JP6573503B2 - Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member - Google Patents

Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member Download PDF

Info

Publication number
JP6573503B2
JP6573503B2 JP2015164471A JP2015164471A JP6573503B2 JP 6573503 B2 JP6573503 B2 JP 6573503B2 JP 2015164471 A JP2015164471 A JP 2015164471A JP 2015164471 A JP2015164471 A JP 2015164471A JP 6573503 B2 JP6573503 B2 JP 6573503B2
Authority
JP
Japan
Prior art keywords
plate
less
rolling
copper alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015164471A
Other languages
Japanese (ja)
Other versions
JP2017043789A (en
Inventor
俊也 首藤
俊也 首藤
久 須田
久 須田
佐々木 史明
史明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2015164471A priority Critical patent/JP6573503B2/en
Publication of JP2017043789A publication Critical patent/JP2017043789A/en
Application granted granted Critical
Publication of JP6573503B2 publication Critical patent/JP6573503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、板厚が100μmより薄く、平坦性の高い板形状を有する、電気・電子部品の導電ばね部材に適したCu−Ni−Co−Si系高強度銅合金薄板材、およびその製造方法に関する。また、その銅合金薄板材を用いた導電ばね部材に関する。   The present invention relates to a Cu-Ni-Co-Si-based high-strength copper alloy thin plate suitable for a conductive spring member of an electric / electronic component, having a plate shape with a plate thickness of less than 100 μm and high flatness, and a method for producing the same About. The present invention also relates to a conductive spring member using the copper alloy thin plate material.

電気・電子部品を構成する導電部材に用いる素材には、基本的特性として「強度」および「導電性」に優れることが要求される。なかでも小型の機械部品に組み込まれて通電と板ばね機能を担う「導電ばね部材」には、例えば0.2%耐力が1000MPa以上といった高い強度を有し、かつ当該部材に加工したときに良好な形状(すなわち高い寸法精度)が得られる性質を具備していることが要求される。特に最近では電子機器部品の小型化が進み、例えば板厚100μm未満、より好ましくは60μm以下、さらには50μm未満の銅合金薄板材において、0.2%耐力が1000MPa以上といった高い強度を有しながら、加工後の寸法精度を高く維持できる性質を具備した経済的な材料のニーズが高まると考えられる。   A material used for a conductive member constituting an electric / electronic component is required to have excellent “strength” and “conductivity” as basic characteristics. In particular, the “conductive spring member”, which is incorporated in a small machine part and plays a role of energization and leaf spring, has a high strength, for example, 0.2% proof stress of 1000 MPa or more, and is good when processed into the member. It is required to have a property capable of obtaining a simple shape (that is, high dimensional accuracy). In particular, electronic component parts have recently been miniaturized. For example, a copper alloy sheet having a thickness of less than 100 μm, more preferably less than 60 μm, and even less than 50 μm has a high strength such as 0.2% proof stress of 1000 MPa or more. Therefore, the need for economical materials having the property of maintaining high dimensional accuracy after processing is considered to increase.

強度と導電性の特性バランスに優れた銅合金として、Cu−Ni−Si系銅合金(いわゆるコルソン合金)や、それにCoを添加したCu−Ni−Co−Si系銅合金がある。これらの合金系を用いて、これまでに薄板材の製造技術や、高強度化の技術が種々検討されてきた。   As a copper alloy having an excellent balance between strength and conductivity, there are a Cu—Ni—Si based copper alloy (so-called Corson alloy) and a Cu—Ni—Co—Si based copper alloy to which Co is added. Various techniques for manufacturing a thin plate material and techniques for increasing the strength have been studied so far using these alloy systems.

例えば特許文献1、2には、時効処理条件等を工夫することにより板材の垂下カール(圧延方向の反り)を軽減する技術が開示されている。両文献とも板厚は0.005mmまで想定されているが、実施例の板厚は0.2mmであり、それらの0.2%耐力は670〜952MPaである。
特許文献3には、集合組織を規定して耐力の異方性を軽減することが記載されている。板厚は0.03mmまで想定されているが、実施例の板厚は0.08mmであり、それらの0.2%耐力は710〜791MPaである。
特許文献4には、集合組織を規定してノッチ加工後の曲げ加工性と強度を改善することが記載されている。実施例では板厚0.15mm程度のものを主体に特性が調べられており、1例のみ板厚0.031mmの例が示されている(実施例25)。その0.2%耐力は741MPaである。
特許文献5には、金属組織を規定して高強度化と曲げたわみ係数の低減を図る技術が記載されている。実施例では板厚0.15mmで951〜970MPaの0.2%耐力が得られている。
特許文献6には、金属組織および母相中のSi濃度を規定して0.2%耐力が980MPa以上の高強度化を図る技術が記載されている。実施例では板厚0.15mmで983〜1031MPaの0.2%耐力が得られている。
For example, Patent Documents 1 and 2 disclose a technique for reducing drooping curl (warping in the rolling direction) of a plate material by devising aging treatment conditions and the like. In both documents, the plate thickness is assumed to be 0.005 mm, but the plate thickness of the example is 0.2 mm, and their 0.2% proof stress is 670 to 952 MPa.
Patent Document 3 describes that a texture is defined to reduce the anisotropy of yield strength. The plate thickness is assumed to be 0.03 mm, but the plate thickness of the examples is 0.08 mm, and their 0.2% proof stress is 710 to 791 MPa.
Patent Document 4 describes that a texture is defined to improve bending workability and strength after notching. In the example, the characteristics are mainly examined with a plate thickness of about 0.15 mm, and only one example has a plate thickness of 0.031 mm (Example 25). Its 0.2% proof stress is 741 MPa.
Patent Document 5 describes a technique for increasing the strength and reducing the bending deflection coefficient by defining a metal structure. In the examples, a 0.2% proof stress of 951 to 970 MPa was obtained with a plate thickness of 0.15 mm.
Patent Document 6 describes a technique for increasing the strength with a 0.2% proof stress of 980 MPa or more by defining the metal structure and the Si concentration in the matrix. In the examples, a 0.2% proof stress of 983 to 1031 MPa was obtained with a plate thickness of 0.15 mm.

一方、特許文献7、8には、Cu−Ti系銅合金を用いて厚さ100μm以下の高強度材をオートフォーカスカメラモジュールの導電性ばね材に適用する技術が開示されている。Cu−Ti系銅合金によれば0.2%耐力1200MPa以上の非常に高い強度を得ることも可能となっている(特許文献7)。   On the other hand, Patent Documents 7 and 8 disclose a technique in which a high-strength material having a thickness of 100 μm or less is applied to a conductive spring material of an autofocus camera module using a Cu—Ti based copper alloy. According to the Cu-Ti copper alloy, it is possible to obtain a very high strength of 0.2% proof stress of 1200 MPa or more (Patent Document 7).

特開2012−126934号公報JP 2012-126934 A 特開2012−211355号公報JP 2012-2111355 A 特開2013−163853号公報JP 2013-163853 A 特開2013−204079号公報JP 2013-204079 A 特開2014−88604号公報JP 2014-88604 A 特開2014−156623号公報JP 2014-156623 A 特開2014−102294号公報JP 2014-102294 A 特開2014−80670号公報JP 2014-80670 A

上記の先行技術からわかるように、Cu−Ni−(Co)−Si系銅合金において、板厚を100μm未満と薄くし、かつ極めて高い強度レベルを呈する板材を工業的に安定して製造する技術は確立されていない。その要因として、製品に加工したときに高い寸法精度が得られる薄肉の高強度板材を製造することは、非常に難しいことが挙げられる。一方、Cu−Ti系銅合金を用いると非常に高い強度レベルを得やすい(特許文献7)。しかし反面、Cu−Ti系銅合金はCu−Ni−(Co)−Si系銅合金に比べ、はんだ濡れ性が悪いという問題がある。導電ばね部材として電子機器部品に組み込むことを考慮すると、非常に高い強度レベルに特化した材料よりも、はんだ濡れ性が良好な銅合金系において0.2%耐力1000MPa以上の強度レベルを具備する薄板材を適用するほうがコスト面および部品性能面で有利となる場合も多い。   As can be seen from the above prior art, in Cu—Ni— (Co) —Si based copper alloys, a technology for industrially and stably producing a plate material having a plate thickness of less than 100 μm and an extremely high strength level. Is not established. As the factor, it is very difficult to manufacture a thin high-strength plate material that can obtain high dimensional accuracy when processed into a product. On the other hand, when a Cu—Ti based copper alloy is used, it is easy to obtain a very high strength level (Patent Document 7). However, there is a problem that Cu-Ti-based copper alloys have poor solder wettability compared to Cu-Ni- (Co) -Si-based copper alloys. Considering incorporation in an electronic device component as a conductive spring member, a copper alloy system having a solder wettability better than a material specialized for a very high strength level has a strength level of 0.2% proof stress of 1000 MPa or more. In many cases, the use of a thin plate material is advantageous in terms of cost and component performance.

本発明は、板厚が100μm未満、あるいは更に60μm以下といったCu−Ni−Co−Si系銅合金の薄板材において、0.2%耐力が高く、かつ小型機械部品等に組み込まれる導電ばね部材に加工したときに高い寸法精度が得られる、形状の良好な板材を提供しようというものである。   The present invention provides a conductive spring member having a high 0.2% proof stress and incorporated in a small machine component, etc., in a thin plate material of a Cu—Ni—Co—Si based copper alloy having a thickness of less than 100 μm or even 60 μm or less. It is intended to provide a plate having a good shape that can be obtained with high dimensional accuracy when processed.

発明者らの研究によれば、Cu−Ni−Co−Si系銅合金において高い強度レベルを得るためには、粒子径5〜10nmの「微細第二相粒子」が個数密度1.0×109個/mm2個以上で分散している金属組織とすることが極めて有効である。また、部品に加工したときに高い寸法精度が得られる性質を付与するためには、仕上冷間圧延後に行う低温焼鈍において、適度な張力を付与しながら、比較的低温で長時間の加熱を行い、かつ緩昇温、緩冷却とすることが極めて有効であることがわかった。本発明はこのような知見に基づいて完成したものである。 According to the inventors' research, in order to obtain a high strength level in a Cu—Ni—Co—Si based copper alloy, “fine second phase particles” having a particle diameter of 5 to 10 nm have a number density of 1.0 × 10 × 10. It is very effective to make the metal structure dispersed at 9 pieces / mm 2 or more. In addition, in order to give the property that high dimensional accuracy can be obtained when processed into parts, in low temperature annealing performed after finish cold rolling, heating is performed at a relatively low temperature for a long time while applying an appropriate tension. In addition, it has been found that it is extremely effective to use a slow temperature rise and a slow cooling. The present invention has been completed based on such findings.

