JP6570296B2 - 画像処理装置、画像処理方法およびプログラム - Google Patents

画像処理装置、画像処理方法およびプログラム Download PDF

Info

Publication number
JP6570296B2
JP6570296B2 JP2015080440A JP2015080440A JP6570296B2 JP 6570296 B2 JP6570296 B2 JP 6570296B2 JP 2015080440 A JP2015080440 A JP 2015080440A JP 2015080440 A JP2015080440 A JP 2015080440A JP 6570296 B2 JP6570296 B2 JP 6570296B2
Authority
JP
Japan
Prior art keywords
pixel
distance
image
subject
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080440A
Other languages
English (en)
Other versions
JP2016201668A5 (ja
JP2016201668A (ja
Inventor
希名 村井
希名 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015080440A priority Critical patent/JP6570296B2/ja
Priority to US15/092,096 priority patent/US10194130B2/en
Publication of JP2016201668A publication Critical patent/JP2016201668A/ja
Publication of JP2016201668A5 publication Critical patent/JP2016201668A5/ja
Application granted granted Critical
Publication of JP6570296B2 publication Critical patent/JP6570296B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

本発明は、仮想的な視点から見た画像を生成する処理に関する。
同一のシーンを複数の異なる視点から撮影した複数の画像データを用いて、撮像に用いた視点とは異なる視点(以下、仮想視点と呼ぶ)から見たときの画像データ(以下、仮想視点画像データと呼ぶ)を生成する技術が提案されている。仮想視点画像データを生成する方法の一例として、撮像により取得した画像データと、画像データの各画素に対応する被写体の距離情報を表すデプスマップとを用いて、仮想視点画像データの画素値を推定する技術が存在する。しかし、画像データに対応するデプスマップを正確に取得することは困難であり、特に被写体が切り替わる境界部において距離情報が正しくないデプスマップが得られることがある。そのようなデプスマップを用いて仮想視点画像データを生成した場合、生成した仮想視点画像データにはアーティファクトが発生してしまう。
上記の課題を解決する方法として、特許文献1では、画像データとデプスマップとからそれぞれ抽出した被写体の輪郭線に基づいて、画像データを基準としてデプスマップを補正することで、高品質な仮想視点画像データを生成する技術が記載されている。
特開2013−225740号公報
しかしながら、特許文献1に記載の技術では被写体の輪郭線に基づいてデプスマップの補正を行うため、被写体の輪郭線に近くない領域において距離情報の誤推定が行われている場合、その誤りを補正することができないという課題があった。そこで本発明は、被写体の輪郭線に近い領域においても被写体の輪郭線に近くない領域においても距離情報の精度を向上することを目的としている。
上記課題を解決するために、本発明の画像処理装置は、被写体の像を含む画像を取得する画像取得手段と、前記画像の各画素に対応する被写体距離を示す距離情報を取得する距離取得手段と、前記画像の各画素における画素値と被写体距離との組み合わせに基づいて、補正対象の画素を決定する決定手段と、前記画像データまたは前記距離情報における前記補正対象の画素の前記距離情報を補正する補正手段とを有することを特徴とする。
本発明によれば、被写体の輪郭線に近い領域においても被写体の輪郭線に近くない領域においても距離情報の精度を向上することができる。
実施例1の画像処理装置の構成を示すブロック図。 実施例1の画像処理装置の機能構成を示すブロック図。 実施例1の画像処理装置による処理の流れを示すフローチャート。 実施例1のヒストグラム生成部203による処理の概念を示す図。 実施例1の決定部204による処理の概念を示す図。 実施例1の補正部205による処理の概念を示す図。 実施例1の画像生成部207による処理の概念を示す図。 実施例1の効果の概念を示す図。 実施例2の補正部205による処理の概念を示す図。 実施例2で行われる処理の概念を示す図。
