JP6551725B2 - Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method - Google Patents

Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method Download PDF

Info

Publication number
JP6551725B2
JP6551725B2 JP2015057100A JP2015057100A JP6551725B2 JP 6551725 B2 JP6551725 B2 JP 6551725B2 JP 2015057100 A JP2015057100 A JP 2015057100A JP 2015057100 A JP2015057100 A JP 2015057100A JP 6551725 B2 JP6551725 B2 JP 6551725B2
Authority
JP
Japan
Prior art keywords
composite plating
plating solution
composite
dispersion
carbon nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015057100A
Other languages
Japanese (ja)
Other versions
JP2016176109A (en
Inventor
将治 小泉
将治 小泉
啓一郎 木津
啓一郎 木津
松澤 洋子
洋子 松澤
秀元 木原
秀元 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eyetec Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Eyetec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Eyetec Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015057100A priority Critical patent/JP6551725B2/en
Publication of JP2016176109A publication Critical patent/JP2016176109A/en
Application granted granted Critical
Publication of JP6551725B2 publication Critical patent/JP6551725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、炭素ナノ繊維材料を分散させた複合めっき処理用分散液及びそれを含む複合めっき液、複合めっき液を用いた複合めっき処理方法並びに複合めっき処理を用いて表面めっき被膜を形成する切削工具の表面めっき処理方法に関する。   The present invention relates to a dispersion for composite plating treatment in which a carbon nano fiber material is dispersed, a composite plating solution containing the same, a composite plating treatment method using the composite plating solution, and cutting for forming a surface plating film using the composite plating treatment The present invention relates to a method of surface plating a tool.

現在、半導体ウエハ等の切削工具として、ダイヤモンド砥粒をピアノ線等の金属線の表面に固定したダイヤモンドソーワイヤが使用されている。ダイヤモンドソーワイヤでは、ダイヤモンド砥粒を金属電気めっきにより固定化したもの及び樹脂により固定化したものが実用化されている。一般的に、ダイヤモンド砥粒を金属電気めっきで固定化したものが、樹脂により固定化されたものに比べて、ダイヤモンド砥粒の固着力、ワイヤの耐久性、切削能率等において優れている。しかしながら、半導体材料として広く使用されているシリコン材料よりも硬度の高いサファイアや炭化ケイ素等のインゴットでは、切削処理に長時間を要するため、ソーワイヤの切削能率及び耐久性において課題が残っている。   At present, a diamond saw wire in which diamond abrasive grains are fixed on the surface of a metal wire such as a piano wire is used as a cutting tool for a semiconductor wafer or the like. Among diamond saw wires, those obtained by fixing diamond abrasive grains by metal electroplating and those fixed with a resin have been put to practical use. Generally, those in which diamond abrasives are immobilized by metal electroplating are superior to those in which they are immobilized with a resin, in terms of adhesion of diamond abrasives, durability of wires, cutting efficiency and the like. However, ingots such as sapphire and silicon carbide, which are harder than silicon materials widely used as semiconductor materials, require a long time for the cutting process, and thus there remains a problem in the cutting efficiency and durability of the saw wire.

近年、こうした切削工具の加工表面に、ナノサイズの径を有する繊維状の炭素材料である炭素ナノ繊維材料が用いられている。炭素ナノ繊維材料としては、中空体のカーボンナノチューブ(以下「CNT」と略称する)及び中空体でないナノカーボン繊維が挙げられる。炭素ナノ繊維材料は、その特異な性質、すなわち繊維直径がナノサイズの微細な繊維であること、アスペクト比(繊維長/繊維直径)が大きいこと及び優れた機械強度を有すること等に着目され、様々な分野で用いられている。CNTは、基本的には一様な平面のグラファイト(グラフェンシート)を丸めて円筒状にしたような構造をしており、閉口状態の場合、両端はフラーレンの半球のような構造で閉じられており5員環を必ず6個ずつ有している。CNTは、直径が0.4nm〜50nmであり、強く、しなやかで、軽いという特性を有している。   In recent years, a carbon nanofiber material, which is a fibrous carbon material having a nanosize diameter, is used for the processing surface of such a cutting tool. Examples of the carbon nanofiber material include hollow carbon nanotubes (hereinafter abbreviated as “CNT”) and non-hollow nanocarbon fibers. The carbon nanofiber material is noted for its unique properties, that is, the fiber diameter is a nano-sized fine fiber, the aspect ratio (fiber length / fiber diameter) is large, and has excellent mechanical strength, etc. It is used in various fields. The CNT basically has a structure in which a uniform planar graphite (graphene sheet) is rolled into a cylindrical shape, and in the closed state, both ends are closed in a structure like a fullerene hemisphere. There are always six 5-membered rings. CNTs have a diameter of 0.4 nm to 50 nm, and have the characteristics of strong, flexible, and light.

ダイヤモンドソーワイヤの金属めっき被膜中に炭素ナノ繊維材料を複合化することが提案されており、例えば、特許文献1では、電解めっきによる被膜の中に直径10〜100nm、アスペクト比(=長さ/直径)5〜200であるナノカーボン繊維を均一に含有する複合金属めっき被膜を表面に形成する電着工具が記載されている。 特許文献2では、研磨装置の回転体の表面に、ニッケルメッキ皮膜に無配向に分散させたCNTを備えている点が記載されている。   It has been proposed to combine a carbon nanofiber material in a metal plating film of diamond saw wire. For example, in Patent Document 1, a diameter of 10 to 100 nm and an aspect ratio (= length / diameter) are formed in a film by electrolytic plating. An electrodeposition tool is described which forms on the surface a composite metal plating film uniformly containing nanocarbon fibers of 5 to 200). Patent Document 2 describes that a surface of a rotating body of a polishing apparatus is provided with CNT non-oriented dispersed in a nickel plating film.

また、特許文献3では、CNTを含有する金属メッキ被膜を形成するためのめっき浴として、ジメチルスルホンに金属無水塩を混合した後、混合液を昇温して金属無水塩を溶解させて電解浴を形成させ、電解浴にCNT等の不活性微粒子を添加して混合・撹拌して調製した点が記載されている。   Further, in Patent Document 3, as a plating bath for forming a metal plating film containing CNTs, after mixing metal anhydrous salt with dimethyl sulfone, the temperature of the mixed solution is raised to dissolve metal anhydrous salt, and electrolytic bath It is described that it is prepared by adding the inert fine particles such as CNTs to the electrolytic bath and mixing and stirring.

特許第4998778号公報Japanese Patent No. 4998778 特開2008−149393号公報JP 2008-149393 A 特開2004−076031号公報JP 2004-076031 A

一般に使用されているダイヤモンドソーワイヤ等の切削工具では、上述したように、ダイヤモンド砥粒を樹脂または金属めっきにより、ピアノ線上に固定化したものであり、工作機械(マルチワイヤソー等)に取り付けて、ワイヤに高負荷をかけて高速で往復移動させながらインゴット等の被切削物に接触させて切削動作を行っている。   In general cutting tools such as diamond saw wires, as described above, diamond abrasive grains are fixed on a piano wire by resin or metal plating, and attached to a machine tool (multi-wire saw, etc.) The cutting operation is carried out by bringing the workpiece into contact with an object to be cut such as an ingot while making high load and reciprocating it at high speed.

