JP2005052750A - Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus - Google Patents

Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus Download PDF

Info

Publication number
JP2005052750A
JP2005052750A JP2003286469A JP2003286469A JP2005052750A JP 2005052750 A JP2005052750 A JP 2005052750A JP 2003286469 A JP2003286469 A JP 2003286469A JP 2003286469 A JP2003286469 A JP 2003286469A JP 2005052750 A JP2005052750 A JP 2005052750A
Authority
JP
Japan
Prior art keywords
catalyst
ceramic honeycomb
exhaust gas
honeycomb structure
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003286469A
Other languages
Japanese (ja)
Inventor
Yasuhiko Otsubo
靖彦 大坪
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003286469A priority Critical patent/JP2005052750A/en
Publication of JP2005052750A publication Critical patent/JP2005052750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a ceramic honeycomb catalyst for an exhaust gas cleaning apparatus for cleaning the exhaust gas from a diesel engine, whose catalyst-deposited amount per the unit volume can be increased and which is made compact and has high cleaning efficiency. <P>SOLUTION: This ceramic honeycomb catalyst is obtained by depositing a catalytic substance on a ceramic honeycomb structure having an outer peripheral wall and many circulation pores divided inside the outer peripheral wall by partitions in the axial direction. The average pore size of the partitions of the ceramic honeycomb structure is made to be ≥15 μm and the porosity is made to be 50-80%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、触媒作用を利用してエンジンからの排気ガスを浄化する排気ガス浄化に関するものである。   The present invention relates to exhaust gas purification that purifies exhaust gas from an engine using catalytic action.

ディーゼルエンジンはその燃費効率の高さから、欧州を中心に需要が増大している。しかしながら、ディーゼルエンジンの排気ガス中に含まれている粒子状物質(PM:Particulate Matter)及び窒素酸化物(NOx)が人体の健康に与える影響が大きいことから、このPM及びNOxの低減技術が種々検討されている。 Demand for diesel engines is increasing mainly in Europe due to its high fuel efficiency. However, since particulate matter (PM) and nitrogen oxides (NO x ) contained in the exhaust gas of diesel engines have a great influence on human health, this PM and NO x reduction technology Various studies have been made.

この排気ガス中のPM及びNOxを低減する排気ガス浄化装置として、例えば、特許文献1に記載の発明には、NO(一酸化窒素)及び粒子状物質を含む燃焼排気ガスを処理する、改良されたSCR機構であって、前記NOx中のNOの少なくとも一部をNO(二酸化窒素)に効果的に転化する酸化触媒と、粒子状物質トラップと、還元剤流体の供給源、及びSCR(Selective Catalytic Reduction)触媒をこの順序で組み合わせてなる、SCR機構が開示されている。ここで、SCRとは、選択的接触還元のことで、高温の排気ガスを、窒素系還元剤、特にアンモニアまたは、尿素の存在下で触媒上を通過させ窒素酸化物を窒素へ転化して浄化する方法である。この発明によれば、SCR触媒の上流に配置した酸化触媒、及び粒子状物質トラップが、SCR機構によるNOからNへの転化率を増加するのに特に有効であるとされている。この発明では、酸化触媒には、例えば、セラミックまたは金属製の、スルーフローハニカム担体上に担持された白金触媒が特に好適とされており、粒子状物質トラップには、セラミックから製造されるウオールフローフィルターが好ましいとされ、SCR触媒には、スルーフローハニカム担体上に担持されたV/WO/TiO触媒が好ましいとされている。 As an exhaust gas purifying device for reducing PM and NO x in the exhaust gas, for example, the invention described in Patent Document 1 includes an improvement in which combustion exhaust gas containing NO (nitrogen monoxide) and particulate matter is treated. a SCR mechanism that is, the NO oxidation catalyst to efficiently convert at least part NO 2 (nitrogen dioxide) of NO in x, and particulate matter trap, a source of reductant fluid, and SCR (Selective Catalytic Reduction) An SCR mechanism is disclosed in which catalysts are combined in this order. Here, SCR refers to selective catalytic reduction, which purifies by passing high-temperature exhaust gas over the catalyst in the presence of a nitrogen-based reducing agent, particularly ammonia or urea, to convert nitrogen oxides to nitrogen. It is a method to do. According to the present invention, the oxidation catalyst disposed upstream of the SCR catalyst and the particulate matter trap are considered to be particularly effective in increasing the conversion rate from NO x to N 2 by the SCR mechanism. In the present invention, for example, a platinum catalyst supported on a through-flow honeycomb carrier made of ceramic or metal is particularly suitable as the oxidation catalyst, and the particulate material trap has a wall flow produced from ceramic. A filter is preferred, and a V 2 O 5 / WO 3 / TiO 2 catalyst supported on a through-flow honeycomb carrier is preferred for the SCR catalyst.

また、特許文献2に記載の発明には、図3にこの発明に係わるディーゼルエンジンの排気系の構成図を示すように、ディーゼルエンジンの排気通路27に、NOを還元浄化するSCR触媒25を配設すると共に、前記SCR触媒の上流側に、上流側から順に酸化触媒23と、前記酸化触媒23の触媒作用により排気ガス中の硫黄分が酸化されて生じるサルフェート分を捕集できるフィルタ24を直列に配設したことを特徴とするディーゼルエンジンの排気ガス浄化装置が開示されている。そして、フィルタ24とSCR触媒25の間の排気通路27に還元剤供給装置26が設けてある。この発明の構成によれば、排気ガス中に含まれる硫黄分を排気ガス中のダストと共に捕集し、下流側のSCR触媒25が硫黄分やPM等のダストにより、被毒するのを防止できるので、効率よくNOを還元浄化でき、排気ガスによる公害を低減できるとしている。この発明において、酸化触媒23は、例えば、コージェライト製モノリス担体にアルミナの触媒担持層をコーティングにより形成し、この担持層に白金等の触媒成分を担持させたものが使用され、フィルタ24は、多数の排気通路が互いに平行に形成されたコージェライト製のハニカムフィルタやアルミナ等のセラミック不織布からなるフィルタ等を使用することができ、更に、SCR触媒25は、担体をAl、TiO等で形成し、活性体として触媒金属をPt、V、Fe、CuO、Mn、Cr、MoO等で形成する。 Further, in the invention described in Patent Document 2, as shown in FIG. 3, the exhaust system 27 of the diesel engine according to the present invention is provided with an SCR catalyst 25 for reducing and purifying NO x in the exhaust passage 27 of the diesel engine. And an oxidation catalyst 23 in order from the upstream side, and a filter 24 that can collect a sulfate component generated by oxidizing sulfur in exhaust gas by the catalytic action of the oxidation catalyst 23 on the upstream side of the SCR catalyst. An exhaust gas purifying device for a diesel engine characterized by being arranged in series is disclosed. A reducing agent supply device 26 is provided in the exhaust passage 27 between the filter 24 and the SCR catalyst 25. According to the configuration of the present invention, the sulfur content contained in the exhaust gas can be collected together with the dust in the exhaust gas, and the downstream SCR catalyst 25 can be prevented from being poisoned by dust such as the sulfur content and PM. so it can be efficiently reduce and purify NO x, are the pollution can be reduced by the exhaust gas. In the present invention, the oxidation catalyst 23 is, for example, a cordierite monolith support formed by coating an alumina catalyst support layer on a support and a catalyst component such as platinum is supported on the support layer. A cordierite honeycomb filter in which a large number of exhaust passages are formed in parallel with each other, a filter made of a ceramic nonwoven fabric such as alumina, and the like can be used. Further, the SCR catalyst 25 uses Al 2 O 3 , TiO 2 as a carrier. The catalyst metal is formed of Pt, V 2 O 5 , Fe 2 O 3 , CuO, Mn 2 O 3 , Cr 2 O 3 , MoO 3 or the like as an active substance.

