KR100795166B1 - Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating - Google Patents

Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating Download PDF

Info

Publication number
KR100795166B1
KR100795166B1 KR1020060038245A KR20060038245A KR100795166B1 KR 100795166 B1 KR100795166 B1 KR 100795166B1 KR 1020060038245 A KR1020060038245 A KR 1020060038245A KR 20060038245 A KR20060038245 A KR 20060038245A KR 100795166 B1 KR100795166 B1 KR 100795166B1
Authority
KR
South Korea
Prior art keywords
plating
diamond
concentration
nanodiamond powder
nanodiamond
Prior art date
Application number
KR1020060038245A
Other languages
Korean (ko)
Other versions
KR20070105711A (en
Inventor
백승룡
조진기
김문태
유미선
Original Assignee
백승룡
조진기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백승룡, 조진기 filed Critical 백승룡
Priority to KR1020060038245A priority Critical patent/KR100795166B1/en
Publication of KR20070105711A publication Critical patent/KR20070105711A/en
Application granted granted Critical
Publication of KR100795166B1 publication Critical patent/KR100795166B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1669Agitation, e.g. air introduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment

Abstract

본 발명은 나노 미터(nm) 크기의 다이아몬드를 이용한 나노 다이아몬드 복합 무전해 Ni-P 도금의 도금조건별 도금피막의 형상, 경도(HV), 마모 및 부식성을 갖는 복합무전해 도금방법에 관한 것으로, 상온의 물에 나노다이아몬드 분말을 투입하여 나노다이아몬드 분말액의 농도를 조절하는 공정과; 상기 농도조절 후 나노다이아몬드 분말액을 초음파를 이용하여 분산시키는 공정과; 분산된 나노다이아몬드 분말액을 기 작성된 무전해니켈도금액에 투입시키고 산성도(PH)를 조절하는 공정;을 포함하며, 나노크기의 다이아몬드 입자를 사용하며, 입자의 농도, 초음파 분산시간, PH별 조건에 따라 조절하여 균일한 크기의 나노다이아몬드(Nano Diamond)로 분산시켜 최적 조건에 의해 도금함으로써 경도(HV)와 내마모 및 내식성을 향상시키는 효과가 있다.The present invention relates to a composite electroless plating method having the shape, hardness (H V ), abrasion and corrosion of the coating film according to the plating conditions of the nano diamond composite electroless Ni-P plating using the nanometer diamond. Injecting the nanodiamond powder into the water at room temperature to adjust the concentration of the nanodiamond powder solution; Dispersing the nanodiamond powder solution using ultrasonic waves after the concentration adjustment; The dispersed nanodiamond powder solution is added to a previously prepared electroless nickel plating solution, and the acidity (PH) is controlled, including the use of nano-size diamond particles, particle concentration, ultrasonic dispersion time, conditions for each PH By controlling according to the dispersion by uniformly sized nano diamond (Nano Diamond) and plating under the optimum conditions there is an effect of improving the hardness (H V ) and wear resistance and corrosion resistance.

나노다이아몬드, 복합 무전해 Ni-P 도금, 내식성, 내마모성, 경도 Nano Diamond, Composite Electroless Ni-P Plating, Corrosion Resistance, Wear Resistance, Hardness

Description

나노다이아몬드 분말액을 이용한 복합무전해도금방법{Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating}Manufacturing method of Electroless Ni-P Nano-Diamond Composite Coating}

도 1~ 도 9는 실시예 1 ~ 실시예 9에서 측정 및 분석에 의해 산출한 데이터값을 나타낸 그래프이고,1 to 9 are graphs showing data values calculated by measurement and analysis in Examples 1 to 9,

도 10a ~ 도 10e는 다이아몬드 농도변화에 따른 도금피막의 표면형상을 나타내는 사진이며,10a to 10e are photographs showing the surface shape of the plating film according to the diamond concentration change,

도 11a ~ 도 11e는 초음파 분산시간에 따른 도금피막의 표면형상을 나타내는 사진이며,11a to 11e are photographs showing the surface shape of the plating film according to the ultrasonic dispersion time,

도 12a ~ 도 12e는 PH 변화에 따른 도금피막의 표면형상을 나타내는 사진이다.12a to 12e are photographs showing the surface shape of the plating film according to the PH change.

본 발명은 고온 고압 상태에서 TNT/RDX (trinitrotoluene/hexogene) 화합물을 폭발시켜 생성된 수~수백㎚ 크기의 다이아몬드 입자를 사용하여 입자의 농도, 초음파 분산시간, PH별 조건에 따른 입자들의 크기 및 Zeta 전위를 측정하여 나노 다이아몬드 복합 무전해 Ni-P 도금에서의 최적 도금조건별 도금피막의 형상, 경도(HV), 마모 및 부식성을 갖는 나노다이아몬드를 이용한 복합무전해 도금방법에 관한 것이다.The present invention uses the diamond particles of several hundreds of nm size produced by exploding the TNT / RDX (trinitrotoluene / hexogene) compound at high temperature and high pressure state, the particle concentration, ultrasonic dispersion time, particle size according to the conditions of each PH and Zeta The present invention relates to a composite electroless plating method using nanodiamonds having the shape, hardness (H V ), abrasion and corrosiveness of the coating film according to the optimum plating conditions in the nanodiamond composite electroless Ni-P plating by measuring the electric potential.

산업적으로 내식성, 내마모성 및 윤활성 등의 다양한 특성을 가지는 재료 개발이 요구되고 있다. 단일재료로는 이러한 다양한 특성을 모두 만족시키기 어려워져 서로 다른 특성을 가지는 재료를 복합하여 사용하는 복합도금 방법들이 최근에 활발히 연구, 개발되고 있다.There is a demand for developing materials having various characteristics such as corrosion resistance, wear resistance, and lubricity. As a single material is difficult to satisfy all of these various properties, composite plating methods using a combination of materials having different properties have been actively researched and developed recently.

