JP6565184B2 - Honeycomb type monolith catalyst and method for producing the same - Google Patents

Honeycomb type monolith catalyst and method for producing the same Download PDF

Info

Publication number
JP6565184B2
JP6565184B2 JP2014263733A JP2014263733A JP6565184B2 JP 6565184 B2 JP6565184 B2 JP 6565184B2 JP 2014263733 A JP2014263733 A JP 2014263733A JP 2014263733 A JP2014263733 A JP 2014263733A JP 6565184 B2 JP6565184 B2 JP 6565184B2
Authority
JP
Japan
Prior art keywords
catalyst
cell
carrier
cell passage
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014263733A
Other languages
Japanese (ja)
Other versions
JP2016123890A (en
Inventor
由子 水野
由子 水野
保明 山口
保明 山口
芳彰 田中
芳彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014263733A priority Critical patent/JP6565184B2/en
Publication of JP2016123890A publication Critical patent/JP2016123890A/en
Application granted granted Critical
Publication of JP6565184B2 publication Critical patent/JP6565184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔質材料からなる担体を用いた排気浄化用のハニカム型モノリス触媒およびその製造方法に関する。   The present invention relates to a honeycomb monolith catalyst for exhaust purification using a carrier made of a porous material and a method for producing the same.

特許文献1には、内燃機関の排気通路に介装されるハニカム型モノリス触媒が開示されている。上記触媒は、軸方向に貫通した複数のセル通路を備えており、各セル通路の表面には、一定の厚さを有した触媒層が、軸方向に沿って連続的に形成されている。   Patent Document 1 discloses a honeycomb monolith catalyst interposed in an exhaust passage of an internal combustion engine. The catalyst includes a plurality of cell passages penetrating in the axial direction, and a catalyst layer having a certain thickness is continuously formed along the axial direction on the surface of each cell passage.

特開2005−180197号公報JP 2005-180197 A

セル通路のセル壁の上流側の端面には、排気通路の上流側から運ばれてきた排気ガス中のリン等の粒子が堆積し経時的に増加する。そして、この端面における粒子の堆積量が多くなると、セル通路の入口を徐々に覆い、最終的にはセル通路の入口を閉塞させてしまうという問題がある。   Particles such as phosphorus in the exhaust gas carried from the upstream side of the exhaust passage accumulate on the end face on the upstream side of the cell wall of the cell passage and increase with time. Then, when the amount of accumulated particles on the end face increases, there is a problem that the inlet of the cell passage is gradually covered and finally the inlet of the cell passage is closed.

本発明は、軸方向に貫通する複数のセル通路を有する多孔質材料からなる担体を用いた排気浄化用のハニカム型モノリス触媒に関し、触媒金属を含む触媒スラリが浸透している上記担体の気孔率が、各セル通路の中間部よりも該セル通路の入口側の方が大きくなるように構成されており、上記複数のセル通路の各々のセル壁の表面には、触媒層が形成されており、各セル通路の入口側の触媒層の厚さが、該セル通路の中間部の触媒層の厚さよりも薄い。 The present invention relates to a honeycomb monolith catalyst for exhaust purification using a support made of a porous material having a plurality of cell passages penetrating in the axial direction, and the porosity of the support in which a catalyst slurry containing a catalyst metal is permeated However, the inlet side of the cell passage is configured to be larger than the middle portion of each cell passage , and a catalyst layer is formed on the surface of each cell wall of the plurality of cell passages. The thickness of the catalyst layer on the inlet side of each cell passage is thinner than the thickness of the catalyst layer in the middle portion of the cell passage.

従って、セル通路のセル壁の上流側端面の実質的な幅が細くなり、粒子の堆積が抑制される一方で、セル通路の入口が拡大される。   Accordingly, the substantial width of the upstream end face of the cell wall of the cell passage is narrowed, and particle deposition is suppressed, while the entrance of the cell passage is enlarged.

