JP6572171B2 - Method for producing magnet alloy powder - Google Patents

Method for producing magnet alloy powder Download PDF

Info

Publication number
JP6572171B2
JP6572171B2 JP2016105409A JP2016105409A JP6572171B2 JP 6572171 B2 JP6572171 B2 JP 6572171B2 JP 2016105409 A JP2016105409 A JP 2016105409A JP 2016105409 A JP2016105409 A JP 2016105409A JP 6572171 B2 JP6572171 B2 JP 6572171B2
Authority
JP
Japan
Prior art keywords
alloy powder
organic solvent
magnet alloy
phosphoric acid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105409A
Other languages
Japanese (ja)
Other versions
JP2017210662A (en
Inventor
万里子 門脇
万里子 門脇
武藤 泉
泉 武藤
優 菅原
優 菅原
信義 原
信義 原
石川 尚
尚 石川
幸伸 米山
幸伸 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2016105409A priority Critical patent/JP6572171B2/en
Publication of JP2017210662A publication Critical patent/JP2017210662A/en
Application granted granted Critical
Publication of JP6572171B2 publication Critical patent/JP6572171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、磁石合金粉の製造方法に関するものであり、より詳しくは、高温に加熱された際の保磁力の低下が少ない磁石合金粉の製造方法に関する。   The present invention relates to a method for producing a magnet alloy powder, and more particularly to a method for producing a magnet alloy powder with little reduction in coercive force when heated to a high temperature.

希土類磁石は、フェライト磁石、アルニコ磁石等と同様に、モーターをはじめとする様々な用途に用いられている磁石材料である。一般に、これらの磁石は焼結により製造されるため、複雑形状への成形が困難である。それに加え、焼結時の収縮が15%〜20%ほどあるため、寸法精度の高い製品が得られない。   Rare earth magnets are magnet materials used for various applications including motors, like ferrite magnets and alnico magnets. Generally, since these magnets are manufactured by sintering, it is difficult to form them into complicated shapes. In addition, since the shrinkage during sintering is about 15% to 20%, a product with high dimensional accuracy cannot be obtained.

これらの欠点を解決するため、近年では、ボンド磁石の開発が進められている。ボンド磁石では、ポリアミド樹脂やポリフェニレンサルファイド樹脂をバインダーとして用いることで、磁石粉を固めて成形を行う。しかしながら、希土類元素を含む鉄系磁石粉を用いたボンド磁石では、成形時における加熱による磁気特性の低下が問題となっている。また、ボンド磁石は、その用途に応じて100℃以上の高温に晒されることがあり、そのような使用時に高温環境に曝されることによる磁気特性の低下も問題となっている。   In recent years, bond magnets have been developed to solve these drawbacks. Bonded magnets are formed by solidifying magnet powder by using polyamide resin or polyphenylene sulfide resin as a binder. However, in a bonded magnet using iron-based magnet powder containing a rare earth element, there is a problem of deterioration of magnetic properties due to heating during molding. Moreover, the bond magnet may be exposed to a high temperature of 100 ° C. or higher depending on its use, and there is also a problem of deterioration of magnetic properties due to exposure to a high temperature environment during such use.

そこで、その磁気特性の低下を改善するために、成形体表面に熱硬化性樹脂等によるコーティングを施すことや、例えば特許文献1に開示されているように、リン酸塩含有塗料によるコーティングを施す方法が提案されているが、保磁力等の観点からすると、十分な特性は得られていない。   Therefore, in order to improve the deterioration of the magnetic properties, the surface of the molded body is coated with a thermosetting resin or the like, for example, as disclosed in Patent Document 1, a coating with a phosphate-containing paint is performed. Although a method has been proposed, sufficient characteristics have not been obtained from the viewpoint of coercive force and the like.

現在のところ、特許文献2に開示されているように、希土類元素を含む鉄系磁石粉を有機溶媒中で粉砕して磁石粉を製造する際に、有機溶剤にリン酸を添加するという方法が、高温に加熱した際の磁気特性の低下を防止するのに有効であるとされている。この方法によれば、磁石粉表面にリン酸鉄を含む皮膜が形成され、加熱条件下での保磁力の低下が抑制された磁石粉を製造することができる。   At present, as disclosed in Patent Document 2, when producing magnet powder by pulverizing iron-based magnet powder containing rare earth elements in an organic solvent, there is a method of adding phosphoric acid to the organic solvent. It is said that it is effective to prevent the deterioration of magnetic properties when heated to a high temperature. According to this method, it is possible to produce magnet powder in which a film containing iron phosphate is formed on the surface of the magnet powder, and the decrease in coercive force under heating conditions is suppressed.

しかしながら、さらなる用途拡大にあたっては、高温環境下において、保磁力の低下をさらに抑制することが求められている。   However, for further application expansion, it is required to further suppress the decrease in coercive force in a high temperature environment.

特開2000−208321号公報JP 2000-208321 A 特開2002−124406号公報JP 2002-124406 A

本発明は、上述した事情に鑑みなされたものであり、ボンド磁石の製造工程あるいはボンド磁石としての使用時に高温に加熱されたとしても、加熱後の室温での保磁力の低下を抑制した磁石合金粉の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and even if heated to a high temperature during the manufacturing process of a bonded magnet or used as a bonded magnet, a magnet alloy that suppresses a decrease in coercive force at room temperature after heating. It aims at providing the manufacturing method of powder.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、鉄系磁石合金粉を粉砕するに際して、リン酸を含む有機溶媒のpH、リン酸濃度を特定の範囲に調整するとともに、酸化剤をその有機溶媒中に特定の割合で添加した状態で粉砕することにより、加熱後の室温での保磁力の低下を抑えることができることを見出し、本発明を完成するに至った。   This inventor repeated earnest examination in order to solve the subject mentioned above. As a result, when pulverizing the iron-based magnet alloy powder, the pH of the organic solvent containing phosphoric acid and the phosphoric acid concentration are adjusted to a specific range, and an oxidizing agent is added to the organic solvent at a specific ratio. It has been found that the reduction in coercive force at room temperature after heating can be suppressed by grinding, and the present invention has been completed.

