JP6548342B2 - Wire saw cutting method and apparatus thereof - Google Patents

Wire saw cutting method and apparatus thereof Download PDF

Info

Publication number
JP6548342B2
JP6548342B2 JP2017560423A JP2017560423A JP6548342B2 JP 6548342 B2 JP6548342 B2 JP 6548342B2 JP 2017560423 A JP2017560423 A JP 2017560423A JP 2017560423 A JP2017560423 A JP 2017560423A JP 6548342 B2 JP6548342 B2 JP 6548342B2
Authority
JP
Japan
Prior art keywords
cutting
wire saw
bead
wire
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017560423A
Other languages
Japanese (ja)
Other versions
JPWO2017119471A1 (en
Inventor
明良 谷本
明良 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diatech Inc
Original Assignee
Diatech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diatech Inc filed Critical Diatech Inc
Publication of JPWO2017119471A1 publication Critical patent/JPWO2017119471A1/en
Application granted granted Critical
Publication of JP6548342B2 publication Critical patent/JP6548342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D57/00Sawing machines or sawing devices not covered by one of the preceding groups B23D45/00 - B23D55/00
    • B23D57/02Sawing machines or sawing devices not covered by one of the preceding groups B23D45/00 - B23D55/00 with chain saws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off

Description

この発明はワイヤーソー切断方法及びその装置に関し、特に切断効率を大幅に向上して作業時間を短縮できるようにした方法及び装置に関する。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire saw cutting method and apparatus thereof, and more particularly to a method and apparatus capable of greatly improving cutting efficiency and shortening operation time.

最近、原子力発電所の廃炉問題が注目を集めているが、かかる廃炉には建屋などの鉄筋コンクリート構造物、金属構造物の安全な解体を必要とする。建屋などの解体には爆破、ウォータージェットあるいは切断ブレードなど種々な方法が知られているが、廃炉建屋、発電設備解体にはワイヤーソーを用いた切断方法も提案されている。  Recently, the problem of nuclear power plant decommissioning has attracted attention, but such decommissioning requires safe dismantling of reinforced concrete structures such as buildings and metal structures. Various methods such as blasting, water jet or cutting blade are known for dismantling a building or the like, but a cutting method using a wire saw has also been proposed for dismantling buildings and dismantling power generation equipment.

例えば、複数の超硬質ビーズを所定のピッチで付設してなるワイヤーソーをステンレス製熱交換器に巻き付け、ワイヤーソーに100〜180kgfの張力を掛けながらワイヤーソーを3〜10m/secの速度で走行させることによってステンレス製熱交換器を切断解体するという方法が知られているが(特許文献1)、かかる設定条件にて異なる寸法の構造物や異なる材質の構造物を切断解体した場合、期待されるような効率的切断が行えず、放射線量の高い放射線管理区域内での長い作業時間を必要とし、放射線の被爆が懸念される。  For example, a wire saw formed by attaching a plurality of super hard beads at a predetermined pitch is wound around a stainless steel heat exchanger, and while the wire saw is tensioned at 100 to 180 kgf, the wire saw is traveled at a speed of 3 to 10 m / sec. There is known a method of cutting and disassembling a stainless steel heat exchanger by causing the heat treatment (Patent Document 1), but it is expected when cutting and disassembling structures of different dimensions or structures of different materials under such setting conditions. And the need for long working hours in high radiation dose radiation controlled areas, and radiation exposure is a concern.

これに対し、本件出願人は、切削用ビーズのシャンクを、送り方向後方になるにつれて外径が増大するように凸状に膨出する曲面形状を少なくともその一部に有する形状とし、シャンクの曲面形状部分の外表面に切削ダイヤモンドの層を形成し、複数の切削用ビーズをワイヤーに所定のピッチで付設してなるワイヤーソーを複数のガイドプーリーと駆動プーリーとの間に無端状に掛け渡し、鉄筋コンクリート構造物などの切断対象物に押し付けるとともに、このワイヤーソーを5〜20m/secの範囲内で駆動モータのトルクが最大となるような速度でもって走行させ、切断対象物を切断する技術を提案するに至った(特許文献2、特許文献3)。  On the other hand, the applicant made the shank of the cutting bead a shape having at least a part of a curved surface convexly bulging so that the outer diameter increases toward the rear in the feed direction, and the curved surface of the shank A layer of cutting diamond is formed on the outer surface of the shape portion, and a wire saw formed by attaching a plurality of cutting beads to a wire at a predetermined pitch is endlessly bridged between a plurality of guide pulleys and a driving pulley. We propose a technology that cuts this object by pressing this wire saw against a cutting object such as a reinforced concrete structure at such a speed that the torque of the drive motor is maximized within the range of 5 to 20 m / sec. (Patent Document 2, Patent Document 3).

