装置
JP5072084B2 (ja) 抵抗分地絡電流を検出する装置
AU2019447727B2 (en) Electric line (L) protection device for detecting a leakage fault, a short-circuit, fault, an overcurrent fault and an arc fault
CN112379308A (zh) 一种电流互感器二次侧电路及其断线检测方法
JP2017204973A (ja) 欠相検知システム、欠相検知装置および欠相検知方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250