JP2009236030A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2009236030A
JP2009236030A JP2008083884A JP2008083884A JP2009236030A JP 2009236030 A JP2009236030 A JP 2009236030A JP 2008083884 A JP2008083884 A JP 2008083884A JP 2008083884 A JP2008083884 A JP 2008083884A JP 2009236030 A JP2009236030 A JP 2009236030A
Authority
JP
Japan
Prior art keywords
honeycomb structure
cells
cell
sealing
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008083884A
Other languages
Japanese (ja)
Other versions
JP5006238B2 (en
Inventor
Koji Tsuneyoshi
孝治 常吉
Hirosato Otsuka
浩吏 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2008083884A priority Critical patent/JP5006238B2/en
Publication of JP2009236030A publication Critical patent/JP2009236030A/en
Application granted granted Critical
Publication of JP5006238B2 publication Critical patent/JP5006238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure for achieving a filter which is hardly damaged by overheat during regeneration and has excellent durability. <P>SOLUTION: The honeycomb structure 1 includes partition wall parts formed of porous ceramics and defining multiple cells extending in the axial direction, one-end plug parts composed of sealing material and plugging the end portions of predetermined cells among the multiple ones at one end of the honeycomb structure, and the-other-end plug parts composed of sealing material and plugging the end portions of the residual cells at the other end of the honeycomb structure. The number of the cells provided with the one-end plug parts is larger than that of the cells provided with the the-other-end plug parts. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハニカム構造体に関し、詳しくは、再生時に過熱による損傷を生じにくく、かつ耐久性に優れたフィルタを提供することができるハニカム構造体に関する。   The present invention relates to a honeycomb structure, and more particularly, to a honeycomb structure that can provide a filter that is less likely to be damaged by overheating during regeneration and that has excellent durability.

内燃機関、ボイラー、化学反応機器、燃料電池用改質器等の触媒作用を利用する触媒用担体、排気ガス中のスス等の粒子状物質(特にディーゼルエンジンからの排気ガス中の粒子状物質(PM))の捕集フィルタ(以下、DPFという)等には、セラミックス製のハニカム構造体が用いられている。   Particulate matter such as soot in exhaust gas (particularly particulate matter in exhaust gas from a diesel engine (particularly particulate matter in exhaust gas from a diesel engine)) A honeycomb structure made of ceramics is used for a collection filter (hereinafter referred to as DPF) of PM)).

セラミックス製のハニカム構造体は、一般に、多孔質のセラミックスよりなり、流体の流路となる複数のセルを隔壁で区画する隔壁部2と、端面が市松模様状を呈するように隣接するセルが互いに反対側となる端部を封止するセラミックスよりなる封止材よりなる封止部3と、を有している。このハニカム構造体の端面を図8に示した。   A honeycomb structure made of a ceramic is generally made of porous ceramics, and partition walls 2 that divide a plurality of cells that serve as fluid flow paths by partition walls, and adjacent cells such that end faces form a checkered pattern are mutually connected. And a sealing portion 3 made of a sealing material made of ceramics that seals the end portion on the opposite side. The end face of this honeycomb structure is shown in FIG.

セラミックス製のハニカム構造体よりなるDPFは、セルを区画する隔壁を排気ガスが通過するウォールフロー型のフィルタとして用いられている。ウォールフロー型のフィルタは、セル壁に形成された連続した細孔を排気ガスが通過するときに、細孔径より大きな粒子のPMをこの隔壁部で捕集する。   A DPF made of a ceramic honeycomb structure is used as a wall flow type filter in which exhaust gas passes through partition walls that partition cells. The wall flow type filter collects particulate PM larger than the pore diameter in the partition wall when the exhaust gas passes through the continuous pores formed in the cell wall.

DPFは、捕集したPMが堆積したままでは目詰まりを起こすため、捕集したPMを除去する必要がある(DPFの再生)。捕集したPMを除去する方法のひとつに燃焼等によりPMを分解・除去する方法がある。また、DPFに触媒活性を発揮する触媒金属を担持し、この触媒金属を利用してPMを分解する方法もある。   Since the DPF is clogged if the collected PM is accumulated, it is necessary to remove the collected PM (regeneration of the DPF). One method of removing the collected PM is a method of decomposing and removing PM by combustion or the like. There is also a method in which a catalytic metal exhibiting catalytic activity is supported on the DPF, and PM is decomposed using this catalytic metal.

燃焼によりPMを除去するためには、ハニカム構造体をPMの燃焼温度以上に昇温する必要がある。ハニカム構造体が所定の温度以上に加熱されると、PMが燃焼し、燃焼時に発熱を生じる。そして、従来のハニカム構造体では、軸方向に垂直な断面の中央部(ハニカム構造体の軸心部)近傍に多くのPMが捕捉されており、PMを燃焼時にこの中央部が過剰に昇温していた。このようにハニカム構造体の一部(中央部)が過剰に昇温すると、ハニカム構造体に割れや溶損を生じたり、ハニカム構造体自身が変質を生じるという問題が発生していた。   In order to remove PM by combustion, the honeycomb structure needs to be heated to a temperature equal to or higher than the combustion temperature of PM. When the honeycomb structure is heated to a predetermined temperature or higher, PM burns and generates heat during combustion. In the conventional honeycomb structure, a large amount of PM is trapped in the vicinity of the central portion (axial center portion of the honeycomb structure) of the cross section perpendicular to the axial direction. Was. As described above, when a part of the honeycomb structure (center part) is excessively heated, there has been a problem that the honeycomb structure is cracked or melted, or the honeycomb structure itself is deteriorated.

本発明は上記実情に鑑みてなされたものであり、再生時に過熱による損傷を生じにくく、耐久性に優れたフィルタを得られるハニカム構造体を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a honeycomb structure that is less likely to be damaged due to overheating during regeneration and can provide a filter having excellent durability.

上記課題を解決するために本発明者らはセラミックス製のハニカム構造体について検討を重ねた結果本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have studied the ceramic honeycomb structure and have come to make the present invention.

すなわち、本発明のハニカム構造体は、多孔質のセラミックスよりなり軸方向に貫通する多数のセルを区画する隔壁部と、多数のセルのうち所定のセルの一方の端部を封止する封止材よりなる一端封止部と、残余のセルの他方の端部を封止する封止材よりなる他端封止部と、を有するハニカム構造体であって、一端封止部がもうけられたセルが、他端封止部がもうけられたセルよりも多いことを特徴とする。   That is, the honeycomb structure of the present invention is made of porous ceramics and partitions that partition a large number of cells penetrating in the axial direction, and sealing that seals one end of a predetermined cell among the large number of cells. A honeycomb structure having one end sealing portion made of a material and the other end sealing portion made of a sealing material for sealing the other end portion of the remaining cells, the one end sealing portion being provided The number of cells is larger than that of a cell provided with a sealing portion at the other end.

本発明のハニカム構造体は、セルを上流側で封止する一端封止部が他端封止部よりも多く形成されたことで、一端封止部が形成されたセルが密に配置された部分の近傍には、排気ガスが流れ込みにくいセルが存在する。この排気ガスが流れ込みにくいセルは、排気ガスに含まれるPMの捕集量が少ない。PMの捕集量が少なくなることで、再生時にハニカム構造体全体が過熱することを抑えることができる。この結果、本発明のハニカム構造体は、再生時に損傷を生じにくくなるとともに、耐久性も向上するものとなった。   In the honeycomb structure of the present invention, the one-end sealing portion that seals the cells on the upstream side is formed more than the other-end sealing portion, so that the cells in which the one-end sealing portion is formed are densely arranged. In the vicinity of the portion, there is a cell in which the exhaust gas hardly flows. The cell in which the exhaust gas is difficult to flow has a small amount of PM trapped in the exhaust gas. By reducing the amount of collected PM, it is possible to suppress overheating of the entire honeycomb structure during regeneration. As a result, the honeycomb structure of the present invention is less likely to be damaged during regeneration and also has improved durability.

