JP2007154870A - Exhaust emission control filter - Google Patents

Exhaust emission control filter Download PDF

Info

Publication number
JP2007154870A
JP2007154870A JP2006253414A JP2006253414A JP2007154870A JP 2007154870 A JP2007154870 A JP 2007154870A JP 2006253414 A JP2006253414 A JP 2006253414A JP 2006253414 A JP2006253414 A JP 2006253414A JP 2007154870 A JP2007154870 A JP 2007154870A
Authority
JP
Japan
Prior art keywords
exhaust gas
inlet
cells
pressure loss
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006253414A
Other languages
Japanese (ja)
Inventor
Mikio Ishihara
幹男 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006253414A priority Critical patent/JP2007154870A/en
Priority to DE102006035420A priority patent/DE102006035420A1/en
Priority to FR0609865A priority patent/FR2893668A1/en
Publication of JP2007154870A publication Critical patent/JP2007154870A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control filter capable of reducing total pressure loss. <P>SOLUTION: This exhaust emission control filter is constituted in such a way that it is provided with a honeycomb molded body having a bulkhead provided with many thin holes and an outer skin layer covering parts around the bulkhead and formed into a honeycomb shape and a plurality of cells partitioned by the bulkhead to circulate exhaust gas are composed of inlet cells opening an inlet part being an inlet side for exhaust gas and closing an outlet part being an outlet side for exhaust gas by an outlet side plug part for plugging up the outlet part of the cell and outlet cells closing an inlet part by an inlet side plug part for plugging up the inlet part of the cell and opening an outlet part to purify exhaust gas by catching particulates in exhaust gas exhausted from an internal combustion engine. When total surface area of the bulkhead provided with the bulkhead nipped by a plurality of inlet cells and nipped by the plurality of inlet cells is S1 and total surface area of the bulkheads of all the cells is S2, S1/S2 is in a scope of 0.05 to 0.09. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関から排出される排ガス中のパティキュレートを捕集して、排ガスの浄化を行う排ガス浄化フィルタに関する。   The present invention relates to an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas.

従来、内燃機関の排ガス中のパティキュレート(粒子状物質、以下PM)を捕集して排ガスの浄化を行う排ガス浄化フィルタとして、セラミック材料からなるハニカム成形体を有する排ガス浄化フィルタがある。   2. Description of the Related Art Conventionally, there is an exhaust gas purification filter having a honeycomb formed body made of a ceramic material as an exhaust gas purification filter that collects particulates (particulate matter, hereinafter referred to as PM) in exhaust gas of an internal combustion engine and purifies the exhaust gas.

ハニカム成形体は、多数の細孔を備えた隔壁と、隔壁の周囲を覆う外皮層と、を備えている。そして、隔壁により仕切られている複数のセルには、浄化効率を高めるため、セルの端部に栓部を配設している。   The honeycomb formed body includes a partition wall having a large number of pores and an outer skin layer covering the periphery of the partition wall. A plurality of cells partitioned by the partition walls are provided with plug portions at the end portions of the cells in order to increase purification efficiency.

このような、ハニカム成形体のセルは、排ガスの入口側である入口部が開放し、排ガスの出口側である出口部が栓部により閉鎖している入口セルと、入口部が閉鎖し、出口部が開放している出口セルと、からなる。そして、排ガス流れは、入口セルからハニカム成形体内へ導入され、隔壁を通過し、出口セルからハニカム成形体外へ排出される。   Such a cell of the honeycomb formed body has an inlet cell in which an inlet portion which is an inlet side of exhaust gas is opened and an outlet portion which is an outlet side of exhaust gas is closed by a plug portion, and the inlet portion is closed and the outlet is closed. And an exit cell having an open part. The exhaust gas flow is introduced from the inlet cell into the honeycomb molded body, passes through the partition walls, and is discharged from the outlet cell to the outside of the honeycomb molded body.

ところで、排ガス浄化フィルタでは、PMの堆積量が増えると圧損が上昇する。圧損が大きくなると、出力低下等の不具合を生じ、しいては、燃費の悪化を招く。   By the way, in the exhaust gas purification filter, the pressure loss increases as the amount of accumulated PM increases. When the pressure loss becomes large, problems such as a decrease in output occur, which leads to deterioration of fuel consumption.

そこで、PM堆積時の圧損を低減させる為、入口セルの集合表面積が出口セル郡の集合表面積より少なくとも約25%大きいことを特徴とする排ガス浄化フィルタが提案されている(特許文献1参照)。
特開昭58−196820号公報
In order to reduce the pressure loss during PM deposition, an exhaust gas purification filter has been proposed in which the aggregate surface area of the inlet cell is at least about 25% larger than the aggregate surface area of the outlet cell group (see Patent Document 1).
JP 58-196820 A

しかし、本発明者らが検討した結果、特許文献1に示す従来技術では、初期圧損とPM堆積時の圧損とを合わせたトータル圧損を十分低く出来ないことが分かった。   However, as a result of investigations by the present inventors, it has been found that the total pressure loss including the initial pressure loss and the pressure loss at the time of PM deposition cannot be sufficiently reduced with the conventional technique shown in Patent Document 1.

本発明は、PM堆積時の圧損を低減するのみでなく、トータル圧損も低減することが出来る排ガス浄化フィルタを提供することである。   An object of the present invention is to provide an exhaust gas purification filter that can reduce not only the pressure loss during PM deposition but also the total pressure loss.

そこで、本発明者らはトータル圧損が高くなる原因を鋭意研究した。その結果、特許文献1に示す従来技術では、入口セルに挟まれた隔壁が多くなる。そして、入口セルに挟まれた隔壁にはガスが流れ難くなるため、初期圧損が増加する。即ち、ハニカム状の排ガス浄化フィルタにおける初期圧損は隔壁の影響が最も大きい。このため、特許文献1に示す従来技術のように、必要以上に入口セルに挟まれた隔壁が多くなると、排ガスが流れ難い隔壁の面積が多くなり、初期圧損が増加する。そして、初期圧損が増加する影響から、トータル圧損も増加することをはじめて見出した。   Therefore, the present inventors have intensively studied the cause of the increase in total pressure loss. As a result, in the prior art shown in Patent Document 1, the number of partition walls sandwiched between the inlet cells increases. And since it becomes difficult for gas to flow through the partition between the inlet cells, the initial pressure loss increases. That is, the initial pressure loss in the honeycomb-shaped exhaust gas purification filter is most affected by the partition walls. For this reason, when the partition walls sandwiched between the inlet cells more than necessary as in the prior art disclosed in Patent Document 1, the area of the partition wall where the exhaust gas hardly flows increases and the initial pressure loss increases. It was found for the first time that the total pressure loss also increased due to the effect of increasing the initial pressure loss.