特表2002−502927号公報Japanese translation of PCT publication No. 2002-502927 特開2000−303826号公報JP 2000-303826 A

しかしながら、上記特許文献1、2記載の排気ガス浄化処理技術においては、排気ガス通路に、酸化触媒、DPF、及びSCR触媒の各装置が直列に配置され、いずれの装置も外周壁と外周壁の内側で軸方向に隔壁により仕切られた多数の流通孔を有するハニカム構造体が使用されるため、取り付けスペースが膨大になるという問題があった。   However, in the exhaust gas purification processing technologies described in Patent Documents 1 and 2, the oxidation catalyst, the DPF, and the SCR catalyst are arranged in series in the exhaust gas passage, and each of the devices includes an outer peripheral wall and an outer peripheral wall. Since a honeycomb structure having a large number of flow holes partitioned on the inner side by partition walls in the axial direction is used, there is a problem that the installation space becomes enormous.

この排気ガス浄化装置の取り付けスペースを減らすためには、各装置とりわけ浄化装置の排気ガス流出側に配置されるSCR触媒の浄化効率を上げ、SCR触媒を小型化する必要があった。このSCR触媒では、ハニカム構造体の隔壁表面に担持された触媒物質と排気ガスとの触媒反応を利用して、排気ガスを浄化していることから、浄化効率を上げるには、排気ガスと触媒物質が接触できる機会を増やす必要があった。このためには、ハニカム構造体の単位体積あたりの幾何学的表面積を増やすことにより、ハニカム構造体に担持される触媒物質の量を増加させる必要があった。このハニカム構造体の単位体積当たりの幾何学的表面積は次式で表される。
単位体積当たりの幾何学的表面積:S=4×(P−t)/P (mm2/mm3)
ここで、Pは隔壁のピッチ(mm)、tは隔壁の厚さ(mm)を示す。
従って、ハニカム構造体の単位体積当たりの幾何学的表面積を大きくするには、隔壁の厚さを0.1mm未満に薄く、或いは隔壁のピッチを1.0mm未満に小さくした、例えば隔壁厚さ0.05mm、隔壁のピッチ0.85mmの、所謂、薄壁、高セル密度のハニカム構造体を用いる必要があった。
In order to reduce the installation space of the exhaust gas purification device, it is necessary to increase the purification efficiency of the SCR catalyst disposed on each device, particularly the exhaust gas outflow side of the purification device, and to reduce the size of the SCR catalyst. In this SCR catalyst, the exhaust gas is purified by utilizing the catalytic reaction between the catalyst material supported on the partition wall surface of the honeycomb structure and the exhaust gas. There was a need to increase the chances of material contact. For this purpose, it is necessary to increase the amount of the catalyst substance supported on the honeycomb structure by increasing the geometric surface area per unit volume of the honeycomb structure. The geometric surface area per unit volume of the honeycomb structure is expressed by the following equation.
Geometric surface area per unit volume: S = 4 × (P−t) / P 2 (mm 2 / mm 3 )
Here, P is the pitch (mm) of the partition walls, and t is the thickness (mm) of the partition walls.
Therefore, in order to increase the geometric surface area per unit volume of the honeycomb structure, the partition wall thickness is reduced to less than 0.1 mm or the partition wall pitch is decreased to less than 1.0 mm. It was necessary to use a so-called thin wall, high cell density honeycomb structure having a thickness of 0.05 mm and partition wall pitch of 0.85 mm.

しかしながら、SCR触媒に薄壁、高セル密度のハニカム構造体を用いると、ハニカム構造体流通孔方向の開口面積が小さくなり、ハニカム構造体入口の圧力損失が大きくなるため、ハニカム構造体全体の圧力損失が大きくなるという問題がある。さらに、ディーゼルエンジン用のSCR触媒担体の場合、通常、外径140mm以上の大口径ハニカム構造体となることから、成形時にハニカム構造体自身の自重により、隔壁が変形しやすく、アイソスタティック強度が低下するという問題点もあり、従来のガソリンエンジン用触媒担体として用いられてきた、隔壁の厚さが0.1mm未満で、隔壁のピッチが1.0mm未満の所謂、薄壁、高セル密度のハニカム構造体では、SCR触媒装置の小型化、高効率化には、限界が有るという問題があった。また、従来技術では、特に、SCR触媒装置用のセラミックハニカム構造体の多孔質隔壁に存在する細孔の大きさについての記載は一切されておらず、細孔の大きさについては特に考慮されたものではなかった。
本発明の目的は、上記問題を解決し、浄化効率が高く、小型化が可能な排気ガス浄化装置、特にSCR触媒装置に用いられるセラミックハニカム触媒を得ることにある。
However, when a thin wall, high cell density honeycomb structure is used for the SCR catalyst, the opening area in the direction of the honeycomb structure flow hole decreases, and the pressure loss at the honeycomb structure inlet increases. There is a problem of increased loss. Furthermore, in the case of an SCR catalyst carrier for a diesel engine, since it usually has a large-diameter honeycomb structure with an outer diameter of 140 mm or more, the partition walls are easily deformed by the weight of the honeycomb structure itself at the time of molding, and the isostatic strength is reduced. The so-called thin wall, high cell density honeycomb having a partition wall thickness of less than 0.1 mm and a partition wall pitch of less than 1.0 mm, which has been used as a conventional catalyst support for gasoline engines. In the structure, there is a problem that there is a limit to downsizing and high efficiency of the SCR catalyst device. Further, in the prior art, there is no description about the size of the pores present in the porous partition walls of the ceramic honeycomb structure for the SCR catalyst device, and the pore size is particularly considered. It was not a thing.
An object of the present invention is to solve the above problems and to obtain a ceramic honeycomb catalyst used in an exhaust gas purification device, particularly an SCR catalyst device, which has high purification efficiency and can be downsized.

本発明者は、排気ガス浄化装置の浄化効率向上及び小型化、特にSCR触媒に代表されるNO浄化装置用セラミックハニカム触媒の浄化効率向上と小型化を目的として、触媒担体であるセラミックハニカム構造体を薄壁、高セル密度とすることなく、単位体積当たりに担持される触媒物質の量を増加させるには、ハニカム構造体の隔壁の気孔率と平均細孔径の関係に着目すれば良いことを見出した。これにより排気ガス浄化装置用セラミックハニカム触媒の浄化効率の向上及び小型化が可能であることを見出し本発明に想到した。 The present inventor has purified efficiency and miniaturization of the exhaust gas purifying apparatus, in particular the purpose of purification efficiency and downsizing of the NO x purification device for a ceramic honeycomb catalyst represented by the SCR catalyst, ceramic honeycomb structure is a catalyst carrier In order to increase the amount of catalyst material supported per unit volume without making the body thin wall and high cell density, it is only necessary to focus on the relationship between the porosity of the partition walls of the honeycomb structure and the average pore diameter I found. As a result, it has been found that the purification efficiency and size reduction of the ceramic honeycomb catalyst for an exhaust gas purification device can be achieved, and the present invention has been conceived.

すなわち、本発明の排気ガス浄化装置用セラミックハニカム触媒は、外周壁と外周壁の内側で軸方向に多孔質の隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒であって、前記セラミックハニカム構造体の隔壁の平均細孔径が15μm以上であり、隔壁の気孔率が50%〜80%であることを特徴とする。   That is, in the ceramic honeycomb catalyst for an exhaust gas purifying apparatus of the present invention, the catalyst substance is supported on the ceramic honeycomb structure having a plurality of flow holes partitioned by the porous partition walls in the axial direction inside the outer peripheral wall and the outer peripheral wall. The ceramic honeycomb catalyst is characterized in that the average pore diameter of the partition walls of the ceramic honeycomb structure is 15 μm or more, and the porosity of the partition walls is 50% to 80%.

また、本発明の排気ガス浄化装置用セラミックハニカム触媒は、セラミックハニカム構造体の隔壁の壁厚が0.1〜0.35mm、隔壁のピッチが1.0〜2.0mmが好ましく、セラミックハニカム構造体はコージェライト質セラミックスからなることがより好ましい。また、本発明の排気ガス浄化装置用セラミックハニカム触媒は、触媒物質がSCR触媒であることが好ましい。   In the ceramic honeycomb catalyst for an exhaust gas purification apparatus of the present invention, the wall thickness of the partition walls of the ceramic honeycomb structure is preferably 0.1 to 0.35 mm, and the pitch of the partition walls is preferably 1.0 to 2.0 mm. More preferably, the body is made of cordierite ceramics. In the ceramic honeycomb catalyst for an exhaust gas purification apparatus of the present invention, the catalyst material is preferably an SCR catalyst.