本発明のハニカム構造体は、多孔質のセラミックスよりなり軸方向に貫通する多数のセルを区画する隔壁部と、多数のセルのうち所定のセルの一方の端部を封止する封止材よりなる一端封止部と、残余のセルの他方の端部を封止する封止材よりなる他端封止部と、を有するハニカム構造体である。すなわち、本発明のハニカム構造体は、多数のセルのいずれかの端部が封止材で封止されたウォールフロー型のハニカム構造体である。このようなウォールフロー型のハニカム構造体は、隔壁部を排気ガスが通過するフィルタ触媒に用いることが好ましい。本発明のハニカム構造体において、一方の端部が排気ガスの流れ方向での上流側に位置することが好ましい。   The honeycomb structure of the present invention is composed of a partition made of porous ceramics that partitions a large number of cells penetrating in the axial direction, and a sealing material that seals one end of a predetermined cell among the large number of cells. And a second end sealing portion made of a sealing material for sealing the other end portion of the remaining cells. That is, the honeycomb structure of the present invention is a wall flow type honeycomb structure in which any one end of a large number of cells is sealed with a sealing material. Such a wall flow type honeycomb structure is preferably used for a filter catalyst through which exhaust gas passes through the partition wall. In the honeycomb structure of the present invention, it is preferable that one end portion is located on the upstream side in the flow direction of the exhaust gas.

そして、本発明のハニカム構造体は、一端封止部がもうけられたセルが、他端封止部がもうけられたセルよりも多くなるように形成されている。つまり、本発明のハニカム構造体は、一方の端部が封止されたセルが他方の端部が封止されたセルより多くなるように形成されている。このように形成されると、一端封止部の形成されたセルの割合が50%以上である部分の近傍では、部分的にセルを通過するガスの流量が減少する。   The honeycomb structure of the present invention is formed so that the number of cells provided with one end sealing portion is larger than the number of cells provided with the other end sealing portion. That is, the honeycomb structure of the present invention is formed such that the number of cells sealed at one end is larger than the number of cells sealed at the other end. When formed in this manner, the flow rate of the gas partially passing through the cell is reduced in the vicinity of the portion where the ratio of the cells where the one-end sealing portion is formed is 50% or more.

具体的には、従来のハニカム構造体のように一端封止部が形成されたセルと他端封止部が形成されたセルとが同数である場合には、封止材で封止されていないセルの端部(たとえば、他端封止部の形成されたセルの一方の端部)からセル内にガスが流入し、隔壁を透過して、隣接するセル内に流れる。その後、封止材で封止されていない端部(例えば、一端封止部の形成されたセルの他方の端部)からガスが排出される。そして、従来のハニカム構造体では、一端封止部が形成されたセルと他端封止部が形成されたセルとが同数であるため、一端封止部が形成されたセルと他端封止部が形成されたセルは必ず隣接した構成となっている。つまり、従来のハニカム構造体では、隔壁を透過したガスは必ず排出される。   Specifically, when the number of cells having one end sealing portion and the number of cells having the other end sealing portion are the same as in a conventional honeycomb structure, the cells are sealed with a sealing material. Gas flows into the cell from the end of the non-cell (for example, one end of the cell where the other end sealing portion is formed), passes through the partition, and flows into the adjacent cell. Thereafter, the gas is discharged from the end portion that is not sealed with the sealing material (for example, the other end portion of the cell in which the one-end sealing portion is formed). In the conventional honeycomb structure, since the number of cells in which the one end sealing portion is formed and the number of cells in which the other end sealing portion is formed are the same, the cell in which the one end sealing portion is formed and the other end sealing. The cells in which the portions are formed are necessarily adjacent to each other. That is, in the conventional honeycomb structure, the gas that has permeated through the partition walls is necessarily discharged.

これに対し、本発明のように一端封止部と他端封止部のもうけられたセルの数に差がある場合には、一端封止部が形成されたセルが密に配置された部分が存在することとなっている。そして、この一端封止部が形成されたセルが密に配置された部分の近傍では、ハニカム構造体の軸方向にガスが流れにくくなっている。このようなハニカム構造体をフィルタ触媒として用いると、ガスが流れにくくなっている部分ではPMの捕集量が減少する。つまり、その後の再生時に分解されるPM量が少なくなっており、再生時に過剰に昇温しなくなる。この結果、ハニカム構造体の損傷が抑えられる。   On the other hand, when there is a difference in the number of cells provided in the one-end sealing portion and the other-end sealing portion as in the present invention, the cell in which the one-end sealing portion is formed is densely arranged. Is supposed to exist. And in the vicinity of the portion where the cells where the one-end sealing portion is formed are densely arranged, it is difficult for the gas to flow in the axial direction of the honeycomb structure. When such a honeycomb structure is used as a filter catalyst, the amount of collected PM is reduced in a portion where gas is difficult to flow. That is, the amount of PM decomposed during subsequent regeneration is small, and the temperature does not increase excessively during regeneration. As a result, damage to the honeycomb structure can be suppressed.

より具体的には、本発明のハニカム構造体では、一端封止部のもうけられたセルが多くなっており、一端封止部のもうけられたセル同士で隣接する場合もある構成となっている。このような構成では、ハニカム構造体の一方の端部から他方の端部に向かってガスが流れるときには、一端封止部が形成されたセル内にガスが流れ込まなくなっている。そして、一端封止部の形成されたセルが密に配置された部分では、他端封止部の形成されたセルの割合が相対的に少なくなっており、ハニカム構造体(の隔壁)を透過するガスの流量が減少する。   More specifically, in the honeycomb structure of the present invention, the number of cells provided with one-end sealing portions is increased, and the cells provided with one-end sealing portions may be adjacent to each other. . In such a configuration, when the gas flows from one end portion of the honeycomb structure toward the other end portion, the gas does not flow into the cell in which the one-end sealing portion is formed. In the portion where the cells where the one-end sealing portion is formed are densely arranged, the ratio of the cells where the other-end sealing portion is formed is relatively small, and it passes through the honeycomb structure (the partition walls). The flow rate of gas is reduced.

また、ハニカム構造体の他方の端部側から一方の端部側に向かってガスが流れるときには、一端封止部が形成されたセルの開口端がガス流の上流側に多数開口している。開口端からセル内に流入したガスは、セル壁を透過して隣接するセルに流れる、一端封止部が形成されたセルが密に配置された部分では、一端封止部が形成されたセル同士が隣接している。一端封止部が形成されたセル同士が隣接しているときには、隣接する同種のセル同士を区画する隔壁を透過するガス流量が大きく減少する。この結果、一端封止部の形成されたセルから隣接したセルに流れるガス流量が減少し、一端封止部の形成されたセル内に流入するガス流量が減少する。このとき、近傍のガスの流れを乱すため、一端封止部の形成されたセルが密に配置された部分では、ハニカム構造体を透過するガスの流量が減少する。   Further, when the gas flows from the other end side of the honeycomb structure toward the one end side, a large number of open ends of the cells in which the one-end sealing portions are formed are opened on the upstream side of the gas flow. The gas that has flowed into the cell from the open end passes through the cell wall and flows to the adjacent cell. In the portion where the cell having the one-end sealing portion is densely arranged, the cell having the one-end sealing portion is formed. They are adjacent to each other. When the cells in which the one-end sealing portion is formed are adjacent to each other, the flow rate of the gas that permeates through the partition walls that partition adjacent cells of the same type is greatly reduced. As a result, the gas flow rate flowing from the cell in which the one-end sealing portion is formed to the adjacent cell is reduced, and the gas flow rate flowing into the cell in which the one-end sealing portion is formed is reduced. At this time, in order to disturb the gas flow in the vicinity, the flow rate of the gas passing through the honeycomb structure decreases in the portion where the cells where the one-end sealing portions are formed are densely arranged.