本発明においては、多数の細孔を備えた隔壁と、前記隔壁の周囲を覆う外皮層と、を有し、ハニカム状に形成されているハニカム成形体を備え、前記隔壁により仕切られ排出ガスを流通する複数のセルは、排出ガスの入口側である入口部が開放し、排出ガスの出口側である出口部が前記セルの前記出口部を栓詰する出口側栓部により閉鎖している入口セルと、前記入口部が前記セルの前記入口部を栓詰する入口側栓部により閉鎖し、前記出口部が開放している出口セルとからなり、内燃機関から排出される排ガス中のパティキュレートを捕集して、排出ガスの浄化を行う排ガス浄化フィルタにおいて、複数の前記入口セルに挟まれた前記隔壁を備え、前記複数の入口セルに挟まれた隔壁の合計表面積をS1、全ての前記セルの隔壁の合計表面積をS2としたとき、S1/S2は、0.05から0.09の範囲であることを特徴とする排ガス浄化フィルタを提供する。   In the present invention, a partition having a large number of pores and an outer skin layer covering the periphery of the partition, the honeycomb formed body formed in a honeycomb shape, and partitioned by the partition to discharge exhaust gas In the plurality of cells that circulate, the inlet portion that is the inlet side of the exhaust gas is opened, and the outlet portion that is the outlet side of the exhaust gas is closed by the outlet side plug portion that plugs the outlet portion of the cell Particulates in exhaust gas discharged from an internal combustion engine comprising a cell and an outlet cell in which the inlet portion is closed by an inlet side plug portion that plugs the inlet portion of the cell and the outlet portion is open In the exhaust gas purification filter for purifying exhaust gas, the partition wall sandwiched between the plurality of inlet cells is provided, and the total surface area of the partition walls sandwiched between the plurality of inlet cells is S1, Total surface of cell bulkhead When was the S2, S1 / S2 provides an exhaust gas purification filter, which is a range of 0.05 0.09.

これによると、トータル圧損を低減することが出来る。   According to this, the total pressure loss can be reduced.

S1/S2が0.09より大きい場合には、入口セルに挟まれた隔壁が多くなり、排ガスが通り難い隔壁の面積が大きくなり、排ガスが通り易い隔壁の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。S1/S2が0.05未満の場合には、入口セルに挟まれた隔壁が少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   When S1 / S2 is larger than 0.09, the partition walls sandwiched between the inlet cells increase, the area of the partition wall through which the exhaust gas hardly passes increases, and the area of the partition wall through which the exhaust gas easily passes decreases. For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases. When S1 / S2 is less than 0.05, since there are few partition walls sandwiched between the inlet cells, PM cannot be dispersed and deposited over a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

なお、本発明におけるS1及びS2は、請求項2及び3のように既定することが出来る。   In addition, S1 and S2 in this invention can be defined like Claim 2 and 3.

(実施例1)
<概要>
本発明の実施形態に係る排ガス浄化フィルタの構成を図1及び図2に従って説明する。図1は、本発明の実施形態に係る排ガス浄化フィルタの入口側端面18を示す概略断面図であり、図2は、排ガス浄化フィルタのセルにおける断面図である。
Example 1
<Overview>
A configuration of an exhaust gas purification filter according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view showing an inlet side end face 18 of an exhaust gas purification filter according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a cell of the exhaust gas purification filter.

排ガス浄化フィルタ1は、図1、図2に示すごとく、多数の細孔を備えた隔壁11と、隔壁11の周囲を覆う外皮層13と、を有し、ハニカム状に形成されているハニカム成形体10を備える。   As shown in FIGS. 1 and 2, the exhaust gas purification filter 1 includes a partition wall 11 having a large number of pores and an outer skin layer 13 covering the periphery of the partition wall 11, and is formed in a honeycomb shape. A body 10 is provided.

また、隔壁11により仕切られ排出ガスを流通する複数のセル12は、排出ガスの入口側である入口部1aが開放し、排出ガスの出口側である出口部1bがセル12を栓詰する出口側栓部2bにより閉鎖している入口セル12aと、入口部1aが入口側栓部2aにより閉鎖し、出口部1bが開放している出口セル12bとからなる。   In addition, the plurality of cells 12 that are partitioned by the partition wall 11 and flow the exhaust gas have an outlet 1a that is the inlet side of the exhaust gas that is opened, and an outlet 1b that is the outlet side of the exhaust gas plugs the cell 12 The inlet cell 12a is closed by the side plug part 2b, and the outlet cell 12b is closed by the inlet side plug part 2a and the outlet part 1b is opened.

そして、排ガス流れは、入口セル12aからハニカム成形体10内へ導入され、隔壁11を通過し、出口セル12bからハニカム成形体10外へ排出される。
<特徴>
以下、特徴部分について説明する。本実施形態に係る排ガス浄化フィルタ1では、複数の入口セル(12a又は12c)に挟まれた隔壁11cを備え、複数の入口セル(12a又は12c)に挟まれた隔壁11cの合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたとき、S1/S2は、0.05から0.09の範囲であることを特徴とする。これによると、トータル圧損を低減することが出来る。S1/S2が0.09より大きい場合には、入口セルに挟まれた隔壁11cが多くなる、即ち、排ガスが通り難い隔壁11cの面積が大きくなり、排ガスが通り易い隔壁11の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。S1/S2が0.05未満の場合には、入口セルに挟まれた隔壁11cが少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。
The exhaust gas flow is introduced into the honeycomb molded body 10 from the inlet cell 12a, passes through the partition walls 11, and is discharged out of the honeycomb molded body 10 from the outlet cell 12b.
<Features>
Hereinafter, the characteristic part will be described. The exhaust gas purification filter 1 according to the present embodiment includes a partition wall 11c sandwiched between a plurality of inlet cells (12a or 12c), and the total surface area of the partition walls 11c sandwiched between the plurality of inlet cells (12a or 12c) is S1, When the total surface area of the partition walls 11 of all the cells 12 is S2, S1 / S2 is in the range of 0.05 to 0.09. According to this, the total pressure loss can be reduced. When S1 / S2 is larger than 0.09, the number of partition walls 11c sandwiched between the inlet cells increases, that is, the area of the partition walls 11c through which the exhaust gas is difficult to pass increases, and the area of the partition walls 11 through which the exhaust gas easily passes decreases. . For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases. When S1 / S2 is less than 0.05, since there are few partition walls 11c sandwiched between the inlet cells, PM cannot be dispersed and deposited over a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

