JP6562929B2 - リソグラフィシステム - Google Patents

リソグラフィシステム Download PDF

Info

Publication number
JP6562929B2
JP6562929B2 JP2016544659A JP2016544659A JP6562929B2 JP 6562929 B2 JP6562929 B2 JP 6562929B2 JP 2016544659 A JP2016544659 A JP 2016544659A JP 2016544659 A JP2016544659 A JP 2016544659A JP 6562929 B2 JP6562929 B2 JP 6562929B2
Authority
JP
Japan
Prior art keywords
radiation
projection system
radiation source
euv
euv radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016544659A
Other languages
English (en)
Other versions
JP2017511892A (ja
Inventor
スホート,ジャン,ベルナルド,プレヘルムス ヴァン
スホート,ジャン,ベルナルド,プレヘルムス ヴァン
クペラス,ミンヌ
ヤクニン,アンドレイ,ミクハイロヴィッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2017511892A publication Critical patent/JP2017511892A/ja
Application granted granted Critical
Publication of JP6562929B2 publication Critical patent/JP6562929B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)

Description

[関連出願の相互参照]
[0001] 本出願は、参照によりその全体が本明細書に組み込まれる2014年2月24日出願の欧州特許出願第14156364.3号及び2014年6月19日出願の欧州特許出願第14173121.6号に関連する。
[0002] 本発明は、リソグラフィシステムに関する。
[0003] リソグラフィ装置は、所望のパターンを基板上に付与するように構築された機械である。リソグラフィ装置は、例えば集積回路(IC)の製造に用いることができる。その場合、ICの個々の層上に形成される回路パターンを生成するために、マスク又はレチクルとも呼ばれるパターニングデバイスを用いることができる。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、ダイの一部、又は1つ以上のダイを含む)に転写することができる。通常、パターンの転写は、基板上に設けられた放射感応性材料(レジスト)層上への結像によって行われる。一般には、単一の基板が、連続的にパターニングされる隣接したターゲット部分のネットワークを含んでいる。
[0004] リソグラフィは、IC並びに他のデバイス及び/又は構造を製造する際の重要な工程の1つとして広く認識されている。しかしながら、リソグラフィを使用して作られるフィーチャの寸法が小さくなるにつれ、リソグラフィは、小型のIC又は他のデバイス及び/若しくは構造の製造を可能にするためのより重要な要因になってきている。
[0005] パターンプリンティングの限界は、式(1)に示す解像度についてのレイリー基準によって、理論的に推測することができる:
Figure 0006562929