(1)本発明の第1の発明は、希土類元素を含む鉄系磁石合金粉を、リン酸を含む有機溶媒中で粉砕して磁石合金粉を製造する方法であって、前記鉄系磁石合金粉を粉砕するに際して、前記リン酸を含む有機溶媒のpHを1.5以上8.0以下とし、該有機溶媒中のリン酸濃度を0.1体積%以上20体積%以下とし、かつ、酸化剤を該有機溶媒中の濃度として0.0001mol/L以上1.0mol/L以下で添加する、磁石合金粉の製造方法である。   (1) A first aspect of the present invention is a method for producing a magnet alloy powder by pulverizing an iron-based magnet alloy powder containing a rare earth element in an organic solvent containing phosphoric acid, the iron-based magnet alloy When the powder is pulverized, the pH of the organic solvent containing phosphoric acid is 1.5 or more and 8.0 or less, the phosphoric acid concentration in the organic solvent is 0.1 vol% or more and 20 vol% or less, and oxidation is performed. This is a method for producing magnet alloy powder, in which an agent is added in a concentration of 0.0001 mol / L to 1.0 mol / L in the organic solvent.

(2)本発明の第2の発明は、第1の発明において、前記リン酸を含む有機溶媒のpHを4.0以上5.0以下とする、磁石合金粉の製造方法である。   (2) The second invention of the present invention is the method for producing magnet alloy powder according to the first invention, wherein the pH of the organic solvent containing phosphoric acid is 4.0 or more and 5.0 or less.

(3)本発明の第3の発明は、第1又は第2の発明において、前記酸化剤として、硝酸を添加する、磁石合金粉の製造方法である。   (3) The third invention of the present invention is a method for producing magnet alloy powder, wherein in the first or second invention, nitric acid is added as the oxidizing agent.

(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記有機溶媒として、分子量100以下の有機化合物を用いる、磁石合金粉の製造方法である。   (4) A fourth invention of the present invention is a method for producing magnet alloy powder, wherein in any one of the first to third inventions, an organic compound having a molecular weight of 100 or less is used as the organic solvent.

(5)本発明の第5の発明は、第4の発明において、前記有機溶媒として、比誘電率が10以上50以下である有機溶媒を用いる、磁石合金粉の製造方法である。   (5) The fifth invention of the present invention is the method for producing magnet alloy powder according to the fourth invention, wherein an organic solvent having a relative dielectric constant of 10 or more and 50 or less is used as the organic solvent.

(6)本発明の第6の発明は、第5の発明において、前記有機溶媒として、2−プロパノール又は1−メチル−2−ピロリドン、もしくはそれらの混合物を用いる、磁石合金粉の製造方法である。   (6) The sixth invention of the present invention is the method for producing a magnetic alloy powder in the fifth invention, wherein 2-propanol, 1-methyl-2-pyrrolidone, or a mixture thereof is used as the organic solvent. .

(7)本発明の第7の発明は、第6の発明において、前記リン酸を含む有機溶媒として、1−メチル−2−ピロリドンに、リン酸を10体積%以上14体積%以下の割合で含有するものを用いる、磁石合金粉の製造方法である。   (7) According to a seventh aspect of the present invention, in the sixth aspect, as the organic solvent containing phosphoric acid, 1-methyl-2-pyrrolidone and phosphoric acid in a proportion of 10% by volume or more and 14% by volume or less It is a manufacturing method of magnet alloy powder using what is contained.

本発明によれば、高温環境に曝されることによる、室温での保磁力の低下を効果的に抑制した磁石合金粉を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the magnet alloy powder which suppressed effectively the fall of the coercive force at room temperature by being exposed to a high temperature environment can be manufactured.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。   Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention. In this specification, the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.

≪1.磁石合金粉の製造方法≫
本実施の形態に係る磁石合金粉の製造方法は、希土類元素を含む鉄系磁石合金粉を、リン酸を含む有機溶媒中で粉砕して磁石合金粉を製造する方法である。
<< 1. Manufacturing method of magnet alloy powder >>
The method for producing a magnet alloy powder according to the present embodiment is a method for producing a magnet alloy powder by pulverizing an iron-based magnet alloy powder containing a rare earth element in an organic solvent containing phosphoric acid.

ここで、希土類元素を含む鉄系磁石合金粉としては、例えば、ThZn17型、ThNi17型、又はTbCu型結晶構造を有する。これらは、菱面体晶系、六方晶系の結晶構造を持つ金属間化合物であり、ThZn17型の合金粉末としては、例えば、SmFe17合金、NdFe17等が挙げられる。また、ThNi17型の合金粉末としては、例えば、GdFe17等が挙げられる。 Here, the iron-based magnet alloy powder containing a rare earth element has, for example, a Th 2 Zn 17 type, Th 2 Ni 17 type, or TbCu 7 type crystal structure. These are intermetallic compounds having rhombohedral and hexagonal crystal structures. Examples of the Th 2 Zn 17 type alloy powder include Sm 2 Fe 17 N 3 alloy and Nd 2 Fe 17 N 3. Is mentioned. Examples of the Th 2 Ni 17 type alloy powder include Gd 2 Fe 17 N 3 and the like.

また、希土類元素としては、Sm、Nd、Pr、Y、La、Ce、Gd等が挙げられ、これらは単独でも、混合物でもよいが、Smが特に好ましい。また、この鉄系磁石合金粉は、遷移金属元素としては、鉄(Fe)を必須成分として含むものであり、この一部がCoで置換されたものであってもよい。具体的に、Feの20質量%以下の割合をCoで置換することにより、微粉末のキュリー温度や耐食性を向上させることができる。   Examples of rare earth elements include Sm, Nd, Pr, Y, La, Ce, and Gd. These may be used alone or as a mixture, but Sm is particularly preferable. Further, the iron-based magnet alloy powder contains iron (Fe) as an essential component as a transition metal element, and a part thereof may be substituted with Co. Specifically, the Curie temperature and corrosion resistance of the fine powder can be improved by substituting 20% by mass or less of Fe with Co.