なお、複数の入口セル(12a又は12c)に挟まれた隔壁11cの合計表面積S1は、複数の入口セル(12a又は12c)に挟まれた隔壁11cにおける複数の入口セル(12a又は12c)に面する面の表面積の合計であり、全てのセル12の隔壁11の合計表面積S2は、セル12を形成する隔壁11のセル12内側面の表面積の合計と、セル12の全体数と、の積である。
<詳細>
以下、詳細に説明する。本実施形態に係る排ガス浄化フィルタ1は、図1、図2に示すごとく、多数の細孔を備え、排ガス5を通過させることが出来る隔壁11と、隔壁11の周囲を覆う外皮層13と、を有し、ハニカム状に形成されているハニカム成形体10を備える。
The total surface area S1 of the partition wall 11c sandwiched between the plurality of inlet cells (12a or 12c) faces the plurality of inlet cells (12a or 12c) in the partition wall 11c sandwiched between the plurality of inlet cells (12a or 12c). The total surface area S2 of the partition walls 11 of all the cells 12 is the product of the total surface area of the inner surfaces of the cells 12 of the partition walls 11 forming the cells 12 and the total number of the cells 12. is there.
<Details>
Details will be described below. As shown in FIG. 1 and FIG. 2, the exhaust gas purification filter 1 according to the present embodiment has a large number of pores, a partition wall 11 through which the exhaust gas 5 can pass, an outer skin layer 13 covering the periphery of the partition wall 11, And a honeycomb formed body 10 formed in a honeycomb shape.

また、隔壁11により仕切られ排出ガスを流通する複数のセル12は、排出ガスの入口側である入口部1aが開放し、排出ガスの出口側である出口部1bが出口側栓部2bにより閉鎖している第1の入口セル12aと、入口部1aが入口側栓部2aにより閉鎖し、出口部1bが開放している出口セル12bと、第1の入口セル12aと出口セル12bとを隣接するセルで互い違いになるように設けたとき、本来、出口セル12ととなるべき部分を入口セルに変更した第2の入口セル12cとからなる。   In addition, in the plurality of cells 12 which are partitioned by the partition wall 11 and distribute the exhaust gas, the inlet portion 1a which is the inlet side of the exhaust gas is opened, and the outlet portion 1b which is the outlet side of the exhaust gas is closed by the outlet side plug portion 2b The first inlet cell 12a, the inlet portion 1a is closed by the inlet side plug portion 2a, and the outlet portion 12b is opened, and the first inlet cell 12a and the outlet cell 12b are adjacent to each other. When the cells are arranged so as to be staggered, the second entrance cell 12c is formed by changing the portion to be the exit cell 12 into the entrance cell.

また、ハニカム成形体10に設けられたセル12は、四角形状の断面空間を有している。   Moreover, the cell 12 provided in the honeycomb formed body 10 has a square cross-sectional space.

また、本例の排ガス浄化フィルタ1の全体サイズは、直径144mm、長さ200mmであり、隔壁11の厚さは、0.30mmであり、セルピッチは、1.47mmである。また、隔壁11の気孔率は、65%であり、平均細孔径は、25μmである。また、隔壁11に囲まれたセル(12a、12b、12c)が合計400個設けられている。   Further, the overall size of the exhaust gas purification filter 1 of this example is 144 mm in diameter and 200 mm in length, the thickness of the partition wall 11 is 0.30 mm, and the cell pitch is 1.47 mm. The porosity of the partition wall 11 is 65%, and the average pore diameter is 25 μm. In addition, a total of 400 cells (12a, 12b, 12c) surrounded by the partition walls 11 are provided.

また、隔壁11には、通常、白金、ロジウム、パラジウム、バリウム、カリウム等の触媒が担持される。   The partition wall 11 normally carries a catalyst such as platinum, rhodium, palladium, barium, potassium.

そして、複数の入口セル(12a又は12c)に挟まれた隔壁11cを備え、複数の入口セル(12a又は12c)に挟まれた隔壁11cの合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたとき、S1/S2は、0.05から0.09の範囲であることを特徴とする。これによると、トータル圧損を低減することが出来る。S1/S2が0.09より大きい場合には、入口セルに挟まれた隔壁11cが多い、即ち、排ガスが通り難い隔壁11cの面積が大きくなり、排ガスが通り易い隔壁11の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。S1/S2が0.05未満の場合には、入口セルに挟まれた隔壁11cが少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   A partition wall 11c sandwiched between the plurality of inlet cells (12a or 12c) is provided. When the surface area is S2, S1 / S2 is in the range of 0.05 to 0.09. According to this, the total pressure loss can be reduced. When S1 / S2 is larger than 0.09, there are many partition walls 11c sandwiched between the inlet cells, that is, the area of the partition wall 11c through which the exhaust gas is difficult to pass increases, and the area of the partition wall 11 through which the exhaust gas easily passes decreases. For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases. When S1 / S2 is less than 0.05, since there are few partition walls 11c sandwiched between the inlet cells, PM cannot be dispersed and deposited over a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

(実施例2)
排ガス浄化フィルタ1の栓部2の配置例について図3乃至7を用いて説明する。図3及び4は本発明の実施形態に係る、排ガス浄化フィルタ1の排ガス入口側端面18を示す説明図であり、図5及至7は本発明の比較例に係る、排ガス浄化フィルタの排ガス入口側端面18を示す説明図である。なお、全体サイズ等は、図1及び2に示した実施形態と同様である。
(Example 2)
An arrangement example of the plug portion 2 of the exhaust gas purification filter 1 will be described with reference to FIGS. 3 and 4 are explanatory views showing the exhaust gas inlet side end face 18 of the exhaust gas purification filter 1 according to the embodiment of the present invention, and FIGS. 5 to 7 are the exhaust gas inlet side of the exhaust gas purification filter according to the comparative example of the present invention. It is explanatory drawing which shows the end surface. The overall size and the like are the same as those of the embodiment shown in FIGS.

まず、図3及び4の本発明の実施形態に係る、排ガス浄化フィルタ1の排ガス入口側端面18を説明する。   First, the exhaust gas inlet side end face 18 of the exhaust gas purification filter 1 according to the embodiment of the present invention shown in FIGS. 3 and 4 will be described.