上の式で、λは、使用される放射の波長であり、NAは、パターンを印刷するために使用される投影システムの開口数であり、kは、レイリー定数とも呼ばれているプロセス依存調節係数であり、CDは、印刷されたフィーチャのフィーチャサイズ(又はクリティカルディメンジョン)である。式(1)から、フィーチャの最小印刷可能サイズ(クリティカルディメンジョン)は、露光波長λを短くすること、開口数NAを大きくすること、あるいはkの値を小さくすること、の3つの方法によって縮小することができると言える。
[0006] 露光波長λを短くするため、ひいては、クリティカルディメンジョン(CD)を縮小するために、極端紫外線(EUV)放射を使用することができる。EUV放射は、4〜20nmの範囲内の波長を有する放射であるとみなすことができる。EUV放射を使用するリソグラフィ装置は、より長い波長の放射(例えば、約193nm)を使用するリソグラフィ装置よりも小さいフィーチャを基板上に形成するために使用することができる。EUV放射は、レーザ生成プラズマ放射源又は何らかの他のEUV放射源を使用して生成され得る。放射源及びリソグラフィ装置は、合わせて、リソグラフィシステムと呼ぶことができる。
[0007] 従来技術に起因する1つ以上の問題を除去又は軽減する放射源及びリソグラフィ装置を提供することが望ましい。
[0008] 本発明の第1態様によると、アナモルフィック投影システムを有するリソグラフィ装置と、プラズマ形成位置にEUV放射放出プラズマを生成するように構成された放射源と、を備え、EUV放射放出プラズマは、放射源の光軸に実質的に垂直な平面において細長い形状を有する、リソグラフィシステムが提供される。
[0009] EUV放射放出プラズマは、放射源の光軸に垂直な平面において、略楕円形であってもよい。
[0010] EUV放射放出プラズマは、アナモルフィック投影システムの瞳の長軸に一致する方向に細長くてよい。
[0011] 放射源は、燃料液滴を、第2方向よりも第1方向に大きく膨張させるレーザパルスを提供するように構成されたプリパルスレーザを備えてもよく、第1及び第2方向は、レーザパルスの入射方向に垂直である。
[0012] プリパルスレーザによって提供されるレーザパルスは、略楕円形の断面を有し得る。
[0013] プリパルスレーザによって提供されるレーザパルスは、第1方向に直線偏光され得る。
[0014] 放射源は、燃料液滴を膨張させて、放射源の光軸に対して傾斜されたターゲットを形成するように構成されるプリパルスレーザを備え得る。
[0015] 放射源の光軸に対するターゲットの傾斜は30°〜60°であり得る。
[0016] ターゲットは略ディスク形状であり得る。
[0017] 放射源は、プラズマ形成位置にて部分的に重なり合う複数のレーザビームウェストを提供するように構成される2つ以上のレーザを備え得る。
[0018] 2つ以上のレーザは、EUV放射放出プラズマの第1部分が、EUV放射放出プラズマの第2部分が生成される前に生成されるように、連続的にレーザビームパルスを提供するように構成され得る。
[0019] EUV放射放出プラズマの第1及び第2部分は、同一の燃料ターゲットから生成され得る。あるいは、EUV放射放出プラズマの第1及び第2部分は、異なる燃料ターゲットから生成されてもよい。
[0020] 本発明の第2態様によると、アナモルフィック投影システムを有するリソグラフィ装置と、第1プラズマ形成位置にEUV放射放出プラズマを生成し、EUV放射を第1中間焦点に誘導するように構成された第1放射源と、第2プラズマ形成位置にEUV放射放出プラズマを生成し、第1中間焦点から空間的に変位された第2中間焦点にEUV放射を誘導するように構成された第2放射源と、第1及び第2中間焦点からEUV放射を受けるように構成された照明システムと、を備える、リソグラフィシステムが提供される。
[0021] 本発明の第3態様によると、プラズマ形成位置にEUV放射放出プラズマを生成するように構成された放射源を備えた放射源であって、EUV放射放出プラズマは、放射源の光軸に実質的に垂直な平面において細長い形状を有する、放射源が提供される。
[0022] EUV放射放出プラズマは、放射源の光軸に垂直な平面において、略楕円形であり得る。
[0023] 放射源は、燃料液滴を、第2方向よりも第1方向に大きく膨張させるレーザパルスを提供するように構成されたプリパルスレーザを備えることができ、第1及び第2方向は、レーザパルスの入射方向に垂直である。
[0024] 放射源は、燃料液滴を膨張させて、放射源の光軸に対して傾斜されたターゲットを形成するように構成されるプリパルスレーザを備え得る。
[0025] 本発明の第4態様によると、放射源を使用して、プラズマ形成位置に、放射源の光軸に実質的に垂直な平面において細長い形状を有するEUV放射放出プラズマを生成することと、照明システムを使用して、結果として得られたEUV放射を調整することと、EUV放射の断面にパターン形成して、パターン形成された放射ビームを形成することと、アナモルフィック投影システムを使用して、基板上にパターン形成されたEUV放射ビームを投影することと、を含む、リソグラフィ方法が提供される。
[0026] EUV放射放出プラズマは、放射源の光軸に垂直な平面において、略楕円形であり得る。
[0027] EUV放射放出プラズマは、アナモルフィック投影システムの瞳の長軸に一致する方向に細長くてよい。
[0028] 本発明の第5態様によると、放射ビームを提供するための照明システムと、放射ビームの断面にパターンを付与するように作用するマスクを支持するための支持構造と、基板を保持するための基板テーブルと、パターン形成された放射ビームを基板のターゲット部分上に投影するための投影システムと、を備えたリソグラフィ装置であって、このリソグラフィ装置は、基板の露光中、スキャン動作によってマスク及び基板を移動させるように構成され、投影システムは、スキャン動作の方向におよそ2.5倍の縮小係数と、垂直方向におよそ3.2倍の縮小係数を有する、リソグラフィ装置が提供される。
[0029] 本発明の第6態様によると、放射ビームを提供するための照明システムと、放射ビームの断面にパターンを付与するように作用するマスクを支持するための支持構造と、基板を保持するための基板テーブルと、パターン形成された放射ビームを基板のターゲット部分上に投影するための投影システムと、を備えたリソグラフィ装置であって、このリソグラフィ装置は、基板の露光中、スキャン動作によってマスク及び基板を移動させるように構成され、投影システムは、スキャン動作の方向におよそ1.8倍の縮小係数と、垂直方向におよそ3.2倍の縮小係数を有する、リソグラフィ装置が提供される。
[0030] 本発明の第7態様によると、放射ビームを提供するための照明システムと、放射ビームの断面にパターンを付与するように作用するマスクを支持するための支持構造と、基板を保持するための基板テーブルと、パターン形成された放射ビームを基板のターゲット部分上に投影するための投影システムと、を備えたリソグラフィ装置であって、このリソグラフィ装置は、基板の露光中、スキャン動作によってマスク及び基板を移動させるように構成され、投影システムは、スキャン動作の方向におよそ1.8倍の縮小係数と、垂直方向におよそ1.6倍の縮小係数を有する、リソグラフィ装置が提供される。
[0031] 本発明の第8態様によると、放射ビームを提供するための照明システムと、放射ビームの断面にパターンを付与するように作用するマスクを支持するための支持構造と、基板を保持するための基板テーブルと、パターン形成された放射ビームを基板のターゲット部分上に投影するための投影システムと、を備えたリソグラフィ装置であって、このリソグラフィ装置は、基板の露光中、スキャン動作によってマスク及び基板を移動させるように構成され、投影システムは、スキャン動作の方向におよそ7.5倍の縮小係数と、垂直方向におよそ4.8倍の縮小係数を有する、リソグラフィ装置が提供される。
[0032] 本発明の第9態様によると、スキャニングリソグラフィ装置を使用して露光フィールドを露光する方法が提供され、この方法は、放射ビームを使用して、従来のマスクの寸法に相当する寸法を有するパターン形成されたエリアを有するマスクを照明することと、アナモルフィック投影システムを使用して、パターン形成されたエリアをウェーハ上に投影して、従来の方法で露光されたスキャン方向の寸法に相当する、スキャン方向に垂直な寸法と、従来の方法で露光された非スキャン方向の寸法の倍数であるスキャン方向の寸法と、を有する露光フィールドを形成することと、を含む。
[0033] 本発明の第10態様によると、スキャニングリソグラフィ装置を使用して露光フィールドを露光する方法が提供され、この方法は、放射ビームを使用して、従来のマスクの寸法に相当する寸法を有するパターン形成されたエリアを有するマスクを照明することと、アナモルフィック投影システムを使用して、パターン形成されたエリアをウェーハ上に投影して、従来の方法で露光されたスキャン方向の寸法の倍数である、スキャン方向に垂直な寸法と、従来の方法で露光された非スキャン方向の寸法の倍数であるスキャン方向の寸法と、を有する露光フィールドを形成することと、を含む。
[0034] 従来の方法で露光されたスキャン方向の寸法は33mmであってよく、従来の方法で露光された非スキャン方向の寸法は26mmであってよい。
[0035] 本発明の第11態様によると、リソグラフィ装置のスキャン方向に対する、リソグラフィ装置の投影システムの回転を測定する方法が提供され、この方法は、放射バンドの中心部分を使用して複数のパターンを照明し、投影システムによって形成されたパターンの複数の空間像の位置を測定することと、放射バンドの中心部分から離れて位置する部分を使用してパターンを照明し、投影システムによって形成されたパターンの複数の空間像の位置を測定することと、放射バンドの中心部分から反対方向に離れて位置する部分を使用してパターンを照明し、投影システムによって形成されたパターンの複数の空間像の位置を測定することと、パターン空間像の測定された位置を比較することにより、投影システムの回転を計算することと、を含む。
[0036] 投影システムの回転を計算することは、パターン空間像の測定された位置を、リソグラフィ装置のスキャン方向に実質的に垂直な方向で比較することを含み得る。
[0037] この方法は、測定された位置間の差を使用して、投影システムの非テレセントリック性を決定することをさらに含み得る。
[0038] パターンは、リソグラフィ装置のマスクサポート構造上に設けられ得る。
[0039] パターンは、リソグラフィ装置のマスクサポート構造の対向する両端部に設けられてよく、方法は、マスクサポート構造の一方の端部に設けられたパターンを使用して実行され、その後、マスクサポート構造の他方の端部に設けられたパターンを使用して実行される。
[0040] 本発明の様々な態様は、互いに組み合わせることができる。
[0041]本発明のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
リソグラフィ装置及び放射源を備えたリソグラフィシステムの概略図である。 マスクの断面図である。 従来の投影システムの瞳及びアナモルフィック投影システムの瞳を概略的に示す。 本発明の一実施形態に係る放射源を概略的に示す。 本発明の一実施形態によって生成された燃料ターゲットを概略的に示す。 図5に示される燃料ターゲットの生成を概略的に示す。 本発明の別の実施形態に係る放射源を概略的に示す。 本発明の一実施形態を使用して露光され得る露光エリアを概略的に図示する。 図8に示される露光エリアを露光するために使用され得るマスクを概略的に図示する。 リソグラフィ装置のスキャン方向に対するリソグラフィ装置の投影システムの回転の作用を概略的に図示する。 リソグラフィ装置のスキャン方向に対するリソグラフィ装置の投影システムの回転の作用を概略的に図示する。 リソグラフィ装置の投影システムの回転を測定するために使用され得る方法を概略的に図示する。
[0042] 図1は、リソグラフィシステムを示している。このリソグラフィシステムは、放射源SO及びリソグラフィ装置LAを備える。放射源SOは、極端紫外線(EUV)放射ビームBを生成するように構成される。リソグラフィ装置LAは、照明システムIL、パターニングデバイスMA(例えば、マスク)を支持するように構成されたサポート構造MT、投影システムPS、及び基板Wを支持するように構成された基板テーブルWTを備える。照明システムILは、放射ビームBがパターニングデバイスMAに入射する前にこの放射ビームBを調整するように構成される。投影システムPSは、(マスクMAによってパターン形成された)放射ビームBを基板W上に投影するように構成される。基板Wは、予め形成されたパターンを含むことがある。この場合、リソグラフィ装置は、パターン形成された放射ビームBを、基板W上に予め形成されたパターンに対して位置合わせする。
[0043] 放射源SO、照明システムIL、及び投影システムPSは、全て、外部環境から隔離され得るように構築及び配置され得る。大気圧未満の圧力のガス(例えば、水素)が放射源SO内に提供され得る。照明システムIL及び/又は投影システムPS内には、真空が提供され得る。照明システムIL及び/又は投影システムPS内には、大気圧を十分に下回る圧力の少量のガス(例えば、水素)が提供されてもよい。