以下、本発明の実施形態について、図面を参照して説明する。なお、以下の実施形態は本発明を限定するものではなく、また、本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。なお、同一の構成については、同じ符号を付して説明する。
<実施例1>
実施例1では、各画素の画素値と被写体距離との組み合わせのうち、異常な組み合わせを有する画素を検出して、検出された画素に対してデプスマップの補正を行うことで高品質なデプスマップを得る方法について説明する。また、得られた高品質なデプスマップを用いて、高品質な仮想視点画像を生成する方法についても説明する。
図1は、実施例1の画像処理装置の構成の一例を示す図である。実施例1の画像処理装置100(以下、処理装置100とする)は、CPU101、RAM102、ROM103、二次記憶装置104、入力インターフェース105、出力インターフェース106を含む。そして、処理装置100の各構成部はシステムバス107によって相互に接続されている。また、処理装置100は、入力インターフェース105を介して外部記憶装置108に接続されており、出力インターフェース106を介して外部記憶装置108および表示装置109に接続されている。
CPU101は、RAM102をワークメモリとして、ROM103に格納されたプログラムを実行し、システムバス107を介して処理装置100の各構成部を統括的に制御するプロセッサーである。これにより、後述する様々な処理が実行される。
二次記憶装置104は、処理装置100で取り扱われる種々のデータを記憶する記憶装置であり、本実施例ではHDDが用いられる。CPU101は、システムバス107を介して二次記憶装置104へのデータの書き込みおよび二次記憶装置104に記憶されたデータの読出しを行うことができる。なお、二次記憶装置104にはHDDの他に、光ディスクドライブやフラッシュメモリなど、様々な記憶デバイスを用いることが可能である。
入力インターフェース105は、例えばUSBやIEEE1394等のシリアルバスインターフェースであり、外部装置から処理装置100へのデータや命令等の入力は、この入力インターフェース105を介して行われる。処理装置100は、この入力インターフェース105を介して、外部記憶装置108(例えば、ハードディスク、メモリーカード、CFカード、SDカード、USBメモリなどの記憶媒体)からデータを取得する。なお、入力インターフェース105には不図示のマウスやボタンなどの入力デバイスも接続可能であり、ユーザは入力デバイス用いて仮想視点画像データの視点を設定する。出力インターフェース106は、入力インターフェース105と同様にUSBやIEEE1394等のシリアルバスインターフェースを備える。その他に、例えばDVIやHDMI(登録商標)等の映像出力端子を用いることも可能である。処理装置100から外部装置へのデータ等の出力は、この出力インターフェース106を介して行われる。処理装置100は、この出力インターフェース106を介して表示装置109(液晶ディスプレイなどの各種画像表示デバイス)に、処理された画像などを出力することで、画像の表示を行う。なお、処理装置100の構成要素は上記以外にも存在するが、本発明の主眼ではないため、説明を省略する。
以下、実施例1の処理装置100で行われる処理について、図2および図3を参照して説明する。図2は、処理装置100の機能構成を示すブロック図である。処理装置100は、ROM103に格納されたプログラムをCPU101がRAM102をワークメモリとして実行することで、図2に示す各構成部として機能し、図3のフローチャートに示す一連の処理を実行する。なお、以下に示す処理の全てがCPU101によって実行される必要はなく、処理の一部または全部が、CPU101以外の一つ又は複数の処理回路によって行われるように処理装置100が構成されてもよい。以下、各構成部により行われる処理の流れを説明する。
ステップS301では、画像取得部201が、入力インターフェース105を介して、または二次記憶装置104から、処理対象となる画像データを取得する。ここで取得する画像データは、多眼カメラなどの多視点撮像装置を用いて撮像された、同一の被写体を複数の異なる視点から同時に撮像することで得られた複数の画像を示す多視点画像データである。画像取得部201は、取得した画像データを距離取得部202とヒストグラム生成部203と決定部204と補正部205と画像生成部207とに出力する。
ステップS302では、距離取得部202が、画像取得部201から入力された画像データを用いて、画像データを撮像した撮像装置から画像データに含まれる被写体までの距離を示す距離情報を視点毎に取得する。本実施例では、距離取得部202は、画像データに含まれる、視点の異なる複数の画像の間でステレオマッチングを行うことで、画像中の各画素に対応する距離を格納したデプスマップを距離情報として推定し、取得する。なお、距離情報の取得の方法はこれに限られない。例えば、赤外線センサなどの距離センサにより予め取得されたデプスマップを二次記憶装置104や外部記憶装置108から読み出すことにより取得してもよい。距離取得部202は、取得したデプスマップをヒストグラム生成部203と決定部204と補正部205とに出力する。