また、もうひとつの本発明は、ディーゼルエンジンの排気通路に設置される排気ガス浄化装置であって、外周壁と外周壁の内側で軸方向に多孔質隔壁により仕切られた多数の流通孔を有し、前記隔壁の平均細孔径が15μm以上であり、前記隔壁の気孔率が50%〜80%であるセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒を備えたことを特徴とする排気ガス浄化装置である。   Another aspect of the present invention is an exhaust gas purification device installed in an exhaust passage of a diesel engine, and has an outer peripheral wall and a large number of flow holes partitioned axially by a porous partition wall inside the outer peripheral wall. An exhaust gas comprising a ceramic honeycomb catalyst in which a catalyst substance is supported on a ceramic honeycomb structure in which the average pore diameter of the partition walls is 15 μm or more and the porosity of the partition walls is 50% to 80%. It is a gas purification device.

本発明の排気ガス浄化装置用セラミックハニカム触媒は、外周壁と外周壁の内側に軸方向に隔壁により仕切られた多数の流通孔を有する多孔質の隔壁の平均細孔径が15μm以上であり、隔壁の気孔率が50%〜80%の多孔質セラミックハニカム構造体であることから、ハニカム構造体の単位体積当たりに担持可能な触媒物質の量を大きくすることができる。すなわち、隔壁の気孔率が50〜80%であって、平均細孔径が15μm以上の比較的大きなサイズの細孔を有することで、隔壁表面だけでなく隔壁表面に開口した細孔内にも触媒物質を担持することができるのである。これにより、排気ガスが、流通孔内を流入側から流出側に通過する際、軸方向に隔壁により仕切られた多数の流通孔内の隔壁表面に担持された触媒物質により、排気ガスの浄化が行われるのに加えて、隔壁表面に開口した細孔内の触媒物質も有効に触媒機能を発揮して排気ガスの浄化が行われる。このように、流通孔を構成する隔壁表面に加えて、隔壁内に形成された細孔の表面をも有効に使え、単位体積当たりの触媒担持量を大きくすることが出来るため、浄化性能を向上させることができるのと共に、排気ガス浄化装置用セラミックハニカム触媒の小型化が可能となり、排気ガス浄化装置全体を小型化することが可能となる。   The ceramic honeycomb catalyst for exhaust gas purification apparatus of the present invention has an average pore diameter of 15 μm or more of a porous partition wall having a plurality of flow holes axially partitioned by partition walls inside the outer peripheral wall and the outer peripheral wall. Therefore, the amount of the catalyst substance that can be supported per unit volume of the honeycomb structure can be increased. That is, since the porosity of the partition walls is 50 to 80% and the average pore diameter is relatively large, the catalyst is not only in the partition wall surface but also in the pores opened on the partition wall surface. The substance can be supported. Thus, when the exhaust gas passes through the flow hole from the inflow side to the outflow side, the exhaust gas is purified by the catalytic material supported on the partition wall surfaces in the numerous flow holes partitioned in the axial direction by the partition walls. In addition to being performed, the catalytic substance in the pores opened on the partition wall surface also effectively exhibits a catalytic function to purify the exhaust gas. In this way, in addition to the partition wall surface constituting the flow hole, the surface of the pores formed in the partition wall can be used effectively, and the amount of catalyst supported per unit volume can be increased, improving the purification performance. In addition, it is possible to reduce the size of the ceramic honeycomb catalyst for the exhaust gas purification device, and it is possible to reduce the size of the entire exhaust gas purification device.

図1に、本発明に係る排気ガス浄化装置用セラミックハニカム触媒11の斜視図を示す。図2は、図1のセラミックハニカム触媒11の模式断面図である。図1及び図2に示すように、本発明の排気ガス浄化装置用セラミックハニカム触媒11は、外周壁11aと、この外周壁11aの内周側で隔壁11bにより囲まれた多数の流通孔11cを有し、セラミックハニカム触媒全体として略円筒状又は略楕円筒状である。
本発明の排気ガス浄化装置用セラミックハニカム触媒11での排気ガスとの触媒反応は、例えば、以下の通り行われる。図2において、排気ガス27(図2では排気ガスの流れとして線で表している)は、セラミックハニカム触媒11の流入側で開口している流通孔11cから流入し、隔壁11bの細孔表面に担持された触媒物質により排気ガス27a中の例えばNOが浄化される。それと同時に隔壁表面に開口した細孔内に担持された触媒物質によっても、排気ガス27b中の例えばNOの浄化が行われる。
FIG. 1 shows a perspective view of a ceramic honeycomb catalyst 11 for an exhaust gas purifying apparatus according to the present invention. FIG. 2 is a schematic cross-sectional view of the ceramic honeycomb catalyst 11 of FIG. As shown in FIGS. 1 and 2, the ceramic honeycomb catalyst 11 for an exhaust gas purifying apparatus of the present invention has an outer peripheral wall 11a and a large number of flow holes 11c surrounded by partition walls 11b on the inner peripheral side of the outer peripheral wall 11a. The ceramic honeycomb catalyst as a whole has a substantially cylindrical shape or a substantially elliptical cylindrical shape.
The catalytic reaction with the exhaust gas in the ceramic honeycomb catalyst 11 for the exhaust gas purifying apparatus of the present invention is performed, for example, as follows. In FIG. 2, exhaust gas 27 (represented by a line as the exhaust gas flow in FIG. 2) flows from the flow holes 11 c opened on the inflow side of the ceramic honeycomb catalyst 11, and enters the pore surfaces of the partition walls 11 b. For example, NO x in the exhaust gas 27a is purified by the supported catalyst material. At the same time, for example, NO x in the exhaust gas 27b is purified by the catalyst material supported in the pores opened on the partition wall surface.

本発明の排気ガス浄化装置用セラミックハニカム触媒に用いられるセラミックハニカム構造体の隔壁中の平均細孔径を15μm以上、隔壁の気孔率を50%〜80%としたのは、以下の理由による。
ハニカム構造体の隔壁中の平均細孔径が15μm未満で、隔壁の気孔率が50%未満であると、従来のハニカム構造体と同様に隔壁表面に開口した細孔を有効に使うことができず、単位体積当たりの触媒量を著しく増加させることができず、結果として排気ガスと触媒物質との反応が促進されないからである。一方、気孔率が80%を超えると、ハニカム構造体の強度が低下し、排気ガス浄化用装置として使用された際の、機械的応力や振動により破損するおそれがあるからである。排気ガス浄化用触媒担体の隔壁中の平均細孔径は好ましくは18μm以上40μm以下、気孔率は、好ましくは、60〜75%である。尚、気孔率および平均細孔径は水銀圧入法で測定したものとして定義している。
The reason why the average pore diameter in the partition walls of the ceramic honeycomb structure used in the ceramic honeycomb catalyst for the exhaust gas purifying apparatus of the present invention is 15 μm or more and the porosity of the partition walls is 50% to 80% is as follows.
When the average pore diameter in the partition walls of the honeycomb structure is less than 15 μm and the porosity of the partition walls is less than 50%, the pores opened on the partition surface cannot be used effectively as in the conventional honeycomb structure. This is because the amount of catalyst per unit volume cannot be remarkably increased, and as a result, the reaction between the exhaust gas and the catalyst substance is not promoted. On the other hand, if the porosity exceeds 80%, the strength of the honeycomb structure is lowered, and there is a risk of damage due to mechanical stress or vibration when used as an exhaust gas purification device. The average pore diameter in the partition walls of the exhaust gas purification catalyst carrier is preferably 18 μm or more and 40 μm or less, and the porosity is preferably 60 to 75%. The porosity and average pore diameter are defined as those measured by mercury porosimetry.