일반적으로 복합도금은 전해질 용액에 미세한 크기의 SiC, Al2O3, 흑연, 다이아몬드, 석영, 티타늄산화물, 탄화티타늄 및 폴리머 입자 등의 미립자들을 분산시켜 니켈이나 구리 등의 석출이 진행될 때 공석되어 복합피막 층을 형성하는 전기화학적 재료공정이다. 복합도금에 사용되는 미립자들 중에 다이아몬드 입자는 높은 경도, 낮은 마찰계수를 나타내며, 대기, 산 또는 염의 분위기에서 화학적으로 안정하여 오래 전부터 연마 및 절삭용 공구에 많이 사용되어왔다. 현대 과학과 기술이 발전함에 따라, 마이크로미터(㎛) 크기의 복합도금은 산업분야에서 필요로 하는 특성에 적합하지 않다. 그러나 강화상의 나노입자를 사용하는 복합도금은 그 우수한 특성으로 인해 연구 및 산업분야에 널리 적용되고 있다. In general, the composite plating is vaccinated during the deposition of nickel or copper by dispersing fine particles of fine sized SiC, Al 2 O 3 , graphite, diamond, quartz, titanium oxide, titanium carbide and polymer particles in the electrolyte solution. It is an electrochemical material process for forming a coating layer. Among the fine particles used for composite plating, diamond particles have high hardness, low coefficient of friction, and are chemically stable in an atmosphere of air, acid, or salt, and have been used for a long time in grinding and cutting tools. With the development of modern science and technology, micrometer (μm) sized composite plating is not suitable for the characteristics required by the industrial sector. However, composite plating using nanoparticles of reinforcing phase has been widely applied to research and industry because of its excellent properties.

나노다이아몬드는 제품의 용도에 따라 액상 또는 분말상을 사용하며, 순도는 나노다이아몬드 혼합물과 고순도 나노다이아몬드 혼합물 및 초고순도 나노 다이아몬드로 나눌 수 있으며 용도는 표면처리의 전기도금 첨가제, 금, 백금, 은등의 귀금속 도금, 알루미늄 및 알루미늄 합금의 산화피막처리, 나노고급연마재 등 다양한 분야에 사용하고 있으며 산업용 공구, 금형 분야와 전기도금 안정화분야에 사용하고 있으며 나노다이아몬드를 사용함으로 내침식성, 내마모성, 접착력이 우수한 도금층을 생성하고, 나노준위의 표면처리 및 코팅등의 장점을 있으며, 종래의 나노다이아몬드를 이용한 도금 방법은 입자의 크기가 불균질한 나노 다이아몬드를 이용하므로 인해 내마모성과 내식성이 떨어지는 단점이 있다.Nanodiamonds can be used in liquid or powder form depending on the purpose of the product.Purity can be divided into nanodiamond mixtures, high purity nanodiamond mixtures, and ultra high purity nanodiamonds.They are used in the surface treatment of electroplating additives, gold, platinum, silver, etc. It is used in various fields such as precious metal plating, anodization of aluminum and aluminum alloys, nano advanced abrasive materials, and used in industrial tools, molds, and electroplating stabilization fields. And the advantages of surface treatment and coating of nano-levels, and the conventional plating method using nanodiamonds has a disadvantage of inferior wear resistance and corrosion resistance due to the use of nanodiamonds having irregular particle sizes.

본 발명은 상기한 종래기술의 문제점을 해결하고자 제안된 것으로, 나노크기의 다이아몬드 입자를 사용하였으며, 입자의 농도, 초음파 분산시간, PH별 조건에 따라 조절하여 균일한 크기의 나노다이아몬드(Nano Diamond)로 분산시켜 최적 도금조건별 나노다이아몬드 복합무전해 도금방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above problems of the prior art, using nano-sized diamond particles, nano diamond of uniform size by controlling the concentration of the particles, ultrasonic dispersion time, conditions for each PH It is an object of the present invention to provide a nanodiamond composite electroless plating method according to the optimum plating conditions.

목적을 달성하기 위한 본 발명에서는, 상온의 물에 나노 다이아몬드 분말을 투입하여 나노다이아몬드 분말액의 농도를 조절하는 공정과; 상기 농도조절 후 나노다이아몬드 분말액을 초음파를 이용하여 분산시키는 공정과; 분산된 나노다이아몬드 분말액을 기 작성된 무전해니켈도금액에 투입시키고 산성도(PH)를 조절하는 공정;을 포함하는 것을 특징으로 한다.In the present invention for achieving the object, the step of adjusting the concentration of the nanodiamond powder solution by adding nanodiamond powder to water at room temperature; Dispersing the nanodiamond powder solution using ultrasonic waves after the concentration adjustment; It is characterized in that it comprises a; step of adding the dispersed nanodiamond powder solution to the prepared electroless nickel plating solution and adjust the acidity (PH).

여기서 상기 농도조절공정에서 나노다이아몬드 분말액의 농도는 1g/ℓ ± 0.5로 조절되며, 상기 분산공정은 나노다이아몬드 분말액을 균일한 크기로 분산시키고 초음파 분산시간은 30±5분(min) 범위에서 조절되며 분산된 나노다이아몬드 분말의 평균입도는 175 나노미터(nm)이며, 상기 산성도(PH)조절은 10% 수산화나트 륨(NaOH)과 황산(H2SO4)을 이용하여 조절하고 산성도(PH) 조절범위는 5±0.5인 것을 특징으로 한다.Here, the concentration of the nanodiamond powder in the concentration control process is adjusted to 1g / ℓ ± 0.5, the dispersion process is dispersed in the nanodiamond powder to a uniform size and ultrasonic dispersion time in the range of 30 ± 5 minutes (min) The average particle size of the controlled and dispersed nanodiamond powder is 175 nanometers (nm), the acidity (PH) control is adjusted by using 10% sodium hydroxide (NaOH) and sulfuric acid (H 2 SO 4 ) and acidity (PH The adjustment range is characterized by 5 ± 0.5.

또한, 상기 나노다이아몬드 농도와 초음파 분산시간 및 산성도 조절 조건 중에서 가장 큰 제타전위(Zeta-Potential)값을 가질 때의 나노다이아몬드의 입도는 159나노미터(nm) 크기로 가장 작은 입도로 분산되는 것을 특징으로 한다.In addition, the particle size of nanodiamonds having the highest zeta-potential value among the nanodiamond concentration, ultrasonic dispersion time, and acidity control condition is 159 nanometers (nm) in size and is dispersed in the smallest particle size. It is done.

또한, 사용된 상기 나노다이아몬드 분말은 나노미터(nm) 크기인 것을 특징으로 한다.In addition, the nanodiamond powder used is characterized in that the nanometer (nm) size.

이하, 첨부된 도면 참조하여 본 발명에 따른 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1~ 도 9는 실시예 1 ~ 실시예 9에서 측정 및 분석에 의해 산출한 데이터값을 나타낸 그래프이고, 도 10a ~ 도 10e는 다이아몬드 농도변화에 따른 도금피막의 표면형상을 나타내는 사진이며, 도 11a ~ 도 11e는 초음파 분산시간에 따른 도금피막의 표면형상을 나타내는 사진이며, 도 12a ~ 도 12e는 PH 변화에 따른 도금피막의 표면형상을 나타내는 사진이다.1 to 9 are graphs showing data values calculated by measurement and analysis in Examples 1 to 9, and FIGS. 10A to 10E are photographs showing the surface shape of the plating film according to the diamond concentration change. 11A to 11E are photographs showing the surface shape of the plating film according to the ultrasonic dispersion time, and FIGS. 12A to 12E are photographs showing the surface shape of the plating film according to the PH change.

