JP6565539B2 - バーナ - Google Patents

バーナ Download PDF

Info

Publication number
JP6565539B2
JP6565539B2 JP2015187968A JP2015187968A JP6565539B2 JP 6565539 B2 JP6565539 B2 JP 6565539B2 JP 2015187968 A JP2015187968 A JP 2015187968A JP 2015187968 A JP2015187968 A JP 2015187968A JP 6565539 B2 JP6565539 B2 JP 6565539B2
Authority
JP
Japan
Prior art keywords
burner
furnace
outer tube
cooling gas
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015187968A
Other languages
English (en)
Other versions
JP2017062085A (ja
Inventor
考範 清末
考範 清末
貴幸 北澤
貴幸 北澤
中島 康宏
康宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015187968A priority Critical patent/JP6565539B2/ja
Publication of JP2017062085A publication Critical patent/JP2017062085A/ja
Application granted granted Critical
Publication of JP6565539B2 publication Critical patent/JP6565539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

本発明は、バーナに関する。
従来、炉内を加熱する手段として、バーナが広く用いられている。このようなバーナの燃料ガスが噴射される先端側は、炉内へ向けて設けられており、高温環境下に晒されているので、焼損しやすい。ゆえに、バーナの焼損を防止するためのバーナの冷却に関する技術が提案されている。
例えば、特許文献1には、水冷式バーナの利点を保持し、しかも、炉が水蒸気爆発を起こす危険のない安全なバーナを提供するために、炉本体内の燃焼室に向けてあるバーナにおいて、バーナ本体の素材に金属を用い、バーナ本体の全長のうち、炉本体の外部に突出している部分の外周に、水冷式の冷却手段を設ける技術が開示されている。
また、特許文献2には、熱膨張による空気冷却管の伸び縮みを吸収するために、燃焼ノズル管の後部に熱伸縮吸収装置を設ける技術が開示されている。
特開平11−257613号公報 特開2001−182915号公報
ところで、空冷式のバーナの冷却装置として、燃料ガスを噴射する管状のバーナの外周に設けられ、バーナと二重管構造を形成する外管と、外管とバーナの間に設けられた冷却ガスの通路と、を備える冷却装置が利用されている。図1は、従来の冷却装置90の概略構成の一例を示す模式図である。図1に示したように、冷却装置90は、管状のバーナ10の外周を覆うように設けられ、炉内の燃焼室20を囲む炉壁30に設けられた開口部302に貫通して設けられる。バーナ10は、内周側に燃料ガスが通過する燃料ガス通路102を有し、燃料ガス通路102を通過した燃料ガスを炉内へ向けて先端側から噴射する。冷却装置90は、外管902と、冷却ガス通路904と、冷却ガス流入管910と、を備える。
外管902は、管状のバーナ10の外周に設けられ、バーナ10と二重管構造を形成する。外管902は炉壁30の開口部302に貫通した上で、例えば溶接により炉壁30に接合される。外管902の後端部は、炉壁30より炉外側においてバーナ10と例えば溶接により接合される。
冷却ガス通路904は、外管902とバーナ10の間に設けられ、冷却ガス通路904内を空気等の冷却ガスが通過する。冷却ガスは、炉壁30より炉外側において外管902と接続される冷却ガス流入管910から冷却ガス通路904へ供給される。バーナ10の外周を覆う冷却ガス通路904へ冷却ガスを供給することにより、バーナ10の炉内側の部分を冷却することができるので、バーナ10の焼損を防止することができる。冷却ガス通路904を通過した冷却ガスは、外管902とバーナ10との間の先端側の開口部920から炉内へ放出される。
ここで、バーナ10を用いた加熱炉において、2つのバーナ10がペアを成し、当該ペアを構成するバーナ10の各々は、交互に燃焼ガスを噴射するように構成され得る。一方のバーナ10が燃料ガスを噴射している間において、加熱炉の廃熱を再利用するために、他方のバーナ10に対応する蓄熱体へ加熱炉1の廃熱を有した排気が供給され、当該他方のバーナ10による燃料ガスの噴射は停止する。このように、バーナ10による燃料ガスの噴射が停止する場合においても、バーナ10の焼損を防止するために、冷却ガス通路904への冷却ガスの供給を行う必要があるので、炉内へ供給される燃料に対して過剰の量の冷却ガスが炉内へ放出され得る。ゆえに、炉内の温度が低下することによる炉内の加熱効率の低下及び供給される空気量の過多によるNOxの発生量の増大が生じ得る。