[0044] 図1に示される放射源SOは、レーザ生成プラズマ(LPP)源と呼ばれるタイプのものである。例えばCOレーザであり得るレーザ1は、燃料エミッタ3から提供されるスズ(Sn)等の燃料に、レーザビーム2を介してエネルギを付与するように配置される。以下の説明ではスズについて言及するが、任意の好適な燃料を使用することができる。燃料は、例えば、液状であってよく、例えば、金属又は合金であり得る。燃料エミッタ3は、例えば液滴の形態のスズを、軌道に沿ってプラズマ形成領域4に向けて誘導するように構成されるノズルを備え得る。レーザビーム2は、プラズマ形成領域4に入射する。スズにレーザエネルギを付与することにより、プラズマ形成領域4にプラズマ7が生じる。EUV放射を含む放射は、プラズマのイオンの脱励起及び再結合中にプラズマ7から放出される。
[0045] EUV放射は、近法線入射放射コレクタ5(より一般的に、法線入射放射コレクタと呼ばれることもある)によって集光及び合焦される。コレクタ5は、EUV放射(例えば、13.5nm等の所望の波長を有するEUV放射)を反射するように配置される多層構造を有し得る。コレクタ5は、2つの楕円焦点を有する楕円構成を有し得る。以下で説明するように、第1焦点は、プラズマ形成領域4に存在し、第2焦点は、中間焦点6に存在し得る。
[0046] レーザ1は、放射源SOから分離されていてもよい。この場合、レーザビーム2は、レーザ1から放射源SOへ、例えば、適切な誘導ミラー及び/又はビームエキスパンダ、及び/又は他の光学系を含むビームデリバリシステム(図示なし)を使って送られ得る。レーザ1及び放射源SOは、合わせて、放射システムとみなされ得る。
[0047] コレクタ5によって反射された放射は、放射ビームBを形成する。放射ビームBは、点6で合焦され、プラズマ形成領域4の像を形成する。この像は、照明システムILに対する仮想放射源として作用する。放射ビームBが合焦される点6は、中間焦点と呼ばれ得る。放射源SOは、中間焦点6が放射源の閉鎖構造9の開口部上又は開口部付近に位置付けられるように配置される。
[0048] 図1は、レーザ生成プラズマLPP源として放射源SOを示しているが、任意の好適な放射源を使用してEUV放射を生成することができる。例えば、放電を使用して燃料(例えば、スズ)をプラズマ状態に変換することにより、EUV放出プラズマを作り出すことができる。このタイプの放射源は、放電生成プラズマ(DPP)放射源と呼ばれ得る。放電は、放射源の一部を形成し得る電源又は電気接続を介して放射源SOに接続される別個の構成要素であり得る電源によって生成され得る。
[0049] あるいは、放射源SOは、自由電子レーザを備えてもよい。自由電子レーザは、電子を相対論的速度まで加速することにより、EUV放射を作り出すことができる。相対論的電子は、その後、相対論的電子に振動路を進ませる波動磁場(undulating magnetic field)を通過させられることで、コヒーレントなEUV放射の誘導発光を生じさせる。自由電子レーザは、いくつかのリソグラフィ装置LAに対して同時にEUV放射を提供するのに十分なEUV放射を作り出すことができる。
[0050] 放射ビームBは、放射源SOから、放射ビームを調整するように構成された照明システムIL内へと通過する。照明システムILは、ファセットフィールドミラーデバイス10及びファセット瞳ミラーデバイス11を備え得る。ファセットフィールドミラーデバイス10及びファセット瞳ミラーデバイス11は、共に、所望の断面形状及び所望の角度分布を有する放射ビームBを提供する。放射ビームBは、照明システムILを通過し、サポート構造MTによって保持されるパターニングデバイスMAに入射する。パターニングデバイスMAは、放射ビームBを反射し、放射ビームBにパターン形成する。照明システムILは、ファセットフィールドミラーデバイス10及びファセット瞳ミラーデバイス11に加えて、又はこれらミラーデバイスの代わりに、他のミラー又はデバイスを備えてもよい。
[0051] パターニングデバイスMAから反射した後、パターン形成された放射ビームBは、投影システムPSに入射する。投影システムPSは、基板テーブルWTに保持された基板W上に放射ビームBを投影するように構成された複数のミラーを備える。投影システムPSは、放射ビームに縮小係数を適用し、パターニングデバイスMA上の対応するフィーチャよりも小さいフィーチャを有する像を形成する。図1において、投影システムPSは2つのミラーを有しているが、投影システムは、任意の数(例えば、6、7、8、9、又は10個)のミラーを備えることができる。
[0052] 投影システムPSは、放射ビームBを基板Wのターゲット部分上に合焦させる。ターゲット部分は、露光フィールドと呼ばれ得る。基板テーブルWTは、例えば、さまざまなターゲット部分を放射ビームBの経路内に位置決めするように、正確に動かすことができる。基板テーブルWTは、例えば、1つ以上のポジショナ(図示なし)によって位置決めされ得る。基板テーブルが位置決めされる精度を高めるために、1つ以上の位置センサ(図示なし)を使用して、放射ビームBに対する基板テーブルWTの位置が測定され得る。1つ以上の位置センサによって得られた測定値は、1つ以上のポジショナにフィードバックされ得る。
[0053] 図示された装置は、例えば、サポート構造(例えば、マスクテーブル)MT及び基板テーブルWTを同期的にスキャンする一方で、放射ビームに付けられたパターンを基板W上に投影する(すなわち、動的露光)スキャンモードで使用することができる。サポート構造(例えば、マスクテーブル)MTに対する基板テーブルWTの速度及び方向は、投影システムPSの縮小率及び像反転特性によって決めることができる。基板Wに入射するパターン形成された放射ビームは放射バンドを含み得る。この放射バンドは、露光スリットと呼ばれ得る。スキャン露光中、基板テーブルWT及びサポート構造MTは、この露光スリットが基板Wの露光フィールド上を進むように動作し得る。
[0054] 従来のリソグラフィ装置LAの投影システムPSは、x方向及びy方向の両方に約4倍の縮小率を適用し得る。しかしながら、x方向及びy方向の少なくとも一方向において、投影システムPSの縮小率を大きくすることが有益であり得る。以下で説明するように、投影システムPSの縮小率をy方向に大きくすることが特に有益であり得る。
[0055] 投影システムPSの縮小率を(従来の投影システムPSの4倍の縮小率よりも大きい縮小率へと)大きくする効果について、図2を参照して以下に説明する。図2は、マスクMAの一部分を示す断面図である。マスクMAは、複数対の第1材料41と第2材料43との交互層を含む。第1材料41及び第2材料43は、異なる屈折率を有する。材料41、43の層は、これらの材料が多層ミラー構造として作用するような厚さ及び屈折率を有する。
[0056] 図2において、EUV放射の一連の光線35がマスクMAに入射する様子が矢印で図示されている。第1材料41の層と第2材料43の層との間の境界面で生じる屈折率の変化により、一部のEUV放射が各境界面から反射される。EUV放射の一部分は、第1材料41と第2材料43との間の最上部の境界面から反射され、放射の残りの部分は下層へと透過される。放射の透過された部分は、その後、マスクMAの多層構造内に位置付けられる第1材料と第2材料との間の境界面から反射され得る。マスクMA内の異なる境界面からの反射は、互いに強めあいながら干渉し、反射光線37を形成する。マスクMAの多くの異なる層からの反射の複合効果は、多層ミラー構造内にある有効反射面47から反射されている反射EUV放射に相当するとみなすことができる。有効反射面47は、例えば、図2に示されるようなマスクMAの上面から約16層下方に位置決めされ得る。図2において、放射の全ての入射光線35は、有効反射面47から反射しているように図示されている。しかし、当然ながら、一部の放射は有効反射面47よりも上方の位置から反射されることもあり、一部の放射は有効反射面47よりも下方の位置から反射されることもある。
[0057] 図1及び図2からわかるように、マスクMAに入射するEUV放射ビームは、マスクMAに対して垂直には入射しない。マスクMAから延在する垂線に対する放射ビームによる角度(つまり、放射ビームとz軸との間の角度)は、主光線角度θ(図2に示される)と呼ばれ得る。実用において、マスクMAは、一定範囲の角度で照明され、主光線角度θはこれらの角度の平均であるとみなすことができる。説明を簡素化するために、図2には、主光線角度θでマスクMAに入射する光線のみが示されている。
[0058] 多層ミラー構造の上面にEUV吸収材料45の領域を設けることにより、マスクMA上にパターンが形成される。図2において、2つのEUV吸収材料のブロック45a、45bが図示されている。ブロック45a、45bは、それぞれ、幅w及び高さhを有する。EUV放射がマスクMAに対して垂直に(つまり、主光線角度θがゼロで)入射する場合、EUV吸収材料のブロック45a、45bの高さhは、マスクMAから反射される放射に何ら影響しない。しかし、EUV放射は、ゼロではない主光線角度θでマスクMAに入射するため、マスクMAの多層構造によって反射された放射の一部は、その後、EUV吸収材料のブロック45a、45bによって吸収される。例えば、図2に図示される光線35’は、マスクMA上面のEUV吸収材料が設けられていない部分に入射するため、有効反射面47から反射される。しかし、対応する反射光線37’は、EUV吸収材料のブロック45aによって吸収されるため、マスクMAから出射されない。
[0059] (図2において太線で図示される)入射光線35aは、ブロック45aの左側側面に最も近い光線であって、マスクMAから出射される反射光線37aを生じさせる(そのため、ブロック45aに吸収されない)光線を表している。(図2において太線で図示される)入射光線37bは、ブロック45aの右側側面に最も近い光線であって、ブロック45aによって吸収されないため、反射光線37bを生じさせる光線を表している。反射光線37aと反射光線37bとの間の間隔は、マスクMAから反射された放射内にパターン形成される吸収ブロック45aの有効幅wefを表す。図2からわかるように、吸収ブロック45aは、ブロック45aの幅wよりもかなり大きい有効幅wefを有する。
[0060] 図2及び以上の説明からわかるように、主光線角度θが大きくなると、マスクMA上にパターン形成されるフィーチャの有効幅wefが大きくなる。パターン形成されたフィーチャの有効幅wefが大きくなることは、基板W上にパターン形成され得るフィーチャの達成可能なクリティカルディメンジョン(CD)を大きくする恐れがあるため、望ましくない場合がある。
[0061] 主光線角度θは、投影システムの入口における投影システムPSの開口数を考慮して選択され得る。特に、主光線角度θは、投影システムPSによって捕捉される放射の捕捉角度がマスクMAから延在する垂線と重ならないように選択され得る。式1に関連して上述したように、リソグラフィ装置の達成可能なCDを縮小するためには、投影システムPSの開口数(NA)を大きくすることが望ましい場合がある。しかしながら、投影システムPSの開口数が大きくなるほど投影システムPSの捕捉角度が大きくなるため、投影システムPSの入口側の開口数が大きくなることは、必ず、主光線角度θの増大化を伴う((この増大化は、図2に関連して上述したように望ましくない場合がある)。
[0062] 投影システムPSの縮小率を大きくすることは、投影システムPSのマスク側の開口数を大きくせずに投影システムPSの基板側の開口数を大きくすることができるため、有益である。この文脈において、「投影システムの基板側」という用語は、基板テーブルWTに最も近い投影システムPSの部分を意味することが意図されている。「投影システムのマスク側」という用語は、サポート構造MTに最も近い投影システムPSの部分を意味することが意図されている。
[0063] 従って、投影システムPSの縮小率を大きくすることで、投影システムPSのマスク側の開口数を大きくする必要はなく(ひいては、主光線角度θを大きくする必要性を回避して)、投影システムPSの基板側の開口数を大きくすることができる(それにより、クリティカルディメンジョンを小さくすることができる点で有益である)。従って、クリティカルディメンジョンの縮小化を達成しつつ、図2を参照して上述した主光線角度θを大きくするといった悪影響を回避することができる。
[0064] 図2に関連した上記説明から、達成可能なクリティカルディメンジョンに対する主光線角度θの影響は、y方向に延在するフィーチャの寸法(例えば、吸収ブロック45a、45bの有効幅wef)に対してのみ適用されることが理解されるであろう。x方向の達成可能なクリティカルディメンジョンは主光線角度θの影響を受けない。x方向の照明は、マスクMAに垂直な主光線角度を有するため、図2に示した問題は発生しない。