우선 농도조절공정은 상온에서 물에 나노다이아몬드 분말을 투입하여 나노다이아몬드 분말액의 농도를 조절하는 공정으로 상온의 물 250 미리 리터(㎖)와 나노다이아몬드 분말 1g을 투입하는 것으로 상기 나노다이아몬드 분말도금액의 농도는 1g/ℓ ± 0.5로 조절하게 되며, 여기서 사용된 상기 나노다이아몬드 분말은 나노미터(nm) 크기를 사용함으로서 내마모성과 내식성을 향상시킬 수 있다. First, the concentration control process is a process for adjusting the concentration of nanodiamond powder by adding nanodiamond powder to water at room temperature. The nanodiamond powder plating solution is prepared by adding 250 milliliters (ml) of water at room temperature and 1 g of nanodiamond powder. The concentration of 1g / L ± 0.5 will be adjusted, the nanodiamond powder used here can be improved wear resistance and corrosion resistance by using a nanometer (nm) size.

초음파 분산공정은 농도조절된 상기 나노다이아몬드 분말액을 초음파를 이용하여 분산시키는 공정으로 나노다이아몬드 분말액을 균일한 크기로 분산시기 위한 것이며 균일한 크기로 분산시키기 위한 초음파 분산시간은 30±5분(min) 범위에서 조절하여 분산시키며 분산된 나노다이아몬드 분말의 평균입도는 175 나노미터(nm)의 균일한 크기로 된다. The ultrasonic dispersion process is a process for dispersing the nanodiamond powder solution of which concentration is controlled by using ultrasonic waves to disperse the nanodiamond powder solution in a uniform size, and the ultrasonic dispersion time for dispersing in a uniform size is 30 ± 5 minutes ( min) is controlled and dispersed in the average particle size of the dispersed nanodiamond powder is a uniform size of 175 nanometers (nm).

산성도 조절공정은 상기 175 나노미터의 균일한 크기로 분산된 나노다이아몬드 분말액을 기 작성된 무전해니켈도금액에 투입시키고 산성도(PH)를 조절하는 공정으로 산성도(PH) 조절범위는 5±0.5로 조절되며 10% 수산화나트륨(NaOH)과 황산(H2SO4)을 이용하여 산성이나 알카리로의 변화하는 것을 조절함으로서 산성도를 조절하게 된다.The acidity control process is a process of injecting the nanodiamond powder dispersed in a uniform size of 175 nanometers into a previously prepared electroless nickel plating solution and adjusting the acidity (PH). The pH control range is 5 ± 0.5. The acidity is controlled by controlling the change to acidity or alkali using 10% sodium hydroxide (NaOH) and sulfuric acid (H 2 SO 4 ).

상기 농도조절공정과 분산공정과 산성도 조절공정을 통해 균일한 크기로 분산된 나노다이아몬드 분말도금액을 피가공물에 원하는 두께로 도금을 입히게 되며 이렇게 균일한 입자크기의 나노다이아몬드 분말액에 의해 도금을 입힌 피가공물은 내마모성과 내식성이 향상되게 된다.Through the concentration control process, the dispersion process and the acidity control process, the nanodiamond powder plating solution dispersed in a uniform size is coated on the workpiece to a desired thickness, and the plating is performed by the nanodiamond powder solution having a uniform particle size. Workpieces will have improved wear and corrosion resistance.

또한, 상기 나노다이아몬드 농도와 초음파 분산시간 및 산성도 조절 조건 중에서 가장 큰 제타전위(Zeta-Potential)값을 가질 때의 나노다이아몬드의 입도는 159나노미터(nm)크기로 가장 작은 입도로 분산되는 데 여기서, Zeta 전위란 액체 속에 부유하는 콜로이드 입자의 표면전기적 특성인 전위로 이는 부유물질끼리 또는 부유물질과 필터 등의 표면에서의 전기적 흡인력과 반발력의 기준으로 사용되며, 일반적으로 Zeta 전위의 크기 값은 mV이다.In addition, the particle size of nanodiamonds having the largest zeta-potential value among the nanodiamond concentration, ultrasonic dispersion time, and acidity control condition is dispersed to the smallest particle size of 159 nanometers (nm). Zeta potential is the surface electrical property of colloidal particles suspended in a liquid.It is used as a reference for the electrical attraction and repulsion of suspended materials or surfaces such as suspended materials and filters.In general, the magnitude of Zeta potential is mV. to be.

이하, 본 발명의 상세히 설명은 다음의 실시예에 의거하였다.Hereinafter, the detailed description of the present invention was based on the following examples.

먼저, 본 발명을 실시함에 있어서 사용된 측정 및 분석장비로 실험에서 사용된 다이아몬드의 입자크기와 다이아몬드 분말 현탁액에서의 입자의 농도(0.5~3.0g/ℓ), 초음파 분산 시간(0~60min), PH(3~7) 변화에 따른 다이아몬드 입자의 크기 및 Zeta 전위는 Brookhaven Instruments 사의 Pals Zeta Potential Analyzer Ver. 3.26로 측정하였으며, 표면형상은 HITACHI 사의S4700 FE-SEM을, 도금두께는 FICHER 사의 XULM-XYM XRF(X-Ray Fluorescence)로 측정하였다. 도금 층의 경도(HV)는 MITUTOYO사의 HM-112 Model의 마이크로비커스경도기를 사용하였으며, 하중 100g으로 10초 동안 각 시편을 10번씩 측정하여 평균값으로 나타내었다.First, the particle size of the diamond used in the experiment and the concentration of particles in the diamond powder suspension (0.5 ~ 3.0g / ℓ), ultrasonic dispersion time (0 ~ 60min), Diamond particle size and Zeta potential with PH (3 ~ 7) change were measured by Pals Zeta Potential Analyzer Ver. The surface shape was measured by the S4700 FE-SEM of HITACHI, and the plating thickness was measured by XULM-XYM XRF (X-Ray Fluorescence) of FICHER. The hardness (H V ) of the plated layer was used as a micro-Vickers hardness tester of the HM-112 Model of MITUTOYO Co., Ltd., and the average value of each specimen was measured 10 times for 10 seconds under a load of 100 g.

마모 특성은 Tribometer ball-on-disk type을 사용하였다.Tribometer ball-on-disk type was used for wear characteristics.