すなわち本発明では、質量%で、NiとCoの合計:2.50〜4.00%、Co:0.50〜2.00%、Si:0.50〜1.50%、Fe:0〜0.50%、Mg:0〜0.10%、Sn:0〜0.50%、Zn:0〜0.15%、B:0〜0.10%、P:0〜0.10%、REM(希土類元素):0〜0.10%であり、Cr、Zr、Hf、Nb、Sの合計含有量が0〜0.05%であり、残部Cuおよび不可避的不純物からなる化学組成を有し、母相中に存在する第二相粒子のうち、粒子径5〜10nmの「微細第二相粒子」の個数密度が1.0×109個/mm2以上である金属組織を有し、圧延直角方向の板幅W0が50mm以上、板厚が15μm以上100μm未満、より好ましくは15μm以上60μm以下、かつ下記(A)に定義する最大クロスボウqMAXが250μm以下である銅合金薄板材が提供される。
(A)銅合金板材から圧延方向長さが50mm、圧延直角方向長さが板幅W0(mm)である長方形の切り板Pを採取し、その切り板Pをさらに圧延直角方向50mmピッチで裁断し、その際、圧延直角方向長さが50mmに満たない小片が切り板Pの圧延直角方向端部に発生したときはその小片を除き、n個(nは板幅W0/50の整数部分)の50mm角の正方形サンプルを用意する。ただし、W0=50mmであるときは上記切り板Pを正方形サンプルとする。n個の正方形サンプル毎に、日本伸銅協会技術規格JCBA T320:2003に規定の三次元測定装置による測定方法(ただし、w=50mmとする)に従い、水平盤上に置いたときのクロスボウqを、両面(両側の板面)について圧延直角方向に測定し、各面のqの絶対値|q|の最大値を当該正方形サンプルのクロスボウqi(iは1〜n)とする。n個の正方形サンプルのクロスボウq1〜qnのうちの最大値を最大クロスボウqMAXとする。
That is, in the present invention, in mass%, the total of Ni and Co: 2.50 to 4.00%, Co: 0.50 to 2.00%, Si: 0.50 to 1.50%, Fe: 0 to 0.50%, Mg: 0 to 0.10%, Sn: 0 to 0.50%, Zn: 0 to 0.15%, B: 0 to 0.10%, P: 0 to 0.10%, REM (rare earth element): 0 to 0.10%, the total content of Cr, Zr, Hf, Nb and S is 0 to 0.05%, and has a chemical composition consisting of the balance Cu and inevitable impurities. And the number density of “fine second phase particles” having a particle diameter of 5 to 10 nm among the second phase particles present in the matrix phase has a metal structure of 1.0 × 10 9 particles / mm 2 or more. , The width W 0 in the direction perpendicular to the rolling is 50 mm or more, the plate thickness is 15 μm or more and less than 100 μm, more preferably 15 μm or more and 60 μm or less, and the maximum cross defined in (A) below A copper alloy sheet material having a bow q MAX of 250 μm or less is provided.
(A) a copper alloy thin sheet from the rolling direction length 50mm, perpendicular to the rolling direction length is taken off plate P rectangular a plate width W 0 (mm), still perpendicular to the rolling direction 50mm pitch the cutting plate P in cutting, in which, when a direction perpendicular to the rolling direction length occurs in the direction perpendicular to the rolling direction end portion of the small pieces cut plate P less than 50mm except the piece, n (n is the plate width W 0/50 A square sample of 50 mm square is prepared. However, when W 0 = 50 mm, the cut plate P is a square sample. For each n square samples, the crossbow q when placed on a horizontal board is determined according to the measuring method (however, w = 50 mm) by the three-dimensional measuring device specified in Japan Technical Standard JCBA T320: 2003. Both surfaces (plate surfaces on both sides) are measured in the direction perpendicular to the rolling direction, and the maximum value of the absolute value | q | of each surface is defined as the crossbow q i (i is 1 to n) of the square sample. maximum value of the crossbow q 1 to q n of n square samples and maximum crossbow q MAX.

上記合金元素のうち、Fe、Mg、Sn、Zn、B、P、REM(希土類元素)、Cr、Zr、Hf、Nb、Sは任意添加元素である。REM(希土類元素)はランタノイド系の各元素、YおよびScである。
上記(A)の規定を要件とする銅合金板材は、圧延直角方向の板幅W0が50mm以上であるものが対象となる。W0が60mm以上であるものがより好適な対象となる。このような板材製品は、そのままプレス打抜き工程に供される場合もあるし、さらにスリットされて狭幅の条材としたのち部品加工に供される場合もある。
Among the above alloy elements, Fe, Mg, Sn, Zn, B, P, REM (rare earth element), Cr, Zr, Hf, Nb, and S are arbitrarily added elements. REM (rare earth element) is each element of lanthanoid series, Y and Sc.
The copper alloy sheet material that satisfies the requirement of the above (A) is intended for a sheet having a sheet width W 0 in the direction perpendicular to the rolling of 50 mm or more. Those having W 0 of 60 mm or more are more suitable targets. Such a plate product may be subjected to a press punching process as it is, or may be further slit to form a narrow strip and then used for part processing.

上記銅合金薄板材において、さらに下記(B)に定義するI−unitが5.0以下であることがより好ましい。
(B)銅合金板材から圧延方向長さが400mmであり、圧延直角方向長さが板幅W0(mm)である長方形の切り板Qを採取し、水平盤上に置く。切り板Qを鉛直方向に見た投影表面を長方形領域Xと定め、その長方形領域Xをさらに圧延直角方向10mmピッチで短冊状領域に分割し、その際、圧延直角方向長さが10mmに満たない狭幅の短冊状領域が長方形領域Xの圧延直角方向端部に発生したときはその狭幅の短冊状領域を除き、隣接するn箇所(nは板幅W0/10の整数部分)の短冊状領域(幅10mm)を設定する。各短冊状領域毎に、幅中央部の表面高さを圧延方向の全長にわたって測定し、最大高さhMAXと最小高さhMINの差hMAX−hMINの値を波高さh(mm)とし、下記(1)式により求まる伸び差率eを当該短冊状領域の伸び差率ei(iは1〜n)とする。n箇所の短冊状領域の伸び差率e1〜enのうちの最大値をI−unitとする。
e=(π/2×h/L)2 …(1)
ただし、Lは基準長さ400mmである。
In the copper alloy sheet material, it is more preferable that the I-unit defined in the following (B) is 5.0 or less.
(B) the rolling direction length of a copper alloy thin sheet is 400 mm, perpendicular to the rolling direction length is taken off plate Q rectangle is a plate width W 0 (mm), placed in a horizontal surface plate. The projected surface of the cut plate Q viewed in the vertical direction is defined as a rectangular region X, and the rectangular region X is further divided into strip-shaped regions at a pitch of 10 mm in the direction perpendicular to the rolling, and the length in the direction perpendicular to the rolling is less than 10 mm. when strip-shaped region of the narrow occurs perpendicular to the rolling direction end portion of the rectangular region X except a strip area of the narrow, strip of the adjacent n points (n is an integer portion of the plate width W 0/10) A region (width 10 mm) is set. For each strip-shaped region, the surface height at the center of the width is measured over the entire length in the rolling direction, and the difference between the maximum height h MAX and the minimum height h MIN h MAX −h MIN is the wave height h (mm) The elongation difference rate e obtained by the following equation (1) is defined as the elongation difference rate e i (i is 1 to n) of the strip-shaped region. The maximum value of the elongation difference rates e 1 to en of the n strip-shaped regions is defined as I-unit.
e = (π / 2 × h / L) 2 (1)
However, L is a reference length of 400 mm.

上記銅合金薄板材について、圧延方向の0.2%耐力を測定すると1000MPa以上となる。0.2%耐力は長手方向が圧延方向に平行な引張試験片を用いてJIS Z2241:2011に従って測定したオフセット法による0.2%耐力である。   When the 0.2% proof stress in the rolling direction is measured for the copper alloy thin plate material, it becomes 1000 MPa or more. The 0.2% yield strength is a 0.2% yield strength measured by an offset method measured according to JIS Z2241: 2011 using a tensile test piece whose longitudinal direction is parallel to the rolling direction.

また、上記銅合金薄板材の製造方法として、上記化学組成を有する銅合金の鋳片に、少なくとも鋳片加熱、熱間圧延、冷間圧延、時効処理前の熱処理、時効処理、仕上冷間圧延、低温焼鈍の各工程を上記の順で施すことにより銅合金板材を製造するに際し、
鋳片加熱工程において、鋳片を1000〜1060℃で2h以上保持し、
時効処理前の熱処理工程において、950〜1020℃で固溶化処理したのち、600〜800℃で10〜300sec保持する熱履歴を付与し、
時効処理工程において、前記熱履歴が付与された材料を300〜400℃に保持することにより、粒子径5〜10nmの「微細第二相粒子」の個数密度が1.0×109個/mm2個以上である金属組織とし、
仕上冷間圧延工程において、ロール直径25〜45mmのワークロールを用いて板厚15μm以上100μm未満まで冷間圧延し、
低温焼鈍工程において、最大昇温速度100℃/sec以下で昇温し、100N/mm2を超え150N/mm2以下の張力を付与しながら250〜400℃で25〜720sec保持し、最大冷却速度100℃/sec以下で常温(5〜35℃)まで冷却する条件の熱処理を施す、
板形状の良好な高強度銅合金薄板材の製造方法が提供される。
In addition, as a method for producing the copper alloy sheet material, at least slab heating, hot rolling, cold rolling, heat treatment before aging treatment, aging treatment, finish cold rolling on a copper alloy slab having the above chemical composition In producing a copper alloy sheet by performing each step of low temperature annealing in the above order,
In the slab heating step, the slab is held at 1000 to 1060 ° C. for 2 hours or more,
In the heat treatment step before the aging treatment, after a solution treatment at 950 to 1020 ° C., a heat history that is maintained at 600 to 800 ° C. for 10 to 300 seconds is given,
In the aging treatment step, the number density of the “fine second phase particles” having a particle diameter of 5 to 10 nm is 1.0 × 10 9 particles / mm by keeping the material having the heat history at 300 to 400 ° C. With a metal structure that is two or more,
In the finish cold rolling process, using a work roll having a roll diameter of 25 to 45 mm, cold rolling to a plate thickness of 15 μm or more and less than 100 μm,
In the low-temperature annealing step, the temperature is increased at a maximum temperature increase rate of 100 ° C./sec or less, maintained at 250 to 400 ° C. for 25 to 720 seconds while applying a tension exceeding 100 N / mm 2 and not more than 150 N / mm 2 , and the maximum cooling rate Apply heat treatment under conditions of cooling to room temperature (5-35 ° C.) at 100 ° C./sec or less,
A method for producing a high-strength copper alloy sheet material having a good plate shape is provided.

また本発明では、上記の銅合金薄板材を材料に用いた導電ばね部材が提供される。   Moreover, in this invention, the electroconductive spring member which used said copper alloy thin plate material as a material is provided.

本発明によれば、Cu−Ni−Co−Si系銅合金の板材において、板厚が100μm未満、あるいは特に60μm以下と薄く、0.2%耐力が1000MPa以上と高く、かつ精密部品に加工したときに高い寸法精度が得られる性質を具備した板形状の良いものが実現できた。その製造においては、テンションレベラー等の形状矯正を施す必要もない。この板材は、はんだ濡れ性も良好であり、オートフォーカスカメラモジュールのばね部材をはじめ、各種小型機械部品に組み込まれる導電ばね材として有用である。   According to the present invention, a Cu—Ni—Co—Si copper alloy plate material has a plate thickness of less than 100 μm, or particularly as thin as 60 μm or less, a 0.2% proof stress as high as 1000 MPa or more, and processed into a precision part. In some cases, a good plate shape having the property of obtaining high dimensional accuracy was realized. In its manufacture, it is not necessary to perform shape correction such as a tension leveler. This plate material also has good solder wettability, and is useful as a conductive spring material incorporated in various small machine parts including a spring member of an autofocus camera module.

《合金組成》
本発明では、Cu−Ni−Co−Si系銅合金を採用する。以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
<Alloy composition>
In the present invention, a Cu—Ni—Co—Si based copper alloy is employed. Hereinafter, “%” regarding alloy components means “% by mass” unless otherwise specified.