また、本発明の排気ガス浄化装置用セラミックハニカム触媒に用いられるセラミックハニカム構造体の多孔質の隔壁が含有する細孔のうち、細孔径20〜40μmの総細孔容積が全細孔容積の25%以上であると好ましい。細孔径20〜40μmの細孔の容積を全細孔容積の25%以上とすることにより、単位体積当たりの触媒量をより増加させることができ、排気ガスの浄化性能を向上させることができるのと共に、40μm以上の細孔の量を相対的に減少させ、強度低下を防ぐことができる。   Of the pores contained in the porous partition walls of the ceramic honeycomb structure used in the ceramic honeycomb catalyst for an exhaust gas purification apparatus of the present invention, the total pore volume with a pore diameter of 20 to 40 μm is 25 of the total pore volume. % Or more is preferable. By setting the volume of pores having a pore diameter of 20 to 40 μm to 25% or more of the total pore volume, the amount of catalyst per unit volume can be further increased, and the exhaust gas purification performance can be improved. At the same time, it is possible to relatively reduce the amount of pores of 40 μm or more, and to prevent a decrease in strength.

本発明の排気ガス浄化装置用セラミックハニカム触媒に用いられるハニカム構造体の隔壁の厚さは、0.1〜0.35mmが好ましく、隔壁のピッチは1.0〜2.0mmが好ましいとしたのは、以下の理由による。隔壁の厚さが0.1mm未満では、隔壁の気孔率を50〜80%の高い範囲に設定していることからハニカム構造体の強度が低下し、好ましくない。一方、隔壁の厚さが0.35mmを超えると、担体の貫通孔入口の開口面積が小さくなり、排気ガスに対する入口端面の通気抵抗が大きくなるため、ハニカム構造体の圧力損失が大きくなるからである。より好ましい隔壁の厚さは、0.2〜0.35mmであり、更に好ましい隔壁の厚さは0.29〜0.35mmである。また、隔壁のピッチが1.0mm未満であると、ハニカム構造体の貫通孔入口の開口面積が小さくなることから、ハニカム構造体入口の圧力損失が大きくなるためである。一方、隔壁のピッチが2.0mmを超えると、触媒を担持する幾何学的表面積が小さくなり、触媒担持量が減少するからである。より好ましい隔壁のピッチは、1.4〜1.7mmである。   The thickness of the partition walls of the honeycomb structure used in the ceramic honeycomb catalyst for an exhaust gas purification apparatus of the present invention is preferably 0.1 to 0.35 mm, and the pitch of the partition walls is preferably 1.0 to 2.0 mm. The reason is as follows. If the partition wall thickness is less than 0.1 mm, the porosity of the partition wall is set in a high range of 50 to 80%, which is not preferable because the strength of the honeycomb structure is lowered. On the other hand, if the partition wall thickness exceeds 0.35 mm, the opening area of the inlet of the through hole of the carrier is reduced, and the ventilation resistance at the inlet end face with respect to the exhaust gas is increased. is there. A more preferable partition wall thickness is 0.2 to 0.35 mm, and a still more preferable partition wall thickness is 0.29 to 0.35 mm. In addition, if the partition wall pitch is less than 1.0 mm, the opening area of the through hole entrance of the honeycomb structure becomes small, and thus the pressure loss at the entrance of the honeycomb structure becomes large. On the other hand, if the pitch of the partition walls exceeds 2.0 mm, the geometric surface area for supporting the catalyst becomes small, and the amount of catalyst supported decreases. A more preferable partition pitch is 1.4 to 1.7 mm.

また、本発明の排気ガス浄化装置用セラミックハニカム触媒は、触媒物質がSCR触媒であることが好ましいのは、特に、SCR触媒が今後のディーゼル機関の排気ガス規制、とりわけNOの低減に重要と考えられ、従来の酸化触媒とDPFを組み合わせた排気ガス浄化装置に付加されるため、特に小型化が要求されるからである。
本発明の排気ガス浄化装置用セラミックハニカム触媒に担持される触媒物質は、NOを浄化することのできる触媒物質であれば、いずれでも良いが、好ましくはV、TiO、WO、Fe、CuO、Mn、Cr、MoO等である。
The exhaust gas purifying device for a ceramic honeycomb catalyst of the present invention, the it is preferred that the catalyst material is a SCR catalyst, in particular, the SCR catalyst exhaust gas regulations in the future of the diesel engine, especially important in reduction of the NO x This is because it is considered to be added to an exhaust gas purification device that combines a conventional oxidation catalyst and a DPF, so that a reduction in size is particularly required.
The catalyst material supported on the ceramic honeycomb catalyst for an exhaust gas purifying apparatus of the present invention may be any catalyst material that can purify NO x , but preferably V 2 O 5 , TiO 2 , WO 3 Fe 2 O 3 , CuO, Mn 2 O 3 , Cr 2 O 3 , MoO 3 and the like.

上記、本発明の排気ガス浄化装置用セラミックハニカム触媒に用いられるハニカム構造体の隔壁を構成する材料としては、本発明が主にエンジンの排気ガスを浄化するために使用されるため、耐熱性に優れた材料を使用することが好ましく、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミック材料を用いることが好ましい。中でも、コージェライトを主結晶とするハニカム構造体は、製造が容易で、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。   As the material constituting the partition walls of the honeycomb structure used in the ceramic honeycomb catalyst for the exhaust gas purifying apparatus of the present invention, the present invention is mainly used for purifying the exhaust gas of the engine. It is preferable to use an excellent material, and it is preferable to use a ceramic material whose main crystal is at least one selected from the group consisting of cordierite, alumina, mullite, silicon nitride, silicon carbide, and LAS. Among them, a honeycomb structure having cordierite as a main crystal is most preferable because it is easy to manufacture, inexpensive, excellent in heat resistance and corrosion resistance, and has low thermal expansion.

また、本発明の排気ガス浄化装置は、ディーゼルエンジンの排気通路に設置される排気ガス浄化装置であって、外周壁と外周壁の内側で軸方向に多孔質.隔壁により仕切られた多数の流通孔を有し、前記隔壁の平均細孔径が15μm以上であり、前記隔壁の気孔率が50%〜80%であるセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒を備えていることから、セラミックハニカム構造体、単位体積あたりの触媒物質担持量を大きくすることができるため、NO浄化効率が向上され、上述したように従来の排気ガス浄化装置よりも浄化効率を向上させることができるのと共に、小型化することができる。 The exhaust gas purification device of the present invention is an exhaust gas purification device installed in an exhaust passage of a diesel engine, and is porous in the axial direction inside the outer peripheral wall and the outer peripheral wall. Ceramic in which a catalyst material is supported on a ceramic honeycomb structure having a large number of flow holes partitioned by partition walls, an average pore diameter of the partition walls of 15 μm or more, and a porosity of the partition walls of 50% to 80% Since the honeycomb catalyst is provided, the amount of catalyst material supported per unit volume of the ceramic honeycomb structure can be increased, so that the NO x purification efficiency is improved and, as described above, more than the conventional exhaust gas purification device. The purification efficiency can be improved and the size can be reduced.

以上説明したように、本発明のセラミックハニカム触媒は、外周壁と外周壁の内側で軸方向に隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒であって、前記セラミックハニカム構造体の隔壁の平均細孔径が15μm以上、気孔率が50%〜80%とすることで、単位体積当たりの触媒担持量を大きくでき、NO浄化性能を向上させると共に、排気ガス浄化装置を小型化することができる。このため、本発明のコージェライトセラミックハニカム触媒をSCR触媒に用いることで排気ガス浄化装置を小型化で供給することが可能となる。 As described above, the ceramic honeycomb catalyst of the present invention is a ceramic honeycomb catalyst in which a catalytic substance is supported on a ceramic honeycomb structure having a plurality of flow holes that are partitioned by partition walls in the axial direction inside the outer peripheral wall and the outer peripheral wall. In addition, when the average pore diameter of the partition walls of the ceramic honeycomb structure is 15 μm or more and the porosity is 50% to 80%, the amount of catalyst supported per unit volume can be increased, and the NO x purification performance is improved. At the same time, the exhaust gas purification device can be miniaturized. Therefore, by using the cordierite ceramic honeycomb catalyst of the present invention as the SCR catalyst, it becomes possible to supply the exhaust gas purification device with a reduced size.