また、本件出願人は、送り方向側端面を凸部と凹部の組合せ曲面状に形成した第1の切削用ビーズと、送り方向反対側端面を凸部と凹部の組合せ曲面形状に形成した第2の切削用ビーズとをワイヤーに所定のピッチで付設してなるワイヤーソーを複数のガイドプーリーと駆動プーリーとの間に無端状に掛け渡し、鉄筋コンクリート構造物などの切断対象物に押し付けるとともに、このワイヤーソーを10〜20m/secの範囲内の速度でもって走行させ、切断対象物を切断する技術を提案するに至った(特許文献4)。  In addition, the present applicant has formed the first cutting bead in which the end surface in the feed direction is formed into a combination curved surface of the convex portion and the concave portion, and the second end surface which is opposite in the feed direction is formed into a combined curved surface shape with the convex portion and the concave portion. And an endless wire between a plurality of guide pulleys and a drive pulley, and pressing it against a cutting object such as a reinforced concrete structure. It came to propose the technique of making a saw travel at a speed within the range of 10 to 20 m / sec and cutting the object to be cut (Patent Document 4).

特開2005−153071号公報JP 2005-153071 A 特開2015−136853号公報JP 2015-136853 A 特開2015−136767号公報JP, 2015-136767, A 特許第5831860号公報Patent No. 583 1860

特許文献2〜4記載のワイヤーソー切断方法は特許文献1記載の方法に比較して作業時間を短縮できることが確認されているが、切断理論が明確ではなく、切断物の材質がコンクリートや各種金属など多様で、しかも大きさなども異なるものからなる原子力発電所の構造物の切断解体に適用するためにはワイヤーソー切断理論を詳細に解析し適正な条件を確立し、切断効率を大幅に向上させ、又使用するワイヤーの切断可能な寿命を延長することによって切断作業時間をさらに短縮することが望まれている。  It has been confirmed that the wire saw cutting methods described in Patent Documents 2 to 4 can shorten the working time as compared to the method described in Patent Document 1, but the cutting theory is not clear and the material of the cut is concrete or various metals In order to apply it to cutting and dismantling of nuclear power plant structures that are diverse and different in size, etc., wire saw cutting theory is analyzed in detail, appropriate conditions are established, and cutting efficiency is greatly improved It is desirable to further reduce the cutting operation time by extending the cuttable life of the wire used and also the wire used.

本発明はかかる状況においてなされたもので、ワイヤーソーの切断効率を大幅に向上し且つワイヤー寿命を延長することによって作業時間を短縮できるようにしたワイヤーソー切断方法を提供することを課題とする。  The present invention has been made in such a situation, and an object of the present invention is to provide a wire saw cutting method capable of shortening the working time by greatly improving the cutting efficiency of the wire saw and extending the wire life.

そこで、本発明に係るワイヤーソー切断方法は、ワイヤーに複数の切削用ビーズを所定のピッチで付設してなるワイヤーソーを複数のガイドプーリーと駆動プーリーとの間に無端状に掛け渡し、ワイヤーソーを切断対象物に押し付けるとともに、ワイヤーソーを中心軸線廻りに回転させながら走行させて切断対象物を切断するにあたり、ワイヤーソーの走行方向の前方側に後方になるにつれて拡径するような凸状曲面を有するか又はワイヤーソーの回転方向に沿って曲線状の前端縁を有する複数の切削用ビーズを用い、切削用ビーズの最大負荷点における切削用ビーズの押付け力ベクトルとワイヤーソーの走行速度ベクトルとの合成ベクトルの指向方向が切削用ビーズの最適切断方向ベクトルに近づくように、切削用ビーズの切断対象物への押付け力及びワイヤーソーの走行速度の両方又は一方を設定し又は調整するようにしたことを特徴とする。  Therefore, in the wire saw cutting method according to the present invention, a wire saw formed by attaching a plurality of cutting beads at a predetermined pitch to a wire is endlessly bridged between a plurality of guide pulleys and a driving pulley. When pressing the wire saw against the object to be cut and traveling while rotating the wire saw around the central axis to cut the object to be cut, a convex curved surface that expands in diameter toward the front side in the traveling direction of the wire saw And using a plurality of cutting beads having a curved front edge along the direction of rotation of the wire saw, the pressing force vector of the cutting beads at the maximum load point of the cutting beads and the traveling speed vector of the wire saw So that the pointing direction of the synthesized vector approaches the optimum cutting direction vector of the cutting bead, With force and is characterized in that so as to both or to set one or adjustment of travel speed of the wire saw.