또한 부식성은 KS D 9502, KS D 8334에 따라 5% NaCl2 , 상온에서(25℃) 200시간동안 실시하였다. 부식면적은 시편의 전체 면적 대비 부식된 면적을 계산하여 나타내었다. Corrosion was also performed for 5 hours at 5% NaCl 2 and room temperature (25 ℃) according to KS D 9502 and KS D 8334. Corrosion area is shown by calculating the corroded area to the total area of the specimen.

<실시예1>Example 1

제 1 실시예는 현탁액에서 초음파 분산시간을 30분 조건으로 했을 때 다이아몬드 농도에 따른 입자크기 및 제타전위(Zeta Potential) 값을 나타내며, 도 10a ~ 10e는 농도변화에 따른 표면형상을 나타낸 사진이며 분산된 액을 무전해 Ni-P 도금액과 혼합한 뒤 90±2℃에서 60min 동안 도금하였다. The first embodiment shows the particle size and Zeta Potential value according to the diamond concentration when the ultrasonic dispersion time is set to 30 minutes in the suspension, Figure 10a ~ 10e is a photograph showing the surface shape according to the concentration change and dispersion The solution was mixed with an electroless Ni-P plating solution and plated at 90 ± 2 ° C. for 60 min.

0.5g/ℓ0.5g / ℓ 1.0g/ℓ1.0 g / ℓ 1.5g/ℓ1.5g / ℓ 2.0g/ℓ2.0 g / ℓ 3.0g/ℓ3.0 g / ℓ Particle Size (nm)Particle Size (nm) 225.9225.9 175175 387.5387.5 853.8853.8 3547.13547.1 Zeta Potential(mV)Zeta Potential (mV) 25.6025.60 18.0718.07 6.096.09 5.735.73 3.233.23

상기 표1과 도 1에서 알 수 있는 바와 같이, 다이아몬드 농도가 증가함에 따라 제타전위 값 또한 감소하는 경향을 보이고 입자크기는 농도가 증가함에 따라 증가하는 경향이 나타났다.As can be seen in Table 1 and FIG. 1, the zeta potential value also decreased as the diamond concentration increased, and the particle size increased as the concentration increased.

<실시예2>Example 2

제 2 실시예는 현탁액에서 다이아몬드 농도 1g/ℓ와 산성도(PH)를 4.36의 조건으로 했을 때 초음파 분산시간에 따른 입자크기 및 제타전위(Zeta Potential)값을 나타내며, 도 11a ~ 11e는 초음파 분산시간 0분, 15분, 30분, 45분, 60분에 따른 도금피막의 표면형상을 나타낸 사진이다. The second embodiment shows the particle size and zeta potential value according to the ultrasonic dispersion time when the diamond concentration in suspension is 1 g / l and acidity (PH) is 4.36, and FIGS. 11a to 11e illustrate ultrasonic dispersion time. It is a photograph showing the surface shape of the plating film according to 0 minutes, 15 minutes, 30 minutes, 45 minutes, and 60 minutes.

0분0 min 15분15 minutes 30분30 minutes 45분45 minutes 60분60 minutes Particle Size (nm)Particle Size (nm) 256256 213213 159159 163163 181181 Zeta Potential(mV)Zeta Potential (mV) 12.3912.39 19.9819.98 22.7422.74 22.3822.38 19.4619.46

상기 표2과 도 2에서 알 수 있는 바와 같이, 초음파 분산시간에 따라 입자크기는 점차 감소하는 경향을 보이며, 일정한 시간 즉, 30분이 경과하면 크기가 증가하기 시작하며 이와 다르게 제타전위(Zeta Potential)는 분산시간이 증가함에 따라 증가하다가 30분 이후에는 감소하게 된다.As can be seen in Table 2 and Figure 2, the particle size tends to decrease gradually with ultrasonic dispersion time, and after a certain time, that is, 30 minutes, the size starts to increase and the zeta potential is different. Increases with increasing dispersion time and decreases after 30 minutes.

<실시예3>Example 3

제 3 실시예는 현탁액에서 다이아몬드 농도 1g/ℓ와 초음파 분산시간을 30분을 조건으로 할 때 산성도(PH)변화에 따른 입자크기 및 제타전위(Zeta Potential)값을 나타내며, 도 12a~ 12e는 PH변화에 따른 도금피막의 표면형상을 나타내었다. The third embodiment shows the particle size and zeta potential value according to the change in acidity (PH) when the diamond concentration in suspension is 1 g / L and the ultrasonic dispersion time is 30 minutes, and FIGS. 12A to 12E are PH. The surface shape of the plating film according to the change is shown.

도 12a와 12b는 도금액의 PH가 강산(PH3, 4)일 경우, 표면에 다이아몬드 입자들이 거의 공석되지 않았으며 또한 무전해 Ni-P 도금의 적정 PH보다 낮아 무전해 Ni-P 도금도 거의 되지 않았다. 이는 미세한 입자들의 용해도가 PH에 의존하기 때문에 극한의 PH에서 분산되지 않고 곧바로 침전하여 생긴 현상으로 판단된다. 반면, 도 12d와 12e는 PH 5에서 높은 Zeta 전위 값을 나타내는 것처럼 다이아몬드 입자들 또한 피막표면에 크기편차가 작은 입자들로 공석되었다가 PH가 높아지면서 다이아몬드 입자들은 또다시 응집되어 공석되었다.12A and 12B show that when the pH of the plating solution is a strong acid (PH3, 4), diamond particles are hardly vaccinated on the surface, and the electroless Ni-P plating is hardly performed because it is lower than the appropriate pH of the electroless Ni-P plating. . This is considered to be a phenomenon caused by precipitation immediately without dispersing in the extreme pH because the solubility of the fine particles depend on the pH. On the other hand, as shown in Figure 12d and 12e shows a high Zeta potential value at PH 5, diamond particles were also vaccinated with particles having a small size deviation on the surface of the coating surface, the diamond particles were agglomerated and vacancy again as the PH was increased.

PH 3PH 3 PH 4PH 4 PH 5PH 5 PH 6PH 6 PH 7PH 7 Particle Size (nm)Particle Size (nm) 358.9358.9 174.2174.2 194.9194.9 192.9192.9 291.7291.7 Zeta Potential(mV)Zeta Potential (mV) 6.646.64 7.367.36 21.9121.91 9.879.87 8.508.50

상기 표 3과 도 3에서 알 수 있는 바와 같이, 산성도(PH)4, 5, 6에서 입자크기(nm)는 변화가 거의 없으며, 산성도(PH) 7부터 증가하기 시작하였다,As can be seen in Table 3 and Figure 3, the particle size (nm) in the acidity (PH) 4, 5, 6 has little change, began to increase from the acidity (PH) 7,

또한 제타전위(Zeta Potential)는 산성도(PH)가 증가함에 따라 증가하여 산성도(PH) 5에서 최대값을 보이다가 산성도(PH) 6부터 다시 감소하였다.Zeta potential increased with acidity (PH), peaked at acidity (PH) 5, and decreased again from acidity (PH) 6.