以下、本発明の実施の形態を詳細に説明する。
本発明のセラミックハニカム触媒に使用される外周壁と外周壁の内側に軸方向に隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体を製造する方法の一例について説明する。まずセラミックス原料粉末に有機バインダー、潤滑剤等の成形助剤、および造孔材を添加、混合後、所定量の水を注入して、混合、混練を行い可塑性を有する坏土を調整する。その後、この坏土を公知のハニカム構造体用金型を用いて押出成形することにより、外周壁と外周壁の内側で軸方向に隔壁により囲まれた、断面が角形状の流通孔を有するハニカム構造の成形体を得る。その後、所定の長さに切断し、乾燥、焼成を行い外周壁と外周壁の内側で隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体を得る。尚、この際、造孔材の種類と添加量を適宜調整することで、平均細孔径が15μm以上、気孔率50〜80%のセラミックハニカム構造体が得られる。具体的には、造孔材は、平均粒径が15μm以上で粒径の揃ったものを選択し、セラミック原料粉末100質量部に対して10質量部以上添加することで、平均細孔径が15μm以上で気孔率50〜80%のセラミックハニカム構造体を得ることができる。
Hereinafter, embodiments of the present invention will be described in detail.
An example of a method for producing a ceramic honeycomb structure having a peripheral wall used in the ceramic honeycomb catalyst of the present invention and a plurality of flow holes axially partitioned by partition walls inside the peripheral wall will be described. First, an organic binder, a forming aid such as a lubricant, and a pore former are added to the ceramic raw material powder, and after mixing, a predetermined amount of water is injected, and mixing and kneading are performed to prepare a clay having plasticity. Thereafter, the kneaded material is extruded using a known honeycomb structure mold, so that the outer wall and the inner wall of the outer wall are surrounded by a partition wall in the axial direction, and the honeycomb having a square-shaped passage hole. A shaped body is obtained. Thereafter, the ceramic honeycomb structure is cut into a predetermined length, dried and fired to obtain a ceramic honeycomb structure having a large number of flow holes partitioned by a partition wall inside the outer peripheral wall and the outer peripheral wall. At this time, a ceramic honeycomb structure having an average pore diameter of 15 μm or more and a porosity of 50 to 80% can be obtained by appropriately adjusting the type and addition amount of the pore former. Specifically, a pore former having an average particle diameter of 15 μm or more and having a uniform particle diameter is selected, and by adding 10 parts by mass or more to 100 parts by mass of the ceramic raw material powder, the average pore diameter is 15 μm. Thus, a ceramic honeycomb structure having a porosity of 50 to 80% can be obtained.

尚、成形後、若しくは、焼成後のハニカム構造を有するセラミック成形体若しくは焼成体の外周壁と、その周縁部を除去加工した上で、除去加工された外周面にセラミック骨材と無機バインダ、有機バインダ等からなるコーティング材を塗布、乾燥、硬化させて外周壁を形成し、外周壁と外周壁の内側に隔壁により仕切られた多数の貫通孔を有するセラミックハニカム構造体とする方法を採用しても良い。   In addition, after forming or removing the outer peripheral wall of the ceramic molded body or fired body having the honeycomb structure after firing and the peripheral portion thereof, the ceramic aggregate, the inorganic binder, and the organic on the removed outer peripheral surface Applying a coating material consisting of a binder, etc., drying and curing to form an outer peripheral wall, adopting a method to make a ceramic honeycomb structure having a large number of through holes partitioned by partition walls inside the outer peripheral wall and the outer peripheral wall Also good.

得られた、セラミックハニカム構造体に対して、例えばV、TiO、WO、Fe、CuO、Mn、Cr、MoOなどの触媒物質を、ハニカム構造体の隔壁表面及び、隔壁表面に開口した細孔内に担持して、セラミックハニカム触媒を得る。
以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。
For example, a catalyst material such as V 2 O 5 , TiO 2 , WO 3 , Fe 2 O 3 , CuO, Mn 2 O 3 , Cr 2 O 3 , or MoO 3 is added to the obtained honeycomb structure. The ceramic honeycomb catalyst is obtained by supporting the structure in the partition wall surface and the pores opened in the partition wall surface.
Examples of the present invention will be described below, but the present invention is not limited thereto.

カオリン、タルク、シリカ、水酸化アルミニウム、アルミナなどの粉末を調整して、質量比で、SiO:47〜53%、Al:32〜38%、MgO:12〜16%及びCaO、NaO、KO、TiO、Fe、PbO、Pなどの不可避的に混入する成分を全体で2.5%以下を含むようなコージェライト生成原料粉末に、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロース、および造孔剤として平均粒径10〜45μmの各種グラファイト粉末及び又は樹脂粉末を添加し、規定量の水を注入して、更に、十分な混合を行い、ハニカム構造に押出成形可能な坏土を調整した。このとき、隔壁の平均細孔径、気孔率が、各種得られるように、造孔剤の粒径及び添加量を選定した。そして、得られた坏土をハニカム構造体用押出成形金型を通過させることにより押出成形を行い、外周壁と、この外周壁の内周側で隔壁により囲まれた断面が四角形状の流通孔を有するハニカム構造の成形体を得た。この際、各種隔壁厚さ、隔壁ピッチが得られるように、金型の寸法を選択した。その後、乾燥、切断、焼成を行うことにより、外径143.8mm、長さ152.4mmの寸法を有し、表1に示す各種隔壁厚さ、隔壁ピッチ、隔壁の平均細孔径、隔壁の気孔率、細孔径20〜40μmの細孔容積の全細孔容積に対する割合を有する試験NO.1〜10のコージェライト質セラミックハニカム構造体を作製した。ここで、隔壁中の平均細孔径、気孔率、細孔径20〜40μmの細孔容積は、Micromeritics社製のオートポアIII9410を使用し、水銀圧入法で測定した。 Kaolin, talc, silica, aluminum hydroxide, to adjust the powder, such as alumina, in a mass ratio, SiO 2: 47~53%, Al 2 O 3: 32~38%, MgO: 12~16% , and CaO, Molded into cordierite-producing raw material powder containing 2.5% or less of components inevitably mixed such as Na 2 O, K 2 O, TiO 2 , Fe 2 O 3 , PbO, P 2 O 5 Add methylcellulose and hydroxypropylmethylcellulose as auxiliaries, and various graphite powders and / or resin powders with an average particle size of 10 to 45 μm as pore-forming agents, inject a specified amount of water, and further mix thoroughly, The extrudable clay was adjusted to the structure. At this time, the particle diameter and the addition amount of the pore-forming agent were selected so that various average pore diameters and porosity of the partition walls were obtained. Then, the obtained kneaded material is extruded by passing through an extrusion mold for a honeycomb structure, and the outer peripheral wall and a flow hole having a rectangular cross section surrounded by partition walls on the inner peripheral side of the outer peripheral wall A formed article having a honeycomb structure was obtained. At this time, the dimensions of the mold were selected so that various partition wall thicknesses and partition wall pitches were obtained. Thereafter, drying, cutting, and firing are performed to have dimensions of an outer diameter of 143.8 mm and a length of 152.4 mm, and various partition wall thicknesses, partition wall pitches, partition wall average pore diameters, and partition wall pores shown in Table 1. Test NO. Having a ratio of the pore volume having a pore diameter of 20 to 40 μm to the total pore volume. 1 to 10 cordierite ceramic honeycomb structures were produced. Here, the average pore size, porosity, and pore volume of 20 to 40 μm in the partition walls were measured by mercury porosimetry using an Autopore III9410 manufactured by Micromeritics.