また、本発明に係るワイヤーソー切断装置は、ワイヤーに複数の切削用ビーズを所定のピッチで付設してなるワイヤーソーを複数のガイドプーリーと駆動プーリーとの間に無端状に掛け渡し、ワイヤーソーを切断対象物に押し付けるとともに、ワイヤーソーを中心軸線廻りに回転させながら走行させて切断対象物を切断するワイヤーソーによって切断対象物を切断するようにしたワイヤーソー切断装置において、ワイヤーソー走行方向の前方側に後方になるにつれて拡径するような凸状曲面を有するか又はワイヤーソー回転方向に沿って曲線状の前端縁を有する複数の切削用ビーズをワイヤーに所定のピッチで付設してなる無端状のワイヤーソーと、該ワイヤーソーを切断対象物に押し付けるとともに上記ワイヤーソーの走行を案内する複数のガイドプーリーと、最高速度17m/secを限度として上記ワイヤーソーを走行させる得るような最小の外周径を有する駆動プーリーと、該駆動プーリーを回転駆動させる駆動モータと、上記駆動プーリーに張力を付与する張力付与手段と、上記駆動プーリーの回転トルクがワイヤーソー走行速度3m/sec以上17m/sec以下の範囲内の間で一定トルクとなるように上記駆動モータを制御するとともに、切削用ビーズの最大負荷点における切削用ビーズの押付け力ベクトルとワイヤーソーの走行速度ベクトルとの合成ベクトルの指向方向が切削用ビーズの最適切断方向ベクトルに近づくように、切削用ビーズの押付け力及びワイヤーソーの走行速度の両方又は一方を切断中にワイヤーソーの走行を維持したまま任意に設定し又は調整し得るコントローラと、を備えたことを特徴とする。  In the wire saw cutting apparatus according to the present invention, a wire saw formed by attaching a plurality of cutting beads to a wire at a predetermined pitch is endlessly bridged between a plurality of guide pulleys and a driving pulley. In a wire saw cutting apparatus, in which the object to be cut is cut by a wire saw which is pressed while being pressed against the object to be cut and is run while rotating the wire saw around a central axis to cut the object to be cut Endless with a plurality of cutting beads attached to the wire with a predetermined pitch, which have a convex curved surface that expands toward the front side toward the rear side or has a curved front end edge along the wire saw rotation direction Wire saws, and a plurality of wire saws which are pressed against the object to be cut and which guide the traveling of the wire saws A guide pulley, a drive pulley having a minimum outer diameter that allows the wire saw to travel up to a maximum speed of 17 m / sec, a drive motor for rotationally driving the drive pulley, and tension applied to the drive pulley The drive motor is controlled so that the tension applying means and the rotational torque of the drive pulley become constant torque within the range of the wire saw traveling speed of 3 m / sec to 17 m / sec, and the maximum load of cutting beads Of the pressing force of the cutting bead and the traveling speed of the wire saw so that the pointing direction of the composite vector of the pressing force vector of the cutting bead and the traveling speed vector of the wire saw at the point approaches the optimal cutting direction vector of the cutting bead. Set any while keeping the traveling of the wire saw while cutting both or one or Characterized by comprising a controller capable of settling.

ここで、切削用ビーズの最大負荷点について説明すると、切断対象物30が中実の断面四角形状の場合、切断開始時は図10(a)に示されるように、ワイヤーソーが強く当たる角部で切断用ビーズの負荷が最も大きく、角部が最大負荷点Pとなる。切断が進行すると、図10(b)に示されるように、角部が切断されて次第に丸い形状となり、それに伴い最大負荷点Pは次第に中央に向けて移動する。切断が更に進行すると、図10(c)に示されるように、切断対象物の上半部は次第に断面半円形状に近づき、最大負荷点Pは半円形状の頂点に向けて移動する。つまり、切削用ビーズの最大負荷点Pは切断対象物の形状によって変化し、四角形状の場合には角部から中央頂点に向けて移動し、円形状の場合には中央頂点が最大負荷点Pとなる。  Here, to explain the maximum load point of the cutting bead, when the object 30 to be cut has a solid rectangular cross section, the corner portion where the wire saw strongly hits as shown in FIG. 10A at the start of the cutting. The cutting bead load is the largest, and the corner is the maximum load point P. As the cutting progresses, as shown in FIG. 10 (b), the corners are cut into a gradually round shape, with which the maximum load point P gradually moves toward the center. As the cutting progresses further, as shown in FIG. 10C, the upper half of the object to be cut gradually approaches the cross-sectionally semicircular shape, and the maximum load point P moves toward the apex of the semicircular shape. That is, the maximum load point P of the cutting bead changes according to the shape of the object to be cut, and moves from the corner to the center vertex in the case of a square shape, and the center vertex is the maximum load point P in the case of a circular shape. It becomes.

また、円筒状の場合には切断開始当初は図11(a)に示されるように、中央頂点が最大負荷点Pとなり、切断が進行するにつれ、図11(b)に示されるように、横幅方向に移動して両側角部が最大負荷点Pとなり、最大横幅の位置を過ぎると円筒の横幅の減少に伴い角部の間隔、つまり最大負荷点Pの間隔が狭くなる。  Also, in the case of a cylindrical shape, as shown in FIG. 11 (a) at the beginning of cutting, the central apex becomes the maximum load point P and as cutting progresses, the width is wide as shown in FIG. 11 (b). Moving in the direction, the corners on both sides become the maximum load point P, and after the position of the maximum lateral width, the interval between the corners, that is, the interval of the maximum load points P becomes narrow as the lateral width of the cylinder decreases.