ステップS303では、ヒストグラム生成部203が、画像取得部201から入力された画像データと距離取得部202から入力されたデプスマップとに基づき、画素値と被写体距離とのヒストグラム分布を生成する。ヒストグラム分布は同一視点における画像データとデプスマップとを用いて視点毎に生成されるため、ヒストグラム生成部203は視点毎に独立に処理を行う。
図4を参照してヒストグラム分布の生成について説明する。ヒストグラム分布404は、画像データ401とデプスマップ402での同一の画素位置(u,v)における、画像データ401の画素値I(u,v)とデプスマップ402の距離値d(u,v)の二つの値の頻度をカウントしたものである。ヒストグラム分布404は、各画素についてのIとdの値を格納した被写体データ403を用いて生成される。ここで、被写体データ403に含まれるデータをペア値Id(u,v)=(I(u,v),d(u,v))と定義する。ヒストグラム生成部203は被写体データ内で同一のペア値Id=(I,d)となる画素の数cをカウントし、カウントした画素数を頻度として、画素値と距離値と頻度とをそれぞれ軸にとる多次元空間404上に各ペア値をプロットする。本実施例では画素値として各画素の輝度を用いた3次元空間で説明するが、画像取得部201から入力された画像がRGB3チャンネルのカラー画像である場合などは、4次元以上の多次元空間としてもよい。ヒストグラム生成部203は、全てのペア値に対してプロットを行った結果をヒストグラム分布として決定部204に出力する。
図3のフローチャートの説明に戻る。ステップS304では、決定部204がヒストグラム生成部203から取得したヒストグラム分布に基づいて、補正の対象となるペア値を決定する。一般に、同じ距離に存在する被写体において画素値が類似する領域はある程度の大きさを有するものである。そのため、画像中の多くの画素において、画素値と被写体距離の組み合わせであるペア値は互いに類似する。類似するペア値を有する画素数が極端に少ない場合、距離推定の誤差等によりそのペア値は誤っている可能性が高く、異常なペア値であると考えられる。そこで、決定部204は、ペア値の頻度を表すヒストグラム分布において、頻度が閾値以下となるペア値を補正対象とする。これはすなわち、各画素におけるペア値を比較した結果、頻度が閾値以下となるペア値を異常なペア値として検出し、異常なペア値を有する画素を補正対象とすることに等しい。ここで用いられる閾値は、画像の総画素数などに基づいて決定することができる。例えば本実施例においては、総画素数の1/10000を閾値として設定している。なお、閾値は一つである必要はなく、距離値や画素値から定めた範囲毎に適応的に変化してもよい。
ステップS305では、決定部204が、ステップS304で補正対象として決定されたペア値に基づいて、距離情報の補正対象となる画素の位置を決定する。図5を参照して補正対象の画素位置を決定する処理について説明する。ステップS304で補正対象として決定されたペア値をId=(I,d)とした時、決定部204は、画像取得部201から入力された画像データ401から画素値がIである画素の位置を検出する。図5の例では、画素位置(u,v)および(u,v)が検出されている。次に、決定部204は、距離取得部202から入力されたデプスマップ402から、距離値がdである画素の位置を検出する。図5の例では、画素位置(u,v)および(u,v)が検出されている。そして、決定部204は、上述した画素値Iに基づく検出と距離値dに基づく検出との両方で検出された画素位置を、補正対象のペア値を有する画素の位置、すなわち補正対象の画素位置として決定する。図5の例では(u,v)が補正対象の画素位置として決定されている。決定部204は、ここで決定された補正対象の画素位置を補正部205に出力する。なお、1つのペア値について決定される補正対象の画素位置は一つとは限らず、複数の画素位置が検出された場合には、決定部204は複数の画素位置を補正部205に出力する。
ステップS306では、補正部205が、画像取得部201から入力された画像データとヒストグラム生成部203から入力されたヒストグラム分布と決定部204から入力された画素位置とを用いて、距離取得部202から入力されたデプスマップを補正する。本実施例では、補正部205は、補正対象の画素位置における距離値を、他の画素の距離値で置き換えることでデプスマップの補正を行う。以下、デプスマップの補正の具体的な処理方法について図6を参照して説明する。
図6(a)は、補正対象となる画素の画素値を基準として、置き換えに用いる距離値を決定する例を示す図である。平面601はヒストグラム分布404から、処理対象の画素の画素値に対応する平面を切り出したものである。補正対象の画素の本来の距離値は、補正対象の画素の周辺の画素のうち、補正対象の画素の画素値に近い画素値を有する画素の距離値に近いと考えられる。そこで、補正部205は、補正対象の画素の周辺の画素値が類似する画素に基づいて距離値の範囲を限定し、限定された範囲の中で置き換えに用いる距離値を決定する。