[0065] 従って、達成可能なクリティカルディメンジョンを小さくするには、y方向の投影システムPSの縮小率を大きくすることが特に有益である。従って、投影システムPSの縮小率は、x方向の縮小率を対応して大きくせずに、y方向に大きくすることが有益であり得る。x方向及びy方向に異なる縮小率係数を適用する投影システムPSは、アナモルフィック投影システムPSと呼ばれ得る。
[0066] 一実施形態において、リソグラフィ装置の投影システムPSは、x方向に約4倍の縮小率を適用し、y方向に約8倍の縮小率を適用し得る。一方の縮小率が他方の縮小率よりも大幅に大きい他の縮小率の組み合わせを使用してもよい。上述した理由から、スキャン方向の縮小率は、スキャン方向に垂直な縮小率よりも大幅に大きくてよい。
[0067] 図3aは、x方向及びy方向に対称的な縮小率を有するEUVリソグラフィ装置の投影システムPSの瞳20を概略的に示す。瞳20は円形である。従って、投影システムPSの瞳21に適合される単純照明モード(simple illumination mode)もまた円形になる。また、図3aには、4つの極21を含む四極モードも示されている。各極は円形形状であり、これらの極が環状に分布されている。
[0068] 図3bは、y方向の縮小率がx方向の縮小率よりも大きいアナモルフィック投影システムPSの瞳を概略的に示している。本例では、x方向の縮小率が4倍であり、y方向の縮小率が8倍である。投影システムのアナモルフィックな性質により、瞳22は楕円形状であり、x方向の短軸よりも2倍長いy方向の長軸を有する。瞳の楕円形の性質により、単純円形照明モードが使用される場合、このモードでは瞳を効率的に埋められない(かなりの量の放射がx方向の両側で瞳から漏れることになる)。また、図3bには四極照明モードも示されている。四極照明モードは、それぞれが、y方向の長軸及びx方向の短軸を持つ楕円形状を有する4つの極23を含む。これらの極は、楕円状に分布される。
[0069] アナモルフィック投影システムPSの瞳を効率的に埋めるためには、単純照明モードにおいて、瞳に実質的に適合される楕円形状を有する照明システムからの放射を提供することが望ましい。有益なことに、これは、細長い形状(例えば、略楕円形状)を有するEUV放出プラズマを生成することにより、達成することができる。これは、例えば、LPP放射源を使用して成され得る。
[0070] 図4は、楕円形状を有するEUV放出プラズマを提供するために使用可能なLPP放射源SOを概略的に示している。図4aは、上方から見た(図1の放射源SOと実質的に同一平面における)放射源を示している。図4bは、EUV放出プラズマを生成するために使用される燃料ターゲット25bと、一方の側から見たレーザビーム28を示す。燃料エミッタ3を使用して、プラズマ形成領域4に向けて燃料の液滴25a、25bが放出される。燃料エミッタ3は、図1に関連して前述したようなものであり得る。燃料はスズであり得るが、他の好適な材料を使用してもよい。
[0071] プラズマ形成領域4に向けて進む燃料液滴25aは、実質的に球状を有することになるが、この形状は、液滴がプラズマ形成位置に到達する前にこの液滴に入射するレーザ放射のパルス50によって変更される。プリパルスと呼ばれ得るこのレーザパルス50は、プリパルスレーザ51によって生成され、レンズ52(又は、ミラー等の他の合焦要素)によって合焦される。レーザプリパルス50は、液滴25aの形状を変化させて、図4bに概略的に表示するような楕円形状の燃料ターゲット25bを形成する。(燃料液滴の形状を変化させるメカニズムを以下でさらに説明する)。
[0072] 2つのレーザビーム26は、楕円形の燃料ターゲット25に入射する。レーザビームは、レンズ27(又は、ミラー等の他の合焦光学要素)によって合焦され、円28によって概略的に図示されるビームウェスト28を形成する。図4bに概略的に示されるように、合焦されたレーザビームのビームウェスト28は、互いに重なり合うが、y方向に互いから離れた中心点を有する。従って、レーザビームウェスト28は、楕円形の燃料ターゲット25bをその全長にわたって照明するように配置される。この照明は、燃料ターゲットの実質的に全長に沿ってEUV放出プラズマを生成するのに十分な強度を有する。
[0073] 楕円形の燃料ターゲット25bは、合焦されたレーザビーム28によって、略楕円形状(光軸OAに実質的に垂直な楕円)を有するEUV放出プラズマへと変換される。従って、プラズマによって放出されるEUV放射は、略楕円形の放射源を有する。EUV放射は、略楕円形の放射源によって放出されることにより、(図3bに示される)アナモルフィック投影システムPSの瞳に十分に適合されるため、瞳を効率的に埋めることが容易になる(EUV放射放出プラズマの長軸は、投影システムの瞳の長軸に一致し得る)。この文脈において「略楕円形」という用語は、楕円形状に近似し得る(例えば、経時的に平均化される)細長い非円形の形状を意味していると解釈することができる。完全な楕円形又は必ずしも完全な楕円形に近い形状を意味することは意図されていない。
[0074] 略楕円形状を有するEUV放出プラズマは、アナモルフィック投影システムPSの楕円形の瞳に対して好適な適合を提供するが、他の形状のEUV放出プラズマが使用されてもよい。放射源の光軸OAに実質的に垂直な細長い形状を有するEUV放出プラズマは、略円形のEUV放出プラズマよりも効率的に投影システムの楕円形の瞳を埋めることができる。従って、本発明の実施形態は、細長い形状を有するEUV放出プラズマを提供するように構成され得る。略楕円形のEUV放出プラズマは、細長い形状を有するEUV放出プラズマの一例であるとみなすことができる。
[0075] 2つのレーザビーム26を使用してEUV放出プラズマを生成することは、燃料からEUV放射へのより効率的な変換を可能にするため、有益である。燃料ターゲットをEUV放射に変換する際、最も効率的な変換を提供する最適なレーザ照射量が存在する。レーザ照射量が最適な照射量を下回ると、燃料ターゲットの一部が放射放出プラズマに変換されなくなる。照射量が最適照射量を上回ると、プラズマの温度が高くなり過ぎ、これにより、プラズマが、所望の波長よりも短い波長(例えば、13.5nm未満の波長)で放射を放出するようになる。
[0076] 燃料ターゲットをより大きくすることで、入射レーザ放射を受けるための表面積が大きくなり、これにより、より大きい面積の燃料を、最適照射量で照明することが可能になる。最適な照射量で照射される燃料の面積が2倍になると、プラズマによって放出されるEUV放射の量は、おおよそ、2倍になると見積もることができる。しかしながら、レーザによって生成されるビームウェストのサイズを大きくしつつ、同時に、そのビームウェスト内で最適照射量を維持することは不可能な場合がある。レーザによって提供される放射の達成可能なエネルギ密度は、物理法則により、同時にレーザ放射の波長を変えずには高められない上限を有し得る(レーザ放射の波長を変えることは望ましくない)。本発明の実施形態では、単一のレーザビームを使用してEUV放出プラズマを生成する代わりに、2つのレーザビームが使用されるため、この問題が克服される。各レーザビームは、燃料ターゲット25のうち、このレーザビームが入射する部分において、最適照射量を提供するように構成され得る。従って、例えば図4に示される態様で2つのレーザを使用することで、プラズマにより放出されるEUV放射の量が増加する。このように生成されるEUV放射は、量が増加する利点に加えて、アナモルフィック投影システムPSの楕円形の瞳に実質的に適合される略楕円形状を有することから、さらなる利点も生じる。
[0077] 燃料ターゲット25が楕円形状を有するように構成することが可能な様々な方法が存在する。それらの方法を以下で説明する。
[0078] プラズマ形成領域4に到達する前に燃料液滴25aに入射するプリパルス50は、楕円形状を有し得る。プリパルスの楕円形状は、燃料液滴の表面全体にわたって不均一なレーザ放射の分布を提供することになる。不均一な分布により、燃料液滴全体にわたり不均一な温度及び圧力分布がもたらされ、ひいては、燃料液滴を非円対称で膨張させることになる。この膨張の結果、燃料液滴は膨張して、例えば図4に概略的に表されるような略楕円形状の燃料ターゲット25bを形成することになる。概略的に示されるように、燃料液滴の25bは、z方向から(つまり、放射源の光軸に沿って)見ると楕円形状であるが、この方向を横断する方向から見ると、燃料ターゲットは略平坦である。従って、燃料液滴は、光軸OAに沿って見ると楕円である、略パンケーキ状の形態を有し得る。
[0079] 別のアプローチとして、プリパルス50は、断面視において略円形であり得るが、直線偏光を有し得る。直線偏光のレーザ放射は、偏光を横断する方向よりも、偏光の方向においてより効果的にプラズマに結合することになる。従って、図4を参照すると、プリパルス50のy方向の直線偏光により、このプリパルスは、同方向において燃料液滴25aによってより効率的に吸収されることになる。これにより、燃料液滴25aは、y方向においてより加熱されることになるため、y方向により大きく膨張することになる。これにより、図4に概略的に示されるような楕円形状を有する燃料ターゲット25bが生成されることになる(光軸OAを横断する方向から見ると、この燃料ターゲットは平坦である)。
[0080] 上記2つのアプローチを組み合わせて使用してもよい。つまり、楕円形のプリパルスが(例えば、直線偏光の方向が楕円の長軸に一致する状態で)直線偏光を有していてもよい。
[0081] 別の構成では、プリパルスは、燃料液滴が円形のパンケーキ状の形態(つまり、略ディスク形状)を有するように、燃料液滴を成形するように構成され得るが、燃料ターゲットは、入射するレーザビームに対して楕円形状を示すようにy軸を中心に傾斜した状態である。これが図5に概略的に示されている。図5aは、y軸に沿う方向から見た燃料ターゲット29aを示し、この図からわかるように、燃料ターゲットは、y軸を中心に約45°傾斜されている。この傾斜の結果、燃料ターゲットは略ディスク形状であり、略円形の外周を有するが、z軸に沿った方向から見た燃料ターゲットは、(図5bに示すように)楕円形状を有する。図5のz軸は、放射源の光軸OAに一致する(図4参照)。従って、放射源のレーザビームには、楕円形状を有する燃料ターゲット29aが示されるため、レーザビームは、燃料ターゲットを、図4に関連して上述したような態様で略楕円形のEUV放出プラズマへと変換する。
[0082] 図6を参照すると、燃料ターゲットの所望の傾斜の向きに垂直な方向から、プリパルスレーザビーム55を燃料液滴29に誘導することによって、燃料液滴の傾斜が達成される。図6に示される例では、プリパルスレーザビーム55は、x=zの線に略沿った向き(つまり、y方向に垂直で、x方向及びz方向の両方に対して45°を成す)を有する。プリパルスレーザビーム55は、プリパルスレーザ56によって生成され、光学系57によって合焦される。プリパルスレーザビーム55は、燃料液滴29を、プリパルスレーザビームの入射方向に垂直な方向に膨張させる。これにより、膨張して、図5に示した形状を形成した燃料ターゲット29aが生じる。
[0083] 上記説明では、x方向及びy方向に対して45°の角度で燃料ターゲット29aが傾斜することについて言及したが、この傾斜は任意の好適な角度であってよい。この角度は、入射するレーザビームから見た燃料ターゲットの形状が楕円になるのに十分な角度であるべきであり、例えば、30°〜60°の範囲であり得る。
[0084] 傾斜した燃料ターゲット29aは、略ディスク形状の傾斜ターゲットの形態を有し得る。あるいは、傾斜燃料ターゲットは、任意の他の好適な形態を有し得る(傾斜ターゲットが略ディスク形状であることは必須ではない)。
[0085] 図7は、本発明の別の実施形態を概略的に示している。別の実施形態において、単一の燃料ターゲットは、レーザビーム26a、26bによって連続的に照明される。燃料ターゲット60は、レーザ51によって生成されたレーザビーム50によって液滴形状からディスク形状に変換され、光学系52によって合焦される。プリパルスの後、燃料ターゲットは、略ディスク形状(例えば、パンケーキ形状)であり、大きく回転しない。
[0086] 燃料ターゲットは、図7において、プラズマ形成領域4内で2倍に描写され、符号60a及び60bが付されている。図7bからわかるように、第1レーザビーム26aから見た燃料ターゲット60aは、略円形の形状である。合焦された第1レーザビーム28aは、燃料ターゲットの一部60aをEUV放出プラズマへと変換し、燃料ターゲット60bの残りの部分は、y方向に前進する。その後、第2レーザビーム26bは、燃料ターゲットの残りの部分60bに入射する。合焦された第2レーザビーム28bは、燃料ターゲットの残りの部分60bを、EUV放射放出プラズマに変換させる。レーザビーム28a、28bの合焦されたビームウェストは、照明システムIL(図1参照)から見たEUV放射が略楕円形を有する程度に十分に互いに接近している。第1レーザビーム26aを使用して生成されたEUV放射は、第2レーザビーム26bを使用して生成されたEUV放射に重なる。