즉 상기 실시예 1 ~ 3에서 보는 바와 같이 입자 농도가 0.5에서 3.0g/ℓ로 증가할수록 Zeta 전위는 감소하였으며, 그에 따른 다이아몬드 입자 크기는 증가하였다. 초음파 분산시간이 증가할수록 Zeta 전위가 증가하는 경향을 보이나 일정한 시간(30min)이 지나면 감소하기 시작하였으며, 입자 크기는 30min에서 최소크기를 나타내었고 그 이후에는 입자크기가 다시 증가하였다. PH변화에 따른 Zeta 전위 값은 PH 5에서 가장 높은 값을 보였고, PH 4~6에서 입자크기는 거의 일정하였으며 PH가 증가함에 따라 점차 증가하는 경향을 보였다. That is, as shown in Examples 1 to 3, as the particle concentration increased from 0.5 to 3.0 g / L, the Zeta potential decreased, and thus the diamond particle size increased. Zeta dislocations tended to increase with increasing ultrasonic dispersion time, but began to decrease after a certain time (30 min), and the particle size showed a minimum size at 30 min, after which the particle size increased again. The Zeta potential value was the highest at pH 5, and the particle size was almost constant at PH 4-6, and gradually increased with increasing pH.

<< 나노다이아몬드 분말액을 이용한 복합 무전해 니켈도금 물성평가 > Evaluation of Composite Electroless Nickel Plating Using Nanodiamond Powder Solution>

실험조건은 고정인자로 베이스(Base)는 Steel plate(3x3cm), 도금온도는 90℃(±2℃)이고, 도금시간은 60분, 열처리조건은 아르곤 가스상에서 350℃에서 2시간으로 하고, 변동 인자는 다이아몬드농도(g/ℓ) : 0.5, 1.0, 1.5, 2.0, 3.0이고, 초음파 분산시간은(400kw) 0, 15, 30, 45, 60이며, 도금액의 PH는 3, 4, 5, 6, 7이다.The experimental conditions were fixed factors, the base was a steel plate (3x3cm), the plating temperature was 90 ° C (± 2 ° C), the plating time was 60 minutes, and the heat treatment condition was 350 hours in argon gas at 2 hours The factor is diamond concentration (g / L): 0.5, 1.0, 1.5, 2.0, 3.0, ultrasonic dispersion time (400kw) is 0, 15, 30, 45, 60, and the pH of the plating liquid is 3, 4, 5, 6 , Seven.

여기서 각 시편의 도금속도(㎛/60min)는 도금시간당 도금두께를 측정한 값이며, 다이아몬드 입자의 공석률(%)은 FE-SEM 이미지의 전체 면적 대비 다이아몬드 입자 면적을 환산한 값이며, 입자 크기 균일도는 수학식 1을 통해 계산하였으며, x는 다이아몬드 입자들의 평균 면적 값이며, S는 개개의 xi와 그 평균값 x의 차의 2승의 합이고, n은 측정된 다이아몬드 입자수이다. Here, the plating rate (μm / 60min) of each specimen is a value measured by the plating thickness per plating time, and the vacancy rate (%) of the diamond particles is a value obtained by converting the diamond particle area to the total area of the FE-SEM image. Uniformity was calculated through Equation 1, x is the average area value of the diamond particles, S is the sum of the square of the difference between the individual x i and the average value x, n is the number of diamond particles measured.

입자크기균일도Particle Size Uniformity = x / √S/(n-1) (S= ∑ (x = x / √S / (n-1) (S = ∑ (x ii -x)-x) 22 ))

나노다이아몬드의Nanodiamond 농도변화에 따른 기계적·화학적 특성  Mechanical and Chemical Properties According to Concentration Changes

<실시예4>Example 4

제 4 실시예는 초음파 분산시간을 30분일 경우에 다이아몬드 농도 변화에 따른 복합도금의 도금속도(㎛/60min), 다이아몬드공석률(%) 및 입자크기 균일도를 나타낸다. The fourth embodiment shows the plating rate (μm / 60 min), diamond vacancy rate (%) and particle size uniformity of the composite plating according to the diamond concentration change when the ultrasonic dispersion time is 30 minutes.

0.5g/ℓ0.5g / ℓ 1.0g/ℓ1.0 g / ℓ 1.5g/ℓ1.5g / ℓ 2.0g/ℓ2.0 g / ℓ 3.0g/ℓ3.0 g / ℓ 도금속도(㎛/60min)Plating speed (㎛ / 60min) 17.8717.87 17.5117.51 19.2319.23 16.4116.41 17.9317.93 다이아몬드공석률(%)Diamond vacancy rate (%) 20.820.8 25.325.3 28.528.5 33.733.7 42.942.9 입자크기 균일도Particle Size Uniformity 1.5×103 1.5 × 10 3 0.95×103 0.95 × 10 3 1.3×103 1.3 × 10 3 2.3×103 2.3 × 10 3 3.0×103 3.0 × 10 3

상기 표 4과 도 4에서 알 수 있는 바와 같이, 도금속도는 다이아몬드농도변화와 상관없이 거의 일정하며, 공석률(%)은 농도가 증가함에 따라 비례적으로 증가 하였고, 입자크기 균일도는 값이 작을수록 균일한 크기의 입자들이 많음을 의미하며 1g/l에서 가장 낮은 값을 나타내고 농도가 증가함에 따라 균일도도 증가하였다.As can be seen in Table 4 and Figure 4, the plating rate is almost constant irrespective of the diamond concentration change, the vacancy rate (%) is increased proportionally as the concentration is increased, the particle size uniformity is small value The more uniform particles were, the lower the value was at 1 g / l and the uniformity increased with increasing concentration.

<실시예5>Example 5

제 5 실시예는 다이아몬드 농도변화에 따른 복합도금의 경도, 마모 및 부식 특성을 나타낸다.The fifth embodiment shows the hardness, wear and corrosion characteristics of the composite plating according to the diamond concentration change.