さらに、四角筒状の場合には切断開始当初は図12の(a)に示されるように、ワイヤーソーが強く当たる角部で最も負荷が大きく、角部が最大負荷点Pとなり、切断が進行するに伴い最大負荷Pが横略方向に広がって両側壁に移動し、両側壁に沿って最大負荷点Pが下方に移動する。
以上のように、切断用チップの最大負荷点は切断対象物の形状によって決定する必要があることが分かる。
Furthermore, in the case of a square cylindrical shape, as shown in (a) of FIG. 12 at the beginning of cutting, the load is largest at the corner where the wire saw strikes strongly, the corner becomes the maximum load point P, and cutting progresses As a result, the maximum load P spreads substantially in the lateral direction and moves to the both side walls, and the maximum load point P moves downward along the both side walls.
As described above, it is understood that the maximum load point of the cutting tip needs to be determined by the shape of the object to be cut.

次に、ワイヤーソーの仕事について解析する。図1に示されるように、駆動プーリーの回転数(rpm)をA、ワイヤーソーを引く力(kgf)をF、ワイヤー張力(kgf)をT、切断対象物へのワイヤーソーの接触長(m)をL、ワイヤーソーの走行速度(m/s)をVとすると、ワイヤーソーの1秒間の仕事量はW=F×Vである。Fは切断対象物に接触している個々の切削用ビーズがワイヤーソーの走行を停止させようとする力の総和と考えることができる。  Next, we analyze the work of the wire saw. As shown in FIG. 1, the rotation speed (rpm) of the drive pulley is A, the pulling force (kgf) for the wire saw is F, the wire tension (kgf) is T, the contact length of the wire saw to the object to be cut (m) When L) and the traveling speed (m / s) of the wire saw are V, the work amount per second of the wire saw is W = F × V. F can be thought of as the sum of the forces with which the individual cutting beads in contact with the object to be cut attempt to stop the travel of the wire saw.

ワイヤーの走行時に切断対象物に接触している切削用ビーズに掛かる力の大きさと向きを表すベクトルを分析すると、1)駆動プーリーの回転によって発生するワイヤーソーを引く力Fの分力のベクトル(F1)、2)ワイヤーにかかるテンションTによって個々の切削用ビーズにかかる分力のベクトル(T1)、3)分力ベクトルT1によって生まれる個々の切断ビーズの切断対象物にかかる押し付ける分力のベクトル(P1)、4)分力ベクトルT1によって生まれる個々の切断ビーズの走行方向への分力のベクトル(S1)となり、個々の切削用ビーズが持つ切断力の方向と大きさを表すベクトル(C1)はF1+S1ベクトル(切削用ビーズ走行方向)と個々の切削用ビーズが切断対象物を押さえる分力ベクトル(P1)の合成となる。このベクトル(C1)は個々の切削用ビーズ11が持つ切断力として働く。  Analysis of the vector representing the magnitude and direction of the force applied to the cutting bead in contact with the object to be cut when the wire is traveling: 1) Vector of component force of the force F pulling the wire saw generated by the rotation of the driving pulley ( F1), 2) vector of component force (T1) applied to each cutting bead by tension T applied to the wire, 3) vector of component force applied to the cutting object of the individual cutting bead generated by component force vector T1 (T1) P1), 4) a vector of component forces (S1) in the traveling direction of the individual cutting beads generated by the component vector T1 and a vector (C1) representing the direction and magnitude of the cutting force of the individual cutting beads The F1 + S1 vector (cutting bead travel direction) and the component force vector (P1) that individual cutting beads hold the object to be cut . This vector (C1) acts as a cutting force that each cutting bead 11 has.

また、図5において個々の切削用ビーズ11の切断で発生した切削屑12は切断の経過に伴って切断対象物の切削面に滞留し、これが個々の切削用ビーズ11の進行を妨げる力(k1)となる。  Further, in FIG. 5, cutting chips 12 generated by cutting of the individual cutting beads 11 stay on the cutting surface of the object to be cut with the progress of cutting, and this force prevents the progress of the individual cutting beads 11 (k 1 ).

図2の(a)〜(c)に示されるように、切断で発生した切削屑12が切断の経過に伴って切断対象物の切削面に滞留すると、切削屑12と切削用ビーズ11の摩擦及び切削用ビーズ11の高速走行による摩擦によって熱13が発生し、これがワイヤーソーの仕事の損失となる。ワイヤーソーの総重量は切断に必要な力の大きさからすると、十分に無視することができる大きさである。ただ、水中切断の場合には無視できない大きさの抵抗(M)が加わることがある。  As shown in (a) to (c) of FIG. 2, when cutting chips 12 generated by cutting stay on the cutting surface of the object to be cut with the progress of cutting, the friction between the cutting chips 12 and the cutting beads 11 Also, the friction caused by the high speed travel of the cutting bead 11 generates heat 13 which results in the loss of work of the wire saw. The total weight of the wire saw is sufficiently large to ignore in view of the amount of force required to cut it. However, in the case of underwater cutting, a non-negligible resistance (M) may be added.