こうした切削動作中に、ソーワイヤからダイヤモンド砥粒が脱落することがあり、脱落したダイヤモンド砥粒が切削面上を自由に転がるようになる。そのため、切削により得られたウエハ等の成形物に割れや欠けが生じたり、切削面の面粗さが悪化し、成形物の不良率の増加につながっている。また、ダイヤモンド砥粒の脱落により切削能率が低下することになり、長時間の切削動作により加工中のワイヤの撓みや断線といったトラブルの原因となる。ソーワイヤの場合には、ダイヤモンド砥粒の脱落を抑止する対策として、ワイヤ表面のダイヤモンド砥粒の密度を高くし切削中の面圧を下げることや、被膜を厚くすることが提案されている。しかしながら、こうした対策では、切れ味の低減及び作業効率の低下といった悪影響があり、またカーフロス(切削クズ)の増大に繋がってしまう課題がある。   During such cutting operations, the diamond abrasive grains may fall off the saw wire, and the dropped diamond abrasive grains may freely roll on the cutting surface. For this reason, the molded product such as a wafer obtained by cutting is cracked or chipped, the surface roughness of the cut surface is deteriorated, and the defective rate of the molded product is increased. In addition, the cutting efficiency is lowered due to the falling off of the diamond abrasive grains, and a long-time cutting operation causes a trouble such as bending or disconnection of the wire during processing. In the case of saw wire, it has been proposed to increase the density of diamond abrasive grains on the wire surface to reduce the surface pressure during cutting and to increase the thickness of the coating as a measure to prevent the diamond abrasive grains from falling off. However, such measures have an adverse effect such as a reduction in sharpness and a reduction in working efficiency, and there is a problem that leads to an increase in kerf loss (cutting debris).

こうした課題を解決するために、上述したように、CNTを含有する複合金属めっき被膜を切削工具の表面に形成することが提案されているが、複合金属めっき被膜を形成するために必要となるCNTの分散液を安定して作製することが難しく、CNTの高濃度の分散液の調製が困難であるといった課題がある。また、CNTを分散させるように調製した複合めっき液中では、CNTの分散を促す分散剤の特性からCNTが相分離しやすく、複合めっき液の保存安定性が悪いといった課題がある。   In order to solve these problems, as described above, it has been proposed to form a composite metal plating film containing CNTs on the surface of a cutting tool, but the CNTs required to form a composite metal plating film There is a problem that it is difficult to stably prepare a dispersion of the above, and it is difficult to prepare a high concentration dispersion of CNTs. Moreover, in the composite plating solution prepared to disperse CNTs, there is a problem that the CNTs are easily phase-separated due to the properties of the dispersant that promotes the dispersion of CNTs and the storage stability of the composite plating solution is poor.

そこで、本発明は、炭素ナノ繊維材料を安定して分散させた複合めっき処理用分散液を混合して調製した複合めっき液により炭素ナノ繊維材料が分布した複合めっき被膜を形成することができる複合めっき処理方法を提供することを目的とする。   Therefore, the present invention provides a composite plating film in which a carbon nanofiber material is distributed by a composite plating solution prepared by mixing a dispersion for composite plating treatment in which a carbon nanofiber material is stably dispersed. It aims at providing a plating treatment method.

本発明に係る複合めっき処理用分散液は、炭素ナノ繊維材料、直鎖状多糖類及びアミド硫酸を含み、炭素ナノ繊維材料が分散状態でpH3以下に調製されている。さらに、直鎖状多糖類は、炭素ナノ繊維材料1に対して0.4〜1の質量比で配合されている。さらに、直鎖状多糖類は、キトサンである。さらに、炭素ナノ繊維材料は、直径5nm〜30nmのカーボンナノチューブである。   The dispersion for composite plating treatment according to the present invention contains a carbon nanofiber material, a linear polysaccharide and an amidosulfuric acid, and the carbon nanofiber material is prepared at a pH of 3 or less in a dispersed state. Furthermore, linear polysaccharides are mix | blended with the mass ratio of 0.4-1 with respect to the carbon nano fiber material 1. FIG. Furthermore, the linear polysaccharide is chitosan. Furthermore, the carbon nanofiber material is a carbon nanotube having a diameter of 5 nm to 30 nm.

本発明に係る複合めっき液は、上記の複合めっき処理用分散液と金属めっき液とを混合して調製された複合めっき液であって、炭素ナノ繊維材料の配合量が0.5g/リットル以下であるThe composite plating solution according to the present invention is a composite plating solution prepared by mixing the above-described dispersion for composite plating treatment and a metal plating solution, and the blending amount of carbon nanofiber material is 0.5 g / liter or less. It is .

本発明に係る複合めっき処理方法は、上記の複合めっき液を用いて被めっき物の表面に複合めっき被膜を形成する。   The composite plating treatment method according to the present invention forms a composite plating film on the surface of an object to be plated using the above composite plating solution.

本発明に係る切削工具の表面めっき処理方法は、金属めっき液に砥粒を分散させた複合めっき液を用いて切削工具の表面に複合めっき処理を行って砥粒を付着させた複合めっき被膜を形成する工程と、上記の複合めっき液を用いて前記複合めっき被膜の表面に複合めっき処理を行って砥粒及び炭素ナノ繊維材料が分布して固定された表面めっき被膜を形成する工程とを備えている。   The surface plating treatment method for a cutting tool according to the present invention comprises a composite plating film in which abrasive particles are adhered by performing a composite plating treatment on the surface of a cutting tool using a composite plating solution in which abrasive particles are dispersed in a metal plating solution. And forming a surface plating film on which the abrasive grains and the carbon nanofiber material are distributed and fixed by performing a complex plating process on the surface of the complex plating film using the above-mentioned complex plating solution. ing.

本発明に係るダイヤモンドソーワイヤの製造方法は、上記の表面めっき処理方法を用いて、金属製の芯線の表面にダイヤモンド砥粒及びカーボンナノチューブが固定された表面めっき被膜を形成する。さらに、前記ダイヤモンド砥粒は、平均粒径が1μm〜100μmである。さらに、前記芯線は、平均外径が50μm〜300μmである。 Method of manufacturing a diamond saw wire according to the present invention, using the above-described surface plating method, the diamond abrasive grains and carbon nanotubes to form a fixed surface plated film on the surface of the metal core. Furthermore, the diamond abrasive grains have an average particle size of 1 μm to 100 μm. Furthermore, the core wire has an average outer diameter of 50 μm to 300 μm.

本発明は、炭素ナノ繊維材料を安定して分散させた複合めっき処理用分散液を得ることができ、得られた複合めっき処理用分散液を混合して調製した複合めっき液により複合めっき処理することで、炭素ナノ繊維材料が分布した複合めっき被膜を形成することができる。そして、複合めっき処理を用いて切削工具の表面に砥粒を固定するとともに炭素ナノ繊維材料が分布した表面めっき被膜を形成することで、表面めっき被膜の耐摩耗性を向上することができ、切削加工中の砥粒の脱落を抑止し、切削性能を向上させた切削工具を得ることが可能となる。   The present invention can obtain a composite plating treatment dispersion in which a carbon nano fiber material is stably dispersed, and performs composite plating using a composite plating solution prepared by mixing the obtained composite plating treatment dispersion. Thus, it is possible to form a composite plating film in which the carbon nanofiber material is distributed. And, by fixing the abrasive grains on the surface of the cutting tool using the composite plating process and forming a surface plating film in which the carbon nanofiber material is distributed, it is possible to improve the wear resistance of the surface plating film, cutting It is possible to suppress the falling off of abrasive grains during processing and obtain a cutting tool with improved cutting performance.

複合めっき液の調製直後及び3か月経過後の光透過率の測定結果及び複合めっき液の分散状態を示す撮影画像である。It is a picked-up image which shows the measurement result of the light transmittance immediately after preparation of a composite plating solution, and after three months progress, and the dispersion state of a composite plating solution. 製造されたダイヤモンドソーワイヤの表面をSEMにより観察した結果を示す撮影画像である。It is a picked-up image which shows the result of having observed the surface of the manufactured diamond saw wire by SEM. 露出したMWCNTの分布状態をSEMで観察した結果を示す撮影画像である。It is a captured image which shows the result of having observed the distribution state of exposed MWCNT by SEM. 露出したMWCNTの分布状態をSEMで観察した結果を示す撮影画像である。It is a captured image which shows the result of having observed the distribution state of exposed MWCNT by SEM.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. It is not limited to these forms unless otherwise specified.