NiおよびCoは、それぞれNi−Si系析出物およびCo−Si系析出物を形成して銅合金板材の強度と導電性を向上させる元素である。これら二種類の析出物の共存による相乗効果によって強度が一層向上する。NiとCoの合計量は2.50%以上とする必要がある。これより少ないと十分な析出硬化能が得られない。3.00%以上とすることがより効果的である。ただしNiやCoの含有量増大はSi化合物としての晶出・析出開始温度を高め、鋳造時などに粗大な第二相の形成を助長する要因となる。NiとCoの合計含有量は4.00%以下に制限される。   Ni and Co are elements that form Ni—Si-based precipitates and Co—Si-based precipitates, respectively, and improve the strength and conductivity of the copper alloy sheet. The strength is further improved by the synergistic effect of the coexistence of these two kinds of precipitates. The total amount of Ni and Co needs to be 2.50% or more. If it is less than this, sufficient precipitation hardening ability cannot be obtained. It is more effective to set it to 3.00% or more. However, an increase in the content of Ni or Co increases the crystallization / precipitation start temperature as a Si compound, and contributes to the formation of a coarse second phase during casting. The total content of Ni and Co is limited to 4.00% or less.

本発明では、特にCo−Si系析出物の微細分散を活用して高強度化を図る。CoはNiに比べてCu中への固溶限が小さいため、同量のNiを添加した場合より析出物の形成量を増大させることができる。種々検討の結果、Coは0.50%以上の含有量を確保する必要があり、0.70%以上とすることがより好ましい。ただし、CoはNiより高融点の金属であることから、Co含有量が高すぎると後述の固溶化熱処理での固溶が不十分となり、未固溶のCoは強度向上に有効なCo−Si系析出物の形成に使われず無駄となる。また、多量にCoを添加するとNi含有量の許容範囲が狭くなり、Ni−Si系析出物による硬化作用を十分に享受できないおそれがある。これらのことからCo含有量は2.00%以下とするのが好ましく、1.80%以下とすることが更に好ましい。なお、Ni含有量に関しては上述のNiとCoの合計量によって制限を受けるので特に規定する必要はないが、通常、1.00〜3.00%の範囲で設定すればよい。   In the present invention, the strength is increased particularly by utilizing the fine dispersion of Co—Si based precipitates. Since Co has a lower solid solubility limit in Cu than Ni, the amount of precipitates formed can be increased as compared with the case where the same amount of Ni is added. As a result of various studies, it is necessary to ensure a Co content of 0.50% or more, and more preferably 0.70% or more. However, since Co is a metal having a melting point higher than that of Ni, if the Co content is too high, solid solution in the solution heat treatment to be described later becomes insufficient, and undissolved Co is effective for improving the strength. It is not used for the formation of system precipitates and is wasted. Moreover, when Co is added in a large amount, the allowable range of Ni content becomes narrow, and there is a possibility that the hardening action by the Ni—Si based precipitate cannot be fully enjoyed. For these reasons, the Co content is preferably 2.00% or less, more preferably 1.80% or less. The Ni content is not particularly specified because it is limited by the total amount of Ni and Co described above, but it is usually set within a range of 1.00 to 3.00%.

Siは、Ni−Si系析出物およびCo−Si系析出物の形成に必要な元素である。Ni−Si系析出物はNi2Siを主体とする化合物であると考えられ、Co−Si系析出物はCo2Siを主体とする化合物であると考えられる。また、高い強度を意図する本発明において、Siは母相(マトリックス)の加工硬化能を向上させる作用を担う。Cu母相中に固溶したSiは積層欠陥エネルギーを低下させ、交差すべりの発生を抑制することで、加工硬化能を高める作用を発揮するものと考えられる。固溶Siは耐応力緩和特性の改善にも有効である。これらのSiの作用を十分に発揮させるためには0.50%以上のSi含有量を確保することが望まれ、0.70%以上とすることがさらに好ましい。一方、過剰のSi添加は、溶体化温度の上昇による製造コストの増大、粗大析出物の形成によるプレス打抜き性の低下などの弊害を招く。Si含有量は1.50%以下とすることが望まれ、1.20%以下に管理してもよい。 Si is an element necessary for forming Ni—Si based precipitates and Co—Si based precipitates. The Ni—Si based precipitate is considered to be a compound mainly composed of Ni 2 Si, and the Co—Si based precipitate is considered to be a compound mainly composed of Co 2 Si. In the present invention intended for high strength, Si plays a role of improving the work hardening ability of the matrix (matrix). It is considered that Si dissolved in the Cu matrix exhibits the effect of increasing work hardening ability by reducing the stacking fault energy and suppressing the occurrence of cross slip. Solid solution Si is also effective in improving the stress relaxation resistance. In order to fully exhibit these effects of Si, it is desired to secure a Si content of 0.50% or more, and more preferably 0.70% or more. On the other hand, excessive addition of Si causes adverse effects such as an increase in manufacturing cost due to an increase in solution temperature and a decrease in press punchability due to the formation of coarse precipitates. The Si content is preferably 1.50% or less, and may be controlled to 1.20% or less.

その他の有意義な元素として、Fe、Mg、Sn、Zn、B、P、REM(希土類元素)の1種以上を必要に応じて含有させてもよい。FeはFe−Si系化合物の形成による強度向上作用を有し、Mgは耐応力緩和特性の向上に有効であり、Snは固溶強化による強度向上作用を有し、Znは銅合金板材のはんだ付け性、鋳造性を改善する作用を有し、Bは鋳造組織の微細化作用を有し、Pは脱酸作用により熱間加工性を向上させる効果を呈する。また、Ce、La、Dy、Nd、YをはじめとするREM(希土類元素)は結晶粒の微細化や析出物の分散化に有効である。これらの作用を十分に発揮させるためには、それぞれ0.01%以上(REMは合計0.01%以上)の含有量を確保することがより効果的である。ただし、これらの元素の含有量が過剰になると導電率の低下、熱間加工性または冷間加工性の低下を招くことがある。これらの元素を含有させる場合、Feは0.50%以下、Mgは0.10%以下、Snは0.50%以下、Znは0.15%以下、Bは0.10%以下、Pは0.10%以下、REMは0.10%以下の含有量とすることが望ましい。またこれらの元素の含有量の合計は0.50%以下、あるいは0.40%以下とすることがより好ましい。   As other significant elements, one or more of Fe, Mg, Sn, Zn, B, P, and REM (rare earth elements) may be included as necessary. Fe has an effect of improving the strength by forming an Fe-Si compound, Mg is effective for improving the stress relaxation resistance, Sn has an effect of improving the strength by solid solution strengthening, and Zn is a solder of a copper alloy sheet. B has the effect of improving the attachability and castability, B has the effect of refining the cast structure, and P exhibits the effect of improving hot workability by deoxidation. Further, REM (rare earth elements) including Ce, La, Dy, Nd, and Y is effective for refining crystal grains and dispersing precipitates. In order to fully exhibit these actions, it is more effective to secure a content of 0.01% or more (REM is 0.01% or more in total). However, if the content of these elements is excessive, the electrical conductivity may be lowered, and hot workability or cold workability may be lowered. When these elements are contained, Fe is 0.50% or less, Mg is 0.10% or less, Sn is 0.50% or less, Zn is 0.15% or less, B is 0.10% or less, and P is It is desirable that the content is 0.10% or less and the REM is 0.10% or less. The total content of these elements is more preferably 0.50% or less, or 0.40% or less.

Cr、Zr、Hf、Nb、Sの各元素については、できるだけ含有量を低減することが望ましい。これらの元素の含有量が多くなると、Si系化合物の形成や液相二相分離の発生により、粗大な晶出物、析出物が形成されやすくなり、固溶Si量の低下を招く。その場合にはSiによる加工硬化能の改善効果が十分に発揮されず、高強度化を図るうえで不利となる。種々検討の結果、Cr、Zr、Hf、Nb、Sの合計含有量は0.05%以下に管理することが望まれ、0.01%以下とすることがより好ましい。   About each element of Cr, Zr, Hf, Nb, and S, it is desirable to reduce content as much as possible. When the content of these elements increases, coarse crystallized substances and precipitates are easily formed due to the formation of Si-based compounds and the occurrence of liquid-phase two-phase separation, leading to a decrease in the amount of dissolved Si. In that case, the effect of improving the work hardening ability by Si is not sufficiently exhibited, which is disadvantageous in increasing the strength. As a result of various studies, it is desired that the total content of Cr, Zr, Hf, Nb, and S is controlled to 0.05% or less, and more preferably 0.01% or less.

《特性》
〔板材の形状〕
Cu−Ni−Co−Si系銅合金薄板材の形状、すなわち平坦性は、それを加工して得られる精密通電部品の形状(寸法精度)に大きく影響する。種々検討の結果、板材を実際に小片に切断したときに顕在化する圧延直角方向の湾曲(反り)が非常に小さいことが、部品の寸法精度を安定して向上させるために極めて重要である。具体的には、板厚100μm未満の薄板材の場合、前記(A)に定義する最大クロスボウqMAXが250μm以下であるCu−Ni−Co−Si系銅合金板材は、圧延直角方向の板幅(50mm以上)のどの部分に由来する部品においても、精密通電部品としての寸法精度を安定して高く保つことができる加工性を具備していると判断できることがわかった。最大クロスボウqMAXが230μm以下であることがより好ましい。更に前記(B)に定義するI−unitが5.0以下であることがより好ましく、4.0以下であることが一層好ましい。
"Characteristic"
[Shape of plate material]
The shape of the Cu—Ni—Co—Si-based copper alloy sheet material, that is, the flatness greatly affects the shape (dimensional accuracy) of the precision energized component obtained by processing it. As a result of various studies, it is extremely important for the dimensional accuracy of the parts to be stably improved that the bending (warpage) in the direction perpendicular to the rolling, which becomes apparent when the plate material is actually cut into small pieces, is very small. Specifically, in the case of a thin plate material having a plate thickness of less than 100 μm, a Cu—Ni—Co—Si based copper alloy plate material having a maximum crossbow q MAX defined in (A) of 250 μm or less has a plate width in the direction perpendicular to the rolling direction. It was found that any part derived from any part (50 mm or more) can be judged to have workability capable of stably maintaining high dimensional accuracy as a precision energized part. More preferably, the maximum crossbow q MAX is 230 μm or less. Further, the I-unit defined in (B) is more preferably 5.0 or less, and even more preferably 4.0 or less.

〔強度〕
Cu−Ni−Co−Si系銅合金薄板材をリードフレームやコネクター等の通電部品の素材に用いるためには、従来、圧延平行方向(LD)の0.2%耐力が800MPa程度以上の強度レベルを有していることが望ましいとされていた。しかし、カメラ部品などの小型の機械部品に組み込まれて使用される導電ばね部材の素材としては、板厚が15μm以上100μm未満、より好ましくは15μm以上60μm以下、さらには50μm未満といった薄肉材において、LDの0.2%耐力が1000MPa以上であることが望まれる。1030MPa以上1200MPa以下であることがより好ましい。
〔Strength〕
In order to use Cu-Ni-Co-Si-based copper alloy sheet material as a material for current-carrying parts such as lead frames and connectors, a conventional strength level in which 0.2% proof stress in the rolling parallel direction (LD) is about 800 MPa or more. It was desirable to have However, as a material of a conductive spring member used by being incorporated in a small mechanical part such as a camera part, in a thin material having a plate thickness of 15 μm or more and less than 100 μm, more preferably 15 μm or more and 60 μm or less, and even less than 50 μm, It is desirable that the 0.2% proof stress of LD is 1000 MPa or more. More preferably, it is 1030 MPa or more and 1200 MPa or less.