0.5g/ℓ0.5g / ℓ 1.0g/ℓ1.0 g / ℓ 1.5g/ℓ1.5g / ℓ 2.0g/ℓ2.0 g / ℓ 3.0g/ℓ3.0 g / ℓ 경도(Hv)Hardness (Hv) 836836 890.5890.5 898.5898.5 848.6848.6 917.6917.6 마찰계수Coefficient of friction 0.8070.807 0.5910.591 0.7110.711 0.7980.798 0.7470.747 부식면적(%)Corrosion area (%) 29.6729.67 24.6724.67 30.6730.67 35.6735.67 46.6746.67

상기 표 5과 도 5에서 알 수 있는 바와 같이, 경도는 다이아몬드 농도변화와 상관없이 거의 일정하고, 마찰계수와 부식면적(%)은 1g/ℓ에서 가장 우수한 값을 나타내었으며, 농도가 증가함에 따라 증가하였으며, 1g/ℓ에서 마찰계수 및 부식면적(%)이 낮은 이유는 작고, 균일한 크기의 입자들이 공석되었기 때문이며, 이는 Zeta 전위 및 분산정도에 기인한 것이다.As can be seen in Table 5 and Figure 5, the hardness is almost constant irrespective of the diamond concentration change, the coefficient of friction and the corrosion area (%) showed the best value at 1g / ℓ, as the concentration increases The low coefficient of friction and corrosion area (%) at 1 g / l is due to the presence of small, uniformly sized particles, due to the Zeta potential and the degree of dispersion.

- 초음파 분산시간에 따른 기계적·화학적 특성 -Mechanical and chemical properties according to ultrasonic dispersion time

<실시예6>Example 6

제 6 실시예는 다이아몬드 농도 1g/ℓ와 PH 4.3의 조건에서 초음파분산 시간에 따른 복합도금의 도금속도(㎛/60min), 다이아몬드공석률(%) 및 입자크기 균일도를 나타낸다.The sixth embodiment shows the plating rate (μm / 60min), diamond vacancy rate (%) and particle size uniformity of the composite plating according to the ultrasonic dispersion time under the conditions of diamond concentration 1g / ℓ and PH 4.3.

0min0min 15min15min 30min30min 45min45min 60min60min 도금속도(㎛/60min)Plating speed (㎛ / 60min) 17.6817.68 17.6017.60 17.5117.51 17.8517.85 17.7817.78 다이아몬드공석률(%)Diamond vacancy rate (%) 28.428.4 25.125.1 25.325.3 24.924.9 25.825.8 입자크기 균일도Particle Size Uniformity 1.35×103 1.35 × 10 3 1.2×103 1.2 × 10 3 0.9×103 0.9 × 10 3 1.6×103 1.6 × 10 3 1.9×103 1.9 × 10 3

상기 표 6과 도 6에서 알 수 있는 바와 같이, 도금속도(㎛/60min), 다이아몬드공석률(%)은 거의 일정한 값을 나타내며, 입자크기 균일도는 30분에서 가장 낮은 값을 보이며 시간이 지날수록 균일도 값이 증가함을 보인다.As can be seen in Table 6 and Figure 6, the plating rate (㎛ / 60min), the diamond vacancy rate (%) is almost constant value, the uniformity of the particle size shows the lowest value in 30 minutes and as time passes The uniformity value is shown to increase.

<실시예7>Example 7

제 7 실시예는 초음파분산 시간에 따른 복합도금의 경도 마모 및 부식 특성을 나타낸다. The seventh embodiment shows the hardness wear and corrosion characteristics of the composite plating according to the ultrasonic dispersion time.

0min0min 15min15min 30min30min 45min45min 60min60min 경도(Hv)Hardness (Hv) 933933 888888 890.5890.5 883.5883.5 895895 마찰계수Coefficient of friction 0.8730.873 0.6420.642 0.5910.591 0.7770.777 0.8530.853 부식면적(%)Corrosion area (%) 51.551.5 36.036.0 31.531.5 35.3335.33 39.039.0

상기 표 7과 도 7에서 알 수 있는 바와 같이, 경도(HV)는 거의 일정하고, 마찰계수 및 부식면적(%)은 입자크기, 제타전위 및 입자크기 균일도가 30분에서 최적 값을 보이며, 그 이상에서는 점차 증가하는 경향을 보인다.As can be seen in Table 7 and Figure 7, the hardness (H V ) is almost constant, the coefficient of friction and the corrosion area (%) shows the optimum value at 30 minutes particle size, zeta potential and particle size uniformity, Above that, it tends to increase gradually.

- PH 변화에 따른 기계적·화학적 특성-Mechanical and Chemical Properties According to PH Change

<실시예8>Example 8

제 8 실시예는 복합도금의 도금속도(㎛/60min), 다이아몬드공석률(%) 및 입자크기 균일도를 나타내는 표이다.The eighth embodiment is a table showing the plating rate (占 퐉 / 60min), diamond vacancy rate (%) and particle size uniformity of the composite plating.

PH 3PH 3 PH 4PH 4 PH 5PH 5 PH 6PH 6 PH 7PH 7 도금속도(㎛/60min)Plating speed (㎛ / 60min) 1.881.88 8.808.80 15.6915.69 18.018.0 18.4718.47 다이아몬드공석률(%)Diamond vacancy rate (%) 0.1390.139 0.3200.320 30.5030.50 36.68136.681 20.49120.491 입자크기 균일도Particle Size Uniformity -- -- 1.0×103 1.0 × 10 3 2.×103 2. × 10 3 0.65×103 0.65 × 10 3

상기 표 8과 도 8에서 알 수 있는 바와 같이, 도금속도(㎛/60min)는 PH 에 따라 증가하는 경향을 보이며, 공석률(%)과 입자크기 균일도는 증가하다가 PH 7에서 감소하기 시작한다.As can be seen in Table 8 and Figure 8, the plating rate (㎛ / 60min) tends to increase with PH, the vacancy rate (%) and particle size uniformity increases and begins to decrease at PH 7.

<실시예9>Example 9

제 9 실시예는 PH 변화에 따른 복합도금의 경도 마모 및 부식 특성을 나타낸다.The ninth embodiment shows the hardness wear and corrosion characteristics of the composite plating according to the PH change.

PH 4PH 4 PH 5 PH 5 PH 6 PH 6 PH 7 PH 7 경도(Hv)Hardness (Hv) 548548 877877 858.5858.5 935.8935.8 마찰계수Coefficient of friction 0.9540.954 0.6070.607 0.6360.636 0.7120.712 부식면적(%)Corrosion area (%) 59.559.5 31.531.5 31.331.3 41.6741.67

상기 표 9과 도 9에서 알 수 있는 바와 같이, 경도는 거의 일정하며 마찰계수와 부식면적(%)은 PH 5, 6에서 우수하며, 그 이후 증가하기 시작하였다.As can be seen in Table 9 and Figure 9, the hardness is almost constant, the coefficient of friction and the corrosion area (%) is excellent at PH 5, 6, and then began to increase.