本発明によれば、排気通路の上流側から運ばれてきた排気ガス中のリン等の粒子のセル壁上流側端面への堆積量を減少するとともに、上記粒子の堆積によるセル通路の入口の閉塞を生じにくくすることができる。   According to the present invention, the amount of accumulation of particles such as phosphorus in the exhaust gas carried from the upstream side of the exhaust passage on the end surface on the upstream side of the cell wall is reduced, and the entrance of the cell passage is blocked by the accumulation of the particles. Can be made difficult to occur.

本発明に係るハニカム型モノリス触媒の一例を示す斜視図である。It is a perspective view which shows an example of the honeycomb type | mold monolith catalyst which concerns on this invention. 図1の触媒の1つのセル通路を排気ガス流れ方向から見た説明図である。It is explanatory drawing which looked at one cell channel | path of the catalyst of FIG. 1 from the exhaust gas flow direction. 本発明の第1の実施例におけるセル通路の断面図である。It is sectional drawing of the cell channel | path in the 1st Example of this invention. 触媒金属の粒径の大きさと触媒金属層の厚さとの関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the particle size of a catalyst metal, and the thickness of a catalyst metal layer. セル間距離とセル通路の入口が閉塞されるまでの時間との関係を示すグラフである。It is a graph which shows the relationship between the time until the distance between cells and the entrance of a cell channel | path are obstruct | occluded. 図3の実施例の触媒の製造方法を示す工程説明図である。It is process explanatory drawing which shows the manufacturing method of the catalyst of the Example of FIG. 本発明の第2の実施例を示す図3と同様の断面図である。It is sectional drawing similar to FIG. 3 which shows the 2nd Example of this invention. 本発明の第3の実施例を示す図3と同様の断面図である。It is sectional drawing similar to FIG. 3 which shows the 3rd Example of this invention. 担体の気孔率の大きさと触媒金属層の厚さとの関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the porosity of a support | carrier, and the thickness of a catalyst metal layer. 本発明の第4の実施例を示す図3と同様の断面図である。It is sectional drawing similar to FIG. 3 which shows the 4th Example of this invention.

図1は、本発明に係るモノリス触媒の一例を示している。触媒1は、多孔質セラミックスで形成された円柱状の担体2を備えている。担体2は、軸方向に貫通する複数のセル通路3を備えており、全体としてハニカム状に形成されている。セル通路3は、図2に示すように、薄いセル壁4によって断面矩形状に囲まれており、該セル壁4の表面4aには、触媒金属を適宜分散した触媒スラリで一様にコーティングすることにより、上流側入口部を除き一定の厚さを有した触媒金属層5が形成されている。このように構成された触媒1は、触媒コンバータの耐熱容器内で保持され、例えば三元触媒としてガソリン機関の排気通路に介装される。   FIG. 1 shows an example of a monolith catalyst according to the present invention. The catalyst 1 includes a columnar carrier 2 made of porous ceramics. The carrier 2 includes a plurality of cell passages 3 penetrating in the axial direction, and is formed in a honeycomb shape as a whole. As shown in FIG. 2, the cell passage 3 is surrounded by a thin cell wall 4 in a rectangular shape, and the surface 4a of the cell wall 4 is uniformly coated with a catalyst slurry appropriately dispersed with a catalyst metal. Thus, the catalytic metal layer 5 having a constant thickness is formed except for the upstream side inlet portion. The catalyst 1 configured as described above is held in a heat-resistant container of a catalytic converter, and is inserted, for example, in the exhaust passage of a gasoline engine as a three-way catalyst.