図3及び4に示す本発明の実施形態に係る排ガス浄化フィルタ1では、排ガス浄化フィルタ1の排ガス入口側端面18に、隔壁11に囲まれ、断面四角形状となるセルが多数設けられている。このセル群は、第1の入口セル12aと出口セル12bとが隣接するセルで互い違いになるように設けられた部分と、第1の入口セル12aと出口セル12bとを隣接するセルで互い違いになるように設けたとき、本来、出口セル12bとなるべき部分を入口セルに変更した第2の入口セル12cの部分とを有している。よって、第2の入口セル12cは、第1の入口セル12aによって少なくとも2方向より挟まれている。また、第2の入口セル12cは、互いに少なくとも3セル以上の間隔をおいて分散して設けられている。また、第2の入口セル12cを形成する隔壁11cは、複数の入口セル(12a又は12c)に挟まれている。   In the exhaust gas purification filter 1 according to the embodiment of the present invention shown in FIGS. 3 and 4, the exhaust gas inlet side end face 18 of the exhaust gas purification filter 1 is provided with a large number of cells surrounded by the partition wall 11 and having a quadrangular cross section. In this cell group, the first inlet cell 12a and the outlet cell 12b are alternately arranged in adjacent cells, and the first inlet cell 12a and the outlet cell 12b are alternately arranged in adjacent cells. When it is provided, it has a portion of the second inlet cell 12c that originally changed the portion to be the outlet cell 12b to the inlet cell. Therefore, the second inlet cell 12c is sandwiched between at least two directions by the first inlet cell 12a. The second inlet cells 12c are provided in a distributed manner with an interval of at least three cells. The partition wall 11c forming the second inlet cell 12c is sandwiched between a plurality of inlet cells (12a or 12c).

また、全セルにおいて、セルを形成する隔壁11のセル内側面の表面積が同じとすれば、複数の入口セル(12a又は12c)に挟まれている隔壁11cの数を、全体の隔壁数で割ることによって、この隔壁11cの合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたときのS1/S2を求めることが出来る。   Further, in all the cells, if the surface area of the inner surface of the partition wall 11 forming the cell is the same, the number of the partition walls 11c sandwiched between the plurality of inlet cells (12a or 12c) is divided by the total number of partition walls. Thus, it is possible to obtain S1 / S2 when the total surface area of the partition walls 11c is S1, and the total surface area of the partition walls 11 of all the cells 12 is S2.

そして、図3の例では、第2の入口セル12cは18個配置されているから、隔壁11cの数は144個、図4の例では、第2の入口セル12cは10個配置されているから、隔壁11cの数は80個である。   In the example of FIG. 3, since 18 second inlet cells 12c are arranged, the number of partition walls 11c is 144, and in the example of FIG. 4, 10 second inlet cells 12c are arranged. Therefore, the number of the partition walls 11c is 80.

よって、この隔壁11cの合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたとき、S1/S2は、図3に示す例では0.09、図4に示す例では0.05、であり、共に0.05から0.09の範囲となっている。   Therefore, when the total surface area of the partition walls 11c is S1, and the total surface area of the partition walls 11 of all the cells 12 is S2, S1 / S2 is 0.09 in the example shown in FIG. 05, both in the range of 0.05 to 0.09.

これによると、トータル圧損を低減することが出来る。S1/S2が0.09より大きい場合には、入口セルに挟まれた隔壁11cが多くなる、即ち、排ガスが通り難い隔壁11cの面積が大きくなり、排ガスが通り易い隔壁11の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。S1/S2が0.05未満の場合には、入口セルに挟まれた隔壁11cが少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   According to this, the total pressure loss can be reduced. When S1 / S2 is larger than 0.09, the number of partition walls 11c sandwiched between the inlet cells increases, that is, the area of the partition walls 11c through which the exhaust gas is difficult to pass increases, and the area of the partition walls 11 through which the exhaust gas easily passes decreases. . For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss including the initial pressure loss and the pressure loss during PM deposition also increases. When S1 / S2 is less than 0.05, there are few partition walls 11c sandwiched between the inlet cells, and therefore PM cannot be dispersed and deposited over a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

なお、第2の入口セル12cは、結果として、S1/S2が、0.05から0.09の範囲となるのであれば、どのように配置されていても構わない。例えば、図8に示すように、第2の入口セル12cは、排ガス入口側端部18において、中心部分に集中していても良く、図9に示すように、第2の入口セル12cは、排ガス入口側端部18において、周辺部分に集中していても良く、図10に示すように、第2の入口セル12cは、排ガス入口側端部18において、片側半分部分(図10では上部半分)に集中していても良い。   The second inlet cells 12c may be arranged in any way as long as S1 / S2 is in the range of 0.05 to 0.09 as a result. For example, as shown in FIG. 8, the second inlet cell 12 c may be concentrated at the central portion at the exhaust gas inlet side end 18, and as shown in FIG. 9, the second inlet cell 12 c is The exhaust gas inlet side end 18 may be concentrated in the peripheral portion. As shown in FIG. 10, the second inlet cell 12 c has a half portion on the exhaust gas inlet side end 18 (the upper half in FIG. 10). ) May be concentrated.

(比較例)
次いで、図5乃至7の本発明の比較例に係る、排ガス浄化フィルタ1の排ガス入口側端面18を説明する。
(Comparative example)
Next, the exhaust gas inlet side end face 18 of the exhaust gas purification filter 1 according to the comparative example of the present invention of FIGS. 5 to 7 will be described.

図5乃至7に示す本発明の比較例に係る排ガス浄化フィルタ1においても、図3及び4に示した本発明の実施例に係る排ガス浄化フィルタ1と同様に、排ガス浄化フィルタ1の排ガス入口側端面18に、第1の入口セル12aと出口セル12bとが隣接するセルで互い違いになるように設けられた部分と、第1の入口セル12aと出口セル12bとを隣接するセルで互い違いになるように設けたとき、本来、出口セル12bとなるべき部分を入口セルに変更した第2の入口セル12cの部分とを有している。よって、第2の入口セル12cは、第1の入口セル12aによって少なくとも2方向より挟まれている。また、第2の入口セル12cを形成する隔壁11cは、複数の入口セル(12a又は12c)に挟まれている。   In the exhaust gas purification filter 1 according to the comparative example of the present invention shown in FIGS. 5 to 7, the exhaust gas inlet side of the exhaust gas purification filter 1 is the same as the exhaust gas purification filter 1 according to the embodiment of the present invention shown in FIGS. On the end face 18, the first inlet cell 12a and the outlet cell 12b are alternately provided in adjacent cells, and the first inlet cell 12a and the outlet cell 12b are alternately changed in adjacent cells. When provided in this way, it has a portion of the second inlet cell 12c that originally changed the portion to be the outlet cell 12b to the inlet cell. Therefore, the second inlet cell 12c is sandwiched between at least two directions by the first inlet cell 12a. The partition wall 11c forming the second inlet cell 12c is sandwiched between a plurality of inlet cells (12a or 12c).

しかし、隔壁11cの合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたときの、S1/S2が、0.05から0.09の範囲となっていない点が、図3及び4に示した本発明の実施例に係る排ガス浄化フィルタ1と異なっている。   However, when the total surface area of the partition walls 11c is S1, and the total surface area of the partition walls 11 of all the cells 12 is S2, S1 / S2 is not in the range of 0.05 to 0.09. 4 and 4 is different from the exhaust gas purification filter 1 according to the embodiment of the present invention.