《金属組織》
Cu−Ni−Co−Si系合金は、fcc結晶からなる母相(マトリックス)の中に第二相粒子が存在する金属組織を呈する。ここでいう第二相は鋳造工程の凝固時に生成する晶出相およびその後の工程で生成する析出相であり、当該合金の場合、主としてCo−Si系金属間化合物相とNi−Si系金属間化合物相で構成される。本明細書ではCu−Ni−Co−Si系合金に観察される第二相粒子として以下の粒子径範囲に属するものを取り上げている。
《Metallic structure》
The Cu—Ni—Co—Si alloy exhibits a metal structure in which second phase particles are present in a matrix (matrix) made of fcc crystals. The second phase here is a crystallization phase generated during solidification in the casting process and a precipitated phase generated in the subsequent process. In the case of the alloy, the phase is mainly between the Co—Si based intermetallic compound phase and the Ni—Si based metal. Consists of a compound phase. In this specification, particles belonging to the following particle diameter range are taken up as the second phase particles observed in the Cu—Ni—Co—Si alloy.

〔微細第二相粒子〕
粒子径5nm以上10nm以下であり、時効処理で生成する。強度向上への寄与が極めて大きい。銅合金においては一般に粒径10nm以下の微細析出物は強度向上への寄与が大きいことが知られており、Cu−Ni−Co−Si系合金では例えば2〜10nm程度の析出物の存在密度を十分に確保することで高強度化が可能であるとされる。しかしながら、0.2%耐力が1000MPa以上という高レベルの強度を得るためには、2〜10nm程度の粒子のなかでも特に硬化への寄与が大きい粒子径5〜10nmの粒子の量を十分に確保することが重要である。発明者らの詳細な検討によれば、当該微細第二相粒子の存在量は1.0×109個/mm2個以上とすることが極めて有効である。1.5×109個/mm2個以上とすることがより効果的であり、2.0×109個/mm2個以上に管理してもよい。存在量の上限についてはNi、Co、Siの含有量を上述のように規定することによって制限を受けるので特に定める必要はないが、通常、5.0×109個/mm2個以下の範囲となる。微細第二相粒子の個数密度の測定は、測定対象である板材から採取した試料をTEM(透過型電子顕微鏡)で観察し、粒子径5〜10nmの第二相粒子の個数をカウントすることにより行う。粒子径は粒子を取り囲む最小円の直径とする。
[Fine second phase particles]
The particle size is 5 nm or more and 10 nm or less, and is produced by an aging treatment. Greatly contributes to strength improvement. In copper alloys, it is generally known that fine precipitates having a particle size of 10 nm or less greatly contribute to strength improvement, and Cu—Ni—Co—Si based alloys have a density of precipitates of about 2 to 10 nm, for example. It is said that high strength can be achieved by ensuring sufficient. However, in order to obtain a high level of strength with a 0.2% proof stress of 1000 MPa or more, a sufficient amount of particles having a particle diameter of 5 to 10 nm, which has a particularly large contribution to curing, among particles of about 2 to 10 nm. It is important to. According to detailed studies by the inventors, it is extremely effective that the amount of the fine second phase particles be 1.0 × 10 9 particles / mm 2 or more. It is more effective to set it to 1.5 × 10 9 pieces / mm 2 or more, and it may be controlled to 2.0 × 10 9 pieces / mm 2 or more. The upper limit of the abundance is not particularly required because it is restricted by specifying the contents of Ni, Co, and Si as described above, but is usually in the range of 5.0 × 10 9 pieces / mm 2 or less. It becomes. The number density of the fine second phase particles is measured by observing a sample collected from the plate to be measured with a TEM (transmission electron microscope) and counting the number of second phase particles having a particle diameter of 5 to 10 nm. Do. The particle diameter is the diameter of the smallest circle surrounding the particle.

〔粗大第二相粒子〕
粒子径5μmを超えるものであり、主として鋳造工程の凝固時に生成した第二相が後工程で固溶化しきれずに残留した粒子からなる。強度向上には寄与しない。このような粗大第二相粒子の数が少ないほど、プレス打抜き性や曲げ加工性の向上に有利となる。種々検討の結果、通電部品においては、粗大第二相粒子の存在量が10個/mm2以下の個数密度に抑えられていることがより好ましい。粗大第二相粒子の個数密度の測定は、測定対象である板材の圧延面を電解研磨してCu素地のみを溶解させ、その表面に露出した第二相粒子の数をSEM(走査型電子顕微鏡)により観察することによって行うことができる。粒子径は粒子を取り囲む最小円の直径とする。
[Coarse second phase particles]
The particle diameter exceeds 5 μm, and mainly consists of particles that remain after the second phase produced during solidification in the casting process is not completely dissolved in the subsequent process. Does not contribute to strength improvement. The smaller the number of such coarse second phase particles, the more advantageous is the press punchability and the bending workability. As a result of various studies, it is more preferable that the abundance of coarse second phase particles is suppressed to a number density of 10 particles / mm 2 or less in the current-carrying parts. The number density of coarse second phase particles is measured by electropolishing the rolled surface of the plate material to be measured to dissolve only the Cu substrate, and the number of second phase particles exposed on the surface is determined by SEM (scanning electron microscope). ). The particle diameter is the diameter of the smallest circle surrounding the particle.

《製造方法》
以上説明した銅合金板材は、例えば以下のような製造工程により作ることができる。
「溶解・鋳造→鋳片加熱→熱間圧延→冷間圧延→時効処理前の熱処理→時効処理→仕上冷間圧延→低温焼鈍」
上記工程には記載していないが、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。また、必要に応じて工程中に熱処理および冷間圧延を加えることができる。例えば、溶体化処理前に行う冷間圧延は、中間焼鈍を挟んだ複数回の冷間圧延工程にて実施しても構わない。以下、各工程について説明する。
"Production method"
The copper alloy sheet material described above can be produced by the following manufacturing process, for example.
"Melting / Casting → Casting Heating → Hot Rolling → Cold Rolling → Heat Treatment Before Aging Treatment → Aging Treatment → Finish Cold Rolling → Low Temperature Annealing”
Although not described in the above steps, chamfering is performed as necessary after hot rolling, and pickling, polishing, or further degreasing is performed as necessary after each heat treatment. Moreover, heat processing and cold rolling can be added in the process as needed. For example, the cold rolling performed before the solution treatment may be performed in a plurality of cold rolling steps with intermediate annealing interposed therebetween. Hereinafter, each step will be described.

〔溶解・鋳造〕
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Siなどの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. In order to prevent oxidation of Si or the like, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.

〔鋳片加熱〕
鋳造後には、鋳片を加熱して1000〜1060℃で2h以上保持する。これにより鋳造時に生じた粗大な晶出相、析出相を均質化する。1020〜1060℃で2h以上保持することがより好ましい。保持時間が長くなりすぎると不経済であるので、通常、6h以内とすればよい。炉の設定温度が1060℃を超えると操業時の条件変動などにより材料が溶融する恐れがあるので好ましくない。この熱処理は次工程の熱間圧延における加熱工程を利用して行うことが好ましい。
[Casting heating]
After casting, the slab is heated and held at 1000 to 1060 ° C. for 2 hours or longer. Thereby, the coarse crystallized phase and the precipitated phase generated during casting are homogenized. It is more preferable to hold at 1020 to 1060 ° C. for 2 hours or more. Since it is uneconomical if the holding time becomes too long, it is usually set within 6 hours. If the set temperature of the furnace exceeds 1060 ° C., the material may be melted due to fluctuations in conditions during operation, etc., which is not preferable. This heat treatment is preferably performed using a heating step in the next hot rolling.

〔熱間圧延〕
上記の加熱保持を終えた鋳片に対して熱間圧延を施す。熱延条件は常法に従えばよい。鋳片を1000〜1060℃、より好ましくは1020〜1060℃に加熱した後、炉から出し、例えば圧延率70〜97%の熱間圧延を行い、その後、水冷する条件を例示することができる。最終パスの圧延温度は700℃以上とすることが好ましい。
なお、圧延率は下記(2)式により表される。
圧延率R(%)=(h0−h1)/h0×100 …(2)
ここで、h0は圧延前の板厚(mm)、h1は圧延後の板厚(mm)である。
(Hot rolling)
Hot rolling is performed on the slab after the above heating and holding. What is necessary is just to follow the hot rolling conditions in a conventional method. Examples of the conditions include that the slab is heated to 1000 to 1060 ° C., more preferably 1020 to 1060 ° C., and then removed from the furnace, for example, hot-rolled at a rolling rate of 70 to 97%, and then water-cooled. The rolling temperature in the final pass is preferably 700 ° C. or higher.
In addition, a rolling rate is represented by following (2) Formula.
Rolling ratio R (%) = (h 0 −h 1 ) / h 0 × 100 (2)
Here, h 0 is the plate thickness (mm) before rolling, and h 1 is the plate thickness (mm) after rolling.

〔冷間圧延〕
溶体化処理前の冷間圧延により、板厚の減少および歪エネルギー(転位)の導入を図る。その歪エネルギーは、溶体化処理での第二相の固溶化に有効に作用する。必要に応じて、中間焼鈍を挟んだ複数回の冷間圧延を行うことができる。中間焼鈍を加える場合は第二相粒子の粗大化を防止する観点から350〜600℃で行うことが望ましく、550℃以下で行うことがより好ましい。溶体化処理前の冷間圧延率(中間焼鈍を挟んで冷間圧延を行う場合は最後の中間焼鈍後の冷間圧延率)は、例えば70%以上とすることが効果的である。ミルパワー等による設備的な許容範囲において、通常99%以下の圧延率範囲で行えばよい。
(Cold rolling)
By cold rolling before the solution treatment, reduction of the plate thickness and introduction of strain energy (dislocation) are attempted. The strain energy effectively acts on the solid solution of the second phase in the solution treatment. If necessary, cold rolling can be performed a plurality of times with intermediate annealing. When adding intermediate annealing, it is desirable to perform at 350-600 degreeC from a viewpoint of preventing the coarsening of a 2nd phase particle, and it is more preferable to carry out at 550 degreeC or less. It is effective to set the cold rolling rate before the solution treatment (the cold rolling rate after the final intermediate annealing when performing cold rolling with the intermediate annealing interposed therebetween) to, for example, 70% or more. The rolling tolerance range of 99% or less is usually used in the facility tolerance range such as mill power.

〔時効処理前の熱処理〕
一般に時効処理前には、マトリックスの再結晶化および溶質原子の再固溶化を主目的とする加熱保持が行われる。その冷却過程では、不用意に析出が生じないように常温まで急冷されるのが従来一般的な製法である。この加熱保持とその後の急冷過程を合わせて溶体化処理と呼ぶことが多い。本明細書では、上記の加熱保持の過程を「固溶化処理」と呼んでいる。本発明に従う製造方法においても固溶化処理は必要であるが、その後、時効処理の前の段階で、600〜800℃の温度域に所定時間保持する熱履歴を付与する。この温度域での保持の過程を「前駆処理」と呼ぶ。
[Heat treatment before aging treatment]
In general, before the aging treatment, heating and holding are performed mainly for the purpose of recrystallization of the matrix and re-solidification of the solute atoms. In the cooling process, the conventional general production method is to rapidly cool to room temperature so as not to cause inadvertent precipitation. This heating and holding and subsequent quenching process are often referred to as solution treatment. In the present specification, the above heating and holding process is referred to as “solid solution treatment”. In the production method according to the present invention, a solution treatment is also necessary, but after that, in the stage before the aging treatment, a thermal history that is maintained in a temperature range of 600 to 800 ° C. for a predetermined time is imparted. The process of holding in this temperature range is called “precursor treatment”.