図3は、本発明の第1の実施例における触媒1の1つのセル通路3の上流側部分を示す、軸方向に沿った断面図である。ここで、図の左側が、上記セル通路3の上流側に対応しており、図の矢印6で示すように、排気通路の上流側からの排気が、セル通路3の入口へと流れる。セル壁4の表面4aには、セル壁4の上流側端面4bから軸方向に沿って第1の所定の長さL1までは、第1の触媒金属層7が形成されており、ここから下流側端面4cまで(軸方向に沿ったセル通路3の残部となる第2の所定の長さL2)は、第2の触媒金属層8が形成されている。第1の触媒金属層7および第2の触媒金属層8は、同じ触媒金属からなり、触媒スラリのコーティングにより形成される層7,8の一部がセル壁4の細孔へと浸透している。ここで、第1の触媒金属層7となる触媒スラリは、第2の触媒金属層8よりもセル壁4の内部へと浸透し易いものとなっている。従って、各々のスラリの乾燥後の最終的な状態では、第1の触媒金属層7のセル壁4の表面4aからの厚さT1が、第2の触媒金属層8の表面4aからの厚さT2よりも薄く形成されている。   FIG. 3 is a cross-sectional view along the axial direction showing an upstream portion of one cell passage 3 of the catalyst 1 in the first embodiment of the present invention. Here, the left side of the figure corresponds to the upstream side of the cell passage 3, and the exhaust from the upstream side of the exhaust passage flows to the inlet of the cell passage 3 as indicated by the arrow 6 in the figure. A first catalytic metal layer 7 is formed on the surface 4a of the cell wall 4 from the upstream side end face 4b of the cell wall 4 to the first predetermined length L1 along the axial direction, from which the first catalytic metal layer 7 is formed downstream. A second catalytic metal layer 8 is formed up to the side end face 4c (second predetermined length L2 which is the remaining portion of the cell passage 3 along the axial direction). The first catalyst metal layer 7 and the second catalyst metal layer 8 are made of the same catalyst metal, and a part of the layers 7 and 8 formed by the coating of the catalyst slurry penetrates into the pores of the cell wall 4. Yes. Here, the catalyst slurry that becomes the first catalyst metal layer 7 is more easily penetrated into the cell wall 4 than the second catalyst metal layer 8. Therefore, in the final state after drying of each slurry, the thickness T1 from the surface 4a of the cell wall 4 of the first catalytic metal layer 7 is the thickness from the surface 4a of the second catalytic metal layer 8. It is formed thinner than T2.

次に、図4のグラフを参照して、多孔質セラミックスからなる担体2の気孔率を一定とした場合の触媒金属の粒径の大きさと触媒金属層の厚さとの関係を説明する。ここで、担体2の気孔率とは、セル壁4の体積に対するセル壁4の細孔の空間の割合を示すものである。図示するように、触媒金属の粒径が小さいほど、セル壁4の表面4aからの触媒金属層の厚さは薄くなる。これは、セル壁4の表面4aに触媒スラリをコーティングしたときに、相対的に小さい粒径を有した触媒金属の方が、相対的に大きい粒径を有した触媒金属よりもセル壁4の細孔に浸透し易いためである。   Next, the relationship between the catalyst metal particle size and the thickness of the catalyst metal layer when the porosity of the carrier 2 made of porous ceramics is constant will be described with reference to the graph of FIG. Here, the porosity of the carrier 2 indicates the ratio of the space of the pores of the cell wall 4 to the volume of the cell wall 4. As shown in the drawing, the smaller the particle size of the catalyst metal, the thinner the thickness of the catalyst metal layer from the surface 4a of the cell wall 4 is. This is because when the catalyst slurry is coated on the surface 4 a of the cell wall 4, the catalyst metal having a relatively small particle size is larger in the cell wall 4 than the catalyst metal having a relatively large particle size. This is because it easily penetrates into the pores.

このような触媒金属の粒径の大きさと触媒金属層の厚さとの関係に基づいて、第1の触媒金属層7の触媒金属の粒径を相対的に小さくするともに、第2の触媒金属層8の触媒金属の粒径を相対的に大きくすることにより、図3に示すように、セル通路3の入口側の相対的に薄い第1の触媒金属層7と、セル通路3の残部の相対的に厚い第2の触媒金属層8とが形成されている。   Based on the relationship between the size of the particle size of the catalyst metal and the thickness of the catalyst metal layer, the particle size of the catalyst metal of the first catalyst metal layer 7 is made relatively small, and the second catalyst metal layer. By making the particle size of the catalyst metal 8 relatively large, as shown in FIG. 3, the relatively thin first catalyst metal layer 7 on the inlet side of the cell passage 3 and the remaining portion of the cell passage 3 A thick second catalytic metal layer 8 is formed.