図5に示す例では、隔壁11c数は416個、全てのセル12数は1600個であり、S1/S2は、0.05となり、0.09より大きくなっている。   In the example shown in FIG. 5, the number of partition walls 11c is 416, the number of all cells 12 is 1600, and S1 / S2 is 0.05, which is larger than 0.09.

図6に示す例では、隔壁11c数は544個、全てのセル12数は1600個であり、S1/S2は、0.34となり、0.09より大きくなっている。   In the example shown in FIG. 6, the number of partition walls 11c is 544, the number of all cells 12 is 1600, and S1 / S2 is 0.34, which is larger than 0.09.

図5又は6に示す例のように、S1/S2が0.09より大きい場合には、入口セルに挟まれた隔壁11cが多くなる、即ち、排ガスが通り難い隔壁11cの面積が大きくなり、排ガスが通り易い隔壁11の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   As in the example shown in FIG. 5 or 6, when S1 / S2 is larger than 0.09, the partition wall 11c sandwiched between the inlet cells increases, that is, the area of the partition wall 11c through which the exhaust gas hardly passes increases. The area of the partition wall 11 through which the exhaust gas easily passes is reduced. For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

図7に示す例では、隔壁11c数は32個、全てのセル12数は1600個であり、S1/S2は、0.02となり、0.05より小さくなっている。   In the example shown in FIG. 7, the number of partition walls 11c is 32, the number of all cells 12 is 1600, and S1 / S2 is 0.02, which is smaller than 0.05.

図7に示す例のように、S1/S2が0.05未満の場合には、入口セルに挟まれた隔壁11cが少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   As shown in the example shown in FIG. 7, when S1 / S2 is less than 0.05, the partition wall 11c sandwiched between the inlet cells is small, so that PM cannot be deposited in a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

よって、図5乃至7に示す本発明の比較例に係る排ガス浄化フィルタ1では、トータル圧損を低減することが出来ない。   Therefore, in the exhaust gas purification filter 1 according to the comparative example of the present invention shown in FIGS. 5 to 7, the total pressure loss cannot be reduced.

(実施例3)
図11は、図3乃至7の排ガス浄化フィルタにおける、S1/S2と、初期圧損及びトータル圧損と、の関係を示すグラフである。なお、各排ガス浄化フィルタは、入口セルと出口セルの数及び配置は異なるが、その他の条件は一定であり、例えば、本例の排ガス浄化フィルタ1の全体サイズは、直径144mm、長さ200mmとし、隔壁11の厚さは、0.30mmとし、また隔壁11の気孔率は、65%とし、平均細孔径は、25μmとした。また、圧損の計測方法は、圧損計測装置にて、9m/分の力で吸引した場合における圧損計測装置の圧力と大気圧との差を計測した。
(Example 3)
FIG. 11 is a graph showing the relationship between S1 / S2 and the initial and total pressure losses in the exhaust gas purification filters of FIGS. Each exhaust gas purification filter is different in the number and arrangement of inlet cells and outlet cells, but other conditions are constant. For example, the overall size of the exhaust gas purification filter 1 of this example is 144 mm in diameter and 200 mm in length. The thickness of the partition wall 11 was 0.30 mm, the porosity of the partition wall 11 was 65%, and the average pore diameter was 25 μm. Moreover, the pressure loss measuring method measured the difference between the pressure of the pressure loss measuring device and the atmospheric pressure when the pressure loss measuring device sucked with a force of 9 m / min.

グラフ中のパターンAの点は、図3の排ガス浄化フィルタにおける圧損を示し、パターンBの点は、図4の排ガス浄化フィルタにおける圧損を示し、パターンCの点は、図5の排ガス浄化フィルタにおける圧損を示し、パターンDの点は、図6の排ガス浄化フィルタにおける圧損を示し、パターンEの点は、図7の排ガス浄化フィルタにおける圧損を示す。   The point of pattern A in the graph indicates the pressure loss in the exhaust gas purification filter of FIG. 3, the point of pattern B indicates the pressure loss in the exhaust gas purification filter of FIG. 4, and the point of pattern C indicates the pressure loss in the exhaust gas purification filter of FIG. The point of pattern D shows the pressure loss in the exhaust gas purification filter of FIG. 6, and the point of pattern E shows the pressure loss in the exhaust gas purification filter of FIG.

図11から分かるように、S1/S2が0.05〜0.09の範囲であるとき、最もトータル圧損が低いことが分かる。   As can be seen from FIG. 11, the total pressure loss is lowest when S1 / S2 is in the range of 0.05 to 0.09.

本発明の実施形態に係る排ガス浄化フィルタを示すパターンA及びBは、いずれもこの範囲に含まれており、トータル圧損が低くなっている。一方、本発明の比較例に係る排ガス浄化フィルタを示すパターンC及至Eは、いずれもこの範囲に含まれておらず、トータル圧損が高くなっている。この原因としては、以下の通りである。即ち、S1/S2が0.09より大きい場合には、複数の入口セルに挟まれた隔壁が多くなる、即ち、排ガスが通り難い隔壁の面積が大きくなり、排ガスが通り易い隔壁11の面積が小さくなる。このため、初期圧損が増加する。また、初期圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。S1/S2が0.05未満の場合には、複数の入口セルに挟まれた隔壁が少ない為、PMが広範囲に分散して堆積出来ない。また、PMが入口を閉塞し易い。このため、PM堆積時の圧損が増加する。また、PM堆積時の圧損が増加する影響から、初期圧損とPM堆積時の圧損とを合わせたトータル圧損も増加する。   The patterns A and B showing the exhaust gas purification filter according to the embodiment of the present invention are both included in this range, and the total pressure loss is low. On the other hand, none of the patterns C and E showing the exhaust gas purification filter according to the comparative example of the present invention is included in this range, and the total pressure loss is high. The cause is as follows. That is, when S1 / S2 is larger than 0.09, the number of partition walls sandwiched between the plurality of inlet cells increases, that is, the area of the partition wall through which the exhaust gas is difficult to pass increases, and the area of the partition wall 11 through which the exhaust gas easily passes is increased. Get smaller. For this reason, initial pressure loss increases. Further, due to the effect of increasing the initial pressure loss, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases. When S1 / S2 is less than 0.05, since there are few partition walls sandwiched between the plurality of inlet cells, PM cannot be dispersed and deposited over a wide range. Moreover, PM tends to block the inlet. For this reason, the pressure loss at the time of PM deposition increases. Further, due to the effect of increasing the pressure loss during PM deposition, the total pressure loss that combines the initial pressure loss and the pressure loss during PM deposition also increases.