例えば、特許文献1に記載のバーナでは、主管の全長に亘ってその外周全周が副管で間隔を開けて取り囲まれており、主管内の第一流路に燃料が送られると共に、主管と副管の間の第二流路に空気等が送られ、開口している主管の先端と副管の先端から燃料と空気等が夫々吐出される。ゆえに、炉内へ空気等が放出されるため、上述した問題が生じ得る。
ここで、炉内への冷却ガスの放出を回避するために外管とバーナとの間の先端側の開口部を閉鎖することが考えられる。例えば、図1に示した従来の冷却装置90において、外管902とバーナ10との間の先端側の開口部920を閉鎖することが考えられる。その場合には、冷却ガス通路904へ供給された冷却ガスを排出する冷却ガス排出管が、外管902の炉壁30より炉外側に設けられ得る。外管902は、炉内の燃焼室20の雰囲気に晒されているため、バーナ10と比較して、高温となり得る。図1に示したように、外管902とバーナ10との間の先端側の開口部920が開放されている場合には、外管902とバーナ10とは互いに異なる熱膨張量でバーナ10の軸方向に膨張可能であり、かつ、先端側において、バーナ10の径方向について外管902及びバーナ10の変形は拘束されないので、バーナ10の軸方向及び径方向の熱応力の発生を抑制し得る。
一方、外管902とバーナ10との間の先端側の開口部920が閉鎖されている場合、バーナ10の軸方向について外管902及びバーナ10の変形は拘束される。また、先端側において、バーナ10の径方向について外管902及びバーナ10の変形は拘束される。ゆえに、外管902とバーナ10との間での温度差に起因してバーナ10の軸方向及び径方向の熱応力が生じる。それにより、冷却装置90又はバーナ10に破損が生じる場合がある。具体的には、外管902の先端部及び後端部のそれぞれとバーナ10との接続部等の応力が集中しやすい箇所に亀裂が生じる場合がある。
例えば、特許文献2に記載の技術では、外管とバーナとの間の先端側の開口部が閉鎖されているが、熱伸縮吸収装置により外管とバーナとが互いに異なる熱膨張量でバーナの軸方向に膨張可能となっているので、バーナの軸方向の熱応力の発生を抑制し得る。しかしながら、先端側において、バーナの径方向について外管及びバーナの変形は拘束されるので、外管とバーナとの間での温度差に起因してバーナの径方向に熱応力が生じる。ゆえに、径方向の熱応力によって外管とバーナとの接続部等に亀裂が発生する可能性がある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大を抑制しつつ、外管とバーナとの間での温度差に起因して生じる熱応力による破損の発生を防止することが可能な、新規かつ改良されたバーナを提供することにある。
上記課題を解決するために、本発明のある観点によれば、炉内へ向けて先端側から燃料ガスを噴射する管状のバーナにおいて、前記バーナの外周に設けられ、前記バーナと二重管構造を形成する外管と、前記外管と前記バーナの間に設けられた冷却ガスの通路と、前記外管の内周かつ前記バーナの外周に設けられ、前記冷却ガスの通路を先端側で連通される外周側の通路と内周側の通路とに区切る内管と、前記外管と前記バーナとの間の先端側の開口部を閉鎖する蓋部と、前記冷却ガスの通路と前記炉内とを連通し、前記バーナの周方向に沿って前記蓋部に設けられた環状のスリットと、を備え、前記蓋部は、前記外管の先端部と接合された外周側蓋部と、前記バーナの先端部と接合された内周側蓋部と、を有し、前記外周側蓋部と前記内周側蓋部とは前記スリットを介して離隔されている、バーナが提供される。
前記スリットは、先端側へ向かうにつれて拡径するテーパ形状を有してもよい。
以上説明したように本発明によれば、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大を抑制しつつ、外管とバーナとの間での温度差に起因して生じる熱応力による破損の発生を防止することが可能となる。
従来の冷却装置の概略構成の一例を示す模式図である。 バーナを用いた加熱炉の一例を示す模式図である。 本実施形態に係る冷却装置の概略構成の一例を示す模式図である。 同実施形態に係る冷却装置及びバーナの先端部の拡大図である。 変形例に係る冷却装置及びバーナの先端部の拡大図である。 比較例に係る応力解析の結果を示す模式図である。 実施例に係る応力解析の結果を示す模式図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<0.導入>
従来、炉内を加熱する手段として、バーナを用いた加熱炉が生産工程において広く用いられている。例えば、鉄鋼材料の圧延工程の前工程としての当該鉄鋼材料を加熱する工程において、バーナを用いた加熱炉が用いられている。図2は、バーナ10を用いた加熱炉1の一例を示す模式図である。図2に示した加熱炉1は、例えば、板厚600mmの厚板の鉄鋼材料を1200℃まで加熱する工程において用いられる。