また、この鉄系磁石合金粉は、C、Al、Si、Ca、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Re、Os、Ir、Pt、Au等が含まれていてもよい。鉄系磁石合金粉において、これら成分が、例えば3質量%以下、好ましくは0.05質量%〜0.5質量%の割合で含まれていることにより、この鉄系磁石合金粉の粉砕物である磁石合金粉を用いて作製したボンド磁石の耐候性や耐熱性を高めることができる。   In addition, this iron-based magnet alloy powder includes C, Al, Si, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Re, Os, Ir, Pt, Au, or the like may be included. In the iron-based magnet alloy powder, these components are contained in a proportion of, for example, 3% by mass or less, preferably 0.05% by mass to 0.5% by mass. The weather resistance and heat resistance of the bonded magnet produced using a certain magnet alloy powder can be improved.

なお、鉄系磁石合金粉は、例えば、還元拡散法や液体急冷法、HDDR(Hydrogenation Decomposition Desorption Recombination)法によって得られた合金粉末を、窒化熱処理することによって製造することができる。   The iron-based magnet alloy powder can be produced, for example, by subjecting an alloy powder obtained by a reduction diffusion method, a liquid quenching method, or a HDDR (Hydrogen Decomposition Desorption Recombination) method to a nitriding heat treatment.

本実施の形態に係る磁石合金粉の製造方法では、鉄系磁石合金粉を有機溶媒中で粉砕するに際して、リン酸を含む有機溶媒のpHを1.5以上8.0以下とし、有機溶媒中のリン酸濃度を0.1体積%以上20体積%以下とし、さらに、酸化剤を有機溶媒中の濃度として0.0001mol/L以上1mol/L以下で添加した状態で行う。   In the method for producing a magnet alloy powder according to the present embodiment, when the iron-based magnet alloy powder is pulverized in an organic solvent, the pH of the organic solvent containing phosphoric acid is 1.5 or more and 8.0 or less, The phosphoric acid concentration is 0.1 vol% or more and 20 vol% or less, and an oxidizing agent is added in an organic solvent at a concentration of 0.0001 mol / L or more and 1 mol / L or less.

このような製造方法によれば、ボンド磁石の製造工程あるいはボンド磁石としての使用時に高温に加熱されたとしても、加熱後の室温での保磁力の低下を抑制した磁石合金粉を得ることができる。   According to such a manufacturing method, even when heated to a high temperature during the manufacturing process of the bonded magnet or when used as a bonded magnet, it is possible to obtain a magnet alloy powder that suppresses a decrease in coercive force at room temperature after heating. .

[リン酸を含む有機溶媒中での粉砕]
はじめに、有機溶媒へのリン酸添加による皮膜形成について説明する。本実施の形態に係る磁石合金粉の製造方法では、上述したように、希土類元素を含む鉄系磁石合金粉を、リン酸を含む有機溶媒中で粉砕することによって、磁石合金粉を製造する。
[Crushing in an organic solvent containing phosphoric acid]
First, film formation by adding phosphoric acid to an organic solvent will be described. In the method for producing magnet alloy powder according to the present embodiment, as described above, magnet alloy powder is produced by pulverizing iron-based magnet alloy powder containing rare earth elements in an organic solvent containing phosphoric acid.

このように、希土類元素を含む鉄系磁石合金粉を有機溶媒中で粉砕することにより、その鉄系磁石粉の表面に皮膜を形成させる。有機溶媒中での鉄系磁石合金粉の粉砕によれば、その粉砕によって、鉄系磁石合金粉の表面に常に新生面が現れるという状況となるため、その新生面上に随時皮膜が形成される。   Thus, the iron-based magnet alloy powder containing rare earth elements is pulverized in an organic solvent to form a film on the surface of the iron-based magnet powder. According to the pulverization of the iron-based magnet alloy powder in the organic solvent, the pulverization always causes a new surface to appear on the surface of the iron-based magnet alloy powder, so that a film is formed on the new surface as needed.

そして、このような皮膜形成において、ボンド磁石の作製や焼結による磁石作製のため高温環境においても保磁力が低下しないようにするには、リン酸塩(リン酸鉄及び/又はリン酸サマリウム等の希土類リン酸塩)の皮膜を形成させることが重要となり、有機溶媒中にリン酸の添加し、リン酸を含む有機溶媒中で粉砕することが必須となる。   In order to prevent the coercive force from being lowered even in a high temperature environment due to the production of a bonded magnet or the production of a magnet by sintering in such a film formation, a phosphate (such as iron phosphate and / or samarium phosphate) It is important to form a film of a rare earth phosphate), and it is essential to add phosphoric acid to an organic solvent and to grind in an organic solvent containing phosphoric acid.

有機溶媒に添加するリン酸としては、特に限定されず、無水物である必要もない。例えば、通常市販されている、水(HO)を約15質量%含む試薬一級や試薬特級等の試薬リン酸を用いることができる。 It does not specifically limit as phosphoric acid added to an organic solvent, It is not necessary to be an anhydride. For example, a commercially available reagent phosphoric acid such as a first grade reagent or a special grade reagent containing about 15% by mass of water (H 2 O) can be used.

ここで、有機溶媒としては、特に限定されず、希土類元素を含む鉄系磁石合金粉が過度に溶解や損耗しない有機化合物を主成分とする溶媒であればよい。   Here, it does not specifically limit as an organic solvent, What is necessary is just a solvent which has as a main component the organic compound which the iron-type magnet alloy powder containing rare earth elements does not melt | dissolve or wear excessively.