本発明のハニカム構造体において、一端封止部が形成されたセル(および他端封止部が形成されたセル)のハニカム構造体の軸方向に垂直な断面における配置は、特に限定されるものではない。一端封止部が形成されたセルが、ハニカム構造体の断面に均一に配置してもよい。また、ハニカム構造体をフィルタ触媒に使用したときにガス流量を制御することが要求される部位に、一端封止部が形成されたセルを偏在させてもよい。   In the honeycomb structure of the present invention, the arrangement in the cross section perpendicular to the axial direction of the honeycomb structure of the cell in which the one-end sealing portion is formed (and the cell in which the other-end sealing portion is formed) is particularly limited. is not. The cells in which the one-end sealing portion is formed may be arranged uniformly in the cross section of the honeycomb structure. In addition, the cells in which the one-end sealing portion is formed may be unevenly distributed in a portion where it is required to control the gas flow rate when the honeycomb structure is used as a filter catalyst.

ハニカム構造体は、軸心部から径方向外方にかけて、一端封止部がもうけられたセルの割合が減少した状態で、それぞれの封止部をもつセルが配置されていることが好ましい。一端封止部のもうけられたセルの割合は、ハニカム構造体の断面を複数の部分に分割し、それぞれの部分での所定のセルの割合から求めることができる。一般的に、ハニカム構造体は、内部をガスが流れる管路中に組み付けられて使用される。そして、管路中を流れるガスの流速は、管の軸心部近傍が最も速く、径方向外方にかけて徐々に遅くなっている。つまり、管の軸心部は、外周部よりも多量のガスが流れる。そして、この管路中に組み付けられるフィルタ触媒では、軸心部が外周部よりも多量のPMを捕集することとなる。そして、軸心部から径方向外方にかけて一端封止部がもうけられたセルの割合が減少したハニカム構造体を用いると、軸心部で捕集するPM量と外周部で捕集するPM量との差が小さくなる。つまり、再生時にフィルタ触媒が部分的に過熱しなくなる。ここで、軸心部から径方向外方にかけて一端封止部がもうけられたセルの割合が減少したときに、一端封止部のもうけられたセルが、他端封止部のもうけられたセルの数以上であることが好ましい。   In the honeycomb structure, it is preferable that the cells having the respective sealing portions are arranged in a state where the ratio of the cells provided with the one-end sealing portion is reduced from the axial center portion to the radially outer side. The ratio of the cells provided with the one-end sealing portion can be obtained from the ratio of predetermined cells in each part by dividing the cross section of the honeycomb structure into a plurality of parts. Generally, a honeycomb structure is used by being assembled in a pipe through which gas flows. The flow velocity of the gas flowing in the pipe is the fastest in the vicinity of the axial center of the pipe and gradually decreases outward in the radial direction. That is, a larger amount of gas flows in the axial portion of the tube than in the outer peripheral portion. And in the filter catalyst assembled | attached in this pipe line, an axial center part will collect more PM than an outer peripheral part. And when the honeycomb structure in which the ratio of the cells in which the sealing portion is provided at one end from the axial center portion to the radially outer side is reduced is used, the PM amount collected at the axial center portion and the PM amount collected at the outer peripheral portion. The difference with is small. That is, the filter catalyst does not partially overheat during regeneration. Here, when the proportion of the cells with one end sealing portion is reduced from the axial center to the outside in the radial direction, the cell with one end sealing portion becomes the cell with the other end sealing portion. Or more.

一端封止部がもうけられたセル数と他端封止部のもうけられたセル数の差は、ハニカム構造体のセル数の50%以下であることが好ましい。セル数の差が50%を超えると、一端封止部がもうけられたセルの数が多くなりすぎ、ハニカム構造体を通過するガスの流量が大きく減少するとともに圧損が大きくなる。より好ましいセル数の差は、3〜50%である。   The difference between the number of cells provided with the one end sealing portion and the number of cells provided with the other end sealing portion is preferably 50% or less of the number of cells of the honeycomb structure. If the difference in the number of cells exceeds 50%, the number of cells provided with a sealing portion at one end becomes too large, the flow rate of gas passing through the honeycomb structure is greatly reduced, and the pressure loss is increased. A more preferable difference in the number of cells is 3 to 50%.

本発明のハニカム構造体において、隔壁部に区画されるセルの形状(断面形状)は、特に限定されるものではなく、従来公知の断面形状とすることができる。従来公知のセル形状のうち、正方形状であることがより好ましい。   In the honeycomb structure of the present invention, the shape (cross-sectional shape) of the cells partitioned into the partition walls is not particularly limited, and can be a conventionally known cross-sectional shape. Of the conventionally known cell shapes, a square shape is more preferable.

本発明のハニカム構造体を形成する多孔質セラミックスは、その材質が特に限定されるものではなく、従来公知の多孔質セラミックスを用いることができる。多孔質セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、チタン酸アルミニウムを主成分とするセラミックスよりなることがより好ましい。チタン酸アルミニウムよりなるセラミックスは、その内部にマイクロクラックをもつ。そして、このマイクロクラックをもつことで、ハニカム構造体が熱膨張を生じても、このマイクロクラックの開口が開閉することで熱膨張により生じる応力を緩和し、形状変化や損傷が生じなくなる。   The material of the porous ceramic forming the honeycomb structure of the present invention is not particularly limited, and a conventionally known porous ceramic can be used. The porous ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of a ceramic mainly composed of aluminum titanate. Ceramics made of aluminum titanate have microcracks inside. And even if the honeycomb structure undergoes thermal expansion by having these micro cracks, the stress caused by the thermal expansion is relaxed by opening and closing the openings of the micro cracks, so that no shape change or damage occurs.

本発明のハニカム構造体は、従来公知のハニカム構造体のように、複数部の分体を接合材で接合した構成としてもよい。すなわち、ハニカム構造体は、複数のセラミックス分体が接合材層を介して接合されてなることが好ましい。この構成とすると、分体ごとに一端封止部の形成されたセルの割合を変化させることができ、その結果として、ハニカム構造体におけるセルの配置を調節することができる。また、分体ごとに、材質や気孔率などの特性を変化させることができ、ハニカム構造体全体に所望の性能を付与できる。すなわち、ハニカム構造体が複数部の分体よりなるときに、それぞれの分体の一端封止部が形成されたセルの割合、材質や気孔率などの特性は同じであっても異なっていてもいずれでもよい。   The honeycomb structure of the present invention may have a configuration in which a plurality of parts are joined with a joining material, as in a conventionally known honeycomb structure. That is, the honeycomb structure is preferably formed by bonding a plurality of ceramic segments through the bonding material layer. With this configuration, it is possible to change the ratio of the cells in which the one-end sealing portion is formed for each segment, and as a result, it is possible to adjust the cell arrangement in the honeycomb structure. Further, characteristics such as material and porosity can be changed for each segment, and desired performance can be imparted to the entire honeycomb structure. That is, when the honeycomb structure is composed of a plurality of parts, the characteristics such as the ratio of the cells in which the one-end sealing part of each part is formed, the material, the porosity, and the like may be the same or different. Either is acceptable.

セラミックス分体を接合する接合材についても、従来公知の接合材を用いることができる。この接合材としては、例えば、SiC系接合材を用いることができる。セラミックス分体を接合材で接合したときにセラミックス分体の間に形成される接合材層は、0.5〜5.0mmの厚さで形成することが好ましい。   A conventionally known bonding material can also be used as the bonding material for bonding the ceramic body. As this bonding material, for example, a SiC-based bonding material can be used. The bonding material layer formed between the ceramic bodies when the ceramic bodies are joined with the joining material is preferably formed with a thickness of 0.5 to 5.0 mm.

ここで、本発明のハニカム構造体が複数部の分体が接合されてなるときに、ハニカム構造体の隔壁の厚さ方向における接合材層の厚さが非常に小さい場合には、接合材層の影響を無視してもよい。   Here, when the honeycomb structure of the present invention is formed by joining a plurality of segments, if the thickness of the bonding material layer in the thickness direction of the partition walls of the honeycomb structure is very small, the bonding material layer You can ignore the effects of.