すなわち、ワイヤーソーの仕事は概ね次の関係式によって表すことができる。
W=F×V={(C1×V+k1×V)×ビーズの数}+摩擦による発熱
ここで、FはTに起因し、Tは切断対象物に接触する切削用ビーズ個々に与えた合成力(C1)と切削用ビーズの進行を妨げる力(k1)の総和に近似的に等しい。切断対象物の切断距離Lに与えた仕事Wが切断に変わるには合成力(C1)を増大させることが重要である。
That is, the work of the wire saw can be roughly expressed by the following equation.
W = F × V = {(C1 × V + k1 × V) × number of beads} + frictional heat generation where F is attributable to T, and T is a synthetic force individually applied to the cutting beads in contact with the object to be cut It is approximately equal to the sum of (C1) and the force (k1) that impedes the advance of the cutting bead. In order for the work W given to the cutting distance L of the object to be cut to change to cutting, it is important to increase the synthetic force (C1).

そのためには、1)滞留切削屑を排除してk1を小さくすること、2)滞留切削屑を排除し、切削用ビーズを円滑に回転させること、3)張力(T)を上昇させて切断面方向への分力を集中させること、4)切削用ビーズ個々の運動エネルギーは1/2・(C1+k1)V2であるので、走行速度を低減させること、が重要であると理解できる。つまり、切削用ビーズの押付け力を大きくし、走行速度を落とし、切削屑を排除し、摩擦熱を少なくすれば、飛躍的に切断エネルギーに変換できる。To do so, 1) eliminate stagnant cuttings to reduce k1, 2) eliminate stagnant cuttings, and smoothly rotate the cutting beads, 3) raise tension (T) to cut surfaces to concentrate the force component in the direction, 4) cutting beads individual kinetic energy because it is 1/2 · (C1 + k1) V 2, to reduce the running speed, it can be understood that it is important. In other words, if the pressing force of the cutting beads is increased, the traveling speed is decreased, cutting chips are eliminated, and the frictional heat is reduced, the energy can be dramatically converted into cutting energy.

しかし、切削用ビーズの押付け力を無限に大きくし、走行速度を限りなくゼロに落とすと、切削用ビーズの押付け力ベクトルとワイヤーソーの走行速度ベクトルの合成ベクトルの指向する方向が切削用ビーズの効率的切断を生む適正なベクトル方向よりも切断対象物方向を指向するため、ワイヤー走行による切削用ビーズの切断対象物への過度な衝突現象が生じ、場合によってはワイヤーの破断や切削用ビーズの過度な摩耗の原因となるため、走行速度Vと合成力C1の調和が重要である。  However, if the pressing force of the cutting bead is increased infinitely and the traveling speed is dropped to zero without limit, the direction of the composite vector of the pressing force vector of the cutting bead and the traveling speed vector of the wire saw is that of the cutting bead In order to direct the cutting object direction rather than the proper vector direction that produces efficient cutting, excessive collision of the cutting bead with the cutting object due to wire travel may occur, and in some cases, breakage of the wire or cutting bead The balance between the traveling speed V and the resultant force C1 is important because it causes excessive wear.

また、切削用ビーズの全周に付着するダイヤモンド砥粒が切断進行に伴い適切に脱落して切削能力を維持するように、ワイヤーソーには予め捻じりを与えて切削用ビーズをワイヤー廻りに回転させながら走行させるのがよいことは既に知られている。  In addition, the wire saw is pre-twisted and the cutting bead is rotated around the wire so that the diamond abrasive adhering to the entire circumference of the cutting bead drops off properly as the cutting progresses and maintains the cutting ability. It is already known that it is better to run while driving.

本発明の特徴の1つは切削用ビーズの押付け力ベクトルとワイヤーソーの走行速度ベクトルの合成ベクトルの指向する方向が切削用ビーズの切断対象物に対して最適な切断の方向に近づくように、切削用ビーズの押付け力及びワイヤーソーの走行速度の両方又は一方を設定し又は調整する、好ましくは切断中に任意に設定し又は調整するようにした点にある。  One of the features of the present invention is that the direction of the composite of the pressing force vector of the cutting bead and the traveling speed vector of the wire saw is directed to the optimum cutting direction for the cutting object of the cutting bead. One or both of the pressing force of the cutting bead and the traveling speed of the wire saw may be set or adjusted, preferably at a point optionally set or adjusted during cutting.

これにより、切断効率を大幅に向上でき、例えば原子力発電所の建屋を短時間で解体することができるので、放射線被爆の懸念を解消できる。  As a result, the cutting efficiency can be greatly improved and, for example, the building of the nuclear power plant can be disassembled in a short time, so that the concern of radiation exposure can be eliminated.

また、本発明の切断方法は原子力発電所の建屋の解体に限定されず、橋梁、大型プラント、大型建造物などの解体に適用することができる。  In addition, the cutting method of the present invention is not limited to the dismantling of a building of a nuclear power plant, and can be applied to the dismantling of bridges, large plants, large buildings, and the like.