加熱炉1は、加熱炉1の内部の燃焼室20を囲む上部炉壁30a及び下部炉壁30bと、鉄鋼材料M1を搬送する搬送装置40を備える。バーナ10は、加熱炉1内の燃焼室20へ向けて先端側から燃料ガスを噴射し、管形状を有する。なお、以下の説明において、管形状、管状又は環状というときには、円形の横断面を有する形状に限定されず、例えば、楕円又は多角形等の横断面を有する形状を含むものとする。
図2に示したように、バーナ10は、上部炉壁30a又は下部炉壁30bに貫通して先端側を燃焼室20へ向けて設けられる。バーナ10の後端側は、上部炉壁30a又は下部炉壁30bより炉外側に位置し、燃料ガスは、バーナ10の後端側からバーナ10へ供給される。供給された燃料ガスは、バーナ10の内周側に設けられた通路を通過してバーナ10の先端側から燃焼室20へ向けて噴射される。それにより、加熱炉1内が加熱される。例えば、鉄鋼材料M1を加熱する行程において、燃焼室20内へ投入された鉄鋼材料M1は、バーナ10によって加熱された状態で搬送装置40によって燃焼室20内で搬送された後に、燃焼室20から排出される。
バーナ10を用いた加熱炉1において、バーナ10の先端側は加熱炉1の燃焼室20側に位置し、高温環境下に晒されているので、焼損しやすい。ゆえに、バーナ10の焼損を防止するために、バーナ10を冷却する冷却装置が利用されている。以下、本明細書では、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大を抑制しつつ、外管とバーナとの間での温度差に起因して生じる熱応力による破損の発生を防止することが可能な本発明の実施形態に係る冷却装置50について説明する。
<1.冷却装置の構成>
まず、図3を参照して、本実施形態に係る冷却装置50の構成について説明する。図3は、本実施形態に係る冷却装置50の概略構成の一例を示す模式図である。図3は、図2を参照して説明した加熱炉1に、本実施形態に係る冷却装置50が適用された例を示す。本実施形態に係る冷却装置50は、バーナを用いた加熱炉であれば適用可能であり、一例として、図2を参照して説明した加熱炉1に適用され得る。
図3に示すように、バーナの冷却装置50は、管状のバーナ10の外周を覆うように設けられ、炉内の燃焼室20を囲む炉壁30に設けられた開口部302に貫通して設けられる。バーナ10は、内周側に燃料ガスが通過する燃料ガス通路102を有し、燃料ガス通路102を通過した燃料ガスを炉内へ向けて先端側から噴射する。冷却装置50は、外管502と、冷却ガス通路504と、蓋部506と、内管508と、冷却ガス流入管510と、冷却ガス排出管512と、を備える。
外管502は、管状のバーナ10の外周に設けられ、バーナ10と二重管構造を形成する。外管502は炉壁30の開口部302に貫通した上で、例えば溶接により炉壁30に接合される。外管502の炉壁30より先端側は炉内の燃焼室20内に位置し、炉内の雰囲気に晒されている。また、外管502の先端部は、蓋部506の外周側の後端部と例えば溶接により接合されており、外管502の後端部は、炉壁30より炉外側において内管508と例えば溶接により接合されている。なお、外管502の後端部と内管508とは直接接合されてもよく、他の部材を介して接合されてもよい。
冷却ガス通路504は、外管502とバーナ10の間に設けられ、冷却ガス通路504内を冷却ガスが通過する。冷却ガス通路504に供給される冷却ガスとして、例えば、空気又は窒素等が適用され得る。冷却ガス通路504は、外管502の内周かつバーナ10の外周に設けられる内管508によって、外周側の通路504aと内周側の通路504bとに区切られる。外周側の通路504aと内周側の通路504bとは先端側で内管508の先端部と蓋部506との間の空間を介して連通される。内管508の後端部は、炉壁30より炉外側においてバーナ10と例えば溶接により接合されている。なお、内管508の後端部とバーナ10とは直接接合されてもよく、他の部材を介して接合されてもよい。
蓋部506は、外管502とバーナ10との間の先端側の開口部を閉鎖する。蓋部506の外周側の後端部は外管502の先端部と例えば溶接により接合されており、蓋部506の内周側の後端部はバーナ10の先端部と例えば溶接により接合されている。蓋部506には、冷却ガス通路504と炉内とを連通し、バーナ10の周方向に沿った環状のスリット506aが設けられる。
本実施形態では、外管502とバーナ10との間の先端側の開口部を蓋部506により閉鎖することによって、外管502とバーナ10との間の先端側の開口部が開放されている場合と比較して、炉内へ放出される冷却ガスの量を低減することができる。それにより、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大を抑制することが可能である。
冷却ガス流入管510は、炉壁30より炉外側において外管502と接続されており、冷却ガス排出管512は、炉壁30より炉外側において内管508と接続されている。冷却ガスは、冷却ガス流入管510から冷却ガス通路504の外周側の通路504aへ供給され、外周側の通路504aを通過した後に、内周側の通路504bへ送られる。そして、内周側の通路504bを通過した冷却ガスは、冷却ガス排出管512へ排出される。