さらに、ハニカム構造体が複数のセラミックス分体が接着剤層を介して接合されてなるときに、それぞれのセラミックス分体に形成されたセルの大きさ(セル形状)は、同じであっても、異なっていても、いずれでもよい。それぞれのセラミックス分体のセルの大きさ(セル形状)は、同じであることが好ましい。   Furthermore, when the honeycomb structure is formed by bonding a plurality of ceramic segments through an adhesive layer, the size of the cells (cell shape) formed in each ceramic segment is the same, It may be different or any. The size (cell shape) of each ceramic segment cell is preferably the same.

本発明のハニカム構造体は、周方向の外周面上に、0.5mm以上の厚さの外周材層を有することが好ましい。外周材層をもつことで、ハニカム構造体をDPFなどに使用したときに生じる形状変化が抑えられる。具体的には、ハニカム構造体をDPFなどの用途に使用したときに、ハニカム構造体は高熱にさらされる。そして、ハニカム構造体は、熱膨張を生じる。外周材層をもつことでこの熱膨張を抑えることができる。外周材層を構成する材質は、従来公知の材質を用いることができる。たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   The honeycomb structure of the present invention preferably has an outer peripheral material layer having a thickness of 0.5 mm or more on the outer peripheral surface in the circumferential direction. By having the outer peripheral material layer, the shape change that occurs when the honeycomb structure is used for a DPF or the like can be suppressed. Specifically, when the honeycomb structure is used for applications such as DPF, the honeycomb structure is exposed to high heat. The honeycomb structure undergoes thermal expansion. This thermal expansion can be suppressed by having the outer peripheral material layer. A conventionally known material can be used as the material constituting the outer peripheral material layer. For example, SiC, silica compounds, alumina compounds such as aluminum titanate, and the like can be used.

また、外周材層は、ハニカム構造体の形状により異なるため、その厚さが一概に決定できるものではないが、たとえば、0.5mm以上の厚さで形成することが好ましい。さらに好ましくは、0.5〜5.0mmである。   In addition, since the thickness of the outer peripheral material layer varies depending on the shape of the honeycomb structure, the thickness thereof cannot be determined unconditionally. More preferably, it is 0.5-5.0 mm.

本発明のハニカム構造体は、DPFに用いることが好ましい。本発明のハニカム構造体は、セルを区画する隔壁を排気ガス(ガス)が通過するウォールフロー型のフィルタ触媒として用いることができ、このようなフィルタ触媒のうち特に、DPFとして用いることが好ましい。   The honeycomb structure of the present invention is preferably used for a DPF. The honeycomb structure of the present invention can be used as a wall flow type filter catalyst through which exhaust gas (gas) passes through partition walls partitioning cells, and among these filter catalysts, it is particularly preferable to use as a DPF.

本発明のハニカム構造体をDPFとして用いるときに、少なくとも隔壁部の細孔表面に、アルミナ等よりなる多孔質酸化物、Pt,Pd,Rh等の触媒金属の少なくともひとつを担持したことが好ましい。   When the honeycomb structure of the present invention is used as a DPF, it is preferable to support at least one of a porous oxide made of alumina or the like and a catalyst metal such as Pt, Pd, or Rh on at least the pore surfaces of the partition walls.

本発明のハニカム構造体は、その外周形状が特に限定されるものではなく、従来公知の形状とすることができる。好ましくは、断面が一定の柱状であり、たとえば、断面が真円や楕円の略円柱状、断面が方形や多角形の角柱状とすることができ、好ましくは円柱形状である。   The outer peripheral shape of the honeycomb structure of the present invention is not particularly limited, and can be a conventionally known shape. Preferably, the cross section is a columnar shape, for example, the cross section may be a substantially cylindrical shape having a perfect circle or an ellipse, and the cross section may be a square or polygonal prismatic shape, preferably a cylindrical shape.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、DPF用ハニカム構造体を製造した。   As an example of the present invention, a honeycomb structure for DPF was manufactured.

(実施例1)
本実施例のハニカム構造体は、多孔質のセラミックスよりなるハニカム体2と、ハニカム体2のセルを封止する封止部3と、ハニカム体2の外周に配置された外周材層4と、からなる、円柱状の外形をなしたハニカム構造体1である。本実施例のハニカム構造体を、図1〜2に示した。図1には本実施例のハニカム構造体1の一方の端部側の端面を、図2には軸方向での断面を示した。なお、ハニカム構造体の一方の端部は、DPFとして用いたときに、排気ガスの流れ方向の上流側に配置される端部である。
Example 1
The honeycomb structure of this example includes a honeycomb body 2 made of porous ceramics, a sealing portion 3 that seals cells of the honeycomb body 2, an outer peripheral material layer 4 disposed on the outer periphery of the honeycomb body 2, Is a honeycomb structure 1 having a cylindrical outer shape. The honeycomb structure of the present example is shown in FIGS. FIG. 1 shows an end face on one end side of the honeycomb structure 1 of this example, and FIG. 2 shows a cross section in the axial direction. Note that one end of the honeycomb structure is an end disposed on the upstream side in the exhaust gas flow direction when used as a DPF.

ハニカム体2は、多孔質のSiCセラミックスよりなり、ハニカム体2の軸方向に貫通してのびる多数のセル20,21がセル壁22に区画されるとともに略円柱状の外周形状を有している。多数のセル20,21は、それぞれ正方形状の断面形状をなすようにセル壁22により区画されている。ハニカム体2を構成する多孔質セラミックスは、その細孔分布が均一となっている。   The honeycomb body 2 is made of porous SiC ceramics, and a large number of cells 20 and 21 extending in the axial direction of the honeycomb body 2 are partitioned by cell walls 22 and have a substantially cylindrical outer peripheral shape. . A large number of cells 20 and 21 are partitioned by cell walls 22 so as to have a square cross-sectional shape. The porous ceramics constituting the honeycomb body 2 has a uniform pore distribution.

ハニカム体2には、多数のセル20,21の軸方向の端部のいずれかに、各セル20,21を封止する封止材30,31よりなる封止部3が形成されている。封止材30は、ハニカム構造体1の一方の端部側でセル20を封止し、封止材31は他方の端部側でセル21を封止する。封止材30,31は、セル20,21内での長さが一定となるようにもうけられている。   In the honeycomb body 2, a sealing portion 3 made of sealing materials 30 and 31 for sealing the cells 20 and 21 is formed at any of axial ends of the many cells 20 and 21. The sealing material 30 seals the cells 20 on one end side of the honeycomb structure 1, and the sealing material 31 seals the cells 21 on the other end side. The sealing materials 30 and 31 are provided so that the length in the cells 20 and 21 is constant.

封止材30,31は、端面が略市松模様をなすようにセル20,21を封止している。さらに、封止材30は、断面正方形状のセルの対角線方向に並んだセル21のうち、二つごとのセルに封止材30が形成されている。封止材30,31は、ハニカム構造体1の端面において、部分的な偏り(セル20,21の繰り返しパターンでは、本来は封止材31が形成されるセル21のうち一部のセルに封止材30が形成されている)は存在するが、端面の全面では均一に分散した状態で形成されている。   The sealing materials 30 and 31 seal the cells 20 and 21 so that the end faces have a substantially checkered pattern. Furthermore, as for the sealing material 30, the sealing material 30 is formed in every two cells among the cells 21 arranged in the diagonal direction of the cells having a square cross section. The sealing materials 30 and 31 are partially biased on the end face of the honeycomb structure 1 (in the repeated pattern of the cells 20 and 21, the sealing materials 31 are originally sealed in some of the cells 21 in which the sealing material 31 is formed. (Stop material 30 is formed), but the entire end face is formed in a uniformly dispersed state.

本実施例のハニカム構造体1において、封止材30が封止したセル20の数が2564セルであり、封止材31が封止したセル21の数が2084セルであった。つまり、セル20とセル21のセル数の差は480セルであり、全セル数を100%としたときに、10.3%に相当する。   In the honeycomb structure 1 of the present example, the number of cells 20 sealed with the sealing material 30 was 2564 cells, and the number of cells 21 sealed with the sealing material 31 was 2084 cells. That is, the difference between the number of cells 20 and 21 is 480 cells, which corresponds to 10.3% when the total number of cells is 100%.