[0087] 第1レーザビーム26aを使用したEUV放出プラズマの生成から、第2レーザビーム26bを使用したEUV放出プラズマの生成までの経過時間は、燃料エミッタ3によって放出される燃料液滴の移動速度を調節することによって選択され得る。
[0088] 別の実施形態では、2つのレーザビーム26a、26bが同一の燃料ターゲット60a、60bを連続的に照明する代わりに、これらレーザビームは、異なる燃料ターゲットを照明するために使用され得る。この場合、燃料ターゲットの照明は、同時であってもよく、又は連続的であってもよい。
[0089] さらに別の実施形態では、2つの放射源SOを使用してEUV放出プラズマを生成することができる。図1を参照すると、図示された放射源と構造が一致する第2放射源SO(図示なし)が設けられ得る。第2放射源SOは、第1放射源によって生成されたEUVビームの中間焦点6から空間的に離れた第2中間焦点を有する第2EUV放射ビームを生成することになる。2つのEUV放射ビームは、実質的に互いに平行に伝搬するが、共直線状ではないように、照明システムILによって操作され得る。これにより、略楕円形状の組み合わせEUV放射ビームが提供される。
[0090] 本発明の実施形態は、EUV放出プラズマを生成する際に2つのレーザビームを使用することに言及しているが、3つ以上のレーザビームが使用されてもよい。例えば、3つのレーザビームは、y方向に離れ、それぞれが燃料ターゲットの異なる部分を照明するように配置されたレーザビームウェストを提供するように配置され得る(これらのレーザビームウェストは、図4bに示されるような態様で部分的に重なり合い得る)。
[0091] 3つ以上の放射源を使用して、3つ以上のEUV放射ビームを生成することができ、これらの3つ以上のEUV放射ビームは、空間的に離れた中間焦点を通過した後、組み合わされて、実質的に平行であるが共直線的ではないビームであって、まとまって、略楕円形状を有する組み合わせEUV放射ビームを提供するビームを形成する。
[0092] 一実施形態において、y軸を中心とした燃料ターゲットの傾斜の方向は変更することができる。EUV放出プラズマは、非均一な態様でEUV放射を放出し、傾斜の方向が変更できないと、コレクタ5の一部分が、光軸の反対側のコレクタの相当部分よりもかなり多いEUV放射を累積的に受けることになるため、傾斜の方向が変更できることは有益である。傾斜の方向を変更することにより、光軸の両側において、実質的に等しい累積量のEUV放射が提供される。傾斜の方向は、各燃料ターゲット後に変更されてもよく、又は一連の燃料ターゲット(例えば、5個の燃料ターゲット、10個の燃料ターゲット、又は他の個数の燃料ターゲット)の後に変更されてもよい。
[0093] レーザビーム26a、26bは、円形のビームウェストを提供するものとして図示及び説明されたが、レーザビームは、他の形状(例えば、楕円形状)を有するビームウェストを提供するように構成されてもよい。一実施形態では、楕円形状を有する単一のレーザビームが使用され得る。
[0094] 一実施形態において、互いに部分的に重なり合う2つの円形レーザビームウェストを提供する代わりに、レーザビームウェストは楕円形であってもよい。楕円形のレーザビームウェストは、例えば、プラズマ形成領域にて互いに完全に重なり合うことができる。楕円形のレーザビームウェストのサイズ及び形状は、燃料ターゲットの形状と実質的に一致し得る。
[0095] 本発明の実施形態は、略楕円形のEUV放出プラズマを提供するものとして説明された。しかし、本発明の実施形態は、より一般的に、細長い形状を有するEUV放出プラズマを提供することができる。略楕円形のEUV放出プラズマは、細長い形状を有するEUV放出プラズマの一例であるとみなすことができる。「細長い形状」という用語は、一方向(例えば、y方向)に、その横断方向(例えば、x方向)よりもかなり長いことを意味するものとみなすことができる。
[0096] 一実施形態において、リソグラフィ装置(例えば、EUVリソグラフィ装置)のスループットは、単一のスキャン露光中に露光される基板(例えば、ウェーハ)上のエリアを大きくすることにより、高めることができる。これは、縮小率を小さくした(つまり、4倍未満の縮小率)投影システムを使用することによって達成することができる。縮小率を小さくした投影システムが使用されると、所与のサイズのマスクでは、単一スキャン露光中に露光される基板上のエリアが大きくなる。
[0097] 一実施形態において、投影システムの縮小率は、およそ2.53倍まで小さくすることができる。これにより、単一スキャン露光中に、2つの従来の全視野に相当するエリアの露光が可能になる。図8を参照すると、露光エリア101は、x方向に33mm、y方向に52mmの寸法を有する。従来の全視野は、x方向に26mm、y方向に33mmの寸法を有する。従って、図8に示す露光エリア101は、90°回転させた2つの従来の全視野に相当する。露光スリットと呼ばれ得る放射バンド102は、スキャン露光中の露光スリットとウェーハWとの間の相対移動を示す双方向矢印と共に示されている。
[0098] 図8に示す実施形態において、単一のスキャン露光を使用して、2つのダイ103、104を露光することができ、各ダイは、従来の全視野に相当するエリアを有する。これにより、リソグラフィ装置のスループットの大幅な増加を達成することができる。
[0099] 図9は、図8に図示されるエリアを露光するためにリソグラフィ装置によって使用され得るマスクMを概略的に示している。このマスクは、従来のサイズを有し得る(例えば、6インチマスク)。マスクのパターン形成されたエリア110は、例えば、x方向に104mm、y方向に132mmといった従来の寸法を有してもよい。パターン形成されたエリアにこれらの寸法を与えることは、既存の製造システムがこのようなサイズのパターン形成されたエリアを有するマスクを製造及び処理するように構成されているため、好ましい場合がある。マスクのパターン形成されたエリアは、2つのダイ113、114を含む。
[0100] リソグラフィ装置の投影システムは、マスクのパターン形成されたエリアがx方向に33mm、y方向に52mmの寸法を有する露光エリアを形成するように、x方向におよそ3.15倍の縮小係数、y方向におよそ2.53倍の縮小係数を適用し得る。すなわち、投影システムは、x方向とy方向とに異なる縮小係数を適用する(投影システムはアナモルフィックである)。
[0101] さらなる実施形態において、マスクのパターン形成されたエリアは、x方向に124mm、y方向に124mmの寸法を有し得る。このリソグラフィ装置の投影システムは、マスクのパターン形成されたエリアがx方向に26mm、y方向に16.5mmの寸法を有する露光エリアをウェーハ上に形成するように、x方向におよそ4.77倍の縮小係数及びy方向におよそ7.52倍の縮小係数を適用し得る。
[0102] アナモルフィック投影を使用することにより、x方向におよそ104mmの寸法を有するマスクパターンを使用することが可能になる。アナモルフィック投影は、マスクエラーファクタをおよそ20%減少させるため、有益である。つまり、マスク内のエラーは、アナモルフィック投影が使用されなかった場合に比べて、ウェーハ上で20%小さいx方向の寸法を有することになる。代わりに、x方向に2.53の縮小係数が使用された場合(つまり、アナモルフィック投影が使用されなかった場合)、このマスクエラーファクタの20%の減少は達成されなくなる。
[0103] 他の実施形態において、リソグラフィ装置には、単一スキャン露光を使用して、従来の全視野の他の倍数(26mm×33mm)の露光を可能にするように構成されるアナモルフィック投影システムが設けられ得る。例えば、x方向に33m、y方向に78mmの寸法を有する露光エリアは、x方向におよそ3.15倍、y方向におよそ1.83倍の縮小係数を有するアナモルフィック投影システムを使用して露光され得る。例えば、x方向に66mm、y方向に78mmの寸法を有する露光エリアは、x方向におよそ1.58倍の縮小係数、y方向におよそ1.83倍の縮小係数を有するアナモルフィック投影システムを使用して露光され得る。
[0104] 一般的に、アナモルフィック投影システムを使用して、従来の方法で露光されたy方向の寸法(例えば、33mm)又はその倍数(例えば、66mm)に相当するx方向の寸法を有する露光エリアを投影することができる。アナモルフィック投影は、投影に使用されるマスクのパターン形成されたエリアが、従来のマスクの寸法(例えば、およそ104mm×132mm)に相当する寸法を有するようなものであり得る。
[0105] 投影システムの縮小係数は、5桁の有効数字、すなわち、2.53倍、3.15倍、1.83倍、1.58倍、4.77倍、及び7.52倍で言及した。しかし、投影システムの縮小率は、使用中、(例えば、リソグラフィ装置内の公差を考慮して)多少の調節が可能であってよく、従って、投影システムの縮小係数は、2桁の有効数字で言及するのが適切である。すなわち、上述した実施形態に関して、縮小係数は、およそ2.5倍、およそ3.2倍、およそ1.8倍、およそ1.6倍、およそ4.8倍、及び、およそ7.5倍である。
[0106] 図10及び11は、アナモルフィック投影システムを使用した場合に発生し得る問題を概略的に図示している。図10及び11において、アナモルフィック投影システムは、x方向の縮小よりも大きいy方向の縮小を有する。y方向の縮小は8倍であり、x方向の縮小は4倍である。図面は非常に概略的であるため、具体的な縮小係数に相当する寸法を有しておらず、x方向よりもy方向に大きい縮小を大まかに表すものである。
[0107] まず図10aを参照して、パターンフィーチャ201を有するマスク200が示されている。パターンフィーチャは、長方形であり、y方向にx方向よりも長い寸法を有する。また、図10aには、パターンをウェーハ上に露光するためにマスク200を照明するのに使用される放射バンド202も示されている。放射バンド202は、露光スリットと呼ばれ得る。露光スリット202の向きは、リソグラフィ装置の照明システムILによって決定される(図1参照のこと)。投影システムPSは、照明システムILの向きと一致する向きを有する。図10aにおいて、マスク200及び露光スリット202は、共に、x方向及びy方向について位置合わせされる。換言すると、マスク200は、リソグラフィ装置の照明システム及び投影システムに対して、x方向及びy方向について位置合わせされる。
[0108] 図10bは、リソグラフィ装置によってウェーハ上に露光されたパターンフィーチャ204を概略的に示している。投影システムのアナモルフィックな性質により、マスク200上のパターンフィーチャ201が、x方向よりもy方向に大きく縮小されている。結果として、マスク200上のパターンフィーチャ201の長方形は、ウェーハ上で正方形のパターンフィーチャ204に変換されている。
[0109] 照明システムIL及び投影システムPSの向きがx方向及びy方向に一致しない場合、問題が生じる。この文脈において、y方向は、ウェーハの露光中、マスク200のスキャン動作の方向であると定義され得る。縮小係数がx方向及びy方向で同一である従来のリソグラフィ装置では、照明システム及び投影システムのy方向に対する回転は、(マスク及びウェーハが同一方向に移動するように位置合わせされると想定した場合)ウェーハ上に露光されるパターンに影響を及ぼさない。しかしながら、アナモルフィック投影システムが使用される場合、この回転は、結果として得られる投影後のパターンに歪みを生じさせることになる。図11aを参照すると、露光スリット212は、x軸及びy軸に対して位置合わせされなくなるように回転される。照明システム及び投影システムも、同じように回転される。この回転の結果、投影システムによって適用された縮小係数は、投影後のパターンに歪みをもたらす。図11bは、露光スリット212(及び投影システム)が、パターンフィーチャ211に対して図11aに示すような向きを有する場合に、ウェーハ上に結像されるパターンフィーチャ214を概略的に示している。露光スリットの中心線215におけるパターンフィーチャ211の部分は、投影システムによって正確に結像されることになる。しかしながら、パターンフィーチャ211の歪みは、中心線215から離れた部分で発生し、歪みのサイズは、中心線からの距離に応じて大きくなる。従って、マスク210が図11aに示されるような露光スリット212に対して位置決めされる場合、略ダイヤモンド形状のパターンフィーチャ像214が形成されることになる。図11bに示されるダイヤモンド形状のパターンフィーチャ214は、概略的であり、単に、発生するパターンフィーチャの歪みを大まかに図示することが意図されている。
[0110] 投影システムの縮小係数は、以下の行列を使用して説明することができる。
Figure 0006562929
[0111] 回転行列は、以下の行列を使用して説明することができる。
Figure 0006562929
[0112] 投影システムによって適用される縮小及び回転は、これらの行列の乗算、つまり、以下の通りである。
Figure 0006562929
[0113] この乗算の結果は、以下の通りである。
Figure 0006562929