本発明に従う製造方法では、固溶化処理の保持温度を950〜1020℃の範囲とする。保持時間(材料がその温度域にある時間)は例えば0.5〜10minの範囲で設定することができる。保持温度が低すぎると再結晶化や溶質原子の再固溶化が十分に進行しないか、あるいは長時間の保持を要するので好ましくない。保持温度が高すぎると結晶粒の粗大化を招きやすい。   In the manufacturing method according to the present invention, the retention temperature of the solution treatment is set to a range of 950 to 1020 ° C. The holding time (the time during which the material is in the temperature range) can be set, for example, in the range of 0.5 to 10 min. If the holding temperature is too low, recrystallization or re-solidification of solute atoms does not proceed sufficiently, or it is not preferable because holding for a long time is required. If the holding temperature is too high, the crystal grains are likely to be coarsened.

固溶化処理に引き続き、前駆処理を施す。前駆処理は600〜800℃の範囲に保持する熱処理であり、固溶化処理の冷却過程を利用して行うことが効率的である。上記温度範囲での保持時間、すなわち材料温度が600〜800℃の範囲にある時間は10〜300secの範囲とする。固溶化処理の冷却過程を利用して前駆処理の熱履歴を付与する場合、600〜800℃の範囲内に設定した一定の温度に保持してもよいし、800℃から600℃までの温度域を徐冷しながら通過させてもよい。いずれの場合も、材料温度が600〜800℃の範囲にある時間を10〜300secにコントロールする。
固溶化処理温度から800℃までの平均冷却速度は例えば5〜50℃/secとすればよい。前駆処理の後は、時効処理温度範囲を急冷して通過させることが好ましい。例えば、600℃から300℃までの平均冷却速度が50℃/sec以上となるように冷却することが好ましい。
Subsequent to the solution treatment, a precursor treatment is performed. The precursor treatment is a heat treatment that is maintained in the range of 600 to 800 ° C., and it is efficient to use the cooling process of the solution treatment. The holding time in the above temperature range, that is, the time during which the material temperature is in the range of 600 to 800 ° C. is in the range of 10 to 300 seconds. When the thermal history of the precursor treatment is applied using the cooling process of the solution treatment, the temperature may be maintained at a constant temperature set in the range of 600 to 800 ° C, or the temperature range from 800 ° C to 600 ° C. May be passed while gradually cooling. In any case, the time during which the material temperature is in the range of 600 to 800 ° C. is controlled to 10 to 300 seconds.
The average cooling rate from the solution treatment temperature to 800 ° C. may be, for example, 5 to 50 ° C./sec. After the precursor treatment, it is preferable that the aging treatment temperature range is quenched and passed. For example, it is preferable to cool so that the average cooling rate from 600 ° C. to 300 ° C. is 50 ° C./sec or more.

なお、前駆処理を、固溶化処理の冷却過程を利用せずに、別の熱処理設備で行うことも可能である。その場合のヒートパターンとしては、上記固溶化処理の後、少なくとも600℃から300℃までの平均冷却速度が50℃/sec以上となるように冷却し、その後、300℃から600℃までの昇温速度が50℃/sec以上となるように昇温して上述の前駆処理を施すヒートパターンを採用することが好ましい。   In addition, it is also possible to perform a precursor process with another heat processing equipment, without utilizing the cooling process of a solution treatment. As a heat pattern in that case, after the solution treatment, cooling is performed so that the average cooling rate from at least 600 ° C. to 300 ° C. is 50 ° C./sec or more, and then the temperature is increased from 300 ° C. to 600 ° C. It is preferable to employ a heat pattern that raises the temperature so that the speed is 50 ° C./sec or more and performs the above-described precursor treatment.

Cu−Ni−Co−Si系合金ではNi−Si系およびCo−Si系の2種類の析出物がそれぞれ高強度化に寄与するが、両者の間で、最適な析出条件(温度や時間)は一致しない(ずれている)。最適な析出温度はNi−Si系では450℃前後、Co−Si系では520℃前後である。そのため、通常、これら2種類の析出物による時効硬化を同時に最大限利用することは難しい。ところが発明者らの研究によれば、上記の固溶化熱処理を終えた状態の材料を600〜800℃の温度域で10〜300sec保持したのちに、後述の低温域で行う時効処理を組み合わせると、Co−Si系化合物が析出しやすいことがわかった。この600〜800℃の温度域はNi−Si系化合物はほとんど析出せず、またCo−Si系化合物にとっては、析出は生じるが最適な析出温度を超えて高い温度域である。溶質原子が十分に固溶した母相を当該温度域に所定時間保持すると、Co、Siを主とするエンブリオが形成され、これが後述の時効処理でCo−Si系化合物の析出の駆動力となるのではないかと推察される。このエンブリオの生成はCo−Si系化合物析出の前駆現象と考えることができる。   In a Cu-Ni-Co-Si alloy, two types of precipitates, Ni-Si and Co-Si, contribute to increasing the strength, but the optimum precipitation conditions (temperature and time) between them are as follows. Does not match (displaces). The optimum deposition temperature is around 450 ° C. for the Ni—Si system and around 520 ° C. for the Co—Si system. Therefore, it is usually difficult to make maximum use of age hardening by these two kinds of precipitates at the same time. However, according to the research by the inventors, after holding the solution in the state of solution heat treatment in the temperature range of 600 to 800 ° C. for 10 to 300 seconds, and combining the aging treatment performed in the low temperature range described below, It turned out that a Co-Si type compound tends to precipitate. In the temperature range of 600 to 800 ° C., the Ni—Si based compound hardly precipitates, and for the Co—Si based compound, although precipitation occurs, the temperature is higher than the optimum precipitation temperature. When a matrix phase in which solute atoms are sufficiently dissolved is kept in the temperature range for a predetermined time, an embryo mainly composed of Co and Si is formed, and this serves as a driving force for precipitation of a Co-Si compound in an aging treatment described later. It is guessed that. The generation of this embryo can be considered as a precursor phenomenon of Co—Si based compound precipitation.

〔時効処理〕
上記の固溶化処理および前駆処理の熱履歴を付与した状態の板材に対して、時効処理を施す。一般にCu−Ni−Co−Si系合金の時効処理は520℃前後で行われるが、本発明に従う時効処理は300〜400℃という低温域で行う。310〜380℃で行うことがより好ましい。前工程の前駆処理でCo−Si系化合物粒子の核生成に関する自由エネルギーが大幅に低減してCo−Si系化合物が極めて析出しやすい組織状態となっているので、このような低温での時効が可能になるものと考えられる。この低温時効処理によれば、強度向上に最も効く粒径5〜10nmの微細第二相粒子が多量に形成されることがわかった。また、この低温時効処理によってNi−Si系化合物の析出も生じることが確認された。従って、従来は難しかった2種類の析出物による析出硬化現象を有効に享受できる。
[Aging treatment]
An aging treatment is performed on the plate material to which the heat history of the solution treatment and the precursor treatment is applied. In general, the aging treatment of a Cu—Ni—Co—Si based alloy is performed at around 520 ° C., but the aging treatment according to the present invention is performed in a low temperature range of 300 to 400 ° C. More preferably, it is performed at 310 to 380 ° C. The free energy related to the nucleation of Co—Si based compound particles is greatly reduced by the precursor treatment in the previous step, and the Co—Si based compound is very easily precipitated. It is considered possible. According to this low temperature aging treatment, it has been found that a large amount of fine second phase particles having a particle diameter of 5 to 10 nm which are most effective for improving the strength are formed. In addition, it was confirmed that precipitation of Ni-Si compounds was also caused by this low temperature aging treatment. Therefore, it is possible to effectively enjoy the precipitation hardening phenomenon caused by the two types of precipitates, which has been difficult in the past.

時効処理条件を設定するに際しては、時効処理後に粒子径5〜10nmの「微細第二相粒子」の個数密度が1.0×109個/mm2個以上となる条件を採用する。時効処理温度が300〜400℃と低いので通常の時効処理よりも原子の拡散速度が遅い。そのため強化に寄与する固溶Siを残存させるためにも有利となる。最適な時効時間は3〜10hの範囲に見出すことができる。 In setting the aging treatment conditions, a condition is adopted in which the number density of “fine second phase particles” having a particle diameter of 5 to 10 nm is 1.0 × 10 9 particles / mm 2 or more after the aging treatment. Since the aging treatment temperature is as low as 300 to 400 ° C., the diffusion rate of atoms is slower than the normal aging treatment. Therefore, it is advantageous to leave the solid solution Si that contributes to strengthening. The optimum aging time can be found in the range of 3 to 10 h.

最適な時効条件を決定する指標として、下記(3)式を挙げることができる。
0.60≦ECage/ECmax≦0.80 …(3)
ここで、ECmaxは400〜600℃の温度範囲において50℃間隔で10h熱処理を行った場合に得られる最大の導電率、ECageは時効処理後の導電率である。ECage/ECmaxを0.60以上とすることにより析出量が十分に確保され、強度、導電率の改善に有利となる。また、ECage/ECmaxを0.80以下とすることにより母相中のSi濃度が十分に確保され、加工硬化能の改善に有利となる。
The following formula (3) can be given as an index for determining the optimum aging condition.
0.60 ≦ ECage / ECmax ≦ 0.80 (3)
Here, ECmax is the maximum conductivity obtained when heat treatment is performed at 50 ° C. intervals for 10 hours in a temperature range of 400 to 600 ° C., and ECage is the conductivity after aging treatment. By setting ECage / ECmax to 0.60 or more, a sufficient amount of precipitation is secured, which is advantageous in improving strength and conductivity. Further, by setting ECage / ECmax to 0.80 or less, the Si concentration in the matrix is sufficiently secured, which is advantageous for improving work hardening ability.

〔仕上冷間圧延〕
時効処理を終えた板材に、ロール直径25〜45mmのワークロールを用いて仕上冷間圧延を施し、15μm以上100μm未満の板厚とする。仕上冷間圧延は強度レベル(特に0.2%耐力)の向上に有効である。仕上冷間圧延率(トータル圧延率)は50%以上とすることが効果的であり75%以上とすることがより効果的である。仕上冷間圧延率の上限は圧延機の能力によって制限を受けるが、通常、99.5%以下の範囲で設定すればよい。ワークロール直径が25mmを下回るとリードフレーム等の精密部品に加工したときに高い寸法精度が得られるような、形状の良好な板材を安定して得ることが難しくなる。ワークロール直径が55mmを超えると上記の冷間圧延率によって板厚15μm以上100μm未満の薄板を得ることが難しくなる。
[Finish cold rolling]
The plate material that has been subjected to the aging treatment is subjected to finish cold rolling using a work roll having a roll diameter of 25 to 45 mm to obtain a plate thickness of 15 μm or more and less than 100 μm. Finish cold rolling is effective in improving the strength level (particularly 0.2% yield strength). The finish cold rolling rate (total rolling rate) is effectively 50% or more, and more preferably 75% or more. Although the upper limit of the finish cold rolling rate is limited by the capability of the rolling mill, it is usually set within a range of 99.5% or less. If the diameter of the work roll is less than 25 mm, it is difficult to stably obtain a plate having a good shape so that high dimensional accuracy can be obtained when processed into a precision part such as a lead frame. When the work roll diameter exceeds 55 mm, it becomes difficult to obtain a thin plate having a thickness of 15 μm or more and less than 100 μm due to the cold rolling rate.