外周材層4は、ハニカム体2の外周面に均一な厚さで形成されたSiCセラミックス層である。   The outer peripheral material layer 4 is an SiC ceramic layer formed on the outer peripheral surface of the honeycomb body 2 with a uniform thickness.

(製造方法)
本実施例のハニカム構造体の製造方法を以下に示す。
(Production method)
A method for manufacturing the honeycomb structure of the present example will be described below.

まず、平均粒径12μmのSiC粉末75重量部、平均粒径10μmのSi粉末20重量部、平均粒径15μmのC粉末5重量部を秤量し、有機バインダーとしてメチルセルロースを加えたものに水を加えて適度の粘性にしたものに界面活性剤を加えて混合、混練した。得られた粘土を所定の形状の開口部を備えた型を用いて押出成形法で成形し、乾燥した。この成形体は、押出方向である軸方向に垂直な断面の形状が、一定となっている。 First, 75 parts by weight of SiC powder having an average particle diameter of 12 μm, 20 parts by weight of Si 3 N 4 powder having an average particle diameter of 10 μm, and 5 parts by weight of C powder having an average particle diameter of 15 μm were weighed, and methyl cellulose was added as an organic binder. A surfactant was added to what was made moderate viscosity by adding water and mixed and kneaded. The obtained clay was molded by an extrusion method using a mold having an opening of a predetermined shape and dried. This molded body has a constant cross-sectional shape perpendicular to the axial direction that is the extrusion direction.

乾燥後、成形体の製造に用いた粘土で、成形体のそれぞれの端部で所定のセルを目封止をした後に、2300℃で焼成して焼成体を得た。ここで、セルの封止は、セルの一方または他方の端部が封止され、成形体の端面でセグメント部において封止されたセルと封止されていないセルが略市松模様をなす状態である。なお、一方の端部でセルを目封止する封止材30の数が他方の端部でセルを目封止する封止材31よりも多くなるようにセルが封止される。   After drying, a predetermined cell was plugged at each end of the molded body with the clay used for manufacturing the molded body, and then fired at 2300 ° C. to obtain a fired body. Here, the sealing of the cell is such that one or the other end of the cell is sealed, and the cells sealed in the segment part and the unsealed cells form a substantially checkered pattern on the end surface of the molded body. is there. The cells are sealed so that the number of sealing materials 30 plugging the cells at one end is larger than the number of sealing materials 31 plugging the cells at the other end.

その後、円筒研削機を用いて全体の形状を円筒形状に成形した。   Thereafter, the entire shape was formed into a cylindrical shape using a cylindrical grinder.

その後、平均粒径20μmのSiC粉末50重量部、平均粒径1μmの球状シリカ粉末19重量部、バインダーとして1.26wt%のCMC溶液25重量部、及び分散剤としてアニオン系分散剤1重量部、結合剤としてコロイダルシリ力5重量部、を十分に混合して外周材スラリーを調製する。研削後の焼成体に調製された外周材スラリーを塗布した後に850℃で熱処理して本実施例のハニカム構造体1が製造された。   Thereafter, 50 parts by weight of SiC powder having an average particle diameter of 20 μm, 19 parts by weight of spherical silica powder having an average particle diameter of 1 μm, 25 parts by weight of a 1.26 wt% CMC solution as a binder, and 1 part by weight of an anionic dispersant as a dispersant, A peripheral material slurry is prepared by sufficiently mixing 5 parts by weight of colloidal shear force as a binder. After applying the prepared peripheral material slurry to the ground fired body, heat treatment was performed at 850 ° C. to manufacture the honeycomb structure 1 of this example.

(実施例2)
本実施例のハニカム構造体は、封止材30で封止されたセル20の配置が異なる以外は実施例1と同様なハニカム構造体1である。本実施例のハニカム構造体1の一方の端部の端面を、図3に示した。
(Example 2)
The honeycomb structure of the present example is the same honeycomb structure 1 as that of Example 1 except that the arrangement of the cells 20 sealed with the sealing material 30 is different. FIG. 3 shows an end face of one end portion of the honeycomb structure 1 of the present example.

封止材30は、ハニカム構造体の端面において、中心部(軸心部)から径方向外方に向かって、封止材30が封止したセルの数(存在割合)が減少するように形成されている。より具体的には、中心部近傍は、ほとんどが封止材30が封止したセル20が位置している。そして、外周部近傍では、封止材30が封止したセル20と封止材31が封止したセル21とが同数となっている。また、中心部と外周部の間の径方向の中間部では、封止材30が封止したセル20が封止材31が封止したセル21よりも多くなるように形成されている。   The sealing material 30 is formed on the end face of the honeycomb structure so that the number (existence ratio) of cells sealed by the sealing material 30 decreases from the central portion (axial center portion) outward in the radial direction. Has been. More specifically, in the vicinity of the center portion, the cell 20 that is mostly sealed with the sealing material 30 is located. In the vicinity of the outer peripheral portion, the number of cells 20 sealed by the sealing material 30 and the number of cells 21 sealed by the sealing material 31 are the same. Further, in the intermediate portion in the radial direction between the central portion and the outer peripheral portion, the cells 20 sealed with the sealing material 30 are formed to be larger than the cells 21 sealed with the sealing material 31.

本実施例のハニカム構造体1において、封止材30が封止したセル20の数が2260セルであり、封止材31が封止したセル21の数が2436セルであった。つまり、セル20とセル21のセル数の差は176セルであり、全セル数を100%としたときに、3.7%に相当する。   In the honeycomb structure 1 of the present example, the number of cells 20 sealed with the sealing material 30 was 2260 cells, and the number of cells 21 sealed with the sealing material 31 was 2436 cells. That is, the difference between the number of cells 20 and 21 is 176 cells, which corresponds to 3.7% when the total number of cells is 100%.

(実施例3)
本実施例は、ハニカム体2が複数のハニカム分体5を接合材で接合してなること以外は、実施例1のハニカム構造体1と同様なハニカム構造体1である。本実施例のハニカム構造体1の端面を図4に示した。
(Example 3)
The present embodiment is a honeycomb structure 1 similar to the honeycomb structure 1 of the first embodiment except that the honeycomb body 2 is formed by bonding a plurality of honeycomb bodies 5 with a bonding material. FIG. 4 shows the end face of the honeycomb structure 1 of the present example.

本実施例のハニカム構造体1は、まず、断面の外形が正方形状のハニカム分体5を実施例1のハニカム体の製造方法で製造する。このハニカム分体5は、実施例1の時と同様に、封止材30,31がもうけられたセル20,21が形成されている。つまり、封止材30,31は、端面が略市松模様をなすようにセル20,21を封止している。さらに、封止材30は、断面正方形状のセルの対角線方向に並んだセル21のうち、二つごとのセルに封止材30が形成されている。   In the honeycomb structure 1 of the present embodiment, first, the honeycomb body 5 having a square cross-sectional outer shape is manufactured by the honeycomb body manufacturing method of the first embodiment. As in the case of Example 1, the honeycomb segment 5 is formed with cells 20 and 21 provided with sealing materials 30 and 31. That is, the sealing materials 30 and 31 seal the cells 20 and 21 so that the end faces have a substantially checkered pattern. Furthermore, as for the sealing material 30, the sealing material 30 is formed in every two cells among the cells 21 arranged in the diagonal direction of the cells having a square cross section.

つづいて、実施例1において外周材スラリーとして用いた接合材スラリーをハニカム分体5の外周に塗布し、別のハニカム分体5をこの面にすりあわせて接合した。この接合を繰り返して、断面が正方形をなすように16個のハニカム分体5を接合し、80℃で乾燥した。   Subsequently, the bonding material slurry used as the outer peripheral material slurry in Example 1 was applied to the outer periphery of the honeycomb body 5, and another honeycomb body 5 was rubbed onto this surface and bonded. This joining was repeated, and the 16 honeycomb bodies 5 were joined so that the cross section was a square, and dried at 80 ° C.