도금 피막은 도금액의 PH 변화에 많은 영향을 받으며, 가장 우수한 피막 특성을 보이는 PH는 무전해 Ni-P 도금의 적정 PH와 거의 일치하는 4.5 ~ 5.5이다.The plated film is greatly affected by the change in pH of the plating solution, and the most excellent film property is 4.5 to 5.5, which is almost identical to the appropriate pH of the electroless Ni-P plating.

<비교표 1><Comparative Table 1>

무전해 Ni-P 도금과 나노다이아몬드 복합 무전해 Ni-P 도금 물성비교표이다.Electroless Ni-P Plating and Nanodiamond Composite Electroless Ni-P Plating

무전해 Ni-P 도금Electroless Ni-P Plating 나노다이아몬드 복합 무전해 Ni-P 도금Nano Diamond Composite Electroless Ni-P Plating 도금속도(㎛/60min)Plating speed (㎛ / 60min) 17.4017.40 17.5117.51 경도(Hv)Hardness (Hv) 828828 890890 마찰계수Coefficient of friction 0.9100.910 0.5910.591 부식면적(%)Corrosion area (%) 58.6758.67 24.0724.07

표 10에서 보는 바와 같이, 나노다이아몬드 분말액을 이용한 복합 무전해 니켈 도금의 물성 값과 비교하여 마찰계수 및 부식 면적(%)에서 큰 차이를 보인다.As shown in Table 10, the friction coefficient and the corrosion area (%) show a large difference compared to the physical property values of the composite electroless nickel plating using the nanodiamond powder solution.

지금까지 본 발명의 제 1실시예 내지 제 10실시예를 통해 다이아몬드 농도가 증가할수록 제타전위(Zeta Potential : mV)의 값은 감소하여 농도가 높을수록 입자들의 응집현상이 잘 일어날 수 있음을 알 수 있고, 감소하는 제타전위의 값과는 반대로 공석률(%), 마찰계수, 부식면적(%)은 증가하는 경향을 보이며, 입자크기 균일도는 1g/l에서 평균 크기의 입자들이 고르게 많이 분포되어 있음을 알 수 있다,Through the first to tenth embodiments of the present invention, it can be seen that as the diamond concentration increases, the value of Zeta Potential (mV) decreases, so that aggregation of particles may occur as the concentration increases. In contrast to decreasing zeta potential, the vacancy rate (%), friction coefficient, and corrosion area (%) tend to increase, and the particle size uniformity is evenly distributed in average particle size at 1 g / l. You can see,

또한, 초음파 분산은 일정한 시간(30min)이 지나면 증가하던 제타전위 값은 감소하며, 입자크기(particle size)뿐만 아니라 마찰계수, 부식면적(%)등은 시간이 지날수록 감소하다가 30분 이후 증가하는 경향을 보이고 있으며, PH변화에 따른 도금물성을 확인해 본 결과, 제타전위 값의 결과와 다른 물성 값들의 경향이 거의 일치하는 것으로 보이며, PH 5에서 우수한 도금물성을 가진 피막을 얻을 수 있음을 확인하였다.In addition, the ultrasonic dispersion decreases the zeta potential value that increases after a certain time (30 min), and not only the particle size but also the friction coefficient, corrosion area (%) decreases over time, and then increases after 30 minutes. As a result of checking the plating properties according to the PH change, the results of the zeta potential value and the tendency of other property values were almost identical, and it was confirmed that a film having excellent plating properties was obtained at PH 5. .

또한, 비교예 1에서 보는 바와 같이 다이아몬드 복합도금의 물성 값과 무전해 Ni-P 도금을 비교한 결과, 경도, 마찰계수 및 부식면적(%)등에서 큰 차이를 보이고, 나노다이아몬드 복합 무전해 Ni-P도금이 더 우수한 것으로 확인되며, 나노다이아몬드 복합 무전해 Ni-P 도금에서 다이아몬드 농도 1g/l, 초음파 분산시간 30분, PH 5에서 우수한 도금피막을 얻을 수 있는 것이다.In addition, as shown in Comparative Example 1, as a result of comparing the property value of the diamond composite plating with the electroless Ni-P plating, it showed a large difference in hardness, friction coefficient, and corrosion area (%), and the nanodiamond composite electroless Ni- It is confirmed that P plating is better, and in the nanodiamond composite electroless Ni-P plating, an excellent plating film can be obtained at a diamond concentration of 1 g / l, ultrasonic dispersion time 30 minutes, and PH 5.

그러나 본 발명은 상기한 특징의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.However, the present invention is not limited to the preferred embodiments of the above-described features, and various modifications can be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims. Of course, such changes will fall within the scope of the claims.

본 발명은 나노 크기의 다이아몬드 입자를 사용하여, 입자의 농도, 초음파 분산시간, PH별 조건에 따라 조절하여 균일한 크기의 나노다이아몬드(Nano Diamond)로 분산시켜 최적 조건으로 도금함으로써 경도(HV)와 마모 및 부식성을 향상시키는 효과가 있다.In the present invention, using nano-sized diamond particles, the hardness (H V ) by controlling the concentration of the particles, the ultrasonic dispersion time, pH-specific conditions to be dispersed in a uniform size of nano diamond (Nano Diamond) by plating at the optimum conditions It is effective in improving wear and corrosion.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 상온의 물 250ml에 나노다이아몬드 분말 1g을 투입하여 나노다이아몬드 분말액의 농도를 1g/ℓ± 0.5로 조절하는 공정과; 상기 농도조절 후 나노다이아몬드 분말액을 400kw 초음파를 이용하여 초음파분산시간 30±5분 동안 나노다이아몬드 분말의 평균입도 175nm가 되도록 분산시키는 공정과; 상기 분산된 나노다이아몬드 분말액을 90±2℃의 무전해니켈도금액에 투입시켜 60분 동안 10% 수산화나트륨(NaOH)과 황산(H2SO4)을 사용하여 산성도(PH) 5±0.5로 조절하는 공정을 포함하는 나노다이아몬드 분말액을 이용한 복합무전해도금방법에 있어서,Adding 1 g of nanodiamond powder to 250 ml of room temperature water to adjust the concentration of the nanodiamond powder solution to 1 g / L ± 0.5; Dispersing the nanodiamond powder solution after the concentration adjustment using an 400 kw ultrasonic wave so that the average particle size of the nanodiamond powder is about 175 nm for 30 ± 5 minutes of ultrasonic dispersion time; The dispersed nanodiamond powder solution was added to an electroless nickel plating solution at 90 ± 2 ° C., and the acidity (PH) was adjusted to 5 ± 0.5 using 10% sodium hydroxide (NaOH) and sulfuric acid (H 2 SO 4 ) for 60 minutes. In the composite electroless plating method using a nanodiamond powder solution comprising a step of adjusting, 상기 1g/ℓ± 0.5의 나노다이아몬드 농도조절과, 30±5분 초음파 분산시간 및 산성도(PH) 5±0.5로 조건 중에서 가장 큰 제타전위(Zeta-Potential)값을 가질 때의 나노다이아몬드의 입도는 159나노미터(nm) 크기로 분산되는 것을 특징으로 하는 나노다이아몬드 분말액을 이용한 복합무전해도금방법.The particle size of the nanodiamond when the nanodiamond concentration control of the 1g / ℓ ± 0.5, 30 ± 5 minutes ultrasonic dispersion time and the acidity (PH) of 5 ± 0.5 has the largest zeta potential value among the conditions Composite electroless plating method using nanodiamond powder solution, characterized in that dispersed in 159 nanometers (nm) size. 삭제delete
KR1020060038245A 2006-04-27 2006-04-27 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating KR100795166B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060038245A KR100795166B1 (en) 2006-04-27 2006-04-27 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060038245A KR100795166B1 (en) 2006-04-27 2006-04-27 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating

Publications (2)

Publication Number Publication Date
KR20070105711A KR20070105711A (en) 2007-10-31
KR100795166B1 true KR100795166B1 (en) 2008-01-16

Family

ID=38819129

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060038245A KR100795166B1 (en) 2006-04-27 2006-04-27 Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating

Country Status (1)

Country Link
KR (1) KR100795166B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005985A1 (en) 2015-07-06 2017-01-12 Carbodeon Ltd Oy Metallic coating and a method for producing the same
US9702045B2 (en) 2015-07-06 2017-07-11 Carbodeon Ltd Oy Metallic coating and a method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313768B1 (en) 2010-02-12 2013-10-01 주식회사 네오엔비즈 Nano-diamond dispersion liquid and method of manufacturing the same
CN103436864A (en) * 2013-04-01 2013-12-11 洪亮 Nano ceramic powder slurry for chemical plating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333599A (en) * 1991-05-09 1992-11-20 Tokyo Daiyamondo Kogu Seisakusho:Kk Tool coated with hyperfine-grain diamond eutectic film
JPH08232073A (en) * 1995-02-27 1996-09-10 Kuwana Shoji Kk Electroless composite plating film and its production
KR20030096045A (en) * 2002-06-13 2003-12-24 다다마사 후지무라 Metal Film Comprising Ultradispersed Diamonds, Metal Material Having the Metal Film, and Process for Preparing Them
KR20050049826A (en) * 2003-11-24 2005-05-27 박규태 The method of silver electrolysis plating protected from being corroded by using nano-diamond

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333599A (en) * 1991-05-09 1992-11-20 Tokyo Daiyamondo Kogu Seisakusho:Kk Tool coated with hyperfine-grain diamond eutectic film
JPH08232073A (en) * 1995-02-27 1996-09-10 Kuwana Shoji Kk Electroless composite plating film and its production
KR20030096045A (en) * 2002-06-13 2003-12-24 다다마사 후지무라 Metal Film Comprising Ultradispersed Diamonds, Metal Material Having the Metal Film, and Process for Preparing Them
KR20050049826A (en) * 2003-11-24 2005-05-27 박규태 The method of silver electrolysis plating protected from being corroded by using nano-diamond

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005985A1 (en) 2015-07-06 2017-01-12 Carbodeon Ltd Oy Metallic coating and a method for producing the same
US9702045B2 (en) 2015-07-06 2017-07-11 Carbodeon Ltd Oy Metallic coating and a method for producing the same

Also Published As

Publication number Publication date
KR20070105711A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
Wang et al. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings
KR101313768B1 (en) Nano-diamond dispersion liquid and method of manufacturing the same
Jiang et al. Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants
Xia et al. Preparation and wear properties of Ni/TiN–SiC nanocoatings obtained by pulse current electrodeposition
Kartal et al. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition
Uysal et al. Tribological properties of Ni–W–TiO2–GO composites produced by ultrasonically–assisted pulse electro co–deposition
KR100795166B1 (en) Manufacturing Method of Electroless Ni-P Nano-Diamond Composite Coating
Yasin et al. Metallic nanocomposite coatings
Huang et al. Electrostatic self-assembly seeding strategy to improve machining performance of nanocrystalline diamond coated cutting tools
Wang et al. Ni-P-TiO2 composite coatings on copper produced by sol-enhanced electroplating
Choi et al. Electrodeposited Ni–W–TiC composite coatings: effect of tic reinforcement on microstructural and tribological properties
Qu et al. Fabrication of Ni-CeO2 nanocomposite coatings synthesised via a modified sediment Co-deposition process
Qiao et al. Preparation and corrosion protection performance of a pulse co-deposited Ni/Co/SiO2 hydrophobic composite coating
Hong et al. A novel strategy for improving the wear resistance of electrodeposited Ni-diamond composite coatings by diamond surface morphology modification
JP2013512335A (en) Substrates and methods plated with electroless Ni composites
Xiong et al. Microstructure and properties of electrodeposited Ni-CeO2 coatings
Sangeetha et al. Studies on the electrodeposition and characterization of PTFE polymer inclusion in Ni–W–BN nanocomposite coatings for industrial applications
CN110129863A (en) A kind of metal-based nano composite coating and preparation method thereof with wear resistant friction reducing performance
Malatji et al. The effect of nanoparticulate loading on the fabrication and characterization of multi-doped Zn-Al2O3-Cr2O3 hybrid coatings on mild steel
Shrivastava et al. Effect of sol–gel prepared nanoalumina reinforcement content on the corrosion resistances of Al 6061‐Al2O3 nanocomposite in 3.5% NaCl solution
Li et al. Construction of ZrN enhanced Ni-W microcrystalline film and exploration of its wear and corrosion resistance
KR20200127209A (en) Electroless plating of objects using carbon-based materials
Marita et al. Synthesis and characterization of nickel-iron-silicon nitride nanocomposite
Wang et al. Microstructure and properties of Ni–Co–TiO 2 composite coatings fabricated by electroplating
Martínez-Hernández et al. Electrodeposition of Ni-P/SiC composite films with high hardness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181212

Year of fee payment: 12