セル通路3の入口側の第1の触媒金属層7が、セル通路3の残部の第2の触媒金属層8よりも薄く形成されているので、結果として、セル壁4の上流側端面4bの実質的な幅W1が細くなり、触媒金属層7,8の内側に構成される実質的なセル通路3の入口側のセル間距離D1がセル通路3の残部のセル間距離D2よりも拡大される。従って、排気通路の上流側から運ばれてきた排気ガス中のリン等の粒子の上記上流側端面4bへの堆積量が減少するとともに、端面4bにおける粒子の堆積の増加に伴うセル通路3の入口の閉塞を生じにくくすることができる。   Since the first catalytic metal layer 7 on the inlet side of the cell passage 3 is formed thinner than the second catalytic metal layer 8 on the remaining portion of the cell passage 3, as a result, the upstream end face 4b of the cell wall 4 The substantial width W1 is narrowed, and the inter-cell distance D1 on the inlet side of the substantial cell passage 3 configured inside the catalytic metal layers 7 and 8 is larger than the inter-cell distance D2 in the remaining portion of the cell passage 3. The Accordingly, the amount of particles such as phosphorus in the exhaust gas carried from the upstream side of the exhaust passage is reduced on the upstream end surface 4b, and the inlet of the cell passage 3 with the increase in particle deposition on the end surface 4b. It is possible to make it difficult to cause occlusion.

図5には、セル間距離とセル通路3の入口が閉塞されるまでの時間との関係が示されている。図示するように、セル間距離が長いほど、セル通路3の入口がリン等の粒子により閉塞されるまでの時間が長くなる。   FIG. 5 shows the relationship between the inter-cell distance and the time until the entrance of the cell passage 3 is closed. As shown in the figure, the longer the distance between the cells, the longer the time until the entrance of the cell passage 3 is blocked by particles such as phosphorus.

次に、図6を参照して、図3の実施例の触媒1の製造方法を説明する。まず、工程(a)において、担体2を焼成する。このとき、担体2は、気孔率が上流側端面4bから下流側端面4cまで全体的に一定になるように焼成される。次に、工程(b)において、セル壁4の上流側端面4bが下側となる向きで、焼成後の担体2の下端部のみを、相対的に小さい粒径を有した触媒金属を含む第1の触媒スラリ9に浸漬する。つまり、セル壁4の表面4aに、上流側端面4bから上記第1の所定の長さL1(図3)だけ第1の触媒スラリ9によってコーティングを行う。次に、工程(c)において、セル壁4の表面4aにコーティングされた第1の触媒スラリ9を乾燥する。これにより、セル通路3の入口側におけるセル壁4の表面4aに、相対的に薄い第1の触媒金属層7が形成される。次に、工程(d)において、担体2を工程(a)の向きから反転させてセル壁4の下流側端面4cが下側となる向きとし、相対的に大きい粒径を有した触媒金属を含む第2の触媒スラリ10に長さL2の範囲で浸漬する。これにより、セル壁4の表面4aは、下流側端面4cから上記第2の所定の長さL2だけ第2の触媒スラリ10によってコーティングされる。そして、工程(e)において、セル壁4の残りの表面4aにコーティングされた第2の触媒スラリ10を乾燥する。これにより、セル通路3の入口部を除く残りの表面4aに、相対的に厚い第2の触媒金属層8が形成される。なお、触媒金属の粒径の大きさは、触媒金属を複数の金属製ボールと一緒に撹拌して粉砕処理を施すことにより調整される。なお、図3に示すように、第1の触媒金属層7および第2の触媒金属層8が、境界面で僅かに重なるようにすることが望ましい。   Next, with reference to FIG. 6, the manufacturing method of the catalyst 1 of the Example of FIG. 3 is demonstrated. First, in the step (a), the carrier 2 is fired. At this time, the carrier 2 is baked so that the porosity is generally constant from the upstream end face 4b to the downstream end face 4c. Next, in the step (b), only the lower end portion of the calcined carrier 2 containing the catalyst metal having a relatively small particle diameter is oriented in such a direction that the upstream end face 4b of the cell wall 4 is on the lower side. 1 is immersed in the catalyst slurry 9. That is, the surface 4a of the cell wall 4 is coated with the first catalyst slurry 9 for the first predetermined length L1 (FIG. 3) from the upstream end face 4b. Next, in the step (c), the first catalyst slurry 9 coated on the surface 4a of the cell wall 4 is dried. Thereby, a relatively thin first catalytic metal layer 7 is formed on the surface 4 a of the cell wall 4 on the inlet side of the cell passage 3. Next, in the step (d), the support 2 is reversed from the direction of the step (a) so that the downstream end surface 4c of the cell wall 4 faces downward, and a catalyst metal having a relatively large particle size is obtained. It immerses in the 2nd catalyst slurry 10 to be contained in the range of length L2. Thus, the surface 4a of the cell wall 4 is coated with the second catalyst slurry 10 from the downstream end face 4c by the second predetermined length L2. Then, in the step (e), the second catalyst slurry 10 coated on the remaining surface 4a of the cell wall 4 is dried. As a result, a relatively thick second catalytic metal layer 8 is formed on the remaining surface 4 a excluding the inlet of the cell passage 3. The particle size of the catalyst metal is adjusted by stirring the catalyst metal together with a plurality of metal balls and performing pulverization. In addition, as shown in FIG. 3, it is desirable that the first catalytic metal layer 7 and the second catalytic metal layer 8 are slightly overlapped at the boundary surface.