そして、この接合体を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、両端部に封止材が形成されたセルが外周面を形成する略円柱状をなすようになされた。この切削時に、封止材のセルからの剥離がみられなかった。   Then, this joined body was cut using an electric saw to form an outer peripheral shape. The cutting with the electric saw was made so that the cell in which the sealing material was formed at both ends formed a substantially cylindrical shape forming the outer peripheral surface. During this cutting, no peeling of the sealing material from the cell was observed.

そして、実施例1の時と同様なスラリーを調製し、成形体の外周面に0.5mmの厚さで塗布し、80℃で乾燥した後に850℃で加熱して接合材およびスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。   Then, a slurry similar to that in Example 1 was prepared, applied to the outer peripheral surface of the molded body with a thickness of 0.5 mm, dried at 80 ° C., and then heated at 850 ° C. to solidify the bonding material and the slurry. It was. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface.

以上により、本実施例のハニカム構造体1を製造することができた。   As described above, the honeycomb structure 1 of this example could be manufactured.

本実施例のハニカム構造体1は、実施例1と同様に、封止材30,31が、ハニカム構造体1の端面において、部分的な偏りは存在するが、端面の全面では均一に分散した状態で形成されている。   In the honeycomb structure 1 of the present example, as in Example 1, the sealing materials 30 and 31 were evenly distributed over the entire end surface, although there was a partial bias in the end surface of the honeycomb structure 1. It is formed in a state.

(実施例4)
本実施例は、ハニカム体が複数のハニカム分体を接合材で接合してなること以外は、実施例2のハニカム構造体と同様なハニカム構造体である。
Example 4
The present example is a honeycomb structure similar to the honeycomb structure of Example 2, except that the honeycomb body is formed by bonding a plurality of honeycomb bodies with a bonding material.

本実施例のハニカム構造体は、まず、断面の外形が正方形状のハニカム分体5Aを実施例1の方法で製造する。このハニカム分体5Aは、実施例1のハニカム体と同様に封止材30,31がもうけられたセル20,21が形成されている。   In the honeycomb structure of the present example, first, a honeycomb body 5A having a square cross-sectional outer shape is manufactured by the method of Example 1. In this honeycomb segment 5A, cells 20 and 21 provided with sealing materials 30 and 31 are formed in the same manner as the honeycomb body of Example 1.

また、同様にして、断面の外形が正方形状のハニカム分体であって、封止材30,31が同数でもうけられたセル20,21が形成されたハニカム分体5Bを実施例1のハニカム体を製造するときに用いた方法と同様の方法で製造する。このハニカム分体5Bは、端面が市松模様をなすように、封止材30,31が配置されている。   Similarly, the honeycomb body 5B of the first embodiment is a honeycomb body 5B in which cells 20 and 21 having the same number of sealing materials 30 and 31 are formed. Manufactured in a manner similar to that used to produce the body. In the honeycomb divided body 5B, the sealing materials 30 and 31 are arranged so that the end faces form a checkered pattern.

つづいて、実施例1において外周材スラリーとして用いた接合材スラリーをハニカム分体5Aの外周に塗布し、別のハニカム分体5Aをこの面にすりあわせて接合した。この接合を繰り返して、4個のハニカム分体5Aが外形が正方形をなす状態に接合された接合体を製造した。つづいて、接合体の外周面に接合材スラリーを塗布し、別のハニカム分体5Bをこの面にすりあわせて接合した。この接合を繰り返して、断面が正方形をなすように16個のハニカム分体を接合し、80℃で乾燥した。このとき、セル20,21の数が異なるハニカム分体5Aを4個を内周部に、その外周をセル20,21の数が同じとなっているハニカム分体5Bで覆うように12個を配置した。   Subsequently, the bonding material slurry used as the outer peripheral material slurry in Example 1 was applied to the outer periphery of the honeycomb divided body 5A, and another honeycomb divided body 5A was rubbed onto this surface and bonded. This joining was repeated to produce a joined body in which the four honeycomb bodies 5A were joined to form a square outer shape. Subsequently, a bonding material slurry was applied to the outer peripheral surface of the bonded body, and another honeycomb segment 5B was rubbed and bonded to this surface. This joining was repeated, and 16 honeycomb bodies were joined so that the cross section was a square, and dried at 80 ° C. At this time, 12 honeycomb bodies 5A having different numbers of cells 20 and 21 are covered with four honeycomb bodies 5A on the inner periphery, and the outer periphery is covered with honeycomb bodies 5B having the same number of cells 20 and 21. Arranged.

そして、この接合体を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、両端部に封止材が形成されたセルが外周面を形成する略円柱状をなすようになされた。この切削時に、封止材のセルからの剥離がみられなかった。   Then, this joined body was cut using an electric saw to form an outer peripheral shape. The cutting with the electric saw was made so that the cell in which the sealing material was formed at both ends formed a substantially cylindrical shape forming the outer peripheral surface. During this cutting, no peeling of the sealing material from the cell was observed.

そして、実施例1の時と同様なスラリーを調製し、成形体の外周面に0.5mmの厚さで塗布し、80℃で乾燥した後に850℃で加熱して接合材およびスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。   Then, a slurry similar to that in Example 1 was prepared, applied to the outer peripheral surface of the molded body with a thickness of 0.5 mm, dried at 80 ° C., and then heated at 850 ° C. to solidify the bonding material and the slurry. It was. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface.

以上により、本実施例のハニカム構造体1を製造することができた。本実施例のハニカム構造体をその端面で図5に示した。なお、本実施例を示した図5においては、封止材30で封止されたセル20の配置がわかるように、セル21の対角線方向で一つおきのセルがセル20となっている。   As described above, the honeycomb structure 1 of this example could be manufactured. The honeycomb structure of the present example is shown in FIG. In FIG. 5 showing the present embodiment, every other cell in the diagonal direction of the cell 21 is a cell 20 so that the arrangement of the cells 20 sealed with the sealing material 30 can be seen.

本実施例のハニカム構造体1は、複数のハニカム分体5が接合材層6で接合された構成を有している。また、本実施例のハニカム構造体1は、軸心部側には、封止材30が形成されたセル20が多く配置されたハニカム分体5Aが配置され、その外周部には封止材30と封止材31とが同数で形成されている。すなわち、軸心部から径方向外方に進むにつれて封止材30が封止したセルの割合が減少している。   The honeycomb structure 1 of the present example has a configuration in which a plurality of honeycomb bodies 5 are bonded with a bonding material layer 6. Further, in the honeycomb structure 1 of the present example, the honeycomb body 5A in which many cells 20 in which the sealing material 30 is formed is disposed on the axial center side, and the sealing material is disposed on the outer peripheral portion thereof. 30 and the sealing material 31 are formed in the same number. That is, the ratio of the cells sealed with the sealing material 30 decreases as it progresses radially outward from the axial center.

(比較例)
本比較例は、全てのハニカム分体が、封止材30,31が同数でもうけられたセル20,21が形成された分体であること以外は、実施例3と同様なハニカム構造体である。
(Comparative example)
This comparative example is a honeycomb structure similar to that of Example 3, except that all the honeycomb segments are segments in which cells 20 and 21 with the same number of sealing materials 30 and 31 are formed. is there.

本比較例は、セル20とセル21とが同数で形成されている。本比較例のハニカム構造体1の端面を図6に示した。   In this comparative example, the same number of cells 20 and cells 21 are formed. The end face of the honeycomb structure 1 of this comparative example is shown in FIG.

(評価)
実施例3〜4および比較例のハニカム構造体の評価として、ハニカム構造体にスス(PM)を堆積させた状態で再生試験を行い、PMの燃焼率と燃焼時のハニカム構造体の最高温度を測定した。具体的な試験方法を以下に示す。
(Evaluation)
As an evaluation of the honeycomb structures of Examples 3 to 4 and the comparative example, a regeneration test was performed in a state where soot (PM) was deposited on the honeycomb structure, and the PM combustion rate and the maximum temperature of the honeycomb structure during combustion were determined. It was measured. Specific test methods are shown below.