ここで、切削用ビーズの最適な切断方向は切断対象物の物性や形状によって異なるので、切断対象物の物性や形状に応じて予め求めるが、切断中に観察される切断の速度や切断の状況に応じて切削用ビーズの押付け力及びワイヤーソーの走行速度の両方又は一方を設定し又は調整することによって、ビーズの押付け力ベクトルとワイヤーソーの走行速度ベクトルとの合成ベクトルの指向方向を切削用ビーズの適正な(最適な)切断方向に近づけるようにすることもできる。  Here, since the optimum cutting direction of the cutting bead differs depending on the physical property and shape of the object to be cut, it is previously determined according to the physical property and shape of the object to be cut, but the speed of cutting and the state of cutting observed during cutting By setting or adjusting the pressing force of the cutting bead and / or the traveling speed of the wire saw according to the direction of the composite vector of the pressing force vector of the bead and the traveling speed vector of the wire saw It can also be made to approach the proper (optimal) cutting direction of the beads.

すなわち、切削用ビーズの切断対象物への押付け力及びワイヤーソーの走行速度の両方又は一方を切断中にワイヤーソーの走行を維持したまま任意に設定し又は調整するようにすることもできる。  That is, the pressing force of the cutting bead against the object to be cut and / or the traveling speed of the wire saw may be arbitrarily set or adjusted while the traveling of the wire saw is maintained while cutting.

具体的には、切断対象物がCrMo系材料のような高硬度の材料の場合には効率よく切断を行えるように、切削用ビーズの最適切断方向ベクトルを押付け力ベクトル側に近づくように設定し、低硬度の材料の場合には切削用ビーズの切断対象物への過度な衝突現象が生じないように、ワイヤーソーの走行速度ベクトル側に近づくように設定するのがよい。また、切断対象物が角部のある形状の場合には切削用ビーズの切断対象物への過度な衝突現象が生じないように、切削用ビーズの最適切断方向ベクトルを走行速度ベクトル側に近づくように設定し、角部のない形状の場合には効率よく切断を行えるように、押付け力ベクトル側に近づくように設定するのがよい。  Specifically, the optimum cutting direction vector of the cutting bead is set to be closer to the pressing force vector side so that cutting can be performed efficiently when the object to be cut is a material with high hardness such as CrMo material. In the case of a low hardness material, it is preferable to set the traveling speed vector side of the wire saw so as not to cause an excessive collision phenomenon of the cutting bead to the object to be cut. Also, when the object to be cut has a shape with a corner, the optimal cutting direction vector of the cutting bead should be closer to the traveling velocity vector side so that excessive collision of the cutting bead against the object to be cut does not occur. In order to perform cutting efficiently in the case of a shape without corners, it is preferable to set so as to approach the pressing force vector side.

すなわち、切削用ビーズの最適切断方向ベクトルを、低硬度又は低靱性の切断対象物に対する最適切断方向ベクトルが高硬度又は高靱性の切断対象物に対する最適切断方向ベクトルに比較してワイヤーソーの走行速度ベクトルに近づき、角部のある切断対象物に対する最適切断方向ベクトルが角部のない切断対象物に対する最適切断方向ベクトルに比較してワイヤーソーの走行速度ベクトルに近づくように設定するのがよい。  That is, the traveling speed of the wire saw is obtained by comparing the optimum cutting direction vector of the cutting bead with the optimum cutting direction vector for the cutting object of high hardness or high toughness for the cutting object of low hardness or low toughness. It is preferable to set the vector so that the optimum cutting direction vector for the cornered cutting object approaches the traveling speed vector of the wire saw as compared to the optimum cutting direction vector for the cornerless cutting object.

切削用ビーズの押付け力はワイヤーソーの張力の大きさと切断面に接触する切削用ビーズの数とによって決まり、ワイヤーソーの張力は大きければ大きいほど切削用ビーズの切断対象物への押付け力を大きくすることができる。しかし、ワイヤーソーの張力を大きくしすぎると、ワイヤーの破断による事故が懸念される。そこで、ワイヤーソーの破断強度に安全率を乗じた大きさを上限とするのがよい。  The pressing force of the cutting bead is determined by the tension of the wire saw and the number of cutting beads in contact with the cutting surface, the larger the tension of the wire saw, the larger the pressing force of the cutting bead against the object to be cut. can do. However, if the tension of the wire saw is increased too much, an accident due to breakage of the wire may be concerned. Therefore, it is preferable to set the size obtained by multiplying the breaking strength of the wire saw by the safety factor as the upper limit.

例えば、現在流通しているワイヤーソーはロープ径がφ5mm前後で切削用ビーズ径φ9〜12mm、切削用ビーズ長2〜8mm、破断強度2000kgfのものが多い。かかるワイヤーソーを採用する場合、安全率50%とし、ワイヤーソーの張力の上限を1000kgfとし、それ以下の範囲内で大きな張力を加えるのが好ましい。特に、切断の状況に応じてワイヤーソーの張力を切断中に適宜に調整できるようにするのがよい。  For example, many wire saws currently in circulation have a rope diameter of about 5 mm, a cutting bead diameter of 9 to 12 mm, a cutting bead length of 2 to 8 mm, and a breaking strength of 2000 kgf. When adopting such a wire saw, it is preferable to set a safety factor of 50%, and set the upper limit of the tension of the wire saw to 1000 kgf, and to apply a large tension within the range below that. In particular, it is preferable to be able to adjust the tension of the wire saw appropriately during cutting depending on the situation of cutting.