図7は、本発明の第2の実施例における触媒1の1つのセル通路3の上流側部分を示す、軸方向に沿った断面図である。図3の実施例とは異なり、図7のセル壁4の内側には、触媒金属が殆ど浸透していない。上記セル壁4の表面4aには、セル通路3の入口側部分には相対的に薄い第1の触媒金属層7が形成され、セル通路3の中間部を含む残部には相対的に厚い第2の触媒金属層8が形成されている。この実施例では、第1の触媒金属層7は、乾燥した状態で層7の嵩密度が高くなり、かつ厚さが相対的に薄くなる触媒スラリを用いて形成されている。一方、第2の触媒金属層8は、乾燥した状態で層8の嵩密度が低くなり、かつ厚さが相対的に厚くなる触媒スラリを用いて形成されている。   FIG. 7 is a cross-sectional view along the axial direction showing an upstream portion of one cell passage 3 of the catalyst 1 in the second embodiment of the present invention. Unlike the embodiment of FIG. 3, the catalyst metal hardly penetrates inside the cell wall 4 of FIG. On the surface 4 a of the cell wall 4, a relatively thin first catalytic metal layer 7 is formed on the inlet side portion of the cell passage 3, and a relatively thick first portion is formed on the remaining part including the middle portion of the cell passage 3. Two catalytic metal layers 8 are formed. In this embodiment, the first catalytic metal layer 7 is formed using a catalyst slurry in which the bulk density of the layer 7 becomes high and the thickness becomes relatively thin in a dry state. On the other hand, the second catalytic metal layer 8 is formed using a catalyst slurry in which the bulk density of the layer 8 is low and the thickness is relatively thick in a dry state.

図8は、本発明の第3の実施例における触媒1の1つのセル通路3の上流側部分を示す、軸方向に沿った断面図である。図8のセル壁4の表面4aには、単一の触媒金属層11が、セル壁4の上流側端面4bから下流側端面4cまで連続的に形成されている。この実施例では、多孔質セラミックスからなる担体2の気孔率を部分的に異ならせることで、セル通路3の入口側の薄肉部11aと、セル通路3の残部の厚肉部11bと、が形成されている。   FIG. 8 is a cross-sectional view along the axial direction showing an upstream portion of one cell passage 3 of the catalyst 1 in the third embodiment of the present invention. A single catalytic metal layer 11 is continuously formed on the surface 4 a of the cell wall 4 in FIG. 8 from the upstream end face 4 b to the downstream end face 4 c of the cell wall 4. In this embodiment, by partially varying the porosity of the carrier 2 made of porous ceramic, a thin portion 11a on the inlet side of the cell passage 3 and a thick portion 11b of the remaining portion of the cell passage 3 are formed. Has been.