その中でも、高温に曝されることによる室温での保磁力低下を抑制する観点や、粉砕処理後の有機溶媒の揮発除去等を容易にして製造コストを低減する観点からすると、分子量100以下の有機化合物を用いることが好ましい。さらに、比誘電率が10以上50以下の有機溶媒を用いることによって、粉砕処理における磁石合金粉の溶解を抑えることができ、良好な皮膜を形成して磁気特性に優れる磁石合金粉を得ることができる。   Among them, from the viewpoint of suppressing the decrease in coercive force at room temperature due to exposure to high temperatures, and from the viewpoint of facilitating volatilization and removal of the organic solvent after pulverization and reducing manufacturing costs, organics having a molecular weight of 100 or less It is preferable to use a compound. Further, by using an organic solvent having a relative dielectric constant of 10 or more and 50 or less, dissolution of the magnet alloy powder in the pulverization treatment can be suppressed, and a magnetic film having excellent magnetic properties can be obtained by forming a good film. it can.

具体的に、そのような有機溶媒の例としては、メタノール、エタノール、1−ブタノール、2−ブタノール、1−プロパノール、2−プロパノール、アセトニトリル、プロピオニトリル、ブチロニトリル、i−ブチロニトリル、N−メチルホルムアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルホキシドを挙げることができる。   Specifically, examples of such organic solvents include methanol, ethanol, 1-butanol, 2-butanol, 1-propanol, 2-propanol, acetonitrile, propionitrile, butyronitrile, i-butyronitrile, N-methylformamide. , N, N-dimethylformamide, 1-methyl-2-pyrrolidone, and dimethyl sulfoxide.

これらの中でも、2−プロパノール、もしくは水よりも電位領域が広い有機溶媒を用いることがより好ましい。水よりも電位領域が広い有機溶媒としては、アセトニトリル、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルホキシド等が挙げられる。そして、特に、2−プロパノール又は1−メチル−2−ピロリドン、もしくはそれらの混合物を用いることによって、高温での保磁力低下をより効果的に軽減することができる。   Among these, it is more preferable to use 2-propanol or an organic solvent having a wider potential region than water. Examples of the organic solvent having a wider potential region than water include acetonitrile, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, dimethyl sulfoxide and the like. In particular, by using 2-propanol, 1-methyl-2-pyrrolidone, or a mixture thereof, it is possible to more effectively reduce the decrease in coercive force at high temperatures.

具体的に、リン酸を含む有機溶媒として、1−メチル−2−ピロリドンに、リン酸を10体積%以上14体積%以下の割合で含有するものを用いることが好ましく、これにより、高温環境に曝された場合でも、高い磁気特性を安定的に維持することができる。   Specifically, as the organic solvent containing phosphoric acid, it is preferable to use 1-methyl-2-pyrrolidone containing phosphoric acid in a proportion of 10% by volume or more and 14% by volume or less. Even when exposed, high magnetic properties can be stably maintained.

[リン酸濃度]
有機溶媒中のリン酸の濃度としては、容積百分率で0.1体積%以上20体積%以下の割合とする。このような濃度でリン酸を含む有機溶媒を調整し、その有機溶媒中で粉砕してリン酸塩の皮膜を形成することで、ボンド磁石作製等の高温環境においても保磁力が低下することを抑えることができる。有機溶媒中のリン酸濃度が0.1体積%未満であると、良好な特性を有する皮膜の形成させることができず、高温環境に曝されることによる室温での保磁力低下を有効に抑制するのにことができない。一方で、リン酸濃度が20体積%を超えると、リン酸塩の皮膜自体を効率的に形成することができない。
[Phosphoric acid concentration]
The concentration of phosphoric acid in the organic solvent is 0.1% by volume or more and 20% by volume or less by volume. By adjusting an organic solvent containing phosphoric acid at such a concentration and pulverizing in the organic solvent to form a phosphate film, the coercive force decreases even in a high temperature environment such as bond magnet production. Can be suppressed. When the phosphoric acid concentration in the organic solvent is less than 0.1% by volume, it is impossible to form a film having good characteristics, and effectively suppresses the decrease in coercive force at room temperature due to exposure to a high temperature environment. I can't do it. On the other hand, when the phosphoric acid concentration exceeds 20% by volume, the phosphate film itself cannot be formed efficiently.

また、有機溶媒中のリン酸の濃度としては、2体積%以上20体積%以下の割合であることが好ましく、これにより、より高い磁気特性を有するものが得られる。さらに、有機溶媒中のリン酸濃度として、10体積%以上14体積%以下の割合であることが特に好ましく、これにより、高温環境に曝された場合であっても、高い磁気特性を有するものが得られる。   Further, the concentration of phosphoric acid in the organic solvent is preferably a ratio of 2% by volume or more and 20% by volume or less, thereby obtaining a material having higher magnetic properties. Furthermore, it is particularly preferable that the phosphoric acid concentration in the organic solvent is a ratio of 10% by volume or more and 14% by volume or less, so that even if it is exposed to a high temperature environment, it has high magnetic properties. can get.

[pH]
有機溶媒中で鉄系磁石合金粉を粉砕するに際しての、リン酸を含む有機溶媒のpHとしては、1.5以上8.0以下の範囲とする。pHが1.5未満である場合やpHが8.0を超える場合には、得られる磁石合金粉において所定の保磁力が得られない。
[PH]
When the iron-based magnet alloy powder is pulverized in an organic solvent, the pH of the organic solvent containing phosphoric acid is in the range of 1.5 to 8.0. When the pH is less than 1.5 or when the pH exceeds 8.0, a predetermined coercive force cannot be obtained in the obtained magnet alloy powder.

また、そのpH条件としては、4.0以上5.0以下の範囲とすることが好ましく、4.4以上4.6以下の範囲とすることが特に好ましい。これにより、より一層に高い保磁力を得ることができる。なお、このような最適なpH範囲が存在する学術的な理由は明らかではないが、鉄系磁石合金粉の表面での皮膜形成の反応機構が、pHにより変化するためであると推察される。   The pH condition is preferably in the range of 4.0 to 5.0, particularly preferably in the range of 4.4 to 4.6. Thereby, a much higher coercive force can be obtained. In addition, although the academic reason that such an optimal pH range exists is not clear, it is guessed that the reaction mechanism of the film formation on the surface of the iron-based magnet alloy powder changes depending on the pH.