本発明に用いる炭素ナノ繊維材料は、ナノサイズの径を有する繊維状の炭素材料であり、中空体のCNT及び中空体でないナノカーボン繊維が挙げられる。CNTには、単層カーボンナノチューブ(SWCNT;Single-Walled Carbon NanoTube)、多層カーボンナノチューブ(MWCNT;Multi-Walled Carbon NanoTube)といった構造のものがあり、直径1nm〜50nmで長さ1μm〜100μmのものが複合めっき処理に好ましく、特に好ましくは、直径5nm〜30nmで長さ1μm〜20μmのものを使用するとよい。また、CNTには、直鎖長が揃っているタイプのもの及び直鎖長がランダムになっているタイプのものがあるが、いずれのものでも使用できる。複合めっき液に添加する炭素ナノ繊維材料の配合量は、0.5g/リットル以下が好ましく、より好ましくは、0.01g/リットル〜0.3g/リットルである。   The carbon nanofiber material used in the present invention is a fibrous carbon material having a nano-sized diameter, and examples include hollow CNTs and non-hollow nanocarbon fibers. The CNT has a structure such as single-walled carbon nanotube (SWCNT; Single-Walled Carbon NanoTube), multi-walled carbon nanotube (MWCNT; Multi-Walled Carbon NanoTube), and has a diameter of 1 nm to 50 nm and a length of 1 μm to 100 μm. It is preferable for composite plating treatment, and particularly preferably 5 nm to 30 nm in diameter and 1 μm to 20 μm in length. Further, there are CNTs of a type in which linear lengths are uniform and a type in which linear lengths are random, but any type can be used. The compounding amount of the carbon nanofiber material added to the composite plating solution is preferably 0.5 g / liter or less, more preferably 0.01 g / liter to 0.3 g / liter.

炭素ナノ繊維材料を分散させる分散剤としては、複合めっき処理に使用するため酸の環境下で安定性を備えているとともに炭素ナノ繊維材料との相性がよい多糖類が好ましく、酸に対して強い直鎖状多糖類がより好ましい。直鎖状多糖類としては、例えば、キトサン、カチオン化セルロース、アンモニウムセルロースなどが挙げられる。炭素ナノ繊維材料の分散性及び分散状態の継続性の点からみてキトサンが好ましい。分散剤の使用量は、質量比で炭素ナノ繊維材料1に対して0.4〜1の混合割合で添加するのが好ましく、より好ましくは0.4〜0.7である。0.4より小さくなると分散性が悪くなり、1より大きくなると分散剤の影響で複合めっき被膜が硬化して脆くなるといったデメリットが生じるようになる。複合めっき被膜が硬化してくると、ソーワイヤ等の可撓性を有する切削工具の場合には、湾曲変形する際に複合めっき被膜が割れる等の問題が生じてくる。   As the dispersant for dispersing the carbon nanofiber material, a polysaccharide having stability in an acid environment and having good compatibility with the carbon nanofiber material is preferable because it is used for the composite plating process, and it is strong against acid. Linear polysaccharides are more preferred. Examples of linear polysaccharides include chitosan, cationized cellulose, ammonium cellulose and the like. Chitosan is preferred in view of the dispersibility of the carbon nanofiber material and the continuity of the dispersion state. The amount of the dispersant used is preferably a mixing ratio of 0.4 to 1 with respect to the carbon nano fiber material 1 by mass ratio, and more preferably 0.4 to 0.7. When it is smaller than 0.4, the dispersibility is deteriorated, and when it is larger than 1, there is a disadvantage that the composite plating film is hardened and becomes brittle due to the influence of the dispersing agent. When the composite plating film is cured, in the case of a cutting tool having flexibility such as a saw wire, there arises a problem such as cracking of the composite plating film when it is bent and deformed.

キトサンは原末の高分子であるため強酸でしか溶解できず、そのpH値は2.5前後であるため限られたpHの範囲内でしか使用できない。そのため、分散液は、pH調整剤を添加してpH3以下にすることが好ましい。特に、pH3以下にするためのpH調整剤は、スルファミン酸ニッケルめっき液の成分であるスルファミン酸(アミド硫酸)を用いて酸性水溶液を調整することが好ましい。   Since chitosan is a polymer of bulk powder, it can be dissolved only by strong acid, and its pH value is around 2.5, so it can be used only within a limited pH range. Therefore, the dispersion is preferably adjusted to pH 3 or less by adding a pH adjuster. In particular, it is preferable to adjust the acidic aqueous solution using sulfamic acid (amidosulfuric acid), which is a component of a nickel sulfamate plating solution, for adjusting the pH to 3 or less.

分散液は、水に、炭素ナノ繊維材料、キトサン等の多糖類及びアミド硫酸等のpH調整剤を混合して超音波振動等を印加することで、炭素ナノ繊維材料を一様に分散させた分散液を得ることができる。   The dispersion liquid uniformly mixed the carbon nanofiber material by mixing the nanoparticle material such as carbon nanofiber material, a polysaccharide such as chitosan and a pH adjuster such as amidosulfuric acid and applying ultrasonic vibration. A dispersion can be obtained.

炭素ナノ繊維材料を分散させた複合めっき液を調製する際に使用される金属めっき液としては特に制限はないが、ニッケルイオン、コバルトイオン、銅イオン、金イオン、鉄イオン、パラジウムイオン、白金イオン、スズイオン及びロジウムイオンよりなる群から選ばれた1種又は2種以上の金属イオンを含むものが使用でき、特に好ましいものとしてはニッケルイオンを含む金属めっき液が挙げられる。金属イオンは、その硫酸塩、塩化物等、水溶性金属塩の形で用いることができ、複合めっき液への金属イオンの配合は、0.02モル/リットル〜0.2モル/リットル、好ましくは0.05モル/リットル〜0.1モル/リットルである。   There is no particular limitation on the metal plating solution used when preparing the composite plating solution in which the carbon nanofiber material is dispersed, but nickel ion, cobalt ion, copper ion, gold ion, iron ion, palladium ion, platinum ion A metal plating solution containing one or more metal ions selected from the group consisting of tin ions and rhodium ions can be used, and particularly preferred is a metal plating solution containing nickel ions. Metal ions can be used in the form of water-soluble metal salts such as sulfates and chlorides, and the compounding of metal ions in the composite plating solution is 0.02 mol / liter to 0.2 mol / liter, preferably Is 0.05 mol / liter to 0.1 mol / liter.

炭素ナノ繊維材料を分散させた複合めっき液は、金属めっき液に上述した分散液を混合して調製することができる。得られた複合めっき液は、分散液と同様に炭素ナノ繊維材料が一様に分散した状態となり、長期間分散状態が安定して維持されるようになる。   A composite plating solution in which a carbon nanofiber material is dispersed can be prepared by mixing the above-described dispersion with a metal plating solution. The composite plating solution thus obtained is in a state in which the carbon nanofiber material is uniformly dispersed as in the case of the dispersion liquid, and the dispersed state is stably maintained for a long time.

複合めっき液を用いためっき処理は、電解めっき処理で行うことが好ましく、複合めっき液を貯留するめっき浴中に基材である被めっき物を浸漬して、被めっき物に複合めっき液を接触させて電解めっき処理を行えばよい。複合めっき被膜の膜厚は、めっき製品の使用目的等により適宜選定されるが、通常1μm〜30μmとすればよく、被膜の析出速度は、5μm/時〜20μm/時に設定するとよい。複合めっき処理により形成された複合めっき被膜は、炭素ナノ繊維材料が均一に分布した状態となり、複合めっき液に含まれる炭素ナノ繊維材料の添加濃度により複合めっき被膜に分布する炭素ナノ繊維材料の密度を調整することができる。   Plating treatment using the composite plating solution is preferably performed by electrolytic plating treatment, and the substrate to be plated is immersed in a plating bath storing the composite plating solution, and the composite plating solution is contacted with the substrate to be plated. The electrolytic plating process may be performed. The film thickness of the composite plating film is appropriately selected depending on the purpose of use of the plated product and the like, but it may be usually 1 μm to 30 μm, and the deposition rate of the film may be set 5 μm / hour to 20 μm / hour. The composite plating film formed by the composite plating process is in a state in which the carbon nanofiber material is uniformly distributed, and the density of the carbon nanofiber material distributed in the composite plating film by the addition concentration of the carbon nanofiber material contained in the composite plating solution Can be adjusted.