これら10種類の試験NO.1〜10のセラミックハニカム構造体に対し、7.5Nm3/minエア流量時のハニカム構造体前後の圧力損失と静水圧でのアイソスタティック強度を測定した。圧力損失が300mmH2O以下であったものを(◎)、350mmH2O以下であったものを(○)、350mmH2Oを超えたものを(×)として評価した。また、アイソスタティック強度については1.5MPa以上であったものを(◎)、1.0MPa以上1.5MPa未満であったものを(○)、1.0MPa未満であったものを(×)として評価した。これらの結果を表1に示す。 These 10 kinds of test NO. For 1 to 10 ceramic honeycomb structures, the pressure loss before and after the honeycomb structure at an air flow rate of 7.5 Nm 3 / min and the isostatic strength at hydrostatic pressure were measured. What pressure loss was 300mmH 2 O or less (◎), those were 350mmH 2 O or less (○), it was evaluated that exceeds the 350mmH 2 O as (×). In addition, the isostatic strength is 1.5 MPa or more (◎), 1.0 MPa or more and less than 1.5 MPa (◯), and less than 1.0 MPa (×). evaluated. These results are shown in Table 1.

次に、これら10種類の試験NO.1〜10のセラミックハニカム構造体に、TiO、WO、V粉末に、バインダとしてアルミナゾル、シリカゾル、及び水を加えてスラリー状としたものを、ウオッシュコートして担持して試験NO.1〜10のセラミックハニカム触媒を得た。これらのセラミックハニカム触媒に対して、排気ガス温度300℃、NOを400ppm含む排気ガスを導入すると共に、排気ガス中のNO量と同量の尿素(N換算)を添加した上で、ハニカム構造体出口の排気ガス中のNO量を比較し、NO浄化性能を調査した。NO浄化率が90%以上であったものを(◎)、NO浄化率が70%以上90%未満であったものを(○)、NO浄化率が70%未満であったものを(×)として評価した。結果を併せて表1に示す。 Next, these 10 types of test Nos. 1 to 10 ceramic honeycomb structures, TiO 2 , WO 3 , V 2 O 5 powder, alumina sol, silica sol, and water added as a binder to form a slurry, supported by wash coating and tested . 1 to 10 ceramic honeycomb catalysts were obtained. To these ceramic honeycomb catalysts, exhaust gas temperature of 300 ° C., exhaust gas containing 400 ppm of NO x was introduced, and urea (N conversion) equal to the amount of NO x in the exhaust gas was added. The NO x amount in the exhaust gas at the structure outlet was compared, and the NO x purification performance was investigated. What the NO x purification rate was 90% or more (◎), what the NO x purification rate is less than 70% 90% (○), those the NO x purification rate was less than 70% (X) was evaluated. The results are also shown in Table 1.

上記の、圧力損失、アイソスタティック強度、NOx浄化率の評価結果から、総合判定した結果を表1に示す。圧力損失、アイソスタティック強度、NOx浄化率の評価結果のうち、一つでも(×)があったものを総合判定(×)とし、評価結果が(○)または(◎)であったものを総合判定(○)とし、評価結果がいずれも(◎)であったものを総合判定(◎)とした。 Table 1 shows the results of comprehensive determination from the evaluation results of the pressure loss, isostatic strength, and NOx purification rate. Of the evaluation results for pressure loss, isostatic strength, and NO x purification rate, the one with (×) is the overall judgment (×), and the evaluation result is (○) or (◎) A comprehensive judgment (○) was made, and an evaluation result of (◎) was taken as a comprehensive judgment (◎).

Figure 2005052750
Figure 2005052750

表1より、セラミックハニカム構造体の隔壁の平均細孔径と気孔率が、本発明の範囲内である本発明例の試験NO.1のセラミックハニカム触媒は、同じ隔壁厚さと隔壁ピッチを有する比較例である試験NO.7のセラミックハニカム触媒に対し、単位体積当りの触媒担持量が多いことがわかる。本発明例である試験NO.2のセラミックハニカム触媒は、同じ隔壁厚さと隔壁ピッチを有する比較例である試験NO.8のセラミックハニカム触媒に対し、単位体積当りの触媒担持量が多いことがわかる。また、試験NO.2のセラミックハニカム触媒と同じ隔壁厚さと隔壁ピッチを有する比較例である試験NO.9のセラミックハニカム触媒は、単位体積当りの触媒担持量は多くなったが、気孔率が本発明の範囲外であるためアイソスタティック強度の評価が(×)となった。また、本発明例の試験NO.5のセラミックハニカム触媒は、同じ隔壁厚さと隔壁ピッチを有する比較例である試験NO.10のセラミックハニカム触媒に対し、単位体積当りの触媒担持量が多いことがわかる。   From Table 1, test NO. Of the present invention example in which the average pore diameter and the porosity of the partition walls of the ceramic honeycomb structure are within the scope of the present invention. 1 is a comparative example having the same partition wall thickness and partition wall pitch. It can be seen that the amount of catalyst supported per unit volume is larger than the ceramic honeycomb catalyst of No. 7. Test No. which is an example of the present invention. 2 is a comparative example having the same partition wall thickness and partition wall pitch. It can be seen that the amount of catalyst supported per unit volume is larger than the ceramic honeycomb catalyst of 8. Test NO. Test No. 2 is a comparative example having the same partition wall thickness and partition wall pitch as the ceramic honeycomb catalyst of FIG. In the ceramic honeycomb catalyst of No. 9, the amount of the catalyst supported per unit volume was increased, but since the porosity was outside the range of the present invention, the isostatic strength was evaluated as (x). In addition, the test No. of the present invention example. 5 is a comparative example having the same partition wall thickness and partition wall pitch. It can be seen that for 10 ceramic honeycomb catalysts, the amount of catalyst supported per unit volume is large.

以上、説明したように本発明例である試験NO.1〜5のセラミックハニカム触媒は、セラミックハニカム構造体の隔壁の平均細孔径が15μm以上、気孔率が50〜80%とすることで、隔壁表面だけでなく、隔壁表面に開口した細孔内まで触媒を担持して単位体積当りの触媒担持量を増加させることが可能であるため、NOx浄化率の評価が(◎)または(○)であるのと、共に、圧力損失、及びアイソスタティック強度の評価は(◎)または(○)であることから、総合判定は、いずれも(◎)または(○)であった。   As described above, the test NO. The ceramic honeycomb catalyst of 1 to 5 has an average pore diameter of 15 μm or more and a porosity of 50 to 80% of the partition walls of the ceramic honeycomb structure, so that not only the partition wall surface but also the pores opened on the partition wall surface Since it is possible to increase the amount of catalyst supported per unit volume by supporting the catalyst, the evaluation of the NOx purification rate is (() or (○), as well as the pressure loss and isostatic strength. Since the evaluation was (◎) or (○), the overall judgment was either (◎) or (○).

一方、本発明の比較例である、試験NO.6〜8及び試験NO.10のセラミックハニカム触媒は、セラミックハニカム構造体隔壁の気孔率が60%未満、或いは、平均細孔径が15μm未満であることから、隔壁表面に開口した細孔内まで触媒を十分担持させることができず、単位体積あたりの触媒担持量が少なくなったため、NOx浄化率の評価が(×)となり、総合判定はいずれも(×)となった。また、本発明の比較例である、試験NO.9のセラミックハニカム触媒はセラミックハニカム構造体隔壁の気孔率が80%を越えていることから、隔壁表面に開口した細孔内まで触媒を十分担持させることができたものの、アイソスタティック強度の判定が(×)となり、総合判定は(×)であった。   On the other hand, test NO. Which is a comparative example of the present invention. 6-8 and test NO. In the ceramic honeycomb catalyst No. 10, the porosity of the ceramic honeycomb structure partition walls is less than 60% or the average pore diameter is less than 15 μm, so that the catalyst can be sufficiently supported in the pores opened on the partition wall surfaces. As a result, the amount of catalyst supported per unit volume decreased, so the evaluation of the NOx purification rate was (x), and the overall judgment was (x). In addition, as a comparative example of the present invention, test NO. Since the ceramic honeycomb catalyst of No. 9 has a porosity of the ceramic honeycomb structure partition wall exceeding 80%, the catalyst can be sufficiently loaded into the pores opened on the partition wall surface, but the isostatic strength is judged. (×), and the overall judgment was (×).