有機溶媒のpHの調製方法としては、特に限定されないが、例えば、リン酸、硫酸、硝酸等のいずれか1種、もしくは2種類以上を用いて調整することが好ましい。例えば、まず、リン酸を添加することにより有機溶媒のpHを4.5程度にまで下げ、次に、リン酸、硫酸、硝酸のいずれか1種又は2種類以上を使用して所定のpHになるまで添加する。なお、例えば、リン酸と硝酸の2種類を用いて所定のpHになるまで添加した場合、約85質量%のリン酸と、60質量%以上80質量%以下の硝酸を用いたとすると、その有機溶媒は、10体積%以下の水を含むことになる。   Although it does not specifically limit as a preparation method of pH of an organic solvent, For example, it is preferable to adjust using any 1 type, or 2 or more types, such as phosphoric acid, a sulfuric acid, nitric acid. For example, by first adding phosphoric acid, the pH of the organic solvent is lowered to about 4.5, and then using one or more of phosphoric acid, sulfuric acid, and nitric acid to a predetermined pH. Add until For example, when two kinds of phosphoric acid and nitric acid are used until they are added to a predetermined pH, when about 85% by mass phosphoric acid and 60% by mass to 80% by mass nitric acid are used, The solvent will contain 10% or less by volume of water.

[酸化剤]
本実施の形態においては、有機溶剤に酸化剤を所定の割合で添加し、その有機溶剤中で鉄系磁石合金粉を粉砕する。
[Oxidant]
In the present embodiment, an oxidizing agent is added to the organic solvent at a predetermined ratio, and the iron-based magnet alloy powder is pulverized in the organic solvent.

酸化剤としては、当該物質を0.01mol/L〜1.0mol/Lのモル濃度で含む水溶液を作製し、これに白金電極(表面は湿式SiC紙で1500番研磨相当の粗さ)を自然浸漬したときの電位が、銀/塩化銀参照電極基準で0.6V以上のものであることが好ましい。なお、この測定にあたっては、酸化剤を含む水溶液と照合電極との間を、飽和塩化カリウム水溶液と寒天で作製した塩橋で繋いで計測するものとする。   As an oxidizing agent, an aqueous solution containing the substance in a molar concentration of 0.01 mol / L to 1.0 mol / L is prepared, and a platinum electrode (the surface is a wet SiC paper with a roughness equivalent to 1500 polishing) is naturally added thereto. It is preferable that the electric potential when immersed is 0.6 V or more based on a silver / silver chloride reference electrode. In this measurement, the measurement is performed by connecting an aqueous solution containing an oxidant and the reference electrode with a salt bridge made of a saturated aqueous potassium chloride solution and agar.

具体的に、その酸化剤としては、硝酸、過マンガン酸カリウム、二クロム酸カリウム等が挙げられるが、これに限定されない。その中でも、酸化剤として硝酸を用いた場合には、高温環境に曝されることによる室温での磁石合金粉の保磁力の低下をより効果的に抑制することができる。このため、特に高い温度の環境下に曝されるような場合には、酸化剤として硝酸を用いることが好ましい。   Specific examples of the oxidizing agent include, but are not limited to, nitric acid, potassium permanganate, and potassium dichromate. Among these, when nitric acid is used as the oxidizing agent, it is possible to more effectively suppress a decrease in coercive force of the magnet alloy powder at room temperature due to exposure to a high temperature environment. For this reason, it is preferable to use nitric acid as an oxidant when exposed to a particularly high temperature environment.

酸化剤は、有機溶媒の酸化還元電位(ORP)を変化させる。このように有機溶媒に酸化剤を添加し、その酸化剤を所定の割合で含む有機溶媒中で鉄系磁石合金粉を粉砕することにより、変化した酸化還元電位が皮膜形成に関与して、得られる磁石合金粉の磁気特性を向上させることができる。   The oxidizing agent changes the redox potential (ORP) of the organic solvent. Thus, by adding an oxidizing agent to an organic solvent and pulverizing the iron-based magnet alloy powder in an organic solvent containing the oxidizing agent in a predetermined ratio, the changed redox potential is involved in the film formation and obtained. The magnetic properties of the magnet alloy powder obtained can be improved.

このとき、酸化剤の添加量としては、0.0001mol/L以上1.0mol/L以下の割合とすることが必要となる。添加量が0.0001mol/L未満であると、有機溶媒の酸化還元電位がほとんど変化しないため、有効に磁気特性を向上させることができない。一方で、添加量が1.0mol/Lを超える、逆に磁気特性が低下する。このため、酸化剤の添加量は0.0001mol/L以上1.0mol/L以下とし、好ましくは0.001mol/L以上0.8mol/L以下とし、より好ましくは0.01mol/L以上0.5mol/Lとする。なお、上述した酸化剤の添加量は、リン酸を含まない状態の有機溶媒への含有割合(モル濃度)を示す。   At this time, the addition amount of the oxidizing agent needs to be a ratio of 0.0001 mol / L to 1.0 mol / L. When the addition amount is less than 0.0001 mol / L, the oxidation-reduction potential of the organic solvent hardly changes, so that the magnetic properties cannot be effectively improved. On the other hand, the addition amount exceeds 1.0 mol / L, conversely, the magnetic properties are degraded. For this reason, the addition amount of the oxidizing agent is 0.0001 mol / L or more and 1.0 mol / L or less, preferably 0.001 mol / L or more and 0.8 mol / L or less, and more preferably 0.01 mol / L or more and 0.001 or less. 5 mol / L. In addition, the addition amount of the oxidizing agent mentioned above shows the content rate (molar concentration) to the organic solvent in the state which does not contain phosphoric acid.

≪2.磁石合金粉末を用いたボンド磁石の製造≫
上述したように、本実施の形態に係る磁石合金粉の製造方法によれば、ボンド磁石の製造工程あるいはボンド磁石としての使用時に高温に加熱された場合であっても、加熱後の室温での保磁力の低下を抑制した磁石合金粉を得ることができる。
≪2. Manufacture of bonded magnets using magnetic alloy powder >>
As described above, according to the method for manufacturing a magnet alloy powder according to the present embodiment, even when heated to a high temperature during the manufacturing process of a bonded magnet or when used as a bonded magnet, Magnet alloy powder that suppresses the decrease in coercive force can be obtained.