切削工具の表面に砥粒を付着させる場合には、砥粒を分散させた複合めっき液を用いて複合めっき処理を行う。複合めっき液に分散させる砥粒としては、ダイヤモンド、立方晶窒化ホウ素(cBN)等の公知の材料からなる砥粒が用いられる。ダイヤモンド砥粒の場合には、通常入手可能な多結晶タイプ、単結晶タイプ、クラスタータイプのものが使用でき、平均粒径が1μm〜100μmのものが好ましく、より好ましくは5μm〜50μmである。ダイヤモンド砥粒は、表面がコーティングされてないものやニッケル、チタン、ジルコニウム等の金属でコートティングされたもの、ダイヤモンド表面のみをグラファイト化し導電性を付与したグラファイト化ダイヤモンドのいずれもを用いることができる。   When the abrasive grains are attached to the surface of the cutting tool, a composite plating process is performed using a composite plating solution in which the abrasive grains are dispersed. As the abrasives to be dispersed in the composite plating solution, abrasives made of known materials such as diamond and cubic boron nitride (cBN) are used. In the case of diamond abrasive grains, commonly available polycrystalline type, single crystal type, and cluster type can be used, and those having an average particle diameter of 1 μm to 100 μm are preferable, and 5 μm to 50 μm are more preferable. As the diamond abrasive grains, any of those not coated on the surface, those coated with a metal such as nickel, titanium, zirconium, etc., and graphitized diamond imparted with conductivity by graphitizing only the diamond surface can be used. .

砥粒を分散させた複合めっき液は、上述した金属めっき液に砥粒を添加して調製される。金属めっき液に添加する砥粒の配合量は、100g/リットル以下、より好ましくは0.1g/リットル〜100g/リットル、さらに好ましくは0.1g/リットル〜20g/リットルであることが好ましい。金属めっき液中に砥粒を投入して分散させる場合には、直接投入して超音波振動等により分散させたり、予め分散剤等を添加した溶液に砥粒を投入して分散させた分散液を調製し、得られた分散液を金属めっき液に混合するとよい。   The composite plating solution in which the abrasive grains are dispersed is prepared by adding the abrasive grains to the metal plating solution described above. The compounding amount of the abrasive grains added to the metal plating solution is preferably 100 g / liter or less, more preferably 0.1 g / liter to 100 g / liter, and still more preferably 0.1 g / liter to 20 g / liter. In the case where abrasive particles are charged into metal plating solution and dispersed, dispersion liquid is directly charged and dispersed by ultrasonic vibration or the like, or a dispersion liquid in which abrasive particles are charged into a solution to which a dispersing agent etc. is added in advance. And the resulting dispersion may be mixed with the metal plating solution.

切削工具の表面に砥粒を固定する表面めっき被膜を形成する処理では、まず、金属めっき液に砥粒を分散させた複合めっき液を用いて被めっき物である切削工具の表面に複合めっき処理を行って砥粒を付着させる複合めっき被膜を形成する。次に、金属めっき液に炭素ナノ繊維材料を分散させた分散液を投入して調製された複合めっき液を用いて、砥粒を付着させた複合めっき被膜の表面に複合めっき処理を行って炭素ナノ繊維材料が分布した複合めっき被膜を形成する。こうして、切削工具の表面に砥粒及び炭素ナノ繊維材料が満遍なく分布して固定された表面めっき被膜を形成することができる。形成された表面めっき被膜に砥粒が炭素ナノ繊維材料とともに付着して固定されているため、砥粒の保持力が向上して砥粒の脱落が抑止されるようになり、表面めっき被膜の耐久性が向上するようになる。   In the process of forming a surface plating film that fixes abrasive grains on the surface of the cutting tool, first, a composite plating process is performed on the surface of the cutting tool that is the object to be plated using a composite plating solution in which abrasive grains are dispersed in a metal plating solution. To form a composite plating film on which abrasive grains are attached. Next, using a composite plating solution prepared by adding a dispersion solution in which a carbon nanofiber material is dispersed in a metal plating solution, the surface of the composite plating film on which the abrasive grains are attached is subjected to a composite plating treatment to carbon Form a composite plating film in which nanofibrous material is distributed. Thus, it is possible to form a surface plating film in which the abrasive grains and the carbon nanofiber material are uniformly distributed and fixed on the surface of the cutting tool. Since the abrasive grains are attached and fixed together with the carbon nanofiber material to the formed surface plating film, the retention of the abrasive particles is improved and the falling off of the abrasive particles is suppressed, and the durability of the surface plating film is thereby improved. Will be improved.

砥粒が炭素ナノ繊維材料とともに固定された表面めっき被膜を形成するのに好適な切削工具としては、ソーワイヤ、ドリル、エンドミル、リーマ等の切削動作に使用される公知の工具が挙げられる。特に、可撓性を有するソーワイヤに対して表面めっき被膜を形成することで、砥粒の脱落を抑止した高強度及び高耐久性の表面めっき被膜を形成することができる。そのため、切削性能を向上させた切削工具を得ることが可能となる。ソーワイヤについては、金属製の芯線に鉄又はステンレスからなるピアノ線を用いたものが好適で、平均外径は50μm〜300μmであることが好ましく、特に好ましくは、50μm〜150μのものを使用するとよい。   Cutting tools suitable for forming a surface plating film in which the abrasive grains are fixed together with the carbon nanofiber material include known tools used for cutting operations such as saw wire, drill, end mill, reamer and the like. In particular, by forming a surface plating film on a flexible saw wire, it is possible to form a high-strength and high-durability surface plating film in which abrasive grains are prevented from falling off. Therefore, it is possible to obtain a cutting tool with improved cutting performance. As for the saw wire, a metal core wire using a piano wire made of iron or stainless steel is suitable, and the average outer diameter is preferably 50 μm to 300 μm, particularly preferably 50 μm to 150 μm. .

以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。   EXAMPLES The present invention will be described in more detail by way of the following examples, but the present invention is not limited to these examples.

[実施例1]
<MWCNTを分散させた分散液の調製>
容量50ミリリットルのバイアル瓶に、超純水20ミリリットル(PURELAB Ultra/ELGA社製)、アミド硫酸200mg(関東化学株式会社製)、キトサン3mg(株式会社キミカ製;精製キトサンL)及びMWCNT7mg(直径3nm〜20nm、長さ5μm〜15μm;和光純薬工業株式会社製)を加え、ホーン型超音波ホモジナイザ(Advanced Digital Sonifier 250DA / BRANSON製)を用いて、周波数19kHz及び出力20Wで0.5時間超音波振動を行い、分散処理した。得られた分散液を一晩静置して分散が不十分なものを沈殿させ、上澄みをMWCNT分散液とした。MWCNT分散液のpHは、1.8〜2.2であった。また、MWCNT及びキトサンの質量比は、1:0.43であった。MWCNT分散液は、黒く一様に濁った状態となり、MWCNTが均一に分散していることが確認された。
Example 1
<Preparation of dispersion in which MWCNT is dispersed>
20 ml of ultrapure water (manufactured by PURELAB Ultra / ELGA), 200 mg of amidosulfuric acid (manufactured by Kanto Chemical Co., Ltd.), 3 mg of chitosan (manufactured by Kimika Co., Ltd .; purified chitosan L) and 7 mg of MWCNT (diameter 3 nm) in a 50 ml vial ~ 20 nm, length 5 μm to 15 μm; Wako Pure Chemical Industries, Ltd.) is added, and using a horn-type ultrasonic homogenizer (Advanced Digital Sonifier 250 DA / BRANSON product), 0.5 hour ultrasonic wave at a frequency of 19 kHz and output 20 W Vibration was performed and distributed treatment was performed. The obtained dispersion was allowed to stand overnight to precipitate insufficient dispersion, and the supernatant was used as a MWCNT dispersion. The pH of the MWCNT dispersion was 1.8 to 2.2. Moreover, the mass ratio of MWCNT and chitosan was 1: 0.43. The MWCNT dispersion became black and uniformly turbid, and it was confirmed that the MWCNTs were uniformly dispersed.