冷却装置50は、外管502の内周かつバーナ10の外周に設けられ、冷却ガス通路504を外周側の通路504aと内周側の通路504bとに区切る内管508を備え、外周側の通路504aと内周側の通路504bは先端側で連通される。それにより、冷却ガスが、外管502と隣接する外周側の通路504aを、内周側の通路504bより先に、通過することができる。ゆえに、炉内の雰囲気や、高温の炉内耐火物からの入熱に晒されており、バーナ10と比較して高温となり得る外管502を効果的に冷却することができる。
<2.冷却装置及びバーナの熱膨張による変形>
続いて、図4を参照して、本実施形態に係る冷却装置50及びバーナ10の熱膨張による変形について説明する。
図4は、図3に示した本実施形態に係る冷却装置50及びバーナ10の先端部の拡大図である。図4における左側の図は、炉内が加熱される前における冷却装置50及びバーナ10の先端部を示す。図4における右側の図は、炉内が高温に加熱された後における冷却装置50及びバーナ10の先端部を示す。
バーナ10の外周に位置する外管502及び蓋部506の一部は、炉内の雰囲気や、高温の炉内耐火物からの入熱に晒されているため、炉内が高温に加熱された後において、バーナ10と比較して、高温となり得る。本実施形態では、蓋部506のうちスリット506aより外周側の外周側蓋部506bと外管502の先端部とは接合されており、蓋部506のうちスリット506aより内周側の内周側蓋部506cとバーナ10の先端部とは接合されている。一方、外周側蓋部506bと内周側蓋部506cとはスリット506aを介して離隔されている。
ゆえに、外管502及び外周側蓋部506bとバーナ10及び内周側蓋部506cは、互いに異なる熱膨張量で、バーナ10の軸方向に膨張することができる。また、外管502の先端側及び外周側蓋部506bとバーナ10の先端側及び内周側蓋部506cは、互いに異なる熱膨張率で、バーナ10の径方向に膨張することができる。よって、図4に示したように、外管502の先端側及び外周側蓋部506bは、バーナ10の軸方向及び径方向について、バーナ10の先端側及び内周側蓋部506cにより変形を拘束されることなく、炉内の加熱に伴って、変形することができる。それにより、外管502とバーナ10との間での温度差に起因するバーナ10の軸方向及び径方向の熱応力の発生を抑制することができる。従って、外管502とバーナ10との間での温度差に起因して生じる熱応力による破損の発生を防止することが可能である。
<3.変形例>
続いて、図5を参照して、変形例に係る冷却装置及びバーナ10の熱膨張による変形について説明する。
図5は、変形例に係る冷却装置及びバーナ10の先端部の拡大図である。図5における左側の図は、炉内が加熱される前における冷却装置及びバーナ10の先端部を示す。図5における右側の図は、炉内が高温に加熱された後における冷却装置及びバーナ10の先端部を示す。
変形例に係る冷却装置では、図3を参照して説明した冷却装置50と比較して、蓋部に設けられるスリットの形状が異なる。図5に示したように、変形例に係る蓋部606に設けられるスリット606aは、先端側へ向かうにつれて拡径するテーパ形状を有する。変形例では、図4を参照して説明した本実施形態に係る冷却装置50及びバーナ10の先端部と同様に、蓋部606のうちスリット606aより外周側の外周側蓋部606bと外管502の先端部とは接合されている。また、蓋部606のうちスリット606aより内周側の内周側蓋部606cとバーナ10の先端部とは接合されている。また、外周側蓋部606bと内周側蓋部606cとはスリット606aを介して離隔されている。ゆえに、蓋部606にスリット606aを設けることによって、外管502及びバーナ10の変形が拘束されることを抑制することができる。
ここで、炉内が加熱された後において、外管502及び蓋部606の一部が、バーナ10と比較して、高温となり得るので、外管502及び外周側蓋部606bのバーナ10の軸方向の熱膨張量は、バーナ10及び内周側蓋部606cと比較して、大きい。また、外管502の先端側及び外周側蓋部606bのバーナ10の径方向の熱膨張率は、バーナ10の先端側及び内周側蓋部606cと比較して、大きい。よって、図5に示したように、バーナ10の軸方向について、外周側蓋部606bは、内周側蓋部606cに対して相対的に先端方向へ、炉内の加熱に伴って移動する。また、図5に示したように、バーナ10の径方向について、外周側蓋部606bは、内周側蓋部606cから相対的に遠ざかる方向へ、炉内の加熱に伴って移動する。
ここで、変形例に係るスリット606aは、先端側へ向かうにつれて拡径するテーパ形状を有する。当該テーパ形状は、炉内の加熱に伴う冷却装置及びバーナ10の膨張過程における、外周側蓋部606bの内周側蓋部606cに対する相対的な移動方向に沿って形成される。それにより、外周側蓋部606bは、炉内の加熱に伴って、内周側蓋部606cに対して相対的にスリット606aのテーパ方向に沿って移動する。ゆえに、炉内の加熱に伴う冷却装置及びバーナ10の膨張の前後において、外周側蓋部606bのスリット606aに隣接する面と内周側蓋部606cのスリット606aに隣接する面との間隔が略一定に維持される。それにより、炉内の加熱に伴う冷却装置及びバーナ10の膨張によりスリット606aの隙間が増大することを抑制することができる。ゆえに、変形例では、炉内へ放出される冷却ガスの量をより低減することができる。よって、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大をより効果的に抑制することが可能である。