具体的に、上述した製造方法により得られた磁石合金粉を用いてボンド磁石を製造する方法としては、特に限定されず、例えば、磁石合金粉を、公知の熱可塑性樹脂や添加剤と混合し、得られたボンド磁石用組成物を、射出成形、圧縮成形、押出成形、圧延成形、トランスファー成形等で成形することによって製造することができる。   Specifically, the method for producing a bonded magnet using the magnet alloy powder obtained by the above-described production method is not particularly limited. For example, the magnet alloy powder is mixed with a known thermoplastic resin or additive. The obtained bonded magnet composition can be produced by molding by injection molding, compression molding, extrusion molding, rolling molding, transfer molding or the like.

熱可塑性樹脂は、磁石合金粉のバインダーとして働くものであり、その種類は特に限定されずに従来公知のものを使用することができる。例えば、6ナイロン、6,6ナイロン、11ナイロン、12ナイロン、6,12ナイロン、芳香族系ナイロン、これらの分子を一部変性した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、エチレン−四フッ化エチレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、前出各樹脂系エラストマー等が挙げられ、これらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品等が挙げられる。   The thermoplastic resin serves as a binder for the magnet alloy powder, and the type thereof is not particularly limited, and conventionally known ones can be used. For example, 6 nylon, 6,6 nylon, 11 nylon, 12 nylon, 6,12 nylon, aromatic nylon, polyamide resin such as modified nylon obtained by partially modifying these molecules, linear polyphenylene sulfide resin, cross-linked type Polyphenylene sulfide resin, semi-crosslinked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin, ultrahigh molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer Resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, poly vinegar Vinyl resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene-tetrafluoroethylene Copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, poly Ether sulfone resin, polyether ether ketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, each of the above resin-based elastomers And the like, random copolymers of these homopolymers and other species monomer, block copolymers, graft copolymers, and end groups modified products with other substances.

また、製造した磁石合金粉の性質を損なわない範囲で、パラフィンワックス、流動パラフィンといった脂肪酸類等の滑剤、ヒンダード・アミン系安定剤や、フェノール系、ホスファイト系、チオエーテル系等の抗酸化剤等の安定剤などの。従来公知の添加剤を配合することができる。   In addition, lubricants such as paraffin waxes and liquid paraffins, hindered amine stabilizers, antioxidants such as phenols, phosphites, and thioethers as long as the properties of the magnetic alloy powder produced are not impaired. Such as stabilizers. A conventionally well-known additive can be mix | blended.

磁石合金粉と上述した各成分との混合方法としては、特に限定されず、例えば、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等の混合機、あるいは、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を用いて行うことができる。   The mixing method of the magnetic alloy powder and each component described above is not particularly limited, for example, a blender such as a ribbon blender, tumbler, nauter mixer, Henschel mixer, super mixer, or Banbury mixer, kneader, roll, It can be performed using a kneader such as a kneader ruder, a single screw extruder, or a twin screw extruder.

このようにして、各成分を混合することにより、ボンド磁石用組成物を得ることができる。なお、得られるボンド磁石用組成物の形状としては、パウダー状、ビーズ状、ペレット状、あるいはこれらの混合物の形であるが、取扱易さの点で、ペレット状が望ましい。   Thus, the composition for bonded magnets can be obtained by mixing each component. In addition, as a shape of the composition for bonded magnets obtained, it is a powder form, a bead form, a pellet form, or the form of these mixtures, However, The pellet form is desirable from the point of the ease of handling.

次に、上述のようにして得られたボンド磁石用組成物を、熱可塑性樹脂の溶融温度で加熱溶融した後、所望の形状を有する磁石に成形する。成形法としては、例えば、射出成形法、押出成形法、射出圧縮成形法、射出プレス成形法、トランスファー成形法等の各種成形法が挙げられるが、これらの中では、特に射出成形法、押出成形法、射出圧縮成形法、及び射出プレス成形法が好ましい。   Next, the bonded magnet composition obtained as described above is heated and melted at the melting temperature of the thermoplastic resin, and then formed into a magnet having a desired shape. Examples of the molding method include various molding methods such as an injection molding method, an extrusion molding method, an injection compression molding method, an injection press molding method, and a transfer molding method. Among these molding methods, in particular, the injection molding method and the extrusion molding method. Method, injection compression molding, and injection press molding are preferred.

具体的に、ボンド磁石用組成物を用いたボンド磁石の成形に際しては、射出成形により、例えば、成形温度200℃〜300℃、金型温度100〜150℃の条件で成形する。   Specifically, when forming a bonded magnet using the bonded magnet composition, it is formed by injection molding under conditions of a molding temperature of 200 ° C. to 300 ° C. and a mold temperature of 100 to 150 ° C., for example.

このように、磁石合金粉は、ボンド磁石の製造過程において高温に曝される。しかしながら、上述した本実施の形態に係る磁石合金粉の製造方法によれば、高温に加熱されたとしても、加熱後の室温での保磁力の低下を抑制することができ、安定的に磁気特性を維持することができる。   Thus, the magnet alloy powder is exposed to a high temperature in the manufacturing process of the bonded magnet. However, according to the above-described method for producing a magnet alloy powder according to the present embodiment, even when heated to a high temperature, a decrease in coercive force at room temperature after heating can be suppressed, and magnetic characteristics can be stably provided. Can be maintained.