<複合めっき液の調製>
スルファミン酸ニッケル(日産化学産業株式会社製)、塩化ニッケル(住友金属鉱山株式会社製)及びホウ酸(U.S. Borax社製)を用いて、以下の組成からなるニッケルめっき液を調製した。
・スルファミン酸ニッケル 500g/リットル
・塩化ニッケル 5g/リットル
・ホウ酸 30g/リットル
ニッケルめっき液1ミリリットルにMWCNT分散液1ミリリットルを添加して複合めっき液を調製した。複合めっき液は、MWCNT分散液と同様に、黒く一様に濁った状態となっており、MWCNTが均一に分散していることが確認された。
<Preparation of composite plating solution>
A nickel plating solution having the following composition was prepared using nickel sulfamate (manufactured by Nissan Chemical Industries, Ltd.), nickel chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) and boric acid (manufactured by US Borax).
Nickel sulfamate 500 g / liter Nickel chloride 5 g / liter Boric acid 30 g / liter 1 ml of the MWCNT dispersion was added to 1 ml of a nickel plating solution to prepare a composite plating solution. The composite plating solution was black and uniformly turbid as in the MWCNT dispersion, and it was confirmed that the MWCNTs were uniformly dispersed.

<MWCNTの分散状態に関する安定性評価>
紫外可視吸収スペクトル測定装置(V670;日本分光株式会社製)を用いて、複合めっき液の光透過率について経時変化を追跡し、複合めっき液のMWCNTの分散状態に関する安定性評価を行った。MWCNTが均一に分散した状態では、複合めっき液は黒く一様に濁った状態となるため、光透過率が低下するようになる。MWCNTが凝集したり沈殿して分散状態に変化が生じると、光透過率が上昇するようになるため、光透過率を測定することで、MWCNTの分散状態の経時変化を評価することができる。図1は、複合めっき液の調製直後及び3か月経過後の光透過率の測定結果及び複合めっき液の分散状態を示す撮影画像である。光透過率の測定結果を示すグラフでは、横軸に光波長をとり、縦軸に光透過率をとっている。3か月経過後も光透過率にほとんど変化はみられないことから、MWCNTの分散状態は3か月間維持されて、安定していることが確認された。
<Evaluation of stability of dispersed state of MWCNT>
The change over time of the light transmittance of the composite plating solution was followed using a UV-visible absorption spectrum measuring apparatus (V 670; manufactured by JASCO Corporation), and the stability of the dispersion of MWCNT in the composite plating solution was evaluated. When the MWCNTs are uniformly dispersed, the composite plating solution becomes black and uniformly turbid, and the light transmittance is reduced. When the MWCNTs aggregate or precipitate to change the dispersed state, the light transmittance is increased. Therefore, by measuring the light transmittance, it is possible to evaluate the time-dependent change of the dispersed state of the MWCNTs. FIG. 1 is a photographed image showing measurement results of light transmittance immediately after preparation of a composite plating solution and after three months and a dispersion state of the composite plating solution. In the graph showing the measurement results of the light transmittance, the light wavelength is taken on the horizontal axis, and the light transmittance is taken on the vertical axis. Since there was almost no change in the light transmittance even after 3 months, it was confirmed that the dispersed state of MWCNT was maintained for 3 months and was stable.

[実施例2]
実施例1で用いたキトサンをSigma Aldrich社製(Chitosan, Coarse ground flakes and powder)のものに変更した以外は、実施例1と同様に処理してMWCNT分散液を調製した。MWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:0.43であった。
Example 2
A MWCNT dispersion was prepared in the same manner as in Example 1 except that chitosan used in Example 1 was changed to that of Sigma Aldrich (Chitosan, Coarse ground flakes and powder). The pH of the MWCNT dispersion was 1.8 to 2.2, and the weight ratio of MWCNT to chitosan was 1: 0.43.

得られたMWCNT分散液を、実施例1と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例1と同様に、安定性評価を行ったところ、実施例1の複合めっき液と同様に、MWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 1 to prepare a composite plating solution. When the obtained composite plating solution was evaluated for stability in the same manner as in Example 1, the dispersed state of MWCNT was maintained for 3 months and is stable, as in the composite plating solution in Example 1. It was confirmed.

[実施例3]
キトサン5mg(株式会社キミカ製;精製キトサンLL)に変更した以外は、実施例と同様に処理してMWCNT分散液を調製した。MWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:0.7であった。
[Example 3]
A MWCNT dispersion was prepared in the same manner as in the example except that chitosan 5 mg (manufactured by Kimika Co., Ltd .; purified chitosan LL) was used. The pH of the MWCNT dispersion was 1.8 to 2.2, and the weight ratio of MWCNT to chitosan was 1: 0.7.

得られたMWCNT分散液を、実施例1と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例1と同様に、安定性評価を行ったところ、実施例1の複合めっき液と同様に、MWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 1 to prepare a composite plating solution. The obtained composite plating solution was evaluated for stability in the same manner as in Example 1. As with the composite plating solution in Example 1, the dispersed state of MWCNT is maintained for 3 months and is stable. It was confirmed.

[実施例4〜7]
実施例3で用いたキトサンを、実施例4では株式会社キミカ製(精製キトサンL)のものに変更し、実施例5では株式会社キミカ(精製キトサンH)のものに変更し、実施例6ではSigma Aldrich社製(Chitosan, Medium-MW)のものに変更し、実施例7ではSigma Aldrich社製(Chitosan, Coarse ground flakes and powder)のものにそれぞれ変更した以外は、実施例3と同様に処理してそれぞれMWCNT分散液を調製した。いずれのMWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:0.7であった。
[Examples 4 to 7]
The chitosan used in Example 3 is changed to that of Kimica Co., Ltd. (purified chitosan L) in Example 4, and is changed to that of Kimica Co., Ltd. (purified chitosan H) in Example 5; Processed in the same manner as in Example 3 except that it was changed to that of Sigma Aldrich (Chitosan, Medium-MW) and changed to that of Sigma Aldrich (Chitosan, Coarse ground flakes and powder) in Example 7, respectively. Then, each MWCNT dispersion was prepared. The pH of any MWCNT dispersion was 1.8 to 2.2, and the weight ratio of MWCNT to chitosan was 1: 0.7.

得られたMWCNT分散液を、実施例3と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例3と同様に、安定性評価を行ったところ、実施例3の複合めっき液と同様に、いずれもMWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 3 to prepare a composite plating solution. When the obtained composite plating solution was evaluated for stability in the same manner as in Example 3, the dispersion state of MWCNT was maintained for 3 months and stabilized in the same manner as in the composite plating solution of Example 3. Was confirmed.

[実施例8]
キトサン7mg(株式会社キミカ製;精製キトサンLL)に変更した以外は、実施例1と同様に処理してMWCNT分散液を調製した。MWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:1であった。
[Example 8]
A MWCNT dispersion was prepared in the same manner as in Example 1 except that chitosan 7 mg (manufactured by Kimika Co., Ltd .; purified chitosan LL) was used. The pH of the MWCNT dispersion was 1.8 to 2.2, and the mass ratio of MWCNT to chitosan was 1: 1.

得られたMWCNT分散液を、実施例1と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例1と同様に、安定性評価を行ったところ、実施例1の複合めっき液と同様に、MWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 1 to prepare a composite plating solution. When the obtained composite plating solution was evaluated for stability in the same manner as in Example 1, the dispersed state of MWCNT was maintained for 3 months and is stable, as in the composite plating solution in Example 1. It was confirmed.