(実施例4)
次に、排ガス浄化フィルタ1の製造方法について説明する。本例の排ガス浄化フィルタ1の製造方法は、図12に示すごとく、少なくとも、押出成形工程、マスキング工程、栓材配置工程、及び焼成工程を行う。
Example 4
Next, a method for manufacturing the exhaust gas purification filter 1 will be described. The manufacturing method of the exhaust gas purification filter 1 of this example performs at least an extrusion molding process, a masking process, a plug material arranging process, and a firing process, as shown in FIG.

上記押出成形工程は、ハニカム成形体10成形用材料である基材を押出成形し、乾燥し、所定長さに切断して、多数の細孔を備えた隔壁11と、隔壁11の周囲を覆う外皮層13と、を有し、隔壁11により仕切られている複数のセル12は、両端面18、19に貫通してなるハニカム成形体10を作製する工程である。   In the extrusion molding step, a base material that is a material for forming the honeycomb formed body 10 is extruded, dried, cut into a predetermined length, and the partition wall 11 having a large number of pores and the periphery of the partition wall 11 are covered. The plurality of cells 12 having the outer skin layer 13 and partitioned by the partition walls 11 are steps for manufacturing the honeycomb formed body 10 that penetrates the both end faces 18 and 19.

上記マスキング工程は、ハニカム成形体10の端面18、19におけるセル12の開口部3のうち、栓部により栓詰めすべき部分を開口させた状態でその他の部分を覆うようにマスキング材42を配置する工程である。   In the masking step, the masking material 42 is disposed so as to cover the other portions of the opening 3 of the cell 12 on the end faces 18 and 19 of the honeycomb molded body 10 with the plug portion opening the portion to be plugged. It is a process to do.

上記栓材配置工程は、上記栓詰めすべき部分に、栓部の材料である栓材を配置する工程である。   The plug material arranging step is a step of arranging a plug material which is a material of the plug part in the portion to be plugged.

上記焼成工程は、上記基材と上記栓材とを焼成する工程である。   The firing step is a step of firing the base material and the plug material.

以下、これを詳説する。
<押出成形工程>
まず、ハニカム成形体10成形用材料である基材の主原料となるタルク、溶融シリカ、及び水酸化アルミニウムを所望の組成となるように秤量し、造孔剤、バインダー、水等を加え、混合機にて混合撹拌した。そして、得られた混合原料を成形機にて押出成形し、ハニカム状の成形体を得た。これを乾燥した後、所望の長さに切断し、ハニカム状に設けられた隔壁11と、隔壁11の周囲を覆う外皮層13と、を有するハニカム成形体10を作製した(図12(a)参照)。
This will be described in detail below.
<Extrusion process>
First, talc, fused silica, and aluminum hydroxide, which are the main raw materials of the base material for forming the honeycomb formed body 10, are weighed to have a desired composition, and a pore-forming agent, binder, water, etc. are added and mixed. The mixture was stirred with a machine. And the obtained mixed raw material was extrusion-molded with the molding machine, and the honeycomb-shaped molded object was obtained. After drying this, it cut | disconnected to desired length, and produced the honeycomb molded object 10 which has the partition 11 provided in the honeycomb form, and the outer skin layer 13 which covers the circumference | surroundings of the partition 11 (FIG. 12 (a)). reference).

なお、上記基材の主原料となるタルクは、平均粒子径が10〜50μmであり、かつ不純物であるFe、CaO、NaO、KO、TiOの合計含有量が1.0重量%以下のものを用いた。また、溶融シリカは、平均粒子径が5〜50μmであり、かつ不純物であるFe、CaO、NaO、KO、TiOの合計含有量が0.25重量%以下のものを用いた。また、水酸化アルミニウムは、平均粒子径が約5.4μmであり、かつ不純物であるFe、CaO、NaO、KO、TiOの合計含有量が0.50重量%以下のものを用いた。
<マスキング工程>
次に、図12(a)に示すごとく、ハニカム成形体10の両端面18、19全体を覆うようにマスキング材42を貼り付けた。そして、図12(b)に示すごとく、両端面18、19の栓詰めすべき位置に対応するマスキング材42をレーザーにて開口させ、貫通穴420を設けた。これにより、ハニカム成形体10は、栓部により栓詰めすべき部分が貫通穴420により開口し、その他の部分がマスキング材42で覆われた状態となった。なお、本例では、マスキング材42として、厚さ0.1mmの樹脂フィルムを用いた。
<栓材配置工程>
次に、栓部2の材料である栓材の主原料となるタルク、溶融シリカ、及び水酸化アルミニウムを所望の組成となるように秤量し、造孔剤、バインダー、水等を加え、混合機にて混合撹拌し、スラリー20を作製した。
Incidentally, talc as a main raw material of the substrate has an average particle diameter of 10 to 50 [mu] m, and Fe 2 O 3 as an impurity, CaO, Na 2 O, K 2 O, the total content of TiO 2 1 0.0% by weight or less was used. The fused silica has an average particle size of 5 to 50 μm and a total content of Fe 2 O 3 , CaO, Na 2 O, K 2 O and TiO 2 as impurities of 0.25% by weight or less. Was used. Aluminum hydroxide has an average particle size of about 5.4 μm, and the total content of impurities Fe 2 O 3 , CaO, Na 2 O, K 2 O, and TiO 2 is 0.50% by weight or less. The thing of was used.
<Masking process>
Next, as shown in FIG. 12A, a masking material 42 was attached so as to cover the entire end faces 18 and 19 of the honeycomb formed body 10. And as shown in FIG.12 (b), the masking material 42 corresponding to the position which should be plugged of the both end surfaces 18 and 19 was opened with the laser, and the through-hole 420 was provided. As a result, the honeycomb molded body 10 was in a state in which the portion to be plugged by the plug portion was opened by the through hole 420 and the other portion was covered with the masking material 42. In this example, a resin film having a thickness of 0.1 mm was used as the masking material 42.
<Plug material placement process>
Next, talc, fused silica, and aluminum hydroxide, which are the main raw materials of the plug material that is the material of the plug part 2, are weighed so as to have a desired composition, and a pore-forming agent, a binder, water, etc. are added to the mixer. Was mixed and stirred to prepare slurry 20.

なお、上記栓材の主原料となるタルク及び溶融シリカは、上記基材と同様のものを用いた。また、水酸化アルミニウムは、平均粒子径が約2.5μmであり、かつ不純物であるFe、CaO、NaO、KO、TiOの合計含有量が0.50重量%以下のものを用いた。 In addition, the talc and fused silica used as the main raw materials of the said plug material used the same thing as the said base material. Aluminum hydroxide has an average particle diameter of about 2.5 μm, and the total content of Fe 2 O 3 , CaO, Na 2 O, K 2 O, and TiO 2 as impurities is 0.50% by weight or less. The thing of was used.