本発明の効果を確認するために、炉内が高温に加熱された後において冷却装置及びバーナに生じる熱応力についての応力解析を行った。当該応力解析では、炉内が高温に加熱された後における冷却装置及びバーナの温度分布に基づいて、冷却装置及びバーナに生じるミーゼス応力が計算される。当該応力解析において用いられる冷却装置及びバーナの温度分布は、例えば、実際に炉内を加熱した後に、冷却装置及びバーナの各部分の温度を測定することによって求められる。なお、当該応力解析において用いられる冷却装置及びバーナの温度分布は、冷却装置及びバーナのそれぞれの材料及び形状等の諸条件に基づく温度分布解析によって求められてもよい。
比較例として、上述した本実施形態と異なり、スリットを有しない蓋部によって外管とバーナとの間の先端側の開口部が閉鎖される例について、炉内が加熱された後において冷却装置及びバーナに生じる熱応力についての応力解析を行った。
また、実施例として、上述した本実施形態と同様に、冷却ガス通路と炉内とを連通し、バーナの周方向に沿った環状のスリットを有する蓋部によって外管とバーナとの間の先端側の開口部が閉鎖される例について、炉内が加熱された後において冷却装置及びバーナに生じる熱応力についての応力解析を行った。
比較例及び実施例ともに、応力解析において、炉内の雰囲気の温度の設定値を1350℃とし、冷却ガス通路へ供給される冷却ガスの温度の設定値を30℃とし、冷却装置及びバーナの材質はオーステナイト系ステンレスに設定した。
結果を図6及び図7に示す。図6は、比較例に係る応力解析の結果を示す模式図である。図7は、実施例に係る応力解析の結果を示す模式図である。図6及び図7では、冷却装置及びバーナの先端側についての応力解析により得られたミーゼス応力の分布が等高線で示されている。図6及び図7において等高線により区画された各領域に付された模様の異同は、各領域における応力の異同を示す。なお、図6では、比較例について、外管に相当する部分702、バーナに相当する部分710、冷却ガス通路に相当する部分704及び蓋部に相当する部分706が示されている。また、図7では、実施例について、外管に相当する部分802、バーナに相当する部分810、冷却ガス通路に相当する部分804、蓋部に相当する部分806及びスリットに相当する部分806aが示されている。
比較例では、図6に示す応力が集中しやすい領域A10において生じ得るミーゼス応力の値は略500MPaであった。ゆえに、比較例では、領域A10において、オーステナイト系ステンレスの0.2%耐力より高い熱応力が生じ得ることが予測される。一方、実施例では、解析対象の領域全体において、バーナ10及び冷却装置50に生じ得るミーゼス応力の値は略50MPa以下であった。ゆえに、実施例では、解析対象の領域全体において生じ得る熱応力は、オーステナイト系ステンレスの0.2%耐力より低くなり得ることが予測される。また、実施例では、図6に示した領域A10に対応する図7に示す領域A20における応力集中を防止し得ることが予測される。当該結果から、本発明により、外管とバーナとの間での温度差に起因して生じる熱応力による破損の発生を防止することができることが確認できた。
<4.まとめ>
以上説明したように、本実施形態によれば、蓋部506は、外管502とバーナ10との間の先端側の開口部を閉鎖する。ゆえに、外管502とバーナ10との間の先端側の開口部が開放されている場合と比較して、炉内へ放出される冷却ガスの量を低減することができる。それにより、炉内への冷却ガスの放出による炉内の加熱効率の低下及びNOxの発生量の増大を抑制することが可能である。
また、本実施形態では、蓋部506に、冷却ガス通路504と炉内とを連通し、バーナ10の周方向に沿った環状のスリット506aが設けられる。それにより、外管502及びバーナ10の変形が拘束されることを抑制することができる。ゆえに、外管502とバーナ10との間での温度差に起因するバーナ10の軸方向及び径方向の熱応力の発生を抑制することができる。従って、外管502とバーナ10との間での温度差に起因して生じる熱応力による破損の発生を防止することが可能である。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は係る例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は応用例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
1 加熱炉
10 バーナ
20 燃焼室
30 炉壁
30a 上部炉壁
30b 下部炉壁
40 搬送装置
50、90 冷却装置
102 燃料ガス通路
502、802、902 外管
504、804、904 冷却ガス通路
504a 通路
504b 通路
506、606、806 蓋部
506a、606a スリット
506b、606b 外周側蓋部
506c、606c 内周側蓋部
508 内管
510、910 冷却ガス流入管
512 冷却ガス排出管