補正部205は、補正対象の画素を中心とした所定の大きさの画素ブロック内に含まれる画素のうち、補正対象の画素と画素値が類似する画素の距離値を取得する。なお、ブロックサイズは画像取得部201から取得された画像データの画像サイズなどによりあらかじめ設定される。例えば、本実施例では処理対象画像の横サイズの1/100×処理対象画像の縦サイズの1/100を用いている。そして、補正部205は、取得された距離値の中の最小値dminと最大値dmaxを検出し、補正対象の画素値に対応する平面601において、dminとdmaxとの間に含まれる距離値を置き換えに用いる距離値の候補とする。そして、補正部205は、置き換えに用いる距離値の候補のうち、最も頻度の高い距離値で補正対象の画素の距離値を置き換える。なお、ここで置き換えに用いる距離値は必ずしも最も頻度の高い距離値である必要はなく、例えば頻度の上位3つの距離値の頻度に応じた重みづけ平均をとるなどしてもよい。
また、図6(b)は、置き換えに用いる距離値の候補を、補正対象の画素値の平面601に限定するのではなく、所定の画素値のぶれを許容する例を示した図である。図6(b)では、平面601を中心として、画素値I−ΔpからI+Δpを通る平面の集合602を抽出し、各平面におけるペア値とカウント数を平面601に射影することで累積の2次元平面603を生成する。そして、2次元平面603において距離値が累積2次元平面603において、dminとdmaxとの間に含まれる距離値を置き換え候補の距離値とし、その中で、最大の頻度cmaxとなる距離値dを置き換えに用いる距離値とする。Δpは画素値のスケールなどから決定することができ、例えばΔp=1とすることができる。このΔpを大きくすると同一被写体内での画素値の揺らぎに対するロバスト性は向上するが、画素値の類似する被写体間でのロバスト性が低下するので、シーンに応じてΔpを切り替えるようにしてもよい。
なお、置き換えの方法はこれに限られず、別の方法を用いることも可能である。例えば、画像全体のヒストグラム分布の中の距離値の範囲を限定するのではなく、補正対象の画素の周辺のブロック内の画素のみで新たなヒストグラム分布を作成し、作成したヒストグラム分布の中で最も頻度の高い距離値を置き換えに用いるようにしてもよい。また、最も頻度の高い距離値をそのまま用いるのではなく、距離値の頻度が高い複数の距離値を検出し、検出された距離値の平均をとったり、周辺のブロックに含まれる画素値が類似した画素の距離値の平均をとるようにしてもよい。補正部205は、補正したデプスマップを画像生成部207に出力する。
ステップS307では、姿勢取得部206が、画像取得部201から取得した画像データの、各画像を撮影したカメラの位置と姿勢とを含む位置姿勢情報を取得する。位置姿勢情報は各視点の位置関係が分かる情報であればどのようなものでもよい。例えば、あらかじめ配置が決まっている複数の撮像部を用いて撮像された画像データに対して処理を行う場合であれば、あらかじめ決まっている配置を示す情報をROM103に格納しておき、それを読み出すようにしてもよい。また、手持ちのカメラを移動させながら複数視点の画像を撮像している場合などは、撮影された画像を用いたstructure from motionなどの位置推定手法を用いて取得してもよい。姿勢取得部206は画像生成部207が生成する画像データに対応する仮想視点における位置姿勢情報も取得し、取得したすべての位置姿勢情報を画像生成部207に出力する。
ステップS308では、画像生成部207が、画像取得部201から取得された画像データと補正部205から取得された補正したデプスマップと姿勢取得部206から取得された位置姿勢情報とを用いて仮想視点画像データを生成する。
本実施例では、画像生成部207が、各視点におけるデプスマップから仮想視点におけるデプスマップを生成した後、生成したデプスマップを用いて仮想視点画像データを生成する。図7に、画像データを撮影した実視点および仮想視点のそれぞれのカメラ座標系と投影画像面の座標系とを示す。なお、画像の座標原点は主点とする。画像データに含まれる画像のうちの任意の1枚の画像を撮像したカメラ座標系を(X,Y,Z、仮想視点のカメラ座標系を(X,Y,Zとする。実視点におけるデプスマップ上の任意の点p=(u,v)に投影された三次元空間の点P=(X,Y,ZのZが既知である時、実視点の座標系における点PのX、Y座標はfをカメラの焦点距離とすると以下の式(1)、式(2)で与えられる。
=Z/f…式(1)
=Z/f…式(2)
ここで、実視点の座標系と仮想視点の座標系との間の関係は、実視点の位置姿勢を仮想視点の位置姿勢に変換するための回転行列R21と並進ベクトルT21を用いると式(3)の形で表せる。
(X,Y,Z=R21(X,Y,Z+T21…式(3)