[実施例9〜13]
実施例8で用いたキトサンを、実施例9では株式会社キミカ製(精製キトサンL)のものに変更し、実施例10では株式会社キミカ(精製キトサンH)のものに変更し、実施例11ではSigma Aldrich社製(Chitosan, Medium-MW)のものに変更し、実施例12ではSigma Aldrich社製(Chitosan, Coarse ground flakes and powder)のものに変更し、実施例13では和光純薬工業株式会社製(キトサン10)のものにそれぞれ変更した以外は、実施例8と同様に処理してそれぞれMWCNT分散液を調製した。いずれもMWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:1であった。
[Examples 9 to 13]
In Example 9, the chitosan used in Example 8 is changed to that of Kimica Co., Ltd. (purified chitosan L), and in Example 10, it is changed to that of Kimica Co., Ltd. (purified chitosan H), and in Example 11 Changed to Sigma Aldrich (Chitosan, Medium-MW) and changed to Sigma Aldrich (Chitosan, Coarse ground flakes and powder) in Example 12 and Wako Pure Chemical Industries, Ltd. in Example 13 A MWCNT dispersion was prepared by treating in the same manner as in Example 8 except that the preparation was changed to those of (manufactured by chitosan 10). In each case, the pH of the MWCNT dispersion was 1.8 to 2.2, and the mass ratio of MWCNT to chitosan was 1: 1.

得られたMWCNT分散液を、実施例8と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例8と同様に、安定性評価を行ったところ、実施例8の複合めっき液と同様に、いずれもMWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 8 to prepare a composite plating solution. The obtained composite plating solution was subjected to the stability evaluation in the same manner as in Example 8. As in the case of the composite plating solution in Example 8, the dispersed state of MWCNTs was maintained for 3 months in all cases and stabilized. Was confirmed.

[実施例14]
キトサン7mg(株式会社キミカ製;精製キトサンL)及びMWCNT7mg(直径9.5nm、長さ1.5μm;Nanocyl S.A.社製;Nanocyl-7000)に変更した以外は、実施例1と同様に処理してMWCNT分散液を調製した。MWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:1であった。
Example 14
Treated in the same manner as in Example 1 except that chitosan was changed to 7 mg (manufactured by Kimika; purified chitosan L) and MWCNT 7 mg (diameter 9.5 nm, length 1.5 μm; manufactured by Nanocyl SA; Nanocyl-7000). A MWCNT dispersion was prepared. The pH of the MWCNT dispersion was 1.8 to 2.2, and the mass ratio of MWCNT to chitosan was 1: 1.

得られたMWCNT分散液を、実施例1と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例1と同様に、安定性評価を行ったところ、実施例1の複合めっき液と同様に、MWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 1 to prepare a composite plating solution. The obtained composite plating solution was evaluated for stability in the same manner as in Example 1. As with the composite plating solution in Example 1, the dispersed state of MWCNT is maintained for 3 months and is stable. It was confirmed.

[実施例15及び16]
実施例14で用いたキトサンを、実施例15ではSigma Aldrich社製(Chitosan, Medium-MW)のものに変更し、実施例16ではSigma Aldrich社製(Chitosan, Coarse ground flakes and powder)のものに変更した以外は、実施例14と同様に処理してそれぞれMWCNT分散液を調製した。いずれのMWCNT分散液のpHは1.8〜2.2で、MWCNT及びキトサンの質量比は、1:1であった。
[Examples 15 and 16]
The chitosan used in Example 14 was changed to that of Sigma Aldrich (Chitosan, Medium-MW) in Example 15, and in Example 16 to that of Sigma Aldrich (Chitosan, Coarse ground flakes and powder) The process was carried out in the same manner as in Example 14 except for changing to prepare MWCNT dispersions. The pH of any MWCNT dispersion was 1.8-2.2, and the weight ratio of MWCNT to chitosan was 1: 1.

得られたMWCNT分散液を、実施例14と同様のニッケルめっき液に添加して複合めっき液を調製した。得られた複合めっき液を、実施例14と同様に、安定性評価を行ったところ、実施例14の複合めっき液と同様に、いずれもMWCNTの分散状態は3か月間維持されて、安定していることが確認された。   The obtained MWCNT dispersion was added to the same nickel plating solution as in Example 14 to prepare a composite plating solution. When the obtained composite plating solution was evaluated for stability in the same manner as in Example 14, as in the composite plating solution of Example 14, the dispersion state of MWCNT was maintained for 3 months and stabilized. It was confirmed that

[実施例17]
MWCNTを分散させた複合めっき液を用いてダイヤモンドソーワイヤを製造した。芯線には、平均外径120μmの鉄製ピアノ線(トクセン工業株式社製)を使用した。また、ダイヤモンド砥粒としては、平均砥粒径15μmのSCMファインダイヤ(住石マテリアルズ株式会社製)を使用した。
[Example 17]
A diamond saw wire was manufactured using a composite plating solution in which MWCNTs were dispersed. An iron piano wire (manufactured by Tokusen Kogyo Co., Ltd.) having an average outer diameter of 120 μm was used as the core. Moreover, SCM fine diamond (made by Sumiishi Materials Co., Ltd.) with an average abrasive particle diameter of 15 micrometers was used as a diamond abrasive grain.

ダイヤモンドソーワイヤの製造工程では、芯線の表面にダイヤモンド砥粒を分散させた複合めっき液により複合めっき処理を行う付着工程と、ダイヤモンド砥粒を付着させた複合めっき被膜の表面に上述した実施例で得られた複合めっき液により複合めっき処理を行う仕上げ工程とを行い、芯線の表面にダイヤモンド砥粒を固定してMWCNTが均一に分布した表面めっき被膜を形成することで、ダイヤモンドソーワイヤを製造する。   In the manufacturing process of the diamond saw wire, an adhesion step of performing composite plating treatment with a composite plating solution in which diamond abrasives are dispersed on the surface of a core wire, and obtained on the surface of the composite plating film having diamond abrasives adhered A diamond saw wire is manufactured by performing a finishing step of performing a composite plating treatment with the composite plating solution thus formed, fixing diamond abrasive grains on the surface of the core wire, and forming a surface plating film in which MWCNTs are uniformly distributed.

<ダイヤモンド砥粒を分散させた複合めっき液の調製及び付着工程>
実施例1のニッケルめっき液と同様のスルファミン酸ニッケル、塩化ニッケル及びホウ酸を用いて、以下の組成からなるダイヤモンド砥粒を分散させた複合めっき液を調製した。
・スルファミン酸ニッケル 500g/リットル
・塩化ニッケル 5g/リットル
・ホウ酸 30g/リットル
・ダイヤモンド砥粒 50g/リットル
Preparation and adhesion process of composite plating solution in which diamond abrasives are dispersed
Using the same nickel sulfamate, nickel chloride and boric acid as in the nickel plating solution of Example 1, a composite plating solution was prepared in which diamond abrasive grains having the following composition were dispersed.
Nickel sulfamate 500 g / liter Nickel chloride 5 g / liter Boric acid 30 g / liter Diamond abrasive 50 g / liter

調製した複合めっき液をめっき浴に投入して60℃に昇温させた後、陽極にチタン白金板を用い、芯線を陰極電解処理して複合めっき被膜を形成し、芯線の表面にダイヤモンド砥粒を付着させた。形成された複合めっき被膜の膜厚は約0.5μmであった。   The prepared composite plating solution is put into a plating bath and heated to 60 ° C., then a titanium platinum plate is used as the anode, the core wire is subjected to cathodic electrolytic treatment to form a composite plating film, and diamond abrasive grains are formed on the surface of the core wire. Was attached. The film thickness of the formed composite plating film was about 0.5 μm.