ワイヤーソーの走行速度は上述のように低速であるほど、切断エネルギーに向上できるとともに、切削屑がワイヤーソーに付着して排出されるので、3m/sec以上とする。この走行速度3m/sec以上としたのは前述したように切削用ビーズの最適な切削方向ベクトルよりも過度に下方に向くことにより切削用ビーズが切断対象物に過度に衝突することとなり、ワイヤーの破断や切削用ビーズの過度な摩耗が極端に発生する限界の下限速度である。  The traveling speed of the wire saw can be improved to the cutting energy as the speed is lower as described above, and the cutting waste adheres to the wire saw and is discharged, so it is 3 m / sec or more. If the traveling speed is 3 m / sec or more, as described above, the cutting bead excessively collides with the object to be cut by facing excessively downward than the optimum cutting direction vector of the cutting bead. This is the lower limit speed at which extreme breakage or excessive wear of the cutting bead occurs.

走行速度が17m/secを超えると、図2の(d)に示されるように、ワイヤーソーの切削用ビーズ11が切断対象物の切断面から浮き上がる現象が起きることが判明した。つまり、図3に示されるように、ワイヤーソーの走行による運動エネルギーはワイヤー速度の増加に伴って増大するが、走行速度が17m/secを超えると、熱エネルギーが飛躍的に増加するものの、切断エネルギーは実質的に増加しないことが判明した。そこで、ワイヤーソーの走行速度を3m/sec以上17m/sec以下の範囲内から選択される速度とするのが好ましい。  When the traveling speed exceeds 17 m / sec, as shown in (d) of FIG. 2, it was found that the phenomenon in which the cutting bead 11 of the wire saw is lifted from the cut surface of the object to be cut occurs. That is, as shown in FIG. 3, the kinetic energy by the traveling of the wire saw increases with the increase of the wire speed, but when the traveling speed exceeds 17 m / sec, the thermal energy increases dramatically, but cutting It turned out that energy does not increase substantially. Therefore, it is preferable to set the traveling speed of the wire saw to a speed selected from the range of 3 m / sec to 17 m / sec.

具体的には、切断対象物が金属の場合、走行速度を10m/sec以下、切削用ビーズの個々の押付け力を平均3kgf/個以上とするのがよく、コンクリートの場合には走行速度を14m/sec以下、切削用ビーズの個々の押付け力を平均1.5kgf/個以上とするのがよい。  Specifically, when the object to be cut is metal, the traveling speed is 10 m / sec or less, and the pressing force of each cutting bead is preferably 3 kgf / piece on average, and in the case of concrete, the traveling speed is 14 m It is preferable that the individual pressing forces of the cutting beads be 1.5 kgf / piece or more on average.

ところで、切削屑は粉流体の挙動を示し、切削用ビーズと切断面との間に滞留すると、切削用ビーズと滞留切削屑が擦れ合い、摩擦熱が発生し、エネルギー損失を招来する。また、切削屑の滞留量が多くなると、切削用ビーズの最適な接触を阻害したり、最悪は雨天時の自動車走行のタイヤのハイドロプレーニング現象のように切削用ビーズが切削屑の上に浮き上がる現象を起こす。従って、切断効率が大幅に向上し、単位時間当りの切断量が多くなると、切削屑の発生量も大幅に増大するので、切削屑をどのように排出するかが重要となってくる。  By the way, the cuttings show the behavior of the powdery fluid, and if they stay between the cutting beads and the cutting surface, the cutting beads and the staying chips will rub against each other, generating frictional heat and causing energy loss. In addition, when the amount of retained chips increases, the optimum contact of the cutting beads may be impeded, or in the worst case, the cutting beads may rise above the chips, as in the case of hydroplaning of a car running tire when it rains. Wake up. Therefore, the cutting efficiency is greatly improved, and when the cutting amount per unit time is increased, the amount of generation of cutting chips is also greatly increased, so it becomes important how to discharge the cutting chips.

そこで、ワイヤーソーの走行経路を集塵カバーで覆い、集塵カバーのワイヤーソーの走行手前側からエアーを送給して切断面に滞留する切削屑を切断面から離脱させ、ワイヤーソーの走行側から離脱した切削屑とともにエアーを吸引し、切削屑をフィルターによって分離した後、吸引したエアーの全部又は一部を集塵カバー内に戻して送給エアーに利用する。このとき、エアーの送給速度や吸引速度をワイヤーソーの走行速度よりも高速として切削屑が円滑に排出されるようにし、しかもエアーの吸引量を送給量よりも多くなるようにすると、集塵カバーに囲まれた領域が減圧され、切削屑などの粉塵が周囲に飛散するのを防止できる。  Therefore, the traveling path of the wire saw is covered with a dust collection cover, air is supplied from the near side of the wire saw movement of the dust collection cover, cutting wastes staying on the cutting surface are separated from the cutting surface, and the traveling side of the wire saw After sucking the air together with the cuttings separated from the chip and separating the cuttings with the filter, all or a part of the suctioned air is returned to the inside of the dust collection cover to be used as the feeding air. At this time, if the feed speed and suction speed of air are set higher than the traveling speed of the wire saw so that cutting chips are discharged smoothly and the suction amount of air is made larger than the feed amount, collecting The area enclosed by the dust cover is depressurized, and dust such as cuttings can be prevented from scattering around.