そして、図12(c)に示すごとく、スラリー20を入れた容器を準備した後、マスキング工程を施したハニカム成形体10の排ガス入口側端面18を浸漬し、マスキング材42の貫通穴420からスラリー20を適量浸入させた。また、ハニカム成形体10の排ガス出口側端面19も同様の工程を行った。
<焼成工程>
次に、基材よりなるハニカム成形体10とハニカム成形体10の栓詰めすべき部分に配置した栓材としてのスラリー20とを約1400℃で焼成する。これにより、マスキング材42は焼却除去され、図1、図2に示すようなハニカム成形体10と栓部2とを有する排ガス浄化フィルタ1を作製した。
Then, as shown in FIG. 12 (c), after preparing the container containing the slurry 20, the exhaust gas inlet side end face 18 of the honeycomb formed body 10 subjected to the masking step is immersed, and the slurry is removed from the through hole 420 of the masking material 42. An appropriate amount of 20 was infiltrated. Further, the exhaust gas outlet side end face 19 of the honeycomb formed body 10 was subjected to the same process.
<Baking process>
Next, the honeycomb formed body 10 made of the base material and the slurry 20 as the plug material disposed in the plugged portion of the honeycomb formed body 10 are fired at about 1400 ° C. Thereby, the masking material 42 was removed by incineration, and the exhaust gas purification filter 1 having the honeycomb formed body 10 and the plug portion 2 as shown in FIGS. 1 and 2 was produced.

以上述べたように、本発明の排ガス浄化フィルタでは、複数の入口セル(12a又は12c)に挟まれた隔壁11を備え、複数の入口セル(12a又は12c)に挟まれた隔壁11の合計表面積をS1、全てのセル12の隔壁11の合計表面積をS2としたとき、S1/S2を0.05から0.09の範囲にすることにより、トータル圧損を低減することが出来る。
(実施例5)
図13は、本発明の実施形態に係る、排ガス浄化フィルタの軸方向断面を示す説明図である。図13に示す排ガス浄化フィルタ1では、実施例1に記載した構成に加えて、出口側栓部2bの長さを入口側栓部2aの長さの2〜5倍とすることを特徴とする。通常の栓部の長さは約3mmであるのに対し、出口側栓部2bの長さは、2〜5倍であるため、熱容量が増し、PMを効率的に燃焼することができる。一方、2倍以下(約6mm以下)では、PMを効率的に燃焼することが困難であり、5倍以上(約15mm以上)では、濾過面積が減少する為、圧損が増大してしまう。本実施例によれば、実施例1の効果と相まって、トータル圧損を低減すると共にPMを効率的に燃焼することができる。
As described above, the exhaust gas purification filter of the present invention includes the partition wall 11 sandwiched between the plurality of inlet cells (12a or 12c), and the total surface area of the partition wall 11 sandwiched between the plurality of inlet cells (12a or 12c). Is S1, and the total surface area of the partition walls 11 of all the cells 12 is S2, the total pressure loss can be reduced by setting S1 / S2 in the range of 0.05 to 0.09.
(Example 5)
FIG. 13 is an explanatory diagram showing an axial cross section of an exhaust gas purification filter according to an embodiment of the present invention. In the exhaust gas purification filter 1 shown in FIG. 13, in addition to the configuration described in the first embodiment, the length of the outlet side plug portion 2b is 2 to 5 times the length of the inlet side plug portion 2a. . The length of the normal plug portion is about 3 mm, whereas the length of the outlet-side plug portion 2b is 2 to 5 times, so that the heat capacity increases and PM can be burned efficiently. On the other hand, if it is 2 times or less (about 6 mm or less), it is difficult to efficiently burn PM, and if it is 5 times or more (about 15 mm or more), the filtration area decreases, and the pressure loss increases. According to the present embodiment, combined with the effects of the first embodiment, the total pressure loss can be reduced and PM can be efficiently burned.

なお、本発明に用いられる構成は本発明の課題を達成出来るものであれば、本実施例の構成に限定されない。例えば、ハニカム成形体の形状は円柱状であっても、角柱状であってもよい。   Note that the configuration used in the present invention is not limited to the configuration of this embodiment as long as the object of the present invention can be achieved. For example, the shape of the honeycomb formed body may be a columnar shape or a prismatic shape.

本発明の実施形態に係る、排ガス浄化フィルタの端面を示す説明図である。It is explanatory drawing which shows the end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの軸方向断面を示す説明図である。It is explanatory drawing which shows the axial direction cross section of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(1)である。It is explanatory drawing (1) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(2)である。It is explanatory drawing (2) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の比較例に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(1)である。It is explanatory drawing (1) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on the comparative example of this invention. 本発明の比較例に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(2)である。It is explanatory drawing (2) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on the comparative example of this invention. 本発明の比較例に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(3)である。It is explanatory drawing (3) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on the comparative example of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(3)である。It is explanatory drawing (3) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(4)である。It is explanatory drawing (4) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの排ガス入口側端面を示す説明図(5)である。It is explanatory drawing (5) which shows the exhaust gas inlet side end surface of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、複数の入口セルに挟まれた隔壁の合計表面積S1と全てのセルの隔壁の合計表面積S2との比率S1/S2と、初期圧損及びトータル圧損と、の関係を示すグラフである。FIG. 9 shows the relationship between the ratio S1 / S2 of the total surface area S1 of the partition walls sandwiched between the plurality of inlet cells and the total surface area S2 of the partition walls of all the cells, and the initial pressure loss and the total pressure loss according to the embodiment of the present invention. It is a graph. 本発明の実施形態に係る、排ガス浄化フィルタの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the exhaust gas purification filter based on embodiment of this invention. 本発明の実施形態に係る、排ガス浄化フィルタの軸方向断面を示す説明図である。It is explanatory drawing which shows the axial direction cross section of the exhaust gas purification filter based on embodiment of this invention.