具体的には、図8の触媒1では、図6の工程(a)において、担体2の焼成時間を第1の所定の長さL1の部分と第2の所定の長さL2の部分とで変えることにより、担体2の気孔率を、第1の所定の長さL1の部分で相対的に大きくするとともに、第2の所定の長さL2の部分で相対的に小さくしてある。このように構成された担体2を、所定の大きさの粒径を有した触媒金属を含む触媒スラリに、セル壁4の上流側端面4bから下流側端面4cまで全体的に浸漬することにより、触媒スラリが、気孔率の大きい担体2の長さL1の部分ではより浸透し易くなる。従って、上記のような厚さの異なる薄肉部11aと厚肉部11bとが形成される。なお、担体2の気孔率の大きさは、該担体2の材料の配合を変えることによっても調整することができる。   Specifically, in the catalyst 1 of FIG. 8, in the step (a) of FIG. 6, the calcination time of the carrier 2 is changed between the first predetermined length L1 portion and the second predetermined length L2 portion. By changing the ratio, the porosity of the carrier 2 is relatively increased at the first predetermined length L1 and relatively decreased at the second predetermined length L2. By immersing the carrier 2 thus configured in a catalyst slurry containing a catalyst metal having a predetermined particle size from the upstream end surface 4b to the downstream end surface 4c of the cell wall 4, The catalyst slurry is more easily penetrated in the portion of the length L1 of the carrier 2 having a large porosity. Accordingly, the thin portion 11a and the thick portion 11b having different thicknesses as described above are formed. The porosity of the carrier 2 can be adjusted by changing the composition of the material of the carrier 2.

次に、図9を参照して、担体2の気孔率の大きさと触媒金属層の厚さとの関係を説明する。図示したように、担体2の気孔率が大きいほど、細孔内にスラリが浸透するため、触媒金属層の厚さが薄くなる。   Next, the relationship between the porosity of the carrier 2 and the thickness of the catalytic metal layer will be described with reference to FIG. As shown in the figure, the larger the porosity of the carrier 2, the more the slurry penetrates into the pores, so the thickness of the catalyst metal layer becomes thinner.

図10は、本発明の第4の実施例における触媒1の1つのセル通路3の上流側部分を示す、軸方向に沿った断面図である。図10では、図3の実施例と同様の担体2のセル壁4の表面4aに、下流側端面4cから第2の所定の長さL2まで第3の触媒金属層12が形成されている。即ち、表面4aには、セル通路3の入口側の長さL1を除いて、第3の触媒金属層12が形成されている。そして、セル壁4の残りの表面4aおよび第3の触媒金属層12の上面12aの上に重ねて、同じ触媒スラリからなる第4の触媒金属層13が形成されている。従って、セル通路3の入口側の層の厚さT1が、セル通路3の残部の層の厚さT2よりも相対的に薄く形成されている。   FIG. 10 is a cross-sectional view along the axial direction showing an upstream portion of one cell passage 3 of the catalyst 1 in the fourth embodiment of the present invention. In FIG. 10, a third catalytic metal layer 12 is formed on the surface 4a of the cell wall 4 of the carrier 2 similar to the embodiment of FIG. 3 from the downstream end face 4c to the second predetermined length L2. That is, the third catalytic metal layer 12 is formed on the surface 4a except for the length L1 on the inlet side of the cell passage 3. A fourth catalyst metal layer 13 made of the same catalyst slurry is formed on the remaining surface 4 a of the cell wall 4 and the upper surface 12 a of the third catalyst metal layer 12. Therefore, the thickness T1 of the layer on the inlet side of the cell passage 3 is formed to be relatively thinner than the thickness T2 of the remaining layer of the cell passage 3.