すなわち、本発明のセラミックハニカム触媒は、SCR触媒の性能を発揮するための触媒担持量を大きくできることから、SCR装置のNO浄化率を向上させることができるため、小型化することが可能となることが判る。さらに、同セラミックハニカム構造体に対して隔壁の厚さを0.1〜0.35mm、隔壁のピッチを1.0〜2.0mmとすることでNO浄化率に優れると共に、圧力損失性能および機械的強度特性に優れたセラミックハニカム触媒を供給することが可能であることが判る。 That is, the ceramic honeycomb catalyst of the present invention, because it can increase the catalyst loading to demonstrate the performance of the SCR catalyst, it is possible to improve the NO x purification efficiency of the SCR device, it is possible to miniaturize I understand that. Furthermore, 0.1~0.35Mm the thickness of the partition wall with respect to the ceramic honeycomb structure, excellent in the NO x purification rate pitch of the partition walls by a 1.0 to 2.0 mm, pressure loss performance and It can be seen that a ceramic honeycomb catalyst having excellent mechanical strength characteristics can be supplied.

実施例1の試験NO.3のセラミックハニカム構造体と同様のものを作製し、次いで、この外径143.8mm、全長152.4mmのハニカム構造体の全長が短くなるよう切断して、隔壁厚さ0.3mm、隔壁ピッチ1.5mm、隔壁の気孔率73%、隔壁の平均細孔径35μm、外径143.8mmであり、全長が100mmである試験NO.11のセラミックハニカム構造体を得た。一方、実施例1の試験NO.10のセラミックハニカム構造体を押出成形する際に、試験NO.10より全長が長くなるように切断して、隔壁厚さ0.3mm、隔壁ピッチ1.5mm、隔壁の気孔率66%、隔壁の平均細孔径13μm、外径143.8mmであり、全長が168mmである試験NO.12のセラミックハニカム構造体を得た。これら試験NO.11及び12のセラミックハニカム構造体に対し、実施例1と同様に圧力損失、アイソスタティック強度の測定を行うと共に、TiO、WO、V粉末に、バインダとしてアルミナゾル、シリカゾル、及び水を加えてスラリー状としたものを、ウオッシュコートして担持して試験NO.11及び12のセラミックハニカム触媒を得た。そして、これらのセラミックハニカム触媒に対して、実施例1と同様にNOx浄化率の評価を行った。これらの結果を、試験NO.10のセラミックハニカム触媒の評価結果と共に、表2に示す。 Test No. 1 of Example 1 3 is manufactured, and then cut so that the total length of the honeycomb structure having an outer diameter of 143.8 mm and a total length of 152.4 mm is shortened to a partition wall thickness of 0.3 mm and a partition wall pitch. Test NO. 1.5 mm, porosity of partition wall 73%, average pore diameter of partition wall 35 μm, outer diameter 143.8 mm, and total length 100 mm. Eleven ceramic honeycomb structures were obtained. On the other hand, test NO. When extruding the ceramic honeycomb structure of No. 10, test NO. Cut to a length longer than 10, the partition wall thickness is 0.3 mm, the partition wall pitch is 1.5 mm, the partition wall porosity is 66%, the partition wall average pore diameter is 13 μm, the outer diameter is 143.8 mm, and the total length is 168 mm. Test NO. 12 ceramic honeycomb structures were obtained. These test NO. For the ceramic honeycomb structures 11 and 12, pressure loss and isostatic strength were measured in the same manner as in Example 1, and TiO 2 , WO 3 , V 2 O 5 powders were bound with alumina sol, silica sol, and water as binders. Was added in the form of a slurry and washed and supported by a test coat. 11 and 12 ceramic honeycomb catalysts were obtained. Then, for these ceramic honeycomb catalysts, the NOx purification rate was evaluated in the same manner as in Example 1. These results are shown in test NO. It shows in Table 2 with the evaluation result of 10 ceramic honeycomb catalysts.

Figure 2005052750
Figure 2005052750

表2に記載した試験NO.10〜12セラミックハニカム触媒は、いずれも、隔壁厚さが0.3mm、隔壁ピッチが1.5mm、外径が143.8mmと同寸法であるが、全長は100〜190mmと異なっている。本発明例である試験NO.11のセラミックハニカム触媒は、全長が100mmであるが、触媒1ケあたりの触媒担持量が大きいため、総合判定は(◎)であった。一方、比較例である試験NO.10のセラミックハニカム触媒は、試験NO.11のセラミックハニカム触媒に比べて、全長が長くなっているものの、触媒1ケあたりの触媒担持量が小さいため、NOx浄化率の判定が(×)となり、総合判定は(×)となった。更に、比較例である試験NO.12の、セラミックハニカム触媒は、試験NO.11のセラミックハニカム触媒に比べて、全長が長くなっており、触媒1ケあたりの触媒担持量が大きいため、総合判定は(◎)となったが、全長が試験NO.11のセラミックハニカム触媒に比べて大きくなった。以上の結果から、本発明のセラミックハニカム触媒は、比較例に対して、NOx浄化率を改善するとともに、全長を小さくして小型化させることが可能であることがわかる。   Test No. described in Table 2 The 10 to 12 ceramic honeycomb catalysts all have the same partition wall thickness of 0.3 mm, the partition wall pitch of 1.5 mm, and the outer diameter of 143.8 mm, but the total length is different from 100 to 190 mm. Test No. which is an example of the present invention. Eleventh ceramic honeycomb catalyst had a total length of 100 mm, but the total amount of catalyst supported per catalyst was large, so the overall judgment was (◎). On the other hand, test NO. No. 10 ceramic honeycomb catalyst has a test NO. Although the total length was longer than that of the 11 ceramic honeycomb catalyst, the amount of catalyst supported per catalyst was small, so the determination of the NOx purification rate was (x), and the overall determination was (x). Furthermore, test NO. No. 12, ceramic honeycomb catalyst, test NO. Compared to the ceramic honeycomb catalyst of No. 11, the total length is longer and the amount of catalyst supported per catalyst is large, so the overall judgment was (◎). Compared to 11 ceramic honeycomb catalysts. From the above results, it can be seen that the ceramic honeycomb catalyst of the present invention can improve the NOx purification rate and can be reduced in size by reducing the overall length as compared with the comparative example.

本発明のセラミックハニカム触媒の斜視図である。1 is a perspective view of a ceramic honeycomb catalyst of the present invention. 本発明のセラミックハニカム触媒の模式断面図である1 is a schematic cross-sectional view of a ceramic honeycomb catalyst of the present invention. 本発明のセラミックハニカム触媒を用いた排気ガス浄化装置を示すディーゼルエンジンの排気系の構成図である。It is a block diagram of the exhaust system of the diesel engine which shows the exhaust gas purification apparatus using the ceramic honeycomb catalyst of this invention.

符号の説明Explanation of symbols

11:セラミックハニカム触媒
11a:セラミックハニカム触媒の外周壁
11b:セラミックハニカム触媒の隔壁
11c、セラミックハニカム触媒の流通孔
12a:セラミックハニカム触媒の隔壁表面
12b:セラミックハニカム触媒の隔壁中の細孔表面
21:エンジン
22:排気通路
23:酸化触媒
24:DPF
25:SCR触媒
26:還元剤供給装置
27:排気ガス
27a:隔壁表面に担持された触媒物質により浄化された排気ガス
27b:隔壁表面に開口した細孔内に担持された触媒物質により浄化された排気ガス
11: Ceramic honeycomb catalyst 11a: Outer peripheral wall of ceramic honeycomb catalyst 11b: Partition walls of ceramic honeycomb catalyst 11c, distribution holes of ceramic honeycomb catalyst 12a: Partition wall surface of ceramic honeycomb catalyst 12b: Surface of pores in partition walls of ceramic honeycomb catalyst 21: Engine 22: Exhaust passage 23: Oxidation catalyst 24: DPF
25: SCR catalyst 26: Reductant supply device 27: Exhaust gas 27a: Exhaust gas purified by catalyst material supported on the partition wall surface 27b: Purified by catalyst material supported in pores opened on the partition wall surface Exhaust gas

Claims (5)