[0114] 従って、マスクの長方形201の場合、回転の影響により、この長方形は、(図11bにダイヤモンド形状214によって概略的に示されるように)実質的にダイヤモンド形状で結像されるように変形することになる。パターンフィーチャ像214がダイヤモンド形状に引き伸ばされる程度は、投影システムの回転の直接測定値であり、その回転に応じて線形である。
[0115] スキャン露光中、マスク210は露光スリット212に対して移動するため、マスク上のパターンフィーチャ211の各部分は、露光スリット212の中心線215を通過することになる、結果として、パターンフィーチャ211に与えられる歪みは、露光スリットの1つの縁部における最大値から変化し、露光スリットの中心でゼロになり、露光スリットの他方縁部における(反対符号の)最大値まで増加する。このように変化する歪みは、スキャン露光によって基板上に結像されるパターンフィーチャのフェーディングをもたらすことになる。
[0116] 上述した問題を回避するために、y方向に対する照明システムIL及び投影システムPSの向きは、補正することができるように測定され得る。図12は、使用され得る測定方法を概略的に示している。マスクサポート構造MTには、二対のパターン220a、b及び221a、b(例えば、位置合わせ格子又は他の構造)が設けられる。これらのパターンは、マスクサポート構造上に位置付けられた反射エリア上に設けられる。リソグラフィ装置の露光スリット222は、図12aに示されるように、パターン220a、bの中心を通る中心線235を有するように位置決めされる。従って、露光スリット222の中心部分は、パターン220a、bを照明するために使用される。リソグラフィ装置の投影システムPSは、基板テーブルWT(図1に図示される基板テーブル)において照明されたパターン220a、bの像を形成する。これらの空間像の位置は、基板テーブルWT内のディテクタ(図示なし)を使用して測定される。
[0117] その後、マスクサポート構造MTは、図12bに示すように、パターン220a、bが中心線235から離れて(例えば、露光スリット222の1つの縁部に、又はこの縁部に隣接して)位置するように、y方向に移動させられる。結果として得られる空間像は、再び、基板テーブルWT内のディテクタによって測定される。図11bに関連して上述した理由から、パターン220a、bの空間像は、y方向に対する露光スリット(及び投影光学系)の回転により、x方向にシフトされることになる。このx方向のシフトの大きさは、y方向から離れる方向への露光スリット及び投影光学系の回転に比例する。従って、パターンの空間像の測定されたx方向のシフトを使用して、露光スリット及び投影光学系の回転を決定することができる。
[0118] 図12cを参照すると、マスクサポート構造MTは、パターン220a、bが中心線235の反対側に(例えば、露光スリット222の反対側縁部に、又はこの反対側縁部に隣接して)位置するように移動させられ、測定が再度実行される。これにより、パターン空間像のx方向のシフトの追加測定が行われる。測定されたx方向のシフトは、前回の測定ステップで測定されたシフトとは反対の方向を有することになる。ここでも、x方向のシフトの大きさは、露光スリット及び投影光学系の回転に比例し、測定されたシフトを使用して、露光スリット及び投影光学系の回転を決定することができる。この追加測定は、例えば、投影システムの非テレセントリック性を補正するために使用することができる(非テレセントリック性は、x方向のシフトの大きさが中心線235の両側で異なる原因となる)。
[0119] 追加測定は、マスクサポート構造MTの反対側端部に設けられたパターン221a、bに対して同様に実行され得る。
[0120] 本発明の実施形態では、照明システム及び投影システムのy方向に対する回転を、測定し、補正することができる。補正は、マスク及びウェーハのスキャン移動の方向を、スキャン移動のy方向が照明システム及び投影システムに対して位置合わせされるように変更することによって達成することができる。
[0121] 図10〜図12に示される長方形の露光スリット222は、単に、リソグラフィ装置の照明システムIL(図1参照のこと)によって生成され得る放射バンドの一例である。放射バンドは、何らかの他の形状を有していてもよい。例えば、放射バンドは、湾曲していてもよい。
[0122] 本明細書において、リソグラフィ装置の関連での本発明の実施形態ついて具体的な言及がなされたが、本発明の実施形態は、他の装置に使われてもよい。本発明の実施形態は、マスクインスペクション装置、メトロロジ装置、又はウェーハ(又は他の基板)等のオブジェクト又はマスク(又は他のパターニングデバイス)を測定又は処理する任意の装置の一部を形成し得る。これらの装置は、一般的に、リソグラフィツールと呼ばれ得る。このようなリソグラフィツールは、真空条件又は周囲(非真空)条件を使用することができる。
[0123] 「EUV放射」という用語は、4〜20nmの範囲、例えば、13〜14nmの範囲の波長を有する電磁放射を包含するとみなすことができる。EUV放射は、例えば、6.7nm又は6.8nmといった4〜10nmの範囲等の10nm未満の波長を有し得る。
[0124] 本明細書において、IC製造におけるリソグラフィ装置の使用について具体的な言及がなされているが、本明細書に記載のリソグラフィ装置は、他の用途を有し得ることが理解されるべきである。他の用途として可能なものには、集積光学システム、磁気ドメインメモリ用のガイダンスパターン及び検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造が含まれる。
[0125] 以上、本発明の具体的な実施形態を説明してきたが、本発明は、上述以外の態様で実施できることが明らかである。上記の説明は、制限ではなく例示を意図したものである。従って、当業者には明らかなように、添付の特許請求の範囲を逸脱することなく本記載の発明に変更を加えてもよい。