〔低温焼鈍〕
仕上冷間圧延後には、通常、板条材の残留応力の低減や曲げ加工性の向上、空孔やすべり面上の転位の低減による耐応力緩和性向上を目的として低温焼鈍が施される。本発明では、更に形状矯正効果を得る目的でもこの低温焼鈍を利用する。精密部品に加工したときに高い寸法精度が得られる性質を具備した形状の良好な薄板材を得るために、最終的な熱処理である低温焼鈍の条件を厳しく制限する必要がある。基本的には、連続焼鈍設備を用いて、比較的高い張力を付与しながら、緩やかな温度変化にて、低温、長時間の熱処理を施す。
[Low temperature annealing]
After finish cold rolling, low temperature annealing is usually performed for the purpose of reducing the residual stress of the strip material, improving the bending workability, and improving the stress relaxation resistance by reducing the dislocations on the pores and the sliding surface. In the present invention, this low-temperature annealing is also used for the purpose of obtaining a shape correction effect. In order to obtain a thin plate material having a good shape with the property that high dimensional accuracy can be obtained when processed into precision parts, it is necessary to strictly limit the conditions for low-temperature annealing, which is the final heat treatment. Basically, using a continuous annealing facility, heat treatment is performed at a low temperature for a long time with a moderate temperature change while applying a relatively high tension.

第1に、低温焼鈍の最高到達材料温度を250〜400℃とし、250℃以上での保持時間、すなわち材料温度が250℃以上最高到達材料温度以下である時間を25〜720secとする。最高到達材料温度が250℃より低温あるいは250℃以上での保持時間25secより短時間では形状矯正効果が十分に得られない。最高到達材料温度が400℃より高温あるいは250℃以上での保持時間が720secより長時間では材料が軟化し所定の高強度を安定して得ることが難しくなる。最高到達材料温度を300〜400℃とし、250℃以上での保持時間を35〜720secとすることがより好ましい。
第2に、上記温度での加熱保持中に板材に付与される張力を100N/mm2を超え150N/mm2以下の範囲にコントロールする。連続焼鈍設備においては、通常、張力の方向は圧延方向となる。張力が100N/mm2以下であると形状矯正効果が不足し、精密部品に加工したときに高い寸法精度が得られる性質を安定して付与することが難しくなる。張力が150N/mm2を上回る場合には、昇温時および降温時に張力に対して板面直角方向のひずみ量分布が不均一となりやすく、高い平坦性を得ることが難しい。
第3に、最大昇温速度100℃/sec以下、かつ最大冷却速度100℃/sec以下とする。すなわち、低温焼鈍の工程では100℃/secを超える速度での温度変化を避ける。強度レベルの高いCu−Ni−Co−Si系銅合金薄板材においては、最終的な熱処理である低温焼鈍にて、上記のように穏やかな温度変化のヒートパターンを採用することが、精密部品に加工したときに高い寸法精度が得られる性質を付与するうえで極めて有効である。
First, the maximum material temperature for low-temperature annealing is 250 to 400 ° C., and the holding time at 250 ° C. or higher, that is, the time during which the material temperature is 250 ° C. or higher and below the maximum material temperature is 25 to 720 sec. If the maximum material temperature is lower than 250 ° C. or shorter than 250 ° C. and shorter than 25 sec, the shape correction effect cannot be obtained sufficiently. If the maximum material temperature is higher than 400 ° C. or 250 ° C. or higher and the holding time is longer than 720 sec, the material becomes soft and it is difficult to stably obtain a predetermined high strength. More preferably, the maximum material temperature is 300 to 400 ° C., and the holding time at 250 ° C. or higher is 35 to 720 sec.
Secondly, the tension applied to the plate during heating and holding at the above temperature is controlled in the range of more than 100 N / mm 2 and not more than 150 N / mm 2 . In continuous annealing equipment, the direction of tension is usually the rolling direction. When the tension is 100 N / mm 2 or less, the shape correction effect is insufficient, and it becomes difficult to stably impart the property of obtaining high dimensional accuracy when processed into a precision part. When the tension exceeds 150 N / mm 2 , the strain distribution in the direction perpendicular to the plate surface tends to be non-uniform when the temperature is raised and lowered, and it is difficult to obtain high flatness.
Third, the maximum temperature increase rate is 100 ° C./sec or less and the maximum cooling rate is 100 ° C./sec or less. That is, a temperature change at a speed exceeding 100 ° C./sec is avoided in the low temperature annealing process. In high-strength Cu-Ni-Co-Si-based copper alloy sheet materials, it is necessary to adopt a heat pattern with gentle temperature changes as described above in low-temperature annealing, which is the final heat treatment. It is extremely effective in imparting the property of obtaining high dimensional accuracy when processed.

表1に示す組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を表2に示す条件で加熱したのち炉から出し、厚さ14mmまで熱間圧延し、水冷した。なお、熱間圧延で割れが生じた一部の比較例では、その時点で製造を中止した。トータルの熱間圧延率は90〜95%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。次いで圧延率90〜99%で冷間圧延を行った。その後、表2に示す条件で時効処理前の熱処理(固溶化処理および前駆処理)を行った。前駆処理は固溶化処理後の冷却過程を利用して行った。固溶化処理温度から前駆処理温度まで平均冷却速度5〜50℃/secで冷却し、前駆処理温度で表2に示す時間の保持を行い、その後、600℃から300℃までの平均冷却速度が50℃/sec以上となるように常温まで冷却した。前駆処理を省略した一部の比較例では、固溶化処理温度から300℃より低温の温度域まで急冷した。時効処理前の熱処理を終えた材料に、表2に示す条件で時効処理を施した。表2中に前記(3)式により定まるECage/ECmax値を併記する。時効処理後の材料に、表3に示す条件で仕上冷間圧延を施した。表3のロール径は、使用したワークロールの直径を意味する。仕上冷間圧延後の板厚は表4に示してある。板厚50μm未満まで圧延できなかった一部の比較例では、以降の工程を中止した。   A copper alloy having the composition shown in Table 1 was melted and cast using a vertical semi-continuous casting machine. The obtained slab was heated under the conditions shown in Table 2, and then removed from the furnace, hot-rolled to a thickness of 14 mm, and water-cooled. In some comparative examples in which cracking occurred during hot rolling, production was stopped at that time. The total hot rolling rate is 90 to 95%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing. Next, cold rolling was performed at a rolling rate of 90 to 99%. Thereafter, heat treatment (solution treatment and precursor treatment) before aging treatment was performed under the conditions shown in Table 2. The precursor treatment was performed using the cooling process after the solution treatment. The solution is cooled from the solution treatment temperature to the precursor treatment temperature at an average cooling rate of 5 to 50 ° C./sec, held for the time shown in Table 2 at the precursor treatment temperature, and thereafter the average cooling rate from 600 ° C. to 300 ° C. is 50 It cooled to normal temperature so that it might be set to ℃ / sec or more. In some comparative examples in which the precursor treatment was omitted, the solution was rapidly cooled from the solution treatment temperature to a temperature range lower than 300 ° C. The material subjected to the heat treatment before the aging treatment was subjected to an aging treatment under the conditions shown in Table 2. In Table 2, the ECage / ECmax value determined by the equation (3) is also shown. The material after the aging treatment was subjected to finish cold rolling under the conditions shown in Table 3. The roll diameter in Table 3 means the diameter of the work roll used. Table 4 shows the thickness after finish cold rolling. In some comparative examples that could not be rolled to a thickness of less than 50 μm, the subsequent steps were stopped.

次いで表3に記載の条件で低温焼鈍を施した。表3に示した低温焼鈍の温度は最高到達材料温度、低温焼鈍の時間は250℃以上の保持時間、すなわち材料温度が250℃以上最高到達材料温度以下である時間を意味する。低温焼鈍はカテナリー炉を連続通板する方法で行った。炉内雰囲気は窒素+水素混合雰囲気とした。昇温開始から冷却終了までの板表面の温度を通板方向の種々の位置で測定し、各測定位置の平均温度の値を用いて、横軸に時間、縦軸に温度をとった温度曲線を求めた。1つの供試材においては通板中の板の全長にわたって同じ条件で熱処理を施しており、各測定位置での温度は経時的にほぼ一定値に安定しているので、この温度曲線の昇温時における最大勾配を当該供試材の最大昇温速度、冷却時における最大勾配を当該供試材の最大冷却速度として採用した。供試材毎の昇温速度および冷却速度は、それぞれ昇温ゾーンおよび冷却ゾーンにおける加熱出力、雰囲気温度、ファン回転数などを通板方向位置に応じて適切にコントロールすることにより調整した。また、低温焼鈍中の張力は、炉内を通板中の材料のカテナリー曲線(炉内通板方向両端部および中央部の板の高さ位置、並びに炉内長)から算出した。   Next, low-temperature annealing was performed under the conditions described in Table 3. The temperature of the low temperature annealing shown in Table 3 means the maximum material temperature, and the time of the low temperature annealing means a holding time of 250 ° C. or more, that is, a time during which the material temperature is 250 ° C. or more and below the maximum material temperature. Low-temperature annealing was performed by a method of continuously feeding a catenary furnace. The atmosphere in the furnace was a nitrogen + hydrogen mixed atmosphere. A temperature curve in which the temperature on the surface of the plate from the start of temperature rise to the end of cooling is measured at various positions in the plate direction, the average temperature at each measurement position is used, time is plotted on the horizontal axis, and temperature is plotted on the vertical axis. Asked. One test material is heat-treated under the same conditions over the entire length of the plate in the pass plate, and the temperature at each measurement position is stabilized to a substantially constant value over time. The maximum gradient at the time was adopted as the maximum rate of temperature increase of the specimen, and the maximum gradient at the time of cooling was adopted as the maximum cooling rate of the specimen. The heating rate and cooling rate for each specimen were adjusted by appropriately controlling the heating output, the ambient temperature, the fan rotation speed, etc. in the heating zone and the cooling zone, respectively, according to the position in the plate direction. Further, the tension during low-temperature annealing was calculated from the catenary curve of the material in the plate passing through the furnace (the height position of the plate at both ends and the center of the plate passing through the furnace and the length in the furnace).

低温焼鈍後にスリッターでスリット加工して、圧延直角方向の板幅W0が510mmの薄板材製品(供試材)を得た。 After low-temperature annealing, slitting was performed with a slitter to obtain a thin plate product (test material) having a sheet width W 0 in the direction perpendicular to the rolling of 510 mm.

Figure 0006573503
Figure 0006573503

Figure 0006573503
Figure 0006573503

Figure 0006573503
Figure 0006573503

各供試材について、以下の調査を行った。
〔微細第二相粒子の個数密度〕
供試材から直径3mmの円板を打ち抜き、ツインジェット研磨法でTEM観察試料を作製し、TEM(日本電子株式会社製、EM−2010)にて加速電圧200kVで倍率10万倍の無作為に選択した10視野について写真を撮影し、その写真上で粒子径5〜10nmの微細第二相粒子の数をカウントし、その合計数を観察領域の総面積で除することにより微細第二相粒子の個数密度(個/mm2)を求めた。ここでは1視野の大きさを770nm×550nmとした。粒子径は当該粒子を取り囲む最小円の直径とした。
なお、供試材において測定された微細第二相粒子の個数密度は、時効処理後の段階から変わっていないとみなすことができる。
The following investigation was conducted for each specimen.
[Number density of fine second phase particles]
A 3 mm diameter disk is punched out from the specimen, a TEM observation sample is prepared by a twin jet polishing method, and is randomly selected with a TEM (EM Electronics, EM-2010) at an acceleration voltage of 200 kV and a magnification of 100,000 times. A photograph is taken for the selected 10 fields of view, and the number of fine second phase particles having a particle diameter of 5 to 10 nm is counted on the photograph, and the total number is divided by the total area of the observation region to obtain fine second phase particles. The number density (pieces / mm 2 ) was determined. Here, the size of one field of view is set to 770 nm × 550 nm. The particle diameter was the diameter of the smallest circle surrounding the particle.
In addition, it can be considered that the number density of the fine second phase particles measured in the test material has not changed from the stage after the aging treatment.