まず、試験されるハニカム構造体の重量を測定し、その後、ハニカム構造体にPMを堆積させた。PMの堆積は、堆積したPMの堆積量がハニカム構造体1の見かけの容積1Lあたりおよそ8gとなるように行われた。PMの堆積は、ディーゼルエンジンの排気系にハニカム構造体を組み付けて行われた。このとき、ハニカム構造体の一方の端部側が排気ガスの流れ方向の上流側に位置する状態で組み付けられた。PMが堆積したハニカム構造体の重量を測定し、PMの堆積量を求めた。   First, the weight of the honeycomb structure to be tested was measured, and then PM was deposited on the honeycomb structure. The deposition of PM was performed so that the amount of deposited PM was about 8 g per 1 L of the apparent volume of the honeycomb structure 1. PM was deposited by assembling a honeycomb structure into the exhaust system of a diesel engine. At this time, the honeycomb structure was assembled in a state where one end portion side thereof was located on the upstream side in the exhaust gas flow direction. The weight of the honeycomb structure on which PM was deposited was measured to determine the amount of PM deposited.

そして、ハニカム構造体に熱電対を挿入した。熱電対は、ハニカム構造体の一方の端面から10.0mmの位置に配置された。熱電対は、軸心部近傍、軸心と外周との中心部近傍および外周部近傍に設置された。   Then, a thermocouple was inserted into the honeycomb structure. The thermocouple was disposed at a position 10.0 mm from one end face of the honeycomb structure. The thermocouple was installed in the vicinity of the shaft center, in the vicinity of the center between the shaft and the outer periphery, and in the vicinity of the outer periphery.

熱電対がセットされたハニカム構造体を電気炉にセットし、ハニカム構造体のセル内に700℃に加熱した窒素ガスを流通させて、ハニカム構造体を昇温した。このとき、炉内は、PMに対して不活性な雰囲気となった。   The honeycomb structure in which the thermocouple was set was set in an electric furnace, and nitrogen gas heated to 700 ° C. was passed through the cells of the honeycomb structure to raise the temperature of the honeycomb structure. At this time, the atmosphere in the furnace was inert to PM.

熱電対で測定されるハニカム構造体の温度が安定したら、窒素ガスから空気に切り替えた。空気は0.4m/sで流された。ハニカム構造体が十分に加熱された状態で、ハニカム構造体に流されるガスを窒素ガスから空気に切り替えたことにより、空気中の酸素とPMとが反応してハニカム構造体に堆積したPMが燃焼した。PMの燃焼は発熱反応であり、ハニカム構造体の内部が昇温した。   When the temperature of the honeycomb structure measured by the thermocouple was stabilized, the gas was switched from nitrogen gas to air. Air was flowed at 0.4 m / s. With the honeycomb structure sufficiently heated, the gas flowing through the honeycomb structure is switched from nitrogen gas to air, so that oxygen in the air reacts with PM and PM deposited on the honeycomb structure burns. did. The combustion of PM was an exothermic reaction, and the temperature inside the honeycomb structure increased.

その後、熱電対で測定される温度が安定したら、PMの燃焼が終了したとして空気の供給を終了した。   After that, when the temperature measured by the thermocouple was stabilized, the supply of air was terminated because PM combustion was terminated.

PMの燃焼試験後のハニカム構造体の重量を測定し、試験の前後の重量からPMの燃焼率を算出し、結果を表1に示した。   The weight of the honeycomb structure after the PM combustion test was measured, the PM combustion rate was calculated from the weight before and after the test, and the results are shown in Table 1.

Figure 2009236030
Figure 2009236030

表1に示したように、実施例3及び4のハニカム構造体は、比較例のハニカム構造体よりも再生時の最高温度が大幅に低下している。すなわち、排気ガスの流れ方向の上流側が閉塞したセル20の割合が多くなることで、再生時のハニカム構造体の最高温度を低下することができる。   As shown in Table 1, in the honeycomb structures of Examples 3 and 4, the maximum temperature during regeneration was significantly lower than that of the comparative honeycomb structure. That is, the maximum temperature of the honeycomb structure at the time of regeneration can be reduced by increasing the proportion of the cells 20 that are blocked on the upstream side in the exhaust gas flow direction.

そして、実施例4のハニカム構造体1は、実施例3のハニカム構造体と同等程度の最高温度でありながら、実施例3のハニカム構造体よりもPMの燃焼率が大幅に上昇している。実施例4のハニカム構造体では、封止材30により、セル20には排気ガスが流れ込まなくなっている。そして、セル20がハニカム構造体1の軸心部近傍に多数配置されていることから、図7に模式的に示したように、軸心部近傍でハニカム構造体1を通過する排気ガスの流量が減少する。これにより、実施例4のハニカム構造体1では、軸心部近傍でセル壁に捕捉されるPM量が減少する。   The honeycomb structure 1 of Example 4 has a PM combustion rate significantly higher than that of the honeycomb structure of Example 3 while having the highest temperature comparable to that of the honeycomb structure of Example 3. In the honeycomb structure of Example 4, the exhaust gas does not flow into the cell 20 due to the sealing material 30. Since a large number of cells 20 are arranged in the vicinity of the axial center portion of the honeycomb structure 1, the flow rate of exhaust gas passing through the honeycomb structure 1 in the vicinity of the axial center portion is schematically shown in FIG. Decrease. Thereby, in the honeycomb structure 1 of Example 4, the amount of PM trapped by the cell wall in the vicinity of the axial center portion is reduced.

より具体的には、図7に模式的に示したように、実施例4のハニカム構造体1は、排気系を構成する円管状の排気管7の軸心の中空部に固定された状態で組み付けられる。   More specifically, as schematically shown in FIG. 7, the honeycomb structure 1 of Example 4 is fixed to the hollow portion of the axial center of the tubular exhaust pipe 7 constituting the exhaust system. Assembled.

排気管7内を流れる排気ガスは、排気管7の軸心部近傍で最も流速が速く、外周部近傍で流速が遅くなっている。つまり、この排気系においては、排気管7の軸心部近傍で最も排気ガスの流量が多くなっている。   The exhaust gas flowing in the exhaust pipe 7 has the highest flow velocity in the vicinity of the axial center portion of the exhaust pipe 7 and the flow velocity in the vicinity of the outer peripheral portion. That is, in this exhaust system, the flow rate of the exhaust gas is greatest in the vicinity of the axial center of the exhaust pipe 7.

排気管7内を流れる排気ガスは、封止材31で封止されたセル31の一方の端部側からセル21内に流れ込む。そして、セル21を区画する多孔質のセラミックスよりなるセル壁の細孔を通って隣接するセル20に流れ込む(セル壁を透過する)。排気ガスがセル壁を透過するときに、セル壁の細孔により、排気ガスに含まれるPMが捕捉される。そして、PMが細く除去された排気ガスがセル20の他方の端部側から排出される。このとき、封止材30がセル20を一方の端部側で封止しており、セル20内には、排気ガスが直接流れ込まなくなっている。   The exhaust gas flowing in the exhaust pipe 7 flows into the cell 21 from one end side of the cell 31 sealed with the sealing material 31. And it flows into the cell 20 which adjoins through the pore of the cell wall which consists of the porous ceramics which divide the cell 21 (permeate | transmits a cell wall). When the exhaust gas passes through the cell wall, PM contained in the exhaust gas is captured by the pores of the cell wall. Then, the exhaust gas from which PM is finely removed is discharged from the other end side of the cell 20. At this time, the sealing material 30 seals the cell 20 on one end side, and the exhaust gas does not flow directly into the cell 20.