以下に、本発明の実施例を示してより具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(1)成分
鉄系磁石合金粉 :Sm−Fe−N系磁石合金粉
(平均粒径20μm、住友金属鉱山株式会社製)
リン酸 :85%濃度水溶液
(商品名:りん酸、関東化学株式会社製)
硝酸 :69〜70%濃度水溶液
(商品名:硝酸、関東化学株式会社製)
硫酸 :95%硫酸
(商品名:硫酸、関東化学株式会社製)
(1) Component Iron-based magnet alloy powder: Sm-Fe-N-based magnet alloy powder
(Average particle size 20 μm, manufactured by Sumitomo Metal Mining Co., Ltd.)
Phosphoric acid: 85% strength aqueous solution
(Product name: phosphoric acid, manufactured by Kanto Chemical Co., Inc.)
Nitric acid: 69-70% strength aqueous solution
(Product name: Nitric acid, manufactured by Kanto Chemical Co., Inc.)
Sulfuric acid: 95% sulfuric acid
(Product name: sulfuric acid, manufactured by Kanto Chemical Co., Inc.)

(2)保磁力評価方法
磁石合金粉の保磁力Hcについては、日本ボンド磁石工業協会ボンド磁石試験方法ガイドブックBMG−2002に従って、振動試料型磁力計により常温で測定した。
(2) Coercive force evaluation method The coercive force Hc of the magnet alloy powder was measured at room temperature with a vibrating sample magnetometer in accordance with the Bond Magnet Test Method Guidebook BMG-2002 of the Japan Bond Magnet Industry Association.

[実施例1〜18、比較例1〜6]
有機溶媒である2−プロパノール(分子量:60.1、比誘電率:18)200gに、所定量のリン酸と、pH調整用に濃度95%の硫酸を希釈して作製した1質量%硫酸水溶液とをそれぞれ所定の割合で添加し、さらに、酸化剤として濃度69〜70%の硝酸を希釈して作製した硝酸水溶液を0.0001〜2mol/Lの割合で添加した有機溶媒を、粉砕溶媒として用意した。この粉砕媒体に、希土類元素を含む鉄系磁石合金粉であるSm−Fe−N系磁石合金粉100gを投入し、媒体攪拌ミルを用いて、平均粒径が2μmになるように微粉砕した。
[Examples 1 to 18, Comparative Examples 1 to 6]
A 1% by mass aqueous sulfuric acid solution prepared by diluting a predetermined amount of phosphoric acid and sulfuric acid with a concentration of 95% for pH adjustment into 200 g of organic solvent 2-propanol (molecular weight: 60.1, relative dielectric constant: 18). And an organic solvent in which an aqueous nitric acid solution prepared by diluting nitric acid with a concentration of 69 to 70% as an oxidizing agent is added at a rate of 0.0001 to 2 mol / L is used as a grinding solvent. Prepared. To this pulverization medium, 100 g of Sm—Fe—N magnet alloy powder, which is an iron-based magnet alloy powder containing a rare earth element, was added and finely pulverized to a mean particle diameter of 2 μm using a medium stirring mill.

粉砕後のスラリーをヌッチェで濾過し、さらにその上から400gの2−プロパノールをかけながら置換して、残留するリン酸を洗い流した。続いて、得られたケーキ状粉砕物をミキサに投入し、真空中150℃で2時間乾燥して取り出した。   The pulverized slurry was filtered with Nutsche and further replaced with 400 g of 2-propanol while washing away the remaining phosphoric acid. Subsequently, the obtained cake-like pulverized product was put into a mixer and dried in a vacuum at 150 ° C. for 2 hours and taken out.

下記表1に、鉄系磁石合金粉を粉砕するのに用いた有機溶媒の種類、pH、リン酸の容量パーセント濃度、硝酸のモル濃度をまとめて示した。なお、硝酸のモル濃度は、リン酸を含まない状態の有機溶媒への含有割合を示す。   Table 1 below summarizes the types, pH, volume percent concentration of phosphoric acid, and molar concentration of nitric acid used to grind the iron-based magnet alloy powder. In addition, the molar concentration of nitric acid shows the content rate to the organic solvent in the state which does not contain phosphoric acid.

また、得られた磁石合金粉の室温での保磁力Hc1を測定し、次に、その磁石合金粉を電気炉にて真空中250℃加熱し、冷却後に回収した磁石合金粉の室温での保磁力Hc2を測定した。下記表1には、このときの保磁力減少率(1−Hc2/Hc1)を示す。 Further, the coercive force H c1 at room temperature of the obtained magnet alloy powder was measured, and then the magnet alloy powder was heated in an electric furnace at 250 ° C. in a vacuum, and the magnet alloy powder recovered after cooling at room temperature The coercive force Hc2 was measured. Table 1 below shows the coercive force reduction rate (1-H c2 / H c1 ) at this time.

[実施例19〜36、比較例7〜12]
有機溶媒として1−メチル−2−ピロリドン(分子量:99.14、比誘電率:32)を用いたこと以外は、それぞれ、実施例1〜13、比較例1〜6と同様にして磁石合金粉末を作製し、保磁力減少率を評価した。
[Examples 19 to 36, Comparative Examples 7 to 12]
Magnet alloy powder as in Examples 1 to 13 and Comparative Examples 1 to 6, respectively, except that 1-methyl-2-pyrrolidone (molecular weight: 99.14, relative dielectric constant: 32) was used as the organic solvent. The coercive force reduction rate was evaluated.

Figure 0006572171
Figure 0006572171

表1に示すように、実施例で得られた磁石合金粉は、比較例の磁石合金粉に比べて、高温環境に曝されることによる室温での保磁力の低下を効果的に抑制できることが分かる。   As shown in Table 1, the magnet alloy powder obtained in the example can effectively suppress the decrease in coercive force at room temperature due to exposure to a high temperature environment as compared with the magnet alloy powder of the comparative example. I understand.