回転行列R21と並進ベクトルT21は姿勢取得部206から入力された位置姿勢情報に基づいて導出可能である。式(3)により得られたZは仮想視点から見た点Pの距離値であり、点P=(X,Y,Zは仮想視点におけるデプスマップ上の点p=(u,v)に投影される。ここで、(u,v)は、式(3)により得られたX、Yを用いて以下の式(4)と式(5)により求められる。
=fX/Z…式(4)
=fY/Z…式(5)
画像生成部207は、上記の式で求めた仮想視点におけるデプスマップ上の点p=(u,v)の距離値をZとして決定する。
画像生成部207は、以上の処理を、画像データ内の全ての画像に対して行うことで、空白の少ない、仮想視点におけるデプスマップを生成する。なお、仮想視点におけるデプスマップ上の1点に、複数の視点から複数の距離値が割り当てられた場合には、割り当てられた全ての距離値の平均値をその点に対応する距離値として決定する。なお、距離値の決定方法はこれに限られず、仮想視点に最も近い実視点の距離値を採用するようにしたり、仮想視点からの距離に応じた重みを用いた重みづけ平均で距離値を決定したりしてもよい。そして、画像生成部207は、生成した仮想視点におけるデプスマップの距離値を用いて、仮想視点のデプスマップを生成する処理と同様に、各視点座標系の対応関係により仮想視点の画像データを生成する。すなわち、生成されたデプスマップの各画素位置における距離値の値を式(4)および式(5)に代入し、導出されたX,Y,Zの値を式(1)および式(2)に代入することで、仮想視点画像データの各画素に対応する実視点画像の画素位置を導出する。そして、導出された実視点画像の画素の画素値を、仮想視点画像データの対応する画素の画素値として決定する。この処理を画像中の全ての点について繰り返し行うことで、仮想視点における仮想視点画像データが生成される。なお、仮想視点画像データの生成方法はこれに限らず、デプスマップを用いた方法であればよい。例えば、仮想視点画像データの生成に用いる画像は1つの視点の画像だけでもよく、実視点で撮像した画像の各被写体図を、各画素の被写体距離に応じてシフトさせることで仮想視点画像データの生成を行ってもよい。画像生成部207は、生成した仮想視点画像データを二次記憶装置104や表示装置109に出力して処理を終了する。
以上が、実施例1の処理装置100で行われる処理である。図8に処理装置100による効果の概念図を示す。図8において、デプスマップ802には領域806や領域807で、入力画像データ801に現れる被写体の形状とは異なる距離値の誤差が発生している。このようなデプスマップを用いて仮想視点画像データを生成すると、仮想視点画像データ803にはアーティファクト808および809が発生する。これに対し、実施例1の処理装置100では、画素値と距離値をペアにして生成したヒストグラム分布からはずれ値を検出することで、デプスマップにおいて誤差となっている画素が検出される。さらに検出した画素に対応する距離値を、周囲の画素値が類似する領域に基づいて決定することで、デプスマップの誤差を軽減する。その結果、デプスマップ802はデプスマップ804のように補正される。デプスマップ804を用いて仮想視点画像データを生成した場合、仮想視点画像データ805のようにアーティファクトが軽減された画像データを得ることができる。本実施例の処理によれば、領域807のような物体の輪郭部分ではない箇所に発生したデプスマップの誤差も補正することができ、それにより発生する仮想視点画像データ803のアーティファクト809も抑制することができる。
なお、実施例1において画像取得部201は被写体の像を含む画像データを取得する画像取得手段として機能する。また、距離取得部202は被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得手段として機能する。また、決定部204は前記画像の各画素における画素値と被写体距離との組み合わせを比較することで、前記距離情報の補正を行う補正対象の画素を決定する決定手段として機能する。また、補正部205は前記決定手段により決定された前記補正対象の画素の前記距離情報を補正する補正手段として機能する。また、ヒストグラム生成部203は前記画像の各画素における画素値と被写体距離との頻度を前記画素値と被写体距離との組み合わせごとにカウントするカウント手段として機能する。また、画像生成部207は前記補正手段により補正された距離情報と、前記画像取得手段により取得された画像とを用いて、前記画像取得手段により取得された画像とは異なる視点から見た場合の仮想視点画像を生成する生成手段として機能する。
<実施例2>
実施例1では、各画素の画素値と被写体距離との組み合わせに基づいて、各画素の距離情報を補正する例について説明した。実施例2では、各画素の画素値と被写体距離との組み合わせに基づいて、各画素の画素値を補正する例について説明する。