符号の説明Explanation of symbols

1 排ガス浄化フィルタ
1a 入口部
1b 出口部
10 ハニカム成形体
11 隔壁
11c 複数の入口セル(12a又は12c)に挟まれた隔壁
12 セル
12a 第1の入口セル
12b 出口セル
12c 第2の入口セル
13 外皮層
18 排ガス入口側端面(端面)
19 排ガス出口側端面(端面)
2 栓部
2a 入口側栓部
2b 出口側栓部
3 開口部
42 マスキング材
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification filter 1a Inlet part 1b Outlet part 10 Honeycomb forming body 11 Partition 11c Partition between two inlet cells (12a or 12c) 12 cell 12a First inlet cell 12b Outlet cell 12c Second inlet cell 13 Outside Skin 18 Exhaust gas inlet side end face (end face)
19 Exhaust gas outlet side end face (end face)
2 plug part 2a inlet side plug part 2b outlet side plug part 3 opening part 42 masking material

Claims (4)

多数の細孔を備えた隔壁と、前記隔壁の周囲を覆う外皮層と、を有し、ハニカム状に形成されているハニカム成形体を備え、
前記隔壁により仕切られ排出ガスを流通する複数のセルは、排出ガスの入口側である入口部が開放し、排出ガスの出口側である出口部が前記セルの前記出口部を栓詰する出口側栓部により閉鎖している入口セルと、
前記入口部が前記セルの前記入口部を栓詰する入口側栓部により閉鎖し、前記出口部が開放している出口セルとからなり、
内燃機関から排出される排ガス中のパティキュレートを捕集して、排出ガスの浄化を行う排ガス浄化フィルタにおいて、
複数の前記入口セルに挟まれた前記隔壁を備え、
前記複数の入口セルに挟まれた隔壁の合計表面積をS1、全ての前記セルの隔壁の合計表面積をS2としたとき、S1/S2は、0.05から0.09の範囲であることを特徴とする排ガス浄化フィルタ。
A partition having a large number of pores, and an outer skin layer covering the periphery of the partition, including a honeycomb formed body formed in a honeycomb shape,
The plurality of cells that are partitioned by the partition wall and circulate the exhaust gas have an inlet side that is an inlet side of the exhaust gas, and an outlet side that is an outlet side of the exhaust gas plugs the outlet part of the cell An inlet cell closed by a stopper,
The inlet portion is closed by an inlet-side plug portion that plugs the inlet portion of the cell, and the outlet portion is an open cell;
In an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas,
Comprising the partition wall sandwiched between a plurality of the inlet cells;
S1 / S2 is in the range of 0.05 to 0.09, where S1 is the total surface area of the partition walls sandwiched between the plurality of inlet cells, and S2 is the total surface area of the partition walls of all the cells. Exhaust gas purification filter.
前記複数の入口セルに挟まれた隔壁の合計表面積S1は、前記複数の入口セルに挟まれた隔壁における前記複数の入口セルに面する面の表面積の合計であることを特徴とする請求項1に記載の排ガス浄化フィルタ。 The total surface area S1 of the partition walls sandwiched between the plurality of inlet cells is the sum of the surface areas of the surfaces facing the plurality of inlet cells in the partition walls sandwiched between the plurality of inlet cells. The exhaust gas purification filter according to 1. 前記全てのセルの隔壁の合計表面積S2は、前記セルを形成する前記隔壁の内側面の表面積の合計と、前記セルの全体数と、の積であることを特徴とする請求項1又は2に記載の排ガス浄化フィルタ。 The total surface area S2 of the partition walls of all the cells is a product of the sum of the surface areas of the inner surfaces of the partition walls forming the cells and the total number of the cells. The exhaust gas purification filter as described. 前記出口側栓部の長さを前記入口側栓部の長さの2〜5倍とすることを特徴とする請求項1乃至3に記載の排ガス浄化フィルタ。 The exhaust gas purification filter according to any one of claims 1 to 3, wherein a length of the outlet side plug portion is 2 to 5 times a length of the inlet side plug portion.
JP2006253414A 2005-11-10 2006-09-19 Exhaust emission control filter Withdrawn JP2007154870A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006253414A JP2007154870A (en) 2005-11-10 2006-09-19 Exhaust emission control filter
DE102006035420A DE102006035420A1 (en) 2005-11-10 2006-11-09 exhaust gas purifying filter
FR0609865A FR2893668A1 (en) 2005-11-10 2006-11-10 Internal combustion engine's exhaust gas purifying filter, has set of partitions, inserted between adjacent input cells, with surface area in range of five to nine percent of another area of another set of partitions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005326621 2005-11-10
JP2006253414A JP2007154870A (en) 2005-11-10 2006-09-19 Exhaust emission control filter

Publications (1)

Publication Number Publication Date
JP2007154870A true JP2007154870A (en) 2007-06-21

Family

ID=38016579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253414A Withdrawn JP2007154870A (en) 2005-11-10 2006-09-19 Exhaust emission control filter

Country Status (3)

Country Link
JP (1) JP2007154870A (en)
DE (1) DE102006035420A1 (en)
FR (1) FR2893668A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236030A (en) * 2008-03-27 2009-10-15 Tokyo Yogyo Co Ltd Honeycomb structure
JP2009236028A (en) * 2008-03-27 2009-10-15 Tokyo Yogyo Co Ltd Honeycomb structure
WO2015133435A1 (en) * 2014-03-03 2015-09-11 住友化学株式会社 Honeycomb filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562315B (en) 2016-04-22 2022-09-20 康宁股份有限公司 Rectangular outlet honeycomb structure, particulate filter, extrusion die and manufacturing method thereof
EP3714139B1 (en) 2017-11-21 2021-08-25 Corning Incorporated High ash storage, pattern-plugged, honeycomb bodies and particulate filters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236030A (en) * 2008-03-27 2009-10-15 Tokyo Yogyo Co Ltd Honeycomb structure
JP2009236028A (en) * 2008-03-27 2009-10-15 Tokyo Yogyo Co Ltd Honeycomb structure
WO2015133435A1 (en) * 2014-03-03 2015-09-11 住友化学株式会社 Honeycomb filter

Also Published As

Publication number Publication date
DE102006035420A1 (en) 2007-06-14
FR2893668A1 (en) 2007-05-25

Similar Documents

Publication Publication Date Title
US6800107B2 (en) Exhaust gas purifying filter
JP6200212B2 (en) Honeycomb catalyst body
US10060312B2 (en) Exhaust gas filter
US7972400B2 (en) Honeycomb filter system
JP5144075B2 (en) Honeycomb structure and manufacturing method thereof
JP6578938B2 (en) Exhaust gas filter
EP2108447A2 (en) Honeycomb structure
EP1568406A1 (en) Honeycomb filter and exhaust gas purification apparatus
JP2009095827A (en) Exhaust gas cleaning filter
JP5997025B2 (en) Honeycomb catalyst body
JP5997026B2 (en) Honeycomb catalyst body
JP2002256842A (en) Exhaust gas purifying filter
US9957861B2 (en) Honeycomb filter
WO2016125879A1 (en) Honeycomb structure
JP2007154870A (en) Exhaust emission control filter
JP2014054623A (en) Plugged honeycomb structure
JP2008212787A (en) Exhaust gas purification filter
JP6110750B2 (en) Plugged honeycomb structure
CN109833693B (en) Honeycomb filter
US20200101410A1 (en) Honeycomb filter
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
JP2005052750A (en) Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP2008104944A (en) Honeycomb filter
JP2022507550A (en) Honeycomb body having a series of passages with different hydraulic diameters and its manufacturing method
JP2018167221A (en) Honeycomb structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201