Claims (6)

希土類元素を含む鉄系磁石合金粉を、リン酸を含む有機溶媒中で粉砕して磁石合金粉を製造する方法であって、
前記鉄系磁石合金粉を粉砕するに際して、
前記有機溶媒として、2−プロパノール又は1−メチル−2−ピロリドン、もしくはそれらの混合物を用い、
前記リン酸を含む有機溶媒のpHを1.5以上8.0以下とし、該有機溶媒中のリン酸濃度を0.1体積%以上20体積%以下とし、かつ、酸化剤を該有機溶媒中の濃度として0.0001mol/L以上1.0mol/L以下で添加する
磁石合金粉の製造方法。
A method for producing a magnet alloy powder by pulverizing an iron-based magnet alloy powder containing a rare earth element in an organic solvent containing phosphoric acid,
When pulverizing the iron-based magnet alloy powder,
As the organic solvent, 2-propanol or 1-methyl-2-pyrrolidone, or a mixture thereof is used.
The pH of the organic solvent containing phosphoric acid is 1.5 or more and 8.0 or less, the phosphoric acid concentration in the organic solvent is 0.1 vol% or more and 20 vol% or less, and an oxidizing agent is added in the organic solvent. The manufacturing method of the magnet alloy powder added by 0.0001 mol / L or more and 1.0 mol / L or less as a density | concentration of.
前記リン酸を含む有機溶媒のpHを4.0以上5.0以下とする
請求項1に記載の磁石合金粉の製造方法。
The manufacturing method of the magnet alloy powder of Claim 1. The pH of the organic solvent containing the said phosphoric acid shall be 4.0 or more and 5.0 or less.
前記酸化剤として、硝酸を添加する
請求項1又は2に記載の磁石合金粉の製造方法。
The method for producing a magnet alloy powder according to claim 1, wherein nitric acid is added as the oxidizing agent.
前記有機溶媒として、分子量100以下の有機化合物を用いる
請求項1乃至3のいずれか1項に記載の磁石合金粉の製造方法。
The method for producing a magnet alloy powder according to any one of claims 1 to 3, wherein an organic compound having a molecular weight of 100 or less is used as the organic solvent.
前記有機溶媒として、比誘電率が10以上50以下である有機溶媒を用いる
請求項4に記載の磁石合金粉の製造方法。
The method for producing a magnet alloy powder according to claim 4, wherein an organic solvent having a relative dielectric constant of 10 to 50 is used as the organic solvent.
前記リン酸を含む有機溶媒として、1−メチル−2−ピロリドンに、リン酸を10体積%以上14体積%以下の割合で含有するものを用いる
請求項に記載の磁石合金粉の製造方法。
The method for producing a magnet alloy powder according to claim 5 , wherein the organic solvent containing phosphoric acid includes 1-methyl-2-pyrrolidone containing phosphoric acid at a ratio of 10% by volume to 14% by volume.
JP2016105409A 2016-05-26 2016-05-26 Method for producing magnet alloy powder Active JP6572171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105409A JP6572171B2 (en) 2016-05-26 2016-05-26 Method for producing magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105409A JP6572171B2 (en) 2016-05-26 2016-05-26 Method for producing magnet alloy powder

Publications (2)

Publication Number Publication Date
JP2017210662A JP2017210662A (en) 2017-11-30
JP6572171B2 true JP6572171B2 (en) 2019-09-04

Family

ID=60476045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105409A Active JP6572171B2 (en) 2016-05-26 2016-05-26 Method for producing magnet alloy powder

Country Status (1)

Country Link
JP (1) JP6572171B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107461A1 (en) * 2020-11-18 2022-05-27 日亜化学工業株式会社 PRODUCTION METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
JP2022080806A (en) * 2020-11-18 2022-05-30 日亜化学工業株式会社 Compound for bonded magnet and method of producing the same
JPWO2022107462A1 (en) 2020-11-19 2022-05-27
CN115259234A (en) * 2022-08-02 2022-11-01 马鞍山市鑫洋永磁有限责任公司 Formula and preparation method of ferrite magnetic powder for manufacturing permanent magnet alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198241A (en) * 2000-08-11 2002-07-12 Sumitomo Special Metals Co Ltd Rare earth permanent magnet having corrosion resistant film, and its manufacturing method
JP3882490B2 (en) * 2000-10-13 2007-02-14 住友金属鉱山株式会社 Method for producing highly weather-resistant magnet powder and product obtained
JP4009444B2 (en) * 2001-11-14 2007-11-14 日清紡績株式会社 Method for manufacturing friction member
JP2003217916A (en) * 2002-01-22 2003-07-31 Sumitomo Metal Mining Co Ltd High heat resistance magnetic powder, its manufacturing method and bonded magnet using the same
JP2011146417A (en) * 2010-01-12 2011-07-28 Sumitomo Metal Mining Co Ltd Method for manufacturing composition for resin-bonded magnet, resin composition for magnet obtained, and the resin-bonded magnet

Also Published As

Publication number Publication date
JP2017210662A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6572171B2 (en) Method for producing magnet alloy powder
JP3882545B2 (en) High weather-resistant magnet powder and magnet using the same
WO2012128371A1 (en) Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP3882490B2 (en) Method for producing highly weather-resistant magnet powder and product obtained
JP6556095B2 (en) Method for producing magnet alloy powder
TW201542838A (en) Fe-Co alloy powder and method for producing the same, and antenna, inductor, and EMI filter
JP2011146417A (en) Method for manufacturing composition for resin-bonded magnet, resin composition for magnet obtained, and the resin-bonded magnet
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP6171922B2 (en) Rare earth-iron-nitrogen based magnetic alloy and method for producing the same
JP6865437B2 (en) Manufacturing method of magnet alloy powder with film
JP2008547233A (en) Conductive fluid containing millimeter-scale magnetic particles
JP2017210664A (en) Production method of magnet alloy powder
JP2018081970A (en) Iron-based magnet alloy powder including rare earth element, method for manufacturing the same, rare earth composition for bond magnet, and rare earth magnet
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2003217916A (en) High heat resistance magnetic powder, its manufacturing method and bonded magnet using the same
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP6471724B2 (en) Method for producing magnet alloy powder for bonded magnet
Jurča et al. Conducting and magnetic hybrid polypyrrole/nickel composites and their application in magnetorheology
JP2017155259A (en) Method for producing iron-based alloy fine powder containing rare earth element
JP2003297618A (en) Composition for rare-earth rubber magnet, its manufacturing method, and rare-earth rubber magnet using the same
JP6512135B2 (en) Method of producing iron-based alloy fine powder containing rare earth element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6572171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250