Claims (2)

  1. 炉内へ向けて先端側から燃料ガスを噴射する管状のバーナにおいて、
    前記バーナの外周に設けられ、前記バーナと二重管構造を形成する外管と、
    前記外管と前記バーナの間に設けられた冷却ガスの通路と、
    前記外管の内周かつ前記バーナの外周に設けられ、前記冷却ガスの通路を先端側で連通される外周側の通路と内周側の通路とに区切る内管と、
    前記外管と前記バーナとの間の先端側の開口部を閉鎖する蓋部と、
    前記冷却ガスの通路と前記炉内とを連通し、前記バーナの周方向に沿って前記蓋部に設けられた環状のスリットと、
    を備え
    前記蓋部は、
    前記外管の先端部と接合された外周側蓋部と、
    前記バーナの先端部と接合された内周側蓋部と、
    を有し、
    前記外周側蓋部と前記内周側蓋部とは前記スリットを介して離隔されている、
    バーナ。
  2. 前記スリットは、先端側へ向かうにつれて拡径するテーパ形状を有する、請求項1に記載のバーナ。
JP2015187968A 2015-09-25 2015-09-25 バーナ Active JP6565539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187968A JP6565539B2 (ja) 2015-09-25 2015-09-25 バーナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187968A JP6565539B2 (ja) 2015-09-25 2015-09-25 バーナ