<MWCNTを分散させた複合めっき液の調製及び仕上げ工程>
MWCNTとして、和光純薬工業株式会社製(wako-20)を用い、実施例1と同様に処理してMWCNT分散液を調製し、実施例1と同様のスルファミン酸ニッケル、塩化ニッケル及びホウ酸を用いて調製されたニッケルめっき液にMWCNT分散液を添加して、以下の組成からなるMWCNTを分散させた複合めっき液を調製した。
・スルファミン酸ニッケル 500g/リットル
・塩化ニッケル 5g/リットル
・ホウ酸 30g/リットル
・MWCNT 0.017g/リットル
なお、複合めっき液におけるMWCNTの分散状態は、MWCNT分散液作成後の黒く一様に濁った状態とほとんど変化がないことを目視で確認した。
<Preparation and finishing process of composite plating solution in which MWCNT is dispersed>
A MWCNT dispersion is prepared as MWCNT using Wako Pure Chemical Industries, Ltd. (wako-20) and treated in the same manner as in Example 1, and the same nickel sulfamate, nickel chloride and boric acid as in Example 1 are prepared. An MWCNT dispersion was added to a nickel plating solution prepared using the same to prepare a composite plating solution in which MWCNTs having the following composition were dispersed.
Nickel sulfamate 500 g / liter Nickel chloride 5 g / liter Boric acid 30 g / liter MWCNT 0.017 g / liter The dispersion state of MWCNT in the composite plating solution became uniformly cloudy black after the preparation of the MWCNT dispersion. It confirmed visually that there was almost no change with the state.

調製した複合めっき液をめっき浴に投入して60℃に昇温させた後、陽極にチタン白金板を用い、ダイヤモンド砥粒を付着させた芯線を陰極電解処理して、MWCNTが分布した複合めっき被膜を形成し、仕上げ工程を行った。形成された複合めっき被膜の膜厚は約2.5μmであった。付着工程及び仕上げ工程により形成された表面めっき被膜の膜厚は、約3μmであった。   After the prepared composite plating solution is put into a plating bath and heated to 60 ° C., a titanium platinum plate is used as the anode, and the core wire having diamond abrasive grains attached thereto is subjected to cathodic electrolysis treatment, and composite plating in which MWCNT is distributed A film was formed and a finishing process was performed. The film thickness of the formed composite plating film was about 2.5 μm. The film thickness of the surface plating film formed by the adhesion process and the finishing process was about 3 μm.

図2は、製造されたダイヤモンドソーワイヤの表面を走査型電子顕微鏡(SEM;日本電子株式会社製)により観察した結果を示す撮影画像である。ワイヤ表面に形成された表面めっき膜には、ダイヤモンド砥粒が凝集することなくほぼ均一に分布しており、ダイヤモンド砥粒の周囲にMWCNT(白い斑点状に見える箇所)が散在していることが確認できた。   FIG. 2 is a photographed image showing the result of observing the surface of the produced diamond saw wire with a scanning electron microscope (SEM; manufactured by Nippon Denshi Co., Ltd.). In the surface plating film formed on the wire surface, the diamond abrasive grains are distributed almost uniformly without agglomeration, and MWCNT (locations that look like white spots) are scattered around the diamond abrasive grains. It could be confirmed.

図3は、MWCNTが分布する複合めっき被膜の表面を希硝酸(関東化学株式会社製)を用いてエッチング処理し、露出したMWCNTの分布状態をSEMで観察した結果を示す撮影画像である。白く紐状のMWCNTがほぼ均一に分布していることが確認できた。したがって、表面めっき被膜では、固定されたダイヤモンド砥粒の周囲を取り巻くようにMWCNTが分布していると考えられる。   FIG. 3 is a photographed image showing the result of etching the surface of the composite plating film on which MWCNT are distributed using dilute nitric acid (manufactured by Kanto Chemical Co., Ltd.) and observing the distribution state of the exposed MWCNT with an SEM. It was confirmed that the white string-like MWCNTs were almost uniformly distributed. Therefore, in the surface plating film, it is considered that MWCNT are distributed so as to surround the fixed diamond abrasive grains.

[実施例18]
実施例17においてMWCNTを分散させた複合めっき液の組成のうちMWCNTの組成を0.033g/リットルに変更した以外は、実施例17と同様に処理して表面めっき被膜を形成したダイヤモンドソーワイヤを製造した。
[Example 18]
A diamond saw wire having a surface plated film formed in the same manner as in Example 17 is manufactured except that the composition of MWCNT is changed to 0.033 g / liter among the compositions of the composite plating solution in which MWCNT is dispersed in Example 17. did.

図4は、図3に示す場合と同様に複合めっき被膜の表面をエッチング処理して露出したMWCNTの分布状態をSEMで観察した結果を示す撮影画像である。図4に示す撮影画像を図3に示す撮影画像と比較すると、MWCNTの分布量が増加していることが確認できた。したがって、複合めっき液のMWCNTの添加濃度を高めることで、形成された複合めっき被膜に分布するMWCNTの分布量を大きくすることができると考えられる。   FIG. 4 is a photographed image showing the result of observing the distribution state of MWCNT exposed by etching the surface of the composite plating film in the same manner as shown in FIG. 3, using an SEM. When the photographed image shown in FIG. 4 is compared with the photographed image shown in FIG. 3, it can be confirmed that the distribution amount of MWCNT is increased. Therefore, it is considered that the amount of MWCNT distributed in the formed composite plating film can be increased by increasing the concentration of MWCNT added to the composite plating solution.

[実施例19]
実施例17で製造されたダイヤモンドソーワイヤを用いて切削試験を行った。切削試験には、シングルワイヤソー(株式会社タカトリ製;WSD−K2)を用いて、以下の切削条件でシリコンインゴット(断面形状;縦125mm×横125mm)を切削した。切削の際には、クーラント(ユシロ化学工業株式会社製)を用いた。
<切削条件>
線速 800m/分
ワイヤピッチ 1.0mm
張力 20N
加工量 30mm/回
昇降速度 1.2mm/分
加減速 4.0秒
一定速 8.0秒
ワイヤ供給量 0.3m/分
掛本数 3本
同じ切削動作を7回繰り返し行い、インゴットへのワイヤによる切削深さ及びワイヤの外径を測定した。7回の切削深さを合計した総切り込み量は、102mmであった。また、7回の切削によるワイヤの外径の減少は12.5μmであった。
[Example 19]
A cutting test was conducted using the diamond saw wire manufactured in Example 17. For the cutting test, using a single wire saw (manufactured by Takatori Co., Ltd .; WSD-K2), a silicon ingot (cross-sectional shape: 125 mm long × 125 mm wide) was cut under the following cutting conditions. In the case of cutting, coolant (made by Yushiro Chemical Industry Co., Ltd.) was used.
<Cutting conditions>
Line speed 800m / min Wire pitch 1.0mm
Tension 20N
Machining amount 30 mm / turning speed 1.2 mm / min Acceleration / deceleration 4.0 seconds constant speed 8.0 seconds Wire supply amount 0.3 m / min. Number of lines 3 same cutting operations are repeated seven times, and wire to ingot The cutting depth and the outer diameter of the wire were measured. The total cut amount obtained by adding the seven cutting depths was 102 mm. Moreover, the reduction of the outer diameter of the wire by seven cuttings was 12.5 micrometers.

[実施例20]
実施例18で製造されたダイヤモンドソーワイヤを用いて実施例19と同様の切削試験を行った。7回の切削深さを合計した総切り込み量は、104mmであった。また、7回の切削によるワイヤの外径の減少は12μmであった。
[Example 20]
The same cutting test as in Example 19 was carried out using the diamond saw wire produced in Example 18. The total cut amount obtained by totaling the seven cutting depths was 104 mm. Moreover, the reduction of the outer diameter of the wire by seven cuttings was 12 micrometers.

[比較例1]
従来のダイヤモンドソーワイヤ(アイテック株式会社製)を用いて実施例19と同様の切削試験を行った。7回の切削深さを合計した総切り込み量は、100mmであった。また、7回の切削によるワイヤの外径の減少は15μmであった。
Comparative Example 1
The same cutting test as in Example 19 was performed using a conventional diamond saw wire (manufactured by ITEC Co., Ltd.). The total cut amount obtained by totaling the seven cutting depths was 100 mm. Moreover, the reduction of the outer diameter of the wire by seven cuttings was 15 micrometers.