Claims (24)

  1. アナモルフィック投影システムを有するリソグラフィ装置と、
    プラズマ形成位置にEUV放射放出プラズマを生成する放射源であって、前記EUV放射放出プラズマは、前記放射源の光軸に実質的に垂直な平面において細長い形状を有する、放射源と、を備え
    前記EUV放射放出プラズマは、前記アナモルフィック投影システムの瞳の長軸に一致する方向に細長い、リソグラフィシステム。
  2. 前記EUV放射放出プラズマは、前記放射源の前記光軸に垂直な平面において、略楕円形である、請求項1に記載のリソグラフィシステム。
  3. 前記放射源は、燃料液滴を、第2方向よりも第1方向に大きく膨張させるレーザパルスを提供するプリパルスレーザを備え、前記第1及び第2方向は前記レーザパルスの入射方向に垂直である、請求項1または2に記載のリソグラフィシステム。
  4. 前記プリパルスレーザによって提供される前記レーザパルスは略楕円形の断面を有する、請求項に記載のリソグラフィシステム。
  5. 前記プリパルスレーザによって提供される前記レーザパルスは前記第1方向に直線偏光される、請求項又はに記載のリソグラフィシステム。
  6. 前記放射源は、燃料液滴を膨張させて、前記放射源の光軸に対して傾斜されたターゲットを形成するプリパルスレーザを備える、請求項1または2に記載のリソグラフィシステム。
  7. 前記放射源の前記光軸に対する前記ターゲットの前記傾斜は30°〜60°である、請求項に記載のリソグラフィシステム。
  8. 前記ターゲットは略ディスク形状である、請求項又はに記載のリソグラフィシステム。
  9. 前記放射源は、前記プラズマ形成位置にて部分的に重なり合う複数のレーザビームウェストを提供する2つ以上のレーザを備える、請求項1〜のいずれか1項に記載のリソグラフィシステム。
  10. 前記2つ以上のレーザは、EUV放射放出プラズマの第1部分が、前記EUV放射放出プラズマの第2の部分が生成される前に生成されるように連続的にレーザビームパルスを提供する、請求項に記載のリソグラフィシステム。
  11. 前記EUV放射放出プラズマの前記第1及び第2部分は同一の燃料ターゲットから生成される、請求項10に記載のリソグラフィシステム。
  12. プラズマ形成位置にEUV放射放出プラズマを生成する放射源を備えた放射源であって、前記EUV放射放出プラズマは、前記放射源の光軸に実質的に垂直な平面において細長い形状を有する、
    前記EUV放射放出プラズマは、前記アナモルフィック投影システムの瞳の長軸に一致する方向に細長い、放射源。
  13. 前記EUV放射放出プラズマは、前記放射源の前記光軸に垂直な平面において、略楕円形である、請求項12に記載の放射源。
  14. 前記放射源は、燃料液滴を、第2方向よりも第1方向に大きく膨張させるレーザパルスを提供するプリパルスレーザを備え、前記第1及び第2方向は前記レーザパルスの入射方向に垂直である、請求項12又は13に記載の放射源。
  15. 前記放射源は、燃料液滴を膨張させて、前記放射源の光軸に対して傾斜されたターゲットを形成するプリパルスレーザを備える、請求項12又は13に記載の放射源。
  16. アナモルフィック投影システムを有するリソグラフィ装置と、
    第1プラズマ形成位置にEUV放射放出プラズマを生成し、EUV放射を第1中間焦点に誘導する第1放射源と、
    第2プラズマ形成位置にEUV放射放出プラズマを生成し、前記第1中間焦点から空間的に変位された第2中間焦点にEUV放射を誘導する第2放射源と、
    前記第1及び第2中間焦点からEUV放射を受ける照明システムと、を備える、リソグラフィシステム。
  17. 放射源を使用して、プラズマ形成位置に、前記放射源の光軸に実質的に垂直な平面において細長い形状を有するEUV放射放出プラズマを生成することと、
    照明システムを使用して、結果として得られたEUV放射を調整することと、
    前記EUV放射の断面にパターン形成して、パターン形成された放射ビームを形成することと、
    アナモルフィック投影システムを使用して、基板上に前記パターン形成されたEUV放射ビームを投影することと、を含み、
    前記EUV放射放出プラズマは、前記アナモルフィック投影システムの瞳の長軸に一致する方向に細長い、リソグラフィ方法。
  18. 前記EUV放射放出プラズマは、前記放射源の前記光軸に垂直な平面において、略楕円形である、請求項17に記載のリソグラフィ方法。
  19. 前記EUV放射放出プラズマは、前記アナモルフィック投影システムの瞳の長軸に一致する方向に細長い、請求項17又は18に記載のリソグラフィ方法。
  20. 請求項1に記載のリソグラフィシステムにおいて、リソグラフィ装置のスキャン方向に対する、前記リソグラフィ装置の投影システムの回転を測定する方法であって、
    放射バンドの中心部分を使用して複数のパターンを照明し、前記投影システムによって形成された前記パターンの複数の空間像の位置を測定することと、
    前記放射バンドの前記中心部分から離れて位置する部分を使用して前記パターンを照明し、前記投影システムによって形成された前記パターンの複数の空間像の位置を測定することと、
    前記放射バンドの前記中心部分から反対方向に離れて位置する部分を使用して前記パターンを照明し、前記投影システムによって形成された前記パターンの複数の空間像の位置を測定することと、
    前記パターン空間像の前記測定された位置を比較することにより、前記投影システムの前記回転を計算することと、を含む方法。
  21. 前記投影システムの前記回転を計算することは、前記パターン空間像の前記測定された位置を、前記リソグラフィ装置の前記スキャン方向に実質的に垂直な方向で比較することを含む、請求項20に記載の方法。
  22. 前記測定された位置間の差を使用して、前記投影システムの非テレセントリック性を決定することをさらに含む、請求項21に記載の方法。
  23. 前記パターンは、前記リソグラフィ装置のマスクサポート構造上に設けられ得る、請求項2022のいずれか1項に記載の方法。
  24. 前記パターンは、前記リソグラフィ装置の前記マスクサポート構造の対向する両端部に設けられ、前記方法は、前記マスクサポート構造の一方の端部に設けられたパターンを使用して実行され、その後、前記マスクサポート構造の他方の端部に設けられたパターンを使用して実行される、請求項23に記載の方法。
JP2016544659A 2014-02-24 2015-01-23 リソグラフィシステム Active JP6562929B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14156364.3 2014-02-24
EP14156364 2014-02-24
EP14173121 2014-06-19
EP14173121.6 2014-06-19
PCT/EP2015/051352 WO2015124372A2 (en) 2014-02-24 2015-01-23 Lithographic system