実施例2における処理の概念について、図10を参照して説明する。実施例2の処理は、入力画像データよりもデプスマップの方が精度の高い情報が得られていることを前提としている。図10に示す入力画像データ1001では、色にじみなどの影響により、被写体と背景の境界部分に、被写体の画素値と背景の画素値の中間の画素値を有する領域1006が存在している。一方、この画像データに対応するデプスマップ1002では、被写体と背景の境界部分の距離が正確に保持されている。この入力画像データ1001とデプスマップ1002を用いて仮想視点画像データの生成を行うと、仮想視点画像データ1003に示すようにアーティファクトが発生してしまう。そこで、本実施例では、画像データ1004のように、中間的な画素値を持つ画素の画素値の補正を行い、補正された画像データを用いて仮想視点画像データの生成を行う。
以下、本実施例の処理装置100で行われる具体的な処理について説明する。本実施例の処理装置100で行われる基本的な処理の流れは実施例1と同様であるため、ここでは実施例1との相違点についてのみ説明する。本実施例では、ステップS306での処理が実施例1とは異なる。本実施例のステップS306では、補正部205は補正対象の画素位置における画素値を、他の画素の画素値で置き換えることで、デプスマップではなく入力画像データの画素値を補正する。以下、入力画像データの画素値補正の具体的な処理方法について図9を参照して説明する。
図9は、補正対象となる画素の画素値を基準として、置き換えに用いる画素値を決定する例を示す図である。補正対象の画素の本来の画素値は、補正対象の画素の周辺の画素のうち、距離値の近い領域の画素値に近い値である可能性が高い。そこで、補正部205は、補正対象の画素の周辺の距離値が類似する画素に基づいて画素値の候補を限定し、限定された候補の中で置き換えに用いる画素値を決定する。
補正部205は、補正対象の画素を中心とした所定の大きさのブロック内に含まれる画素から、補正対象の画素を中心としたブロックに対応する画素値のヒストグラム分布903を生成する。そして、補正部205は、ヒストグラム分布903に含まれる、所定の閾値よりも頻度が高い画素値を、置き換えに用いる画素値の候補とする。または、ヒストグラム分布903で頻度のピーク値の検出を行い、検出されたピーク値に対応する画素値を置き換えに用いる画素値の候補としてもよい。次に、補正部205は、ヒストグラム生成部203から入力されたヒストグラム分布904から、補正対象の画素の距離値に対応する平面905を切り出す。そして、補正部205は、平面905に含まれる画素値のうち、既に周辺画素のブロックに基づいて置き換えに用いる画素値の候補として決定されており、かつその中で最も頻度が高い画素値を、置き換えに用いる画素値として決定する。補正部205は、置き換えに用いる画素値として決定した画素値で補正対象の画素値を置き換え、補正済みの画像データを画像生成部207に出力する。そして、画像生成部207は、ステップS308での処理により、距離取得部202から入力された距離情報と補正部205から入力された補正済みの画像データを用いて仮想視点画像データを生成する。
以上が本実施例の処理装置100で行われる処理の流れである。以上の処理によれば、画像データよりも精度が良い距離情報が得られている場合に、距離情報の精度を最大限に活用した高品質な仮想視点画像データを生成することができる。
なお、実施例2において、決定部204は前記画像の各画素における画素値と被写体距離との組み合わせを比較することで、前記画像の画素値の補正を行う補正対象の画素を決定する決定手段として機能する。また、補正部205は前記決定手段により決定された前記補正対象の画素の前記画素値を補正する補正手段として機能する。また、また、画像生成部207は前記補正手段により補正された距離情報と、前記画像取得手段により取得された画像とを用いて、前記画像取得手段により取得された画像とは異なる視点から見た場合の仮想視点画像を生成する生成手段として機能する。
<その他の実施形態>
本発明の実施形態は上述のものに限られない。例えば、上記の実施例では、ヒストグラム生成部203が同じ画素値と距離値との組み合わせを有するものの頻度をカウントし、ヒストグラム分布を生成したが、画素値と距離値とをより広い幅で量子化して頻度を積算するようにしてもよい。例えば、I=50、d=50のペア値の頻度として、I=49〜51、d=49〜51となる画素の数をカウントするようにしてもよい。このようにすれば、画素値や距離値の微小な揺らぎに対するロバスト性が向上する。一方、量子化の幅を広げると画素値の類似する被写体間でのロバスト性が低下するので、シーンに応じてΔpを切り替えるようにしてもよい。
また、上記の実施例では、頻度が所定の閾値以下となるペア値を有する画素が補正対象の画素として決定されたが、補正対象の画素の決定方法は上記の方法に限られない。例えば、ペア値の頻度や類似するペア値が連続領域の大きさ等に基づいて代表的なペア値の組を複数の代表ペアとして予め決めておき、画素値および距離値の両方の差が閾値以内となる代表ペアが存在しない画素を補正対象とするようにしてもよい。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100 画像処理装置
201 画像取得部
202 距離取得部
204 決定部
205 補正部