実施例19及び20では、比較例1に比べて総切り込み量が増加しており、切削性能の向上が確認できた。また、実施例19に比べて実施例20の方が総切り込み量が増加しており、MWCNTの添加濃度の増加に伴い切削性能がさらに向上することが確認できた。また、実施例19及び20では、比較例1に比べてワイヤ外径の減少が抑えられており、ダイヤモンド砥粒の脱落が少なくなって耐久性が向上していると考えられる。   In Examples 19 and 20, the total cutting amount increased as compared with Comparative Example 1, and improvement in cutting performance could be confirmed. Moreover, compared with Example 19, the total cutting amount increased in the case of Example 20, and it has been confirmed that the cutting performance is further improved as the addition concentration of MWCNT increases. Further, in Examples 19 and 20, the decrease in the outer diameter of the wire is suppressed as compared with Comparative Example 1, and it is considered that the diamond abrasive grains are less dropped and the durability is improved.

Claims (10)

炭素ナノ繊維材料、直鎖状多糖類及びアミド硫酸を含み、炭素ナノ繊維材料が分散状態でpH3以下に調製されている複合めっき処理用分散液。   A dispersion for composite plating treatment comprising a carbon nanofiber material, a linear polysaccharide, and amidosulfuric acid, wherein the carbon nanofiber material is prepared in a dispersed state to have a pH of 3 or less. 直鎖状多糖類は、炭素ナノ繊維材料1に対して0.4〜1の質量比で配合されている請求項1に記載の複合めっき処理用分散液。   The dispersion for composite plating according to claim 1, wherein the linear polysaccharide is blended in a mass ratio of 0.4 to 1 with respect to the carbon nanofiber material 1. 直鎖状多糖類は、キトサンである請求項1又は2に記載の複合めっき処理用分散液。   The dispersion liquid for complex plating according to claim 1 or 2, wherein the linear polysaccharide is chitosan. 炭素ナノ繊維材料は、直径5nm〜30nmのカーボンナノチューブである請求項1から3のいずれかに記載の複合めっき処理用分散液。   The dispersion for composite plating according to any one of claims 1 to 3, wherein the carbon nanofiber material is a carbon nanotube having a diameter of 5 nm to 30 nm. 請求項1から4のいずれかに記載の複合めっき処理用分散液と金属めっき液とを混合して調製された複合めっき液であって、炭素ナノ繊維材料の配合量が0.5g/リットル以下である複合めっき液A composite plating solution prepared by mixing the dispersion liquid for composite plating treatment according to any one of claims 1 to 4 and a metal plating solution, wherein the blending amount of the carbon nanofiber material is 0.5 g / liter or less Is a composite plating solution . 請求項5に記載の複合めっき液を用いて被めっき物の表面に複合めっき被膜を形成する複合めっき処理方法。   A composite plating method for forming a composite plating film on the surface of a material to be plated using the composite plating solution according to claim 5. 金属めっき液に砥粒を分散させた複合めっき液を用いて切削工具の表面に複合めっき処理を行って砥粒を付着させた複合めっき被膜を形成する工程と、請求項5に記載の複合めっき液を用いて前記複合めっき被膜の表面に複合めっき処理を行って砥粒及び炭素ナノ繊維材料が分布して固定された表面めっき被膜を形成する工程とを備えている切削工具の表面めっき処理方法。   6. A process of forming a composite plating film in which abrasive grains are adhered to a surface of a cutting tool by using a composite plating liquid in which abrasive grains are dispersed in a metal plating liquid, and the composite plating according to claim 5. Performing a composite plating process on the surface of the composite plating film using a liquid to form a surface plating film on which abrasive grains and a carbon nanofiber material are distributed and fixed, and surface plating treatment method of a cutting tool . 請求項7に記載の表面めっき処理方法を用いて、金属製の芯線の表面にダイヤモンド砥粒及びカーボンナノチューブが固定された表面めっき被膜を形成するダイヤモンドソーワイヤの製造方法A method for producing a diamond saw wire , comprising forming a surface plating film having diamond abrasive grains and carbon nanotubes fixed on the surface of a metal core wire, using the surface plating method according to claim 7. 前記ダイヤモンド砥粒は、平均粒径が1μm〜100μmである請求項8に記載のダイヤモンドソーワイヤの製造方法The method for manufacturing a diamond saw wire according to claim 8, wherein the diamond abrasive grains have an average particle diameter of 1 μm to 100 μm. 前記芯線は、平均外径が50μm〜300μmである請求項8又は9に記載のダイヤモンドソーワイヤの製造方法The method for manufacturing a diamond saw wire according to claim 8, wherein the core wire has an average outer diameter of 50 μm to 300 μm.
JP2015057100A 2015-03-20 2015-03-20 Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method Active JP6551725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057100A JP6551725B2 (en) 2015-03-20 2015-03-20 Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057100A JP6551725B2 (en) 2015-03-20 2015-03-20 Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method

Publications (2)

Publication Number Publication Date
JP2016176109A JP2016176109A (en) 2016-10-06
JP6551725B2 true JP6551725B2 (en) 2019-07-31

Family

ID=57069751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057100A Active JP6551725B2 (en) 2015-03-20 2015-03-20 Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method

Country Status (1)

Country Link
JP (1) JP6551725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637360B (en) * 2016-12-15 2018-07-03 江苏三超金刚石工具有限公司 Diamond fretsaw uniformity sand device and upper sand method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013568A (en) * 2008-07-04 2010-01-21 New Industry Research Organization Porous nanomaterial-dispersed material and method for producing the same
JP5356071B2 (en) * 2009-03-02 2013-12-04 住友電気工業株式会社 Diamond wire saw, diamond wire saw manufacturing method
EP2679625B1 (en) * 2011-02-23 2017-01-25 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material

Also Published As

Publication number Publication date
JP2016176109A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
Zhang et al. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications
Janas et al. Copper matrix nanocomposites based on carbon nanotubes or graphene
Zheng et al. One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation
Lee Comparative corrosion resistance of electroless Ni-P/nano-TiO2 and Ni-P/nano-CNT composite coatings on 5083 aluminum alloy
Jayathilaka et al. A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics
JP4999072B2 (en) Surface coating material
Shelke et al. Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique
JP6606076B2 (en) Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same
WO2017004037A1 (en) Abrasive article and method of forming
JP2016222968A (en) Nickel plating liquid, and method for manufacturing wire coated with solid microparticles
TW201249602A (en) Electrodeposition liquid for fixed-abrasive saw wire
JP6551725B2 (en) Dispersion for composite plating treatment in which carbon nanofiber material is dispersed, composite plating solution containing the same, composite plating treatment method using composite plating solution, and surface plating of cutting tool for forming surface plating film using composite plating treatment Processing method
EP2690068A1 (en) Alumina composite, process for producing alumina composite, and polymer composition containing alumina composite
García-Aguirre et al. Microstructure and transmission electron microscopy characterization of electroless Ni–B thin films deposited on MWCNTs
Kumar et al. Effect of xGnP/MWCNT reinforcement on mechanical, wear behavior and crystallographic texture of copper-based metal matrix composite
Holesinger et al. Carbon nanotube coated conductors
KR100795166B1 (en) Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating
Refai et al. Assessment of the performance of Ni-carbon nanotube nanocomposite coatings for protecting the surfaces of steel agricultural mower knives
Hou et al. Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties
JP4636816B2 (en) Cemented carbide and method for producing the same
WO2015053411A1 (en) Metal composite material and method for producing same
WO2017203848A9 (en) Superabrasive wheel
JP2015145324A (en) Production method of nano carbon fiber-coated diamond particle
RU2679807C1 (en) Diamond tools on thermal-wire metal connection
JP5411210B2 (en) Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6551725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250