図10の触媒1は、所定の大きさの粒径を有した触媒金属を含む触媒スラリに、セル壁4の下流側端面4cから第2の所定の長さL2だけ焼成後の担体2を浸漬して乾燥した後に、この担体2の下流側端面4cから上流側端面4bまでの全体を上記触媒スラリに浸漬して乾燥することにより製造される。   The catalyst 1 of FIG. 10 immerses the carrier 2 after firing for a second predetermined length L2 from the downstream end face 4c of the cell wall 4 in a catalyst slurry containing a catalytic metal having a particle size of a predetermined size. Then, after drying, the whole of the carrier 2 from the downstream end face 4c to the upstream end face 4b is dipped in the catalyst slurry and dried.

なお、図6に示した実施例では、相対的に薄い第1の触媒金属層7を先に形成する例を開示したが、相対的に厚い第2の触媒金属層8を先に形成するようにしても良い。   In the embodiment shown in FIG. 6, the example in which the relatively thin first catalytic metal layer 7 is formed first is disclosed. However, the relatively thick second catalytic metal layer 8 is formed first. Anyway.

また、触媒組立時の方向性をなくすために、入口側端部のみでなく、出口側端部を含む両端部について触媒層を中間部よりも薄く形成するようにしても良い。   Moreover, in order to eliminate the directionality at the time of catalyst assembly, the catalyst layer may be formed thinner than the intermediate portion not only at the inlet side end but also at both ends including the outlet side end.

2・・・担体
3・・・セル通路
4・・・セル壁
7・・・第1の触媒金属層
8・・・第2の触媒金属層
11・・・触媒金属層
12・・・第3の触媒金属層
13・・・第4の触媒金属層
2 ... carrier 3 ... cell passage 4 ... cell wall 7 ... first catalyst metal layer 8 ... second catalyst metal layer 11 ... catalyst metal layer 12 ... third Catalyst metal layer 13 ... fourth catalyst metal layer

Claims (3)

軸方向に貫通する複数のセル通路を有する多孔質材料からなる担体を用いた排気浄化用のハニカム型モノリス触媒であって、触媒金属を含む触媒スラリが浸透している上記担体の気孔率が、各セル通路の中間部よりも該セル通路の入口側の方が大きくなるように構成されており、上記複数のセル通路の各々のセル壁の表面には、触媒層が形成されており、各セル通路の入口側の触媒層の厚さが、該セル通路の中間部の触媒層の厚さよりも薄いことを特徴とするハニカム型モノリス触媒。   A honeycomb monolith catalyst for exhaust purification using a carrier made of a porous material having a plurality of cell passages penetrating in the axial direction, wherein the porosity of the carrier through which the catalyst slurry containing the catalyst metal has permeated, It is configured such that the inlet side of the cell passage is larger than the intermediate portion of each cell passage, and a catalyst layer is formed on the surface of each cell wall of the plurality of cell passages. A honeycomb monolith catalyst, wherein the thickness of the catalyst layer on the inlet side of the cell passage is thinner than the thickness of the catalyst layer in the middle portion of the cell passage. 軸方向に貫通する複数のセル通路を有する多孔質材料からなる担体を用いた排気浄化用のハニカム型モノリス触媒を製造する方法であって、
各セル通路の入口側の気孔率が各セル通路の中間部の気孔率よりも大きい上記担体を形成し、
上記担体を触媒スラリに浸漬して乾燥し、各セル通路の入口側の触媒層の厚さを、各セル通路の中間部の触媒層の厚さよりも薄く形成することを特徴とするハニカム型モノリス触媒の製造方法。
A method for producing a honeycomb monolith catalyst for exhaust purification using a support made of a porous material having a plurality of cell passages penetrating in the axial direction,
Forming the carrier having a porosity on the inlet side of each cell passage larger than the porosity of the middle portion of each cell passage;
A honeycomb monolith characterized in that the carrier is immersed in a catalyst slurry and dried, and the thickness of the catalyst layer on the inlet side of each cell passage is formed thinner than the thickness of the catalyst layer in the middle portion of each cell passage. A method for producing a catalyst.
各セル通路の上記入口側と上記中間部とで上記担体の焼成時間を変えることにより、上記入口側の気孔率が上記中間部の気孔率よりも大きい上記担体を形成することを特徴とする請求項2に記載のハニカム型モノリス触媒の製造方法。   The carrier having a larger porosity at the inlet side than the porosity of the intermediate portion is formed by changing a firing time of the carrier between the inlet side and the intermediate portion of each cell passage. Item 3. A method for producing a honeycomb type monolith catalyst according to Item 2.
JP2014263733A 2014-12-26 2014-12-26 Honeycomb type monolith catalyst and method for producing the same Active JP6565184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014263733A JP6565184B2 (en) 2014-12-26 2014-12-26 Honeycomb type monolith catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263733A JP6565184B2 (en) 2014-12-26 2014-12-26 Honeycomb type monolith catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016123890A JP2016123890A (en) 2016-07-11
JP6565184B2 true JP6565184B2 (en) 2019-08-28