実施例4のハニカム構造体1は、セル20を封止した封止材30が排気ガスの流れ方向の上流側に位置している。封止材30により、セル20には排気ガスが流れ込まなくなっている。そして、セル20がハニカム構造体1の軸心部近傍に多数配置されていることから、軸心部近傍でハニカム構造体1を通過する排気ガスの流量が減少する。これにより、実施例4のハニカム構造体1では、軸心部近傍でセル壁に捕捉されるPM量が減少する。これにより、実施例4のハニカム構造体1は、捕集したPMを分解するために加熱しても、軸心部近傍に捕集されたPM量の少なさにより、捕集した後の再生処理時に軸心部近傍が過剰に昇温しなくなった。この結果、実施例4のハニカム構造体1は、再生時に過熱による損傷を生じにくくなることで、耐久性の低下が生じにくいフィルタとなった。   In the honeycomb structure 1 of Example 4, the sealing material 30 that seals the cells 20 is located on the upstream side in the exhaust gas flow direction. The sealing material 30 prevents the exhaust gas from flowing into the cell 20. And since many cells 20 are arrange | positioned in the axial center part vicinity of the honeycomb structure 1, the flow volume of the exhaust gas which passes the honeycomb structure 1 in the axial center vicinity reduces. Thereby, in the honeycomb structure 1 of Example 4, the amount of PM trapped by the cell wall in the vicinity of the axial center portion is reduced. Thereby, even if the honeycomb structure 1 of Example 4 is heated to decompose the collected PM, the regeneration process after the collection is performed due to the small amount of the PM collected in the vicinity of the axial center portion. Occasionally, the temperature in the vicinity of the shaft center did not rise excessively. As a result, the honeycomb structure 1 of Example 4 became a filter in which the durability was not easily lowered because the honeycomb structure 1 was less likely to be damaged due to overheating during regeneration.

実施例1のハニカム構造体の端面を示した図である。3 is a view showing an end face of a honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の断面を示した図である。1 is a view showing a cross section of a honeycomb structure of Example 1. FIG. 実施例2のハニカム構造体の断面を示した図である。4 is a view showing a cross section of a honeycomb structure of Example 2. FIG. 実施例3のハニカム構造体の端面を示した図である。6 is a view showing an end face of a honeycomb structure of Example 3. FIG. 実施例4のハニカム構造体の断面を示した図である。6 is a view showing a cross section of a honeycomb structure of Example 4. FIG. 比較例のハニカム構造体の端面を示した図である。It is the figure which showed the end surface of the honeycomb structure of a comparative example. 実施例1のハニカム構造体を車両の排気管に組み付けた状態を示した図である。It is the figure which showed the state which assembled | attached the honeycomb structure of Example 1 to the exhaust pipe of the vehicle. 従来のハニカム構造体の端面を示した図である。It is the figure which showed the end surface of the conventional honeycomb structure.

符号の説明Explanation of symbols

1:ハニカム構造体
2:ハニカム体
3:封止部
4:外周材層
5:ハニカム分体
6:接合材層
7:排気管
1: Honeycomb structure 2: Honeycomb body 3: Sealing portion 4: Peripheral material layer 5: Honeycomb segment 6: Bonding material layer 7: Exhaust pipe

Claims (5)

多孔質のセラミックスよりなり軸方向に貫通する多数のセルを区画する隔壁部と、
多数の該セルのうち所定のセルの一方の端部を封止する封止材よりなる一端封止部と、
残余の該セルの他方の端部を封止する封止材よりなる他端封止部と、
を有するハニカム構造体であって、
該一端封止部がもうけられたセルが、該他端封止部がもうけられたセルよりも多いことを特徴とするハニカム構造体。
A partition wall made of porous ceramics and defining a large number of cells penetrating in the axial direction;
One end sealing portion made of a sealing material for sealing one end portion of a predetermined cell among a number of the cells,
The other end sealing portion made of a sealing material for sealing the other end portion of the remaining cells,
A honeycomb structure having
A honeycomb structure characterized in that the number of cells provided with the one end sealing portion is larger than the number of cells provided with the other end sealing portion.
前記一方の端部が排気ガスの流れ方向での上流側に位置する請求項1記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the one end portion is located on the upstream side in the flow direction of the exhaust gas. 前記ハニカム構造体は、軸心部から径方向外方にかけて、前記一端封止部がもうけられたセルの割合が減少した状態で該一端封止部がもうけられたセルが配置されている請求項1〜2のいずれかに記載のハニカム構造体。   The honeycomb structure is provided with a cell provided with the one-end-sealed portion in a state where a ratio of the cells provided with the one-end-sealed portion is reduced from an axial center portion to a radially outer side. The honeycomb structure according to any one of 1 and 2. 前記一端封止部がもうけられたセル数と前記他端封止部のもうけられたセル数の差は、前記ハニカム構造体の前記セル数の50%以下である請求項1〜3のいずれかに記載のハニカム構造体。   The difference between the number of cells provided with the one-end sealing portion and the number of cells provided with the other-end sealing portion is 50% or less of the number of cells of the honeycomb structure. The honeycomb structure according to 1. 前記セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライト、ムライトより選ばれる一種を主成分とする請求項1〜4のいずれかに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 4, wherein the ceramic is mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, cordierite, and mullite.
JP2008083884A 2008-03-27 2008-03-27 Honeycomb structure Active JP5006238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083884A JP5006238B2 (en) 2008-03-27 2008-03-27 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083884A JP5006238B2 (en) 2008-03-27 2008-03-27 Honeycomb structure

Publications (2)

Publication Number Publication Date
JP2009236030A true JP2009236030A (en) 2009-10-15
JP5006238B2 JP5006238B2 (en) 2012-08-22

Family

ID=41250276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083884A Active JP5006238B2 (en) 2008-03-27 2008-03-27 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP5006238B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055412A (en) * 1991-06-28 1993-01-14 Sekiyu Sangyo Kasseika Center Exhaust emission control system for diesel engine
JPH05222913A (en) * 1992-02-14 1993-08-31 Nippon Soken Inc Exhaust emission control device
JP2002250216A (en) * 2000-12-20 2002-09-06 Corning Inc Diesel particulate filter
JP2003275521A (en) * 2002-03-19 2003-09-30 Ngk Insulators Ltd Honeycomb filter
JP2007154870A (en) * 2005-11-10 2007-06-21 Denso Corp Exhaust emission control filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055412A (en) * 1991-06-28 1993-01-14 Sekiyu Sangyo Kasseika Center Exhaust emission control system for diesel engine
JPH05222913A (en) * 1992-02-14 1993-08-31 Nippon Soken Inc Exhaust emission control device
JP2002250216A (en) * 2000-12-20 2002-09-06 Corning Inc Diesel particulate filter
JP2003275521A (en) * 2002-03-19 2003-09-30 Ngk Insulators Ltd Honeycomb filter
JP2007154870A (en) * 2005-11-10 2007-06-21 Denso Corp Exhaust emission control filter

Also Published As

Publication number Publication date
JP5006238B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5142532B2 (en) Honeycomb structure
KR100680078B1 (en) Honeycomb structure body
WO2009101682A1 (en) Honeycomb structure, exhaust gas purification apparatus and process for producing honeycomb structure
JP5409070B2 (en) Exhaust gas purification device manufacturing method and exhaust gas purification device
JP2007260595A (en) Honeycomb structure
JP6059936B2 (en) Honeycomb filter
JP2007216165A (en) Honeycomb filter
JP6169227B1 (en) Honeycomb filter
JP5096978B2 (en) Honeycomb catalyst body
JP2011194312A (en) Honeycomb structure
JP2011194382A (en) Honeycomb structure
JP2008212917A (en) Honeycomb structure body and apparatus for treating exhaust gas
JP2009183835A (en) Honeycomb filter and its manufacturing method
JP5124177B2 (en) Honeycomb structure
JP2011056463A (en) Honeycomb structure
JP5378842B2 (en) Honeycomb structure
JP5476011B2 (en) Exhaust gas purification device
JP2008043850A (en) Honeycomb structure
JP4402732B1 (en) Honeycomb structure
JP5234970B2 (en) Honeycomb structure, exhaust gas purification device, and method for manufacturing honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
JP5006237B2 (en) Honeycomb structure
JP2010111567A (en) Honeycomb structure
JP5006238B2 (en) Honeycomb structure
JP6824780B2 (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250