〔粗大第二相粒子の個数密度〕
供試材から採取した試料の圧延面を電解研磨してCu母相(マトリックス)のみを溶解させることにより表面に第二相粒子が露出した観察試料を作製し、SEM(株式会社日立ハイテクノロジーズ製、型番S−3000N)にて倍率3000倍の無作為に選択した20視野について写真を撮影し、その写真上で粒子径5μm以上の粗大第二相粒子の数をカウントし、その合計数を観察領域の総面積で除することにより粗大第二相粒子の個数密度(個/mm2)を求めた。ここでは1視野の大きさを41μm×28μmとした。粒子径は当該粒子を取り囲む最小円の直径とした。
なお、供試材において測定された粗大第二相粒子の個数密度は、時効処理後の段階から変わっていないとみなすことができる。
[Number density of coarse second phase particles]
The rolled surface of the sample collected from the test material is electropolished to dissolve only the Cu matrix (matrix), thereby producing an observation sample with the second phase particles exposed on the surface. SEM (manufactured by Hitachi High-Technologies Corporation) , Model number S-3000N), taking a picture of 20 randomly selected fields with a magnification of 3000 times, counting the number of coarse second-phase particles with a particle diameter of 5 μm or more on the photograph, and observing the total number By dividing by the total area of the region, the number density (number / mm 2 ) of coarse second phase particles was determined. Here, the size of one field of view is 41 μm × 28 μm. The particle diameter was the diameter of the smallest circle surrounding the particle.
In addition, it can be considered that the number density of the coarse second phase particles measured in the test material has not changed from the stage after the aging treatment.

〔圧延方向の0.2%耐力〕
各供試材から圧延方向(LD)の引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験行い、0.2%耐力を測定した。n=3の平均値を当該供試材の成績値とした。
〔I−unit〕
各供試材から圧延方向長さが400mm、圧延直角方向長さが板幅W0(mm)である長方形の切り板Qを採取し、上述(B)に定義されるI−unitを求めた。
〔最大クロスボウqMAX
各供試材について上述(A)に定義される最大クロスボウqMAXを求めた。
これらの結果を表4に示す。
[0.2% proof stress in the rolling direction]
A tensile test piece (JIS No. 5) in the rolling direction (LD) was taken from each test material, and a tensile test based on JIS Z2241 was performed with the number of tests n = 3, and a 0.2% yield strength was measured. The average value of n = 3 was defined as the result value of the test material.
[I-unit]
A rectangular cut plate Q having a length in the rolling direction of 400 mm and a length in the direction perpendicular to the rolling width of W 0 (mm) was sampled from each test material, and the I-unit defined in (B) above was obtained. .
[Maximum crossbow q MAX ]
The maximum crossbow q MAX defined in (A) above was determined for each test material.
These results are shown in Table 4.

Figure 0006573503
Figure 0006573503

表4からわかるように、本発明例の銅合金薄板材はいずれもLDの0.2%耐力が1000MPa以上という高い強度レベルを有するとともに、最大クロスボウqMAXが250μm以下、I−unitが5.0以下の極めて平坦性の高い板形状を呈していた。これらの薄板材は、カメラモジュールをはじめとする各種小型機械部品に使用される精密導電ばね部材の素材として極めて有用である。 As can be seen from Table 4, each of the copper alloy sheet materials of the present invention has a high strength level in which the 0.2% proof stress of LD is 1000 MPa or more, the maximum crossbow q MAX is 250 μm or less, and the I-unit is 5. It exhibited a plate shape with extremely high flatness of 0 or less. These thin plate materials are extremely useful as materials for precision conductive spring members used in various small machine parts such as camera modules.

これに対し、比較例No.31は鋳片加熱温度が低かったので粗大な第二相が熱間圧延前に多量に残存し、固溶化処理で十分に固溶しきれなかったために微細第二相粒子の析出量が不足して強度が低かった。No.32は時効処理前に前駆処理を行わなかったので微細第二相粒子の析出が不十分となり、強度が低かった。No.33は時効処理温度が低すぎたので微細第二相粒子の析出が不十分となり、強度が低かった。No.34は時効処理温度が高すぎたので微細第二相粒子の析出が不十分となり、強度が低かった。No.35は鋳片加熱時間が短かったので粗大な第二相が熱間圧延前に多量に残存し、固溶化処理で十分に固溶しきれなかったために微細第二相粒子の析出量が不足して強度が低かった。No.36は鋳片加熱温度が高すぎたので熱間圧延地に割れが発生し、その後の工程に進めることができなかった。No.37は固溶化処理温度が低かったので溶質原子の溶体化が不十分となり、微細第二相粒子の析出量が不足して強度が低かった。No.38はNi+Co合計含有量が高すぎたので粗大第二相粒子が多くなり、その分、微細第二相粒子の量が不足して強度が低かった。No.39はNi+Co合計含有量が低いので微細第二相粒子の析出量が不十分となり、強度が低かった。No.40はSi含有量が高すぎたので粗大第二相粒子が多くなり、その分、微細第二相粒子の量が不足して強度が低かった。No.41は仕上冷間圧延で使用したワークロールの直径が大きすぎたので50μm未満の薄板材を得ることができず、その後の工程を中止した。No.42は仕上冷間圧延で使用したワークロールの直径が小さすぎたので最大クロスボウおよびI−unitが大きくなった。No.43は低温焼鈍での張力が大きすぎたので最大クロスボウが大きくなった。No.44は低温焼鈍での張力が小さかったので最大クロスボウおよびI−unitが大きくなった。No.45は低温焼鈍の温度が高すぎたので強度が低下した。No.46は低温焼鈍の温度が低かったので最大クロスボウおよびI−unitが大かった。No.47は低温焼鈍の時間が長すぎたので強度が低下した。No.48は低温焼鈍の時間が短かったので最大クロスボウおよびI−unitが大かった。No.49は低温焼鈍での最大昇温速度が大きすぎたので最大クロスボウおよびI−unitが大きくなった。No.50は低温焼鈍での最大冷却速度が大きすぎたので最大クロスボウおよびI−unitが大きくなった。   On the other hand, in Comparative Example No. 31, since the slab heating temperature was low, a large amount of the coarse second phase remained before hot rolling and could not be sufficiently dissolved by the solution treatment. The amount of phase particles deposited was insufficient and the strength was low. No. 32 was not subjected to the precursor treatment before the aging treatment, so the precipitation of the fine second phase particles was insufficient and the strength was low. In No. 33, since the aging treatment temperature was too low, precipitation of fine second phase particles was insufficient, and the strength was low. In No. 34, the aging temperature was too high, so that the precipitation of fine second phase particles was insufficient and the strength was low. In No. 35, since the slab heating time was short, a large amount of coarse second phase remained before hot rolling, and the solid solution treatment did not fully dissolve, so the precipitation amount of fine second phase particles was small. Insufficient strength. In No. 36, since the slab heating temperature was too high, cracks occurred in the hot-rolled ground, and it was not possible to proceed to the subsequent steps. In No. 37, the solution treatment temperature was low, so that the solution of solute atoms was insufficient, the precipitation amount of fine second phase particles was insufficient, and the strength was low. In No. 38, since the total content of Ni + Co was too high, coarse second-phase particles increased, and the amount of fine second-phase particles was insufficient, and the strength was low. No. 39 had a low Ni + Co total content, so the amount of fine second phase particles deposited was insufficient and the strength was low. In No. 40, since the Si content was too high, the number of coarse second-phase particles increased, and the amount of fine second-phase particles was insufficient, and the strength was low. In No. 41, since the diameter of the work roll used in the finish cold rolling was too large, a thin plate material of less than 50 μm could not be obtained, and the subsequent steps were stopped. In No. 42, since the diameter of the work roll used in the finish cold rolling was too small, the maximum crossbow and I-unit became large. In No. 43, the tension at low temperature annealing was too large, so the maximum crossbow was large. No. 44 had a small maximum crossbow and I-unit because the tension at low temperature annealing was small. In No. 45, the strength decreased because the temperature of the low-temperature annealing was too high. No. 46 had a large maximum crossbow and I-unit because the low-temperature annealing temperature was low. In No. 47, the strength was lowered because the low-temperature annealing time was too long. In No. 48, the time for low-temperature annealing was short, so the maximum crossbow and I-unit were large. In No. 49, the maximum temperature rise rate during low-temperature annealing was too large, so that the maximum crossbow and I-unit became large. In No. 50, since the maximum cooling rate in the low-temperature annealing was too large, the maximum crossbow and I-unit became large.

次に、上記の本発明例No.1の供試材と市販のチタン銅板材(DOWAメタニクス株式会社製、C1990)について、はんだ濡れ性を調査した。試験は材料をはんだ槽に浸漬したのち引き上げ、はんだ濡れ面積率を測定する方法で行った。試験条件は以下の通りである。
(はんだ濡れ性試験条件)
・試験片サイズ: 幅10mm×長さ60mm
・はんだ浴組成: 3.0質量%Ag−0.5質量%Cu−残部Sn
・フラックス : 25%ロジン、75%IPA
・浸漬スピード: 20mm/sec
・浸漬時間 : 5sec
・浸漬深さ : 40mm
Next, the solder wettability of the sample material of the present invention example No. 1 and the commercially available titanium copper plate material (manufactured by DOWA Metanics Co., Ltd., C1990) was investigated. The test was conducted by immersing the material in a solder bath and then pulling it up and measuring the solder wet area ratio. The test conditions are as follows.
(Solder wettability test conditions)
-Test piece size: width 10mm x length 60mm
Solder bath composition: 3.0% by mass Ag-0.5% by mass Cu-balance Sn
・ Flux: 25% rosin, 75% IPA
・ Immersion speed: 20mm / sec
・ Immersion time: 5 sec
・ Immersion depth: 40mm

その結果、はんだ濡れ面積率は、本発明例No.1の板材が99%以上、市販チタン銅の板材が95%未満であり、本発明の板材はチタン銅板材よりもはんだ濡れ性に優れることが確認された。   As a result, the solder wet area ratio is 99% or more for the plate material of Invention Example No. 1 and less than 95% for the plate material of commercially available titanium copper, and the plate material of the present invention has better solder wettability than the titanium copper plate material. Was confirmed.