Family

ID=56358559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263733A Active JP6565184B2 (en) 2014-12-26 2014-12-26 Honeycomb type monolith catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP6565184B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058875A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
JP6698602B2 (en) 2017-09-27 2020-05-27 イビデン株式会社 Honeycomb catalyst for exhaust gas purification
JP6684257B2 (en) 2017-09-27 2020-04-22 イビデン株式会社 Honeycomb catalyst for exhaust gas purification
JP2019058876A (en) 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
JP6487982B1 (en) * 2017-09-28 2019-03-20 株式会社キャタラー Exhaust gas purification catalyst
CN109899138A (en) * 2017-12-08 2019-06-18 庄信万丰(上海)化工有限公司 Novel 3rd areas, two layers of TWC catalyst for gasoline exhaust gas application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118438A (en) * 1984-07-04 1986-01-27 Toyota Motor Corp Manufacture of monolithic catalyst
JP2005106022A (en) * 2003-10-01 2005-04-21 Toyota Motor Corp Exhaust emission control device
JP2006231108A (en) * 2005-02-22 2006-09-07 Toyota Motor Corp Apparatus for cleaning exhaust gas
JP5090673B2 (en) * 2006-06-13 2012-12-05 トヨタ自動車株式会社 Honeycomb carrier for catalyst and exhaust gas purification catalyst using the same
JP2009165922A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Exhaust gas purification catalyst
US8293182B2 (en) * 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
US9255509B2 (en) * 2011-04-15 2016-02-09 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
WO2015011452A1 (en) * 2013-07-26 2015-01-29 Johnson Matthey Public Limited Company Tungsten/titania oxidation catalyst

Also Published As

Publication number Publication date
JP2016123890A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6565184B2 (en) Honeycomb type monolith catalyst and method for producing the same
JPWO2013145266A1 (en) Particulate filter
US9957861B2 (en) Honeycomb filter
WO2016009841A1 (en) Honeycomb filter
JP2017115786A (en) Exhaust gas filter
WO2018123653A1 (en) Porous honeycomb filter production method
US10918988B2 (en) Honeycomb filter
CN108686440B (en) Honeycomb filter
CN108691606B (en) Honeycomb filter
JP2020081912A5 (en)
JP6639977B2 (en) Honeycomb filter
JPWO2016098834A1 (en) Honeycomb filter and method for manufacturing honeycomb filter
WO2016027698A1 (en) Oxidation catalyst for diesel engines
JP2016169127A (en) Method for producing honeycomb structure
JP2019527620A (en) Honeycomb body for exhaust gas aftertreatment
JP2007154870A (en) Exhaust emission control filter
US10792605B2 (en) Honeycomb filter
WO2015133435A1 (en) Honeycomb filter
US20180280957A1 (en) Honeycomb structure
JP6639978B2 (en) Honeycomb filter
JP4048926B2 (en) Exhaust particulate filter for internal combustion engine
US11103862B2 (en) Honeycomb filter
US20170232377A1 (en) Plugged honeycomb structure
WO2018043350A1 (en) Exhaust gas purification filter
US20170282109A1 (en) Plugged honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151