Publications (2)

Publication Number Publication Date
JP2017062085A JP2017062085A (ja) 2017-03-30
JP6565539B2 true JP6565539B2 (ja) 2019-08-28

Family

ID=58429542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187968A Active JP6565539B2 (ja) 2015-09-25 2015-09-25 バーナ

Country Status (1)

Country Link
JP (1) JP6565539B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695213B2 (ja) * 2016-05-19 2020-05-20 日本製鉄株式会社 バーナおよびバーナの冷却方法
KR101930009B1 (ko) * 2016-11-30 2018-12-17 주식회사 컴버스텍 고온 가압 환경용 버너
CN108167828B (zh) * 2017-12-07 2019-06-18 中国科学院广州能源研究所 一种主动冷却型工业燃气燃烧器
CN113932613A (zh) * 2021-10-29 2022-01-14 咸宁南玻玻璃有限公司 一种窑炉喷嘴砖与窑炉喷嘴的连接结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199017A (ja) * 1984-10-19 1986-05-17 Tokyo Gas Co Ltd 自己排熱回収型バ−ナ先端部の温度抑制方法
JP2001182915A (ja) * 1999-12-28 2001-07-06 Rozai Kogyo Kaisha Ltd 蓄熱式バーナ燃料ノズル管の冷却装置
JP3503933B2 (ja) * 2000-03-23 2004-03-08 西部瓦斯株式会社 熱交換器付き高速燃焼バーナ
JP3970139B2 (ja) * 2002-09-10 2007-09-05 三菱重工業株式会社 燃焼器

Also Published As

Publication number Publication date
JP2017062085A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6565539B2 (ja) バーナ
US8181440B2 (en) Arrangement of a semiconductor-type igniter plug in a gas turbine engine combustion chamber
US9423135B2 (en) Combustor having mixing tube bundle with baffle arrangement for directing fuel
RU2707355C2 (ru) Прокладочное кольцо камеры сгорания с регулируемым пропусканием воздуха
RU2696158C2 (ru) Теплоизолированная топливная форсунка для газотурбинного двигателя
CN107110494B (zh) 燃烧系统
US20120227373A1 (en) Combustion chamber having a ventilated spark plug
JP2009222062A (ja) 燃焼ライナ用の断熱ブッシュ
TWI429855B (zh) 燃燒裝置及加熱爐
RU2686246C2 (ru) Камера сгорания газовой турбины с охлаждением жаровой трубы, оптимизированным в отношении падения давления
US20190353351A1 (en) Assembly for a turbomachine combustion chamber
JP5794419B2 (ja) 固体燃料バーナ
JP6387551B2 (ja) ガスタービンエンジン
EP2532836A2 (en) Combustion liner and transistion piece
KR101636387B1 (ko) 펠렛 연소용 보일러
JP6809920B2 (ja) ガスタービンエンジンの点火プラグ支持構造
JP6173178B2 (ja) シングルエンド型ラジアントチューブバーナ
PH12020500558A1 (en) Solid fuel burner and flame stabilizer for solid fuel burner
JP2007218487A (ja) ガスタービン燃焼器
US20110183278A1 (en) Combustion Tool Comprising a Quarl Block and an Injector, Assembly of Said Tool and Furnace Equipped with Said Tool
WO2011031340A3 (en) Heat shield for fuel feed conduits of a gas turbine engine
KR101765885B1 (ko) 산소 버너
JP2008209112A (ja) 放射加熱装置
JP2007205355A (ja) 燃料噴射器
KR200483138Y1 (ko) 분할형 라운드바 타입 보일러 튜브 판넬의 구조

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151