外周壁と外周壁の内側で軸方向に多孔質の隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒であって、前記セラミックハニカム構造体の隔壁の平均細孔径が15μm以上であり、隔壁の気孔率が50%〜80%であることを特徴とする排気ガス浄化装置用セラミックハニカム触媒。 A ceramic honeycomb catalyst in which a catalyst substance is supported on a ceramic honeycomb structure having a large number of flow holes partitioned axially by porous partition walls inside the outer peripheral wall and the outer peripheral wall, the partition walls of the ceramic honeycomb structure A ceramic honeycomb catalyst for an exhaust gas purification apparatus, wherein the average pore diameter of the catalyst is 15 μm or more, and the porosity of the partition walls is 50% to 80%. 前記セラミックハニカム構造体の隔壁の厚さが0.1〜0.35mm、隔壁のピッチが1.0〜2.0mmであることを特徴とする請求項1に記載の排気ガス浄化装置用セラミックハニカム触媒。 2. The ceramic honeycomb for an exhaust gas purification apparatus according to claim 1, wherein the ceramic honeycomb structure has a partition wall thickness of 0.1 to 0.35 mm and a partition wall pitch of 1.0 to 2.0 mm. catalyst. 前記セラミックハニカム構造体がコージェライト質セラミックスからなることを特徴とする請求項1または2に記載の排気ガス浄化装置用セラミックハニカム触媒。 3. The ceramic honeycomb catalyst for an exhaust gas purifying apparatus according to claim 1, wherein the ceramic honeycomb structure is made of cordierite ceramic. 前記触媒物質がSCR触媒であることを特徴とする請求項1乃至3いずれかに記載の排気ガス浄化装置用セラミックハニカム触媒。 The ceramic honeycomb catalyst for an exhaust gas purification device according to any one of claims 1 to 3, wherein the catalyst material is an SCR catalyst. ディーゼルエンジンの排気通路に設置される排気ガス浄化装置であって、外周壁と外周壁の内側で軸方向に多孔質の隔壁により仕切られた多数の流通孔を有し、前記隔壁の平均細孔径が15μm以上であり、前記隔壁の気孔率が50%〜80%であるセラミックハニカム構造体に触媒物質が担持されたセラミックハニカム触媒を備えたことを特徴とする排気ガス浄化装置。
An exhaust gas purifying device installed in an exhaust passage of a diesel engine, having an outer peripheral wall and a plurality of flow holes partitioned by a porous partition wall in an axial direction inside the outer peripheral wall, and an average pore diameter of the partition wall An exhaust gas purification apparatus comprising: a ceramic honeycomb catalyst in which a catalyst material is supported on a ceramic honeycomb structure having a partition wall porosity of 50% to 80%.
JP2003286469A 2003-08-05 2003-08-05 Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus Pending JP2005052750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286469A JP2005052750A (en) 2003-08-05 2003-08-05 Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286469A JP2005052750A (en) 2003-08-05 2003-08-05 Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus

Publications (1)

Publication Number Publication Date
JP2005052750A true JP2005052750A (en) 2005-03-03

Family

ID=34365751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286469A Pending JP2005052750A (en) 2003-08-05 2003-08-05 Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus

Country Status (1)

Country Link
JP (1) JP2005052750A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
WO2010013509A1 (en) * 2008-07-28 2010-02-04 日立金属株式会社 Ceramic honeycomb structure and process for producing the same
JP2010536574A (en) * 2007-08-24 2010-12-02 コーニング インコーポレイテッド Wall-flow filter with thin porous ceramic wall
EP2719454A1 (en) * 2012-10-11 2014-04-16 Treibacher Industrie AG Thermostable Vanadia SCR catalyst and a process of preparation thereof
WO2015046242A1 (en) 2013-09-24 2015-04-02 日立金属株式会社 Cordierite ceramic honeycomb structure and production method therefor
US10399074B2 (en) 2015-03-24 2019-09-03 Hitachi Metals, Ltd. Ceramic honeycomb structure
JP2020015014A (en) * 2018-07-26 2020-01-30 イビデン株式会社 Honeycomb structure
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
CN113332809A (en) * 2020-03-02 2021-09-03 日本碍子株式会社 Honeycomb filter
CN113332811A (en) * 2020-03-02 2021-09-03 日本碍子株式会社 Honeycomb filter
CN113492022A (en) * 2020-03-18 2021-10-12 日本碍子株式会社 Honeycomb structure
CN115138397A (en) * 2021-03-30 2022-10-04 日本碍子株式会社 Honeycomb structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2010536574A (en) * 2007-08-24 2010-12-02 コーニング インコーポレイテッド Wall-flow filter with thin porous ceramic wall
WO2010013509A1 (en) * 2008-07-28 2010-02-04 日立金属株式会社 Ceramic honeycomb structure and process for producing the same
US8691361B2 (en) 2008-07-28 2014-04-08 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP5464142B2 (en) * 2008-07-28 2014-04-09 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
EP2719454A1 (en) * 2012-10-11 2014-04-16 Treibacher Industrie AG Thermostable Vanadia SCR catalyst and a process of preparation thereof
WO2014056698A1 (en) * 2012-10-11 2014-04-17 Treibacher Industrie Ag Thermostable titania-vanadia-alumina catalyst
WO2015046242A1 (en) 2013-09-24 2015-04-02 日立金属株式会社 Cordierite ceramic honeycomb structure and production method therefor
US9708958B2 (en) 2013-09-24 2017-07-18 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
US9726066B2 (en) 2013-09-24 2017-08-08 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
EP3786137A1 (en) 2013-09-24 2021-03-03 Hitachi Metals, Ltd. Production method for a cordierite-type ceramic honeycomb structure
US10682637B2 (en) 2014-11-20 2020-06-16 Kao Corporation Method for producing catalyst fibrous structure
US10399074B2 (en) 2015-03-24 2019-09-03 Hitachi Metals, Ltd. Ceramic honeycomb structure
JP2020015014A (en) * 2018-07-26 2020-01-30 イビデン株式会社 Honeycomb structure
JP7186031B2 (en) 2018-07-26 2022-12-08 イビデン株式会社 honeycomb structure
CN113332809A (en) * 2020-03-02 2021-09-03 日本碍子株式会社 Honeycomb filter
CN113332811A (en) * 2020-03-02 2021-09-03 日本碍子株式会社 Honeycomb filter
US11759740B2 (en) 2020-03-02 2023-09-19 Ngk Insulators, Ltd. Honeycomb filter
CN113492022A (en) * 2020-03-18 2021-10-12 日本碍子株式会社 Honeycomb structure
CN115138397A (en) * 2021-03-30 2022-10-04 日本碍子株式会社 Honeycomb structure
CN115138397B (en) * 2021-03-30 2023-11-14 日本碍子株式会社 honeycomb structure

Similar Documents

Publication Publication Date Title
JP5237630B2 (en) Honeycomb structure
JP5368959B2 (en) Exhaust gas treatment equipment
US10610830B2 (en) Honeycomb structure
JP6023395B2 (en) Catalyst support filter
JP2007296514A (en) Catalytic body and manufacturing method of the same
US20100242424A1 (en) Honeycomb filter
WO2005039738A1 (en) Honeycomb structure body
JP5379039B2 (en) Exhaust gas purification device and exhaust gas purification method
EP2103342A1 (en) Catalyst-carrying filter
JP2014200741A (en) Wall flow type exhaust gas purification filter
US9890673B2 (en) Honeycomb filter
JP2011104524A (en) Catalyst-carrying filter and exhaust gas cleaning system
JP2018159334A (en) Exhaust emission control device
JP2013053589A (en) Wall flow type exhaust gas purification filter
CN101389392B (en) Ceramic honeycomb filter
JP4320702B2 (en) Exhaust gas purification device
JP2005052750A (en) Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP2001187344A (en) Waste gas cleaning material and waste gas cleaning device
JP4412641B2 (en) Exhaust gas purification device and exhaust gas purification method
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
JP2014148924A (en) Exhaust gas purification device
CN113039004B (en) Honeycomb body with an array of channels of different hydraulic diameters and method for producing the same
JP7181820B2 (en) porous ceramic structure
JP2013189358A (en) Honeycomb structure and honeycomb catalyst body
JP2008136891A (en) Honeycomb catalyst converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090724