Publications (2)

Publication Number Publication Date
JP2017511892A JP2017511892A (ja) 2017-04-27
JP6562929B2 true JP6562929B2 (ja) 2019-08-21

Family

ID=52446354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544659A Active JP6562929B2 (ja) 2014-02-24 2015-01-23 リソグラフィシステム

Country Status (9)

Country Link
US (1) US9989863B2 (ja)
JP (1) JP6562929B2 (ja)
KR (1) KR102330126B1 (ja)
CN (1) CN106062636B (ja)
IL (1) IL246609B (ja)
NL (1) NL2014179A (ja)
SG (1) SG11201605462XA (ja)
TW (1) TWI653508B (ja)
WO (1) WO2015124372A2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865447B2 (en) * 2016-03-28 2018-01-09 Kla-Tencor Corporation High brightness laser-sustained plasma broadband source
DE102016212462A1 (de) 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Vorrichtung zur Moiré-Vermessung eines optischen Prüflings
JP2019168477A (ja) * 2016-08-18 2019-10-03 国立大学法人東北大学 軟x線光源、露光装置および顕微鏡
US10048199B1 (en) * 2017-03-20 2018-08-14 Asml Netherlands B.V. Metrology system for an extreme ultraviolet light source
WO2019057409A1 (en) * 2017-09-20 2019-03-28 Asml Netherlands B.V. SOURCE OF RADIATION
KR102374206B1 (ko) 2017-12-05 2022-03-14 삼성전자주식회사 반도체 장치 제조 방법
WO2019166164A1 (en) * 2018-02-28 2019-09-06 Stichting Vu Radiation source
JP2021009274A (ja) * 2018-07-09 2021-01-28 レーザーテック株式会社 光源、検査装置、euv光の生成方法及び検査方法
EP3674797B1 (en) * 2018-12-28 2021-05-05 IMEC vzw An euvl scanner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760406B2 (en) * 2000-10-13 2004-07-06 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
DE60225216T2 (de) * 2001-09-07 2009-03-05 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung
US7405809B2 (en) * 2005-03-21 2008-07-29 Carl Zeiss Smt Ag Illumination system particularly for microlithography
DE102005014433B3 (de) * 2005-03-24 2006-10-05 Xtreme Technologies Gmbh Verfahren und Anordnung zur effizienten Erzeugung von kurzwelliger Strahlung auf Basis eines lasererzeugten Plasmas
CN102119365B (zh) * 2008-08-14 2013-06-05 Asml荷兰有限公司 辐射源、光刻设备和器件制造方法
NL1036803A (nl) * 2008-09-09 2010-03-15 Asml Netherlands Bv Radiation system and lithographic apparatus.
US8399867B2 (en) 2008-09-29 2013-03-19 Gigaphoton Inc. Extreme ultraviolet light source apparatus
JP2013004258A (ja) * 2011-06-15 2013-01-07 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光の生成方法
DE102010040811A1 (de) * 2010-09-15 2012-03-15 Carl Zeiss Smt Gmbh Abbildende Optik
US9366967B2 (en) * 2011-09-02 2016-06-14 Asml Netherlands B.V. Radiation source
JP6122853B2 (ja) * 2011-09-22 2017-04-26 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
JP2013251100A (ja) * 2012-05-31 2013-12-12 Gigaphoton Inc 極紫外光生成装置及び極紫外光生成方法

Also Published As

Publication number Publication date
US20170052456A1 (en) 2017-02-23
TWI653508B (zh) 2019-03-11
JP2017511892A (ja) 2017-04-27
TW201535065A (zh) 2015-09-16
CN106062636B (zh) 2018-11-30
KR20160124827A (ko) 2016-10-28
US9989863B2 (en) 2018-06-05
NL2014179A (en) 2015-08-25
WO2015124372A2 (en) 2015-08-27
KR102330126B1 (ko) 2021-11-23
IL246609B (en) 2020-08-31
CN106062636A (zh) 2016-10-26
IL246609A0 (en) 2016-08-31
WO2015124372A3 (en) 2015-10-15
SG11201605462XA (en) 2016-08-30

Similar Documents

Publication Publication Date Title
JP6562929B2 (ja) リソグラフィシステム
KR101710433B1 (ko) 액적 가속기를 포함하는 euv 방사선 소스 및 리소그래피 장치
TWI616724B (zh) 微影裝置及元件製造方法
US8018577B2 (en) Illumination-sensor calibration methods, and exposure methods and apparatus and device-manufacturing methods including same, and reflective masks used in same
JP4966342B2 (ja) 放射源、放射を生成する方法およびリソグラフィ装置
US9964852B1 (en) Source collector apparatus, lithographic apparatus and method
JP5087060B2 (ja) 放射源およびリソグラフィ装置
TW201319759A (zh) 輻射源
JP2020046680A (ja) リソグラフィ装置および方法
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
JP2014527273A (ja) 放射源及びリソグラフィ装置
JP2010045354A (ja) 放射源、リソグラフィ装置、およびデバイス製造方法
KR20220022472A (ko) 레이저 집속 모듈
US20220260927A1 (en) Method for controlling extreme ultraviolet light
WO2017076695A1 (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R150 Certificate of patent or registration of utility model

Ref document number: 6562929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250