Claims (5)

質量%で、NiとCoの合計:2.50〜4.00%、Co:0.50〜2.00%、Si:0.50〜1.50%、Fe:0〜0.50%、Mg:0〜0.10%、Sn:0〜0.50%、Zn:0〜0.15%、B:0〜0.10%、P:0〜0.10%、REM(希土類元素):0〜0.10%であり、Cr、Zr、Hf、Nb、Sの合計含有量が0〜0.05%であり、残部Cuおよび不可避的不純物からなる化学組成を有し、母相中に存在する第二相粒子のうち、粒子径5〜10nmの「微細第二相粒子」の個数密度が1.0×109個/mm2以上である金属組織を有し、圧延直角方向の板幅W0が50mm以上、板厚が15μm以上100μm未満、かつ下記(A)に定義する最大クロスボウqMAXが250μm以下であり、圧延方向の0.2%耐力が1000MPa以上である銅合金薄板材。
(A)銅合金板材から圧延方向長さが50mm、圧延直角方向長さが板幅W0(mm)である長方形の切り板Pを採取し、その切り板Pをさらに圧延直角方向50mmピッチで裁断し、その際、圧延直角方向長さが50mmに満たない小片が切り板Pの圧延直角方向端部に発生したときはその小片を除き、n個(nは板幅W0/50の整数部分)の50mm角の正方形サンプルを用意する。ただし、W0=50mmであるときは上記切り板Pを正方形サンプルとする。n個の正方形サンプル毎に、日本伸銅協会技術規格JCBA T320:2003に規定の三次元測定装置による測定方法(ただし、w=50mmとする)に従い、水平盤上に置いたときのクロスボウqを、両面(両側の板面)について圧延直角方向に測定し、各面のqの絶対値|q|の最大値を当該正方形サンプルのクロスボウqi(iは1〜n)とする。n個の正方形サンプルのクロスボウq1〜qnのうちの最大値を最大クロスボウqMAXとする。
In mass%, the total of Ni and Co: 2.50 to 4.00%, Co: 0.50 to 2.00%, Si: 0.50 to 1.50%, Fe: 0 to 0.50%, Mg: 0 to 0.10%, Sn: 0 to 0.50%, Zn: 0 to 0.15%, B: 0 to 0.10%, P: 0 to 0.10%, REM (rare earth element) : 0 to 0.10%, the total content of Cr, Zr, Hf, Nb and S is 0 to 0.05%, and has a chemical composition consisting of the remainder Cu and inevitable impurities, Among the second phase particles present in the sample, the number density of “fine second phase particles” having a particle diameter of 5 to 10 nm is 1.0 × 10 9 particles / mm 2 or more, The sheet width W 0 is 50 mm or more, the sheet thickness is 15 μm or more and less than 100 μm, the maximum crossbow q MAX defined in (A) below is 250 μm or less , and the 0.2% proof stress in the rolling direction is 10 A copper alloy sheet material of 00 MPa or more .
(A) a copper alloy thin sheet from the rolling direction length 50mm, perpendicular to the rolling direction length is taken off plate P rectangular a plate width W 0 (mm), still perpendicular to the rolling direction 50mm pitch the cutting plate P in cutting, in which, when a direction perpendicular to the rolling direction length occurs in the direction perpendicular to the rolling direction end portion of the small pieces cut plate P less than 50mm except the piece, n (n is the plate width W 0/50 A square sample of 50 mm square is prepared. However, when W 0 = 50 mm, the cut plate P is a square sample. For each n square samples, the crossbow q when placed on a horizontal board is determined according to the measuring method (however, w = 50 mm) by the three-dimensional measuring device specified in Japan Technical Standard JCBA T320: 2003. Both surfaces (plate surfaces on both sides) are measured in the direction perpendicular to the rolling direction, and the maximum value of the absolute value | q | of each surface is defined as the crossbow q i (i is 1 to n) of the square sample. maximum value of the crossbow q 1 to q n of n square samples and maximum crossbow q MAX.
さらに下記(B)に定義するI−unitが5.0以下である請求項1に記載の銅合金薄板材。
(B)銅合金板材から圧延方向長さが400mmであり、圧延直角方向長さが板幅W0(mm)である長方形の切り板Qを採取し、水平盤上に置く。切り板Qを鉛直方向に見た投影表面を長方形領域Xと定め、その長方形領域Xをさらに圧延直角方向10mmピッチで短冊状領域に分割し、その際、圧延直角方向長さが10mmに満たない狭幅の短冊状領域が長方形領域Xの圧延直角方向端部に発生したときはその狭幅の短冊状領域を除き、隣接するn箇所(nは板幅W0/10の整数部分)の短冊状領域(幅10mm)を設定する。各短冊状領域毎に、幅中央部の表面高さを圧延方向の全長にわたって測定し、最大高さhMAXと最小高さhMINの差hMAX−hMINの値を波高さh(mm)とし、下記(1)式により求まる伸び差率eを当該短冊状領域の伸び差率ei(iは1〜n)とする。n箇所の短冊状領域の伸び差率e1〜enのうちの最大値をI−unitとする。
e=(π/2×h/L)2 …(1)
ただし、Lは基準長さ400mm
The copper alloy sheet material according to claim 1, wherein the I-unit defined in the following (B) is 5.0 or less.
(B) the rolling direction length of a copper alloy thin sheet is 400 mm, perpendicular to the rolling direction length is taken off plate Q rectangle is a plate width W 0 (mm), placed in a horizontal surface plate. The projected surface of the cut plate Q viewed in the vertical direction is defined as a rectangular region X, and the rectangular region X is further divided into strip-shaped regions at a pitch of 10 mm in the direction perpendicular to the rolling, and the length in the direction perpendicular to the rolling is less than 10 mm. when strip-shaped region of the narrow occurs perpendicular to the rolling direction end portion of the rectangular region X except a strip area of the narrow, strip of the adjacent n points (n is an integer portion of the plate width W 0/10) A region (width 10 mm) is set. For each strip-shaped region, the surface height at the center of the width is measured over the entire length in the rolling direction, and the difference between the maximum height h MAX and the minimum height h MIN h MAX −h MIN is the wave height h (mm) The elongation difference rate e obtained by the following equation (1) is defined as the elongation difference rate e i (i is 1 to n) of the strip-shaped region. The maximum value of the elongation difference rates e 1 to en of the n strip-shaped regions is defined as I-unit.
e = (π / 2 × h / L) 2 (1)
However, L is the standard length 400mm
板厚が15μm以上60μm以下である請求項1または2に記載の銅合金薄板材。 The copper alloy thin plate material according to claim 1 or 2 , wherein the plate thickness is 15 µm or more and 60 µm or less. 質量%で、NiとCoの合計:2.50〜4.00%、Co:0.50〜2.00%、Si:0.50〜1.50%、Fe:0〜0.50%、Mg:0〜0.10%、Sn:0〜0.50%、Zn:0〜0.15%、B:0〜0.10%、P:0〜0.10%、REM(希土類元素):0〜0.10%であり、Cr、Zr、Hf、Nb、Sの合計含有量が0〜0.05%であり、残部Cuおよび不可避的不純物からなる化学組成を有する銅合金の鋳片に、少なくとも鋳片加熱、熱間圧延、冷間圧延、時効処理前の熱処理、時効処理、仕上冷間圧延、低温焼鈍の各工程を上記の順で施すことにより銅合金板材を製造するに際し、
鋳片加熱工程において、鋳片を1000〜1060℃で2h以上保持し、
時効処理前の熱処理工程において、950〜1020℃で固溶化処理したのち、600〜800℃で10〜300sec保持する熱履歴を付与し、
時効処理工程において、前記熱履歴が付与された材料を300〜400℃に保持することにより、粒子径5〜10nmの「微細第二相粒子」の個数密度が1.0×109個/mm2個以上である金属組織とし、
仕上冷間圧延工程において、ロール直径25〜45mmのワークロールを用いて板厚15μm以上100μm未満まで冷間圧延し、
低温焼鈍工程において、最大昇温速度100℃/sec以下で昇温し、100N/mm2を超え150N/mm2以下の張力を付与しながら250〜400℃で25〜720sec保持し、最大冷却速度100℃/sec以下で常温まで冷却する条件の熱処理を施す、請求項1に記載の銅合金薄板材の製造方法。
In mass%, the total of Ni and Co: 2.50 to 4.00%, Co: 0.50 to 2.00%, Si: 0.50 to 1.50%, Fe: 0 to 0.50%, Mg: 0 to 0.10%, Sn: 0 to 0.50%, Zn: 0 to 0.15%, B: 0 to 0.10%, P: 0 to 0.10%, REM (rare earth element) A slab of copper alloy having a chemical composition of 0 to 0.10%, a total content of Cr, Zr, Hf, Nb, and S of 0 to 0.05% and the balance Cu and unavoidable impurities , at least slab heating, hot rolling, cold rolling, heat treatment prior to aging treatment, aging treatment, finish cold rolling, upon the production of the copper alloy thin sheet by performing the steps of low-temperature annealing in the order of the ,
In the slab heating step, the slab is held at 1000 to 1060 ° C. for 2 hours or more,
In the heat treatment step before the aging treatment, after a solution treatment at 950 to 1020 ° C., a heat history that is maintained at 600 to 800 ° C. for 10 to 300 seconds is given,
In the aging treatment step, the number density of the “fine second phase particles” having a particle diameter of 5 to 10 nm is 1.0 × 10 9 particles / mm by keeping the material having the heat history at 300 to 400 ° C. With a metal structure that is two or more,
In the finish cold rolling process, using a work roll having a roll diameter of 25 to 45 mm, cold rolling to a plate thickness of 15 μm or more and less than 100 μm,
In the low-temperature annealing step, the temperature is increased at a maximum temperature increase rate of 100 ° C./sec or less, maintained at 250 to 400 ° C. for 25 to 720 seconds while applying a tension exceeding 100 N / mm 2 and not more than 150 N / mm 2 , and the maximum cooling rate The manufacturing method of the copper alloy sheet material of Claim 1 which heat-processes on the conditions cooled to normal temperature at 100 degrees C / sec or less.
請求項1〜のいずれか1項に記載の銅合金薄板材を材料に用いた導電ばね部材。 The electroconductive spring member which used the copper alloy thin plate material of any one of Claims 1-3 for the material.
JP2015164471A 2015-08-24 2015-08-24 Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member Active JP6573503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015164471A JP6573503B2 (en) 2015-08-24 2015-08-24 Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015164471A JP6573503B2 (en) 2015-08-24 2015-08-24 Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member

Publications (2)

Publication Number Publication Date
JP2017043789A JP2017043789A (en) 2017-03-02
JP6573503B2 true JP6573503B2 (en) 2019-09-11

Family

ID=58209926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015164471A Active JP6573503B2 (en) 2015-08-24 2015-08-24 Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member

Country Status (1)

Country Link
JP (1) JP6573503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220155977A (en) 2020-03-31 2022-11-24 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619389B2 (en) * 2017-06-20 2019-12-11 Jx金属株式会社 Cu-Ni-Si copper alloy
JP6887399B2 (en) * 2018-03-30 2021-06-16 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
CN109338155B (en) * 2018-12-13 2020-11-27 常熟建华模具科技股份有限公司 Rare earth copper alloy lightweight glass mold and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244260A1 (en) * 2008-12-01 2011-10-06 Jx Nippon Mining & Metals Corporation Cu-Ni-Si-Co COPPER ALLOYS FOR ELECTRONIC MATERIALS AND MANUFACTURING METHODS THEREOF
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5524901B2 (en) * 2011-04-26 2014-06-18 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co based copper alloy for electronic materials
JP5753115B2 (en) * 2012-03-12 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil for printed wiring boards
JP6039999B2 (en) * 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5647703B2 (en) * 2013-02-14 2015-01-07 Dowaメタルテック株式会社 High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220155977A (en) 2020-03-31 2022-11-24 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2017043789A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN109072341B (en) Cu-Ni-Si-based copper alloy sheet material and method for producing same
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
KR101503208B1 (en) Copper alloy sheet and manufacturing method for same
US9476109B2 (en) Cu—Ni—Si—Co copper alloy for electronic material and process for producing same
US11203806B2 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
KR20130109161A (en) Cu-ni-si-co copper alloy for electron material and method for producing same
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
JP2017179553A (en) Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
JP6573503B2 (en) Cu-Ni-Co-Si-based high-strength copper alloy sheet, method for producing the same, and conductive spring member
TWI429764B (en) Cu-Co-Si alloy for electronic materials
US9076569B2 (en) Cu—Co—Si alloy material and manufacturing method thereof
TW201303048A (en) Copper alloy sheet material and process for producing same
JP4407953B2 (en) High strength and high conductivity copper alloy sheet
JP6533401B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP5638357B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
WO2012096351A1 (en) Cu-co-si-zr alloy material and method for producing same
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250