Claims (21)

  1. 被写体の像を含む画像データを取得する画像取得手段と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得手段と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、補正対象の画素として決定する決定手段と、
    前記画像データまたは前記距離情報における前記補正対象の画素の値を補正する補正手段とを有することを特徴とする画像処理装置。
  2. 被写体の像を含む画像データを取得する画像取得手段と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得手段と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、前記被写体距離の補正を行う補正対象の画素として決定する決定手段と、
    前記決定手段により決定された前記補正対象の画素の前記被写体距離を補正する補正手段とを有することを特徴とする画像処理装置。
  3. 前記補正手段は、前記補正対象の画素における被写体距離を異なる値で置き換えることにより前記距離情報を補正することを特徴とする請求項1または2に記載の画像処理装置。
  4. 前記補正手段は、前記補正対象の画素との画素値の差が所定の閾値以下である画素に対応する被写体距離のうち、頻度が最も大きい被写体距離で前記補正対象の画素の被写体距離を置き換えることを特徴とする請求項2または3に記載の画像処理装置。
  5. 前記補正手段は、前記補正対象の画素を含む所定の大きさの画素ブロックに含まれる画素における被写体距離に基づいて、置き換えに用いる被写体距離を限定することを特徴とする請求項2乃至4の何れか一項に記載の画像処理装置。
  6. 前記補正手段は、前記画素ブロックに含まれる画素のうち、前記補正対象の画素との画素値の差が所定の閾値以下である画素の被写体距離を抽出し、前記抽出された被写体距離の最大値と最小値の間の範囲に、前記置き換えに用いる被写体距離を限定することを特徴とする請求項5に記載の画像処理装置。
  7. 前記補正手段により補正された距離情報と、前記画像取得手段により取得された画像とを用いて、前記画像取得手段により取得された画像とは異なる視点から見た場合の仮想視点画像を生成する生成手段を更に有することを特徴とする請求項1乃至6のいずれか一項に記載の画像処理装置。
  8. 被写体の像を含む画像データを取得する画像取得手段と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得手段と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、前記画像データの画素値の補正を行う補正対象の画素として決定する決定手段と、
    前記決定手段により決定された前記補正対象の画素の前記画素値を補正する補正手段とを有することを特徴とする画像処理装置。
  9. 前記補正手段は、前記補正対象の画素における画素値を異なる値で置き換えることにより前記画素値を補正することを特徴とする請求項1または8に記載の画像処理装置。
  10. 前記補正手段は、前記補正対象の画素との被写体距離の差が所定の閾値以下である画素の画素値のうち、頻度が最も大きい画素値で前記補正対象の画素の画素値を置き換えることを特徴とする請求項9に記載の画像処理装置。
  11. 前記補正手段は、前記補正対象の画素を含む所定の大きさの画素ブロックに含まれる画素における画素値に基づいて、前記置き換えに用いる画素値を限定することを特徴とする請求項9又は10に記載の画像処理装置。
  12. 前記補正手段は、前記画素ブロックに含まれる画素のうち、前記補正対象の画素との被写体距離の差が所定の閾値以下である画素の画素値を抽出し、前記画素ブロック内での頻度が所定の閾値よりも大きい画素値を、前記置き換えに用いる画素値の候補として限定することを特徴とする請求項11に記載の画像処理装置。
  13. 前記補正手段により補正された画像と、前記距離取得手段により取得された距離情報とを用いて、前記画像取得手段により取得された画像とは異なる視点から見た場合の仮想視点画像を生成する生成手段を更に有することを特徴とする請求項8乃至12のいずれか一項に記載の画像処理装置。
  14. 前記画像データの各画素における画素値と被写体距離との頻度を前記画素値と被写体距離との組み合わせごとにカウントするカウント手段を更に有し、
    前記決定手段は、前記頻度が所定の閾値よりも小さい組み合わせの画素値と被写体距離とを有する画素を、前記補正対象の画素として決定することを特徴とする請求項1乃至13のいずれか一項に記載の画像処理装置。
  15. 前記カウント手段は、差が所定の閾値以下となる複数の異なる画素値の頻度を積算してカウントすることを特徴とする請求項14に記載の画像処理装置。
  16. 前記カウント手段は、差が所定の閾値以下となる複数の異なる被写体距離の頻度を積算してカウントすることを特徴とする請求項14又は15に記載の画像処理装置。
  17. 前記決定手段は、前記画像の各画素における画素値と被写体距離との組み合わせにおいて代表的な組み合わせである複数の代表ペアを決定し、
    前記複数の代表ペアのいずれとも前記画素値および前記被写体距離の両方の差が所定の閾値以下とならない画素を前記補正対象の画素として決定することを特徴とする請求項1乃至13のいずれか一項に記載の画像処理装置。
  18. 被写体の像を含む画像データを取得する画像取得工程と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得工程と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、補正対象の画素として決定する決定工程と、
    前記画像データまたは前記距離情報における前記補正対象の画素の値を補正する補正工程とを有することを特徴とする画像処理方法。
  19. 被写体の像を含む画像データを取得する画像取得工程と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得工程と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、前記被写体距離の補正を行う補正対象の画素として決定する決定工程と、
    前記補正対象の画素の前記被写体距離を補正する補正工程とを有することを特徴とする画像処理方法。
  20. 被写体の像を含む画像データを取得する画像取得工程と、
    前記画像データを撮像した撮像装置から前記被写体までの距離である被写体距離を前記画像データの各画素について示す距離情報を取得する距離取得工程と、
    前記画像データの各画素における画素値と前記被写体距離との組み合わせを比較することで、前記画素値と前記被写体距離との組み合わせが異常である画素を検出し、前記組み合わせが異常であるとして検出された画素を、前記画像データの画素値の補正を行う補正対象の画素として決定する決定工程と、
    前記補正対象の画素の前記画素値を補正する補正工程とを有することを特徴とする画像処理方法。
  21. コンピュータを請求項1乃至17のいずれか一項に記載の画像処理装置として機能させるプログラム。
JP2015080440A 2015-04-09 2015-04-09 画像処理装置、画像処理方法およびプログラム Active JP6570296B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015080440A JP6570296B2 (ja) 2015-04-09 2015-04-09 画像処理装置、画像処理方法およびプログラム
US15/092,096 US10194130B2 (en) 2015-04-09 2016-04-06 Image processing apparatus, image processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080440A JP6570296B2 (ja) 2015-04-09 2015-04-09 画像処理装置、画像処理方法およびプログラム

Publications (3)

Publication Number Publication Date
JP2016201668A JP2016201668A (ja) 2016-12-01
JP2016201668A5 JP2016201668A5 (ja) 2018-05-31
JP6570296B2 true JP6570296B2 (ja) 2019-09-04

Family

ID=57112926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080440A Active JP6570296B2 (ja) 2015-04-09 2015-04-09 画像処理装置、画像処理方法およびプログラム

Country Status (2)

Country Link
US (1) US10194130B2 (ja)
JP (1) JP6570296B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570296B2 (ja) * 2015-04-09 2019-09-04 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP2017021759A (ja) * 2015-07-15 2017-01-26 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
US9972092B2 (en) * 2016-03-31 2018-05-15 Adobe Systems Incorporated Utilizing deep learning for boundary-aware image segmentation
JP6801434B2 (ja) * 2016-12-20 2020-12-16 富士通株式会社 生体画像処理装置、生体画像処理方法および生体画像処理プログラム
US10373362B2 (en) * 2017-07-06 2019-08-06 Humaneyes Technologies Ltd. Systems and methods for adaptive stitching of digital images
US10992916B2 (en) * 2017-07-26 2021-04-27 Google Llc Depth data adjustment based on non-visual pose data
JP7187182B2 (ja) * 2018-06-11 2022-12-12 キヤノン株式会社 データ生成装置、方法およびプログラム
US11276166B2 (en) * 2019-12-30 2022-03-15 GE Precision Healthcare LLC Systems and methods for patient structure estimation during medical imaging
CN111325148B (zh) * 2020-02-20 2023-07-28 北京市商汤科技开发有限公司 遥感影像的处理方法、装置、设备和存储介质
CN111901499B (zh) * 2020-07-17 2022-04-01 青岛聚好联科技有限公司 一种计算视频图像中像素实际距离的方法及设备
US20230186550A1 (en) * 2021-12-09 2023-06-15 Unity Technologies Sf Optimizing generation of a virtual scene for use in a virtual display environment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856612B2 (ja) * 2007-10-29 2012-01-18 富士重工業株式会社 物体検出装置
JP5156837B2 (ja) * 2007-11-09 2013-03-06 トムソン ライセンシング 領域ベースのフィルタリングを使用する奥行マップ抽出のためのシステムおよび方法
JP6016061B2 (ja) * 2012-04-20 2016-10-26 Nltテクノロジー株式会社 画像生成装置、画像表示装置及び画像生成方法並びに画像生成プログラム
JP6570296B2 (ja) * 2015-04-09 2019-09-04 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
ES2756677T3 (es) * 2016-09-26 2020-04-27 Canon Kk Aparato de procesamiento de imágenes, procedimiento de procesamiento de imágenes y programa
JP6434947B2 (ja) * 2016-09-30 2018-12-05 キヤノン株式会社 撮像システム、画像処理装置、画像処理方法、及びプログラム

Also Published As

Publication number Publication date
US10194130B2 (en) 2019-01-29
US20160301908A1 (en) 2016-10-13
JP2016201668A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6570296B2 (ja) 画像処理装置、画像処理方法およびプログラム
US9070042B2 (en) Image processing apparatus, image processing method, and program thereof
JP5954668B2 (ja) 画像処理装置、撮像装置および画像処理方法
US10006762B2 (en) Information processing apparatus, information processing method, and storage medium
US11210842B2 (en) Image processing apparatus, image processing method and storage medium
US9613404B2 (en) Image processing method, image processing apparatus and electronic device
JPWO2013038833A1 (ja) 画像処理システム、画像処理方法および画像処理プログラム
JP5901447B2 (ja) 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム
US20150178595A1 (en) Image processing apparatus, imaging apparatus, image processing method and program
JP6594170B2 (ja) 画像処理装置、画像処理方法、画像投影システムおよびプログラム
JP2018195084A (ja) 画像処理装置及び画像処理方法、プログラム、記憶媒体
WO2019123554A1 (ja) 画像処理装置、画像処理方法、及び、記録媒体
US9706121B2 (en) Image processing apparatus and image processing method
JP6395429B2 (ja) 画像処理装置、その制御方法及び記憶媒体
US9270883B2 (en) Image processing apparatus, image pickup apparatus, image pickup system, image processing method, and non-transitory computer-readable storage medium
JP2016086245A (ja) 画像処理装置、画像処理システム、画像処理装置の制御方法およびプログラム
JP6080424B2 (ja) 対応点探索装置、そのプログラムおよびカメラパラメータ推定装置
KR20200057929A (ko) 캘리브레이트된 카메라들에 의해 캡쳐된 스테레오 영상들의 렉티피케이션 방법과 컴퓨터 프로그램
JP6351364B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP7533937B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2018059767A (ja) 画像処理装置、画像処理方法およびプログラム
JP2018205205A (ja) ステレオマッチング装置とステレオマッチング方法及びステレオマッチングプログラム
JP6831792B2 (ja) 撮像装置、および、撮像システム
JP6066765B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2019047218A (ja) 画像処理装置、画像処理方法およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190806

R151 Written notification of patent or utility model registration

Ref document number: 6570296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151