また、ワイヤーソーに切削剤を与え、ワイヤーソーの冷却と洗浄をするとともに、切削用ビーズの摩擦を少なくするが、上述の送給エアーを利用して切削剤を与えるようにすることもできる。切削剤には適量の水、界面活性剤及び潤滑剤を用いることができ、これを送給エアーを利用してワイヤーソーに吹き付けるようにするのがよい。  Moreover, while supplying a cutting agent to a wire saw and cooling and washing a wire saw and reducing friction of cutting beads, a cutting agent can also be given using the above-mentioned feed air. Suitable amounts of water, surfactants and lubricants may be used as the cutting agent, which may be blown onto the wire saw using feed air.

本発明に係るワイヤーソー切断方法は乾式切断に適用するとその効果が大きいが、湿式切断にも適用することができる。
また、本発明に係るワイヤーソー切断方法は図4に示されるような引き切り方式であってもよく、図6に示されるような押し切り方式であってもよく、解体現場の状況に応じて選択するのがよい。
The wire saw cutting method according to the present invention has a large effect when applied to dry cutting, but can also be applied to wet cutting.
In addition, the wire saw cutting method according to the present invention may be a pull-off method as shown in FIG. 4 or may be a push-off method as shown in FIG. It is good to do.

また、ワイヤーソーの切削用砥粒はダイヤモンド砥粒が好ましいが、他の超硬質砥粒であってもよい。切削用砥粒は焼結、メッキ、ロウ付けによって切削用ビーズのシャンクに固着することができる。  The abrasive for cutting of the wire saw is preferably a diamond abrasive, but it may be another super hard abrasive. The cutting abrasive can be fixed to the shank of the cutting bead by sintering, plating or brazing.

ところで、切削用ビーズに、図7に示されるような円筒形状の切削用ビーズを採用した場合、走行速度ベクトルはμ×mで表される。但し、μ:切断対象物の摩擦抵抗、m:切削用ビーズが切断対象物を押さえる押付け力である。
走行速度ベクトルは押付け力mの大きさに影響され、又押付け力ベクトルは主にワイヤーの張力の大きさに影響される。切断力ベクトルの大きさは走行速度ベクトルと押付け力ベクトルの大きさによって決定される。したがって、切削用ビーズ1個の切削量Δtは切削用ビーズの切断対象物を押さえる力、つまりワイヤー張力によって決まる。ワイヤーソーによる切断対象物の切削量及び切削速度は、切削量Σ=Δt×切削用ビーズの数、切削速度Σt/時間、である。
When a cylindrical cutting bead as shown in FIG. 7 is adopted as the cutting bead, the traveling speed vector is expressed by μ × m. Where μ: frictional resistance of the object to be cut, m: pressing force with which the cutting bead presses the object to be cut.
The traveling speed vector is influenced by the magnitude of the pressing force m, and the pressing force vector is mainly influenced by the tension magnitude of the wire. The magnitude of the cutting force vector is determined by the traveling speed vector and the magnitude of the pressing force vector. Therefore, the cutting amount Δt of one cutting bead is determined by the force to hold the object to be cut of the cutting bead, that is, the wire tension. The cutting amount and cutting speed of the object to be cut by the wire saw are: cutting amount == Δt × number of cutting beads, cutting speed Σt / time.

押付け力が大きいと、切削用ビーズの前側下端部100に力が集中し、その部位の砥粒の磨耗が激しくなる。また、切削用ビーズを切断対象物の方向に転倒させるような力(転倒力)101が発生し、切削用ビーズが切断対象物に引っ掛かりやすくなる。切削用ビーズの下辺主要部102の砥粒は転倒力101の影響を受け、切断よりも発熱作用の原因となる。実際には切削用ビーズの前側下端部100の磨耗が激しいので、ワイヤーソーの張力を上げすぎないことが要求されている。  When the pressing force is large, the force is concentrated on the front lower end portion 100 of the cutting bead, and the abrasive grains at that portion become more worn. In addition, a force (falling force) 101 which causes the cutting bead to fall in the direction of the object to be cut is generated, and the cutting bead is easily caught on the object to be cut. The abrasive grains of the lower part main part 102 of the cutting bead are affected by the overturning force 101 and cause more heat generation than cutting. In fact, since the front lower end 100 of the cutting bead is heavily worn, it is required not to raise the tension of the wire saw too much.

これに対し、本件発明者は次の点に着目するに至った。
切削用ビーズの形状を、1個の切断量Δtを任意に設定できるとともに、張力の設定範囲を広げることのできる形状とすることにより、切断ベクトルの設定範囲を広げることができ、各種金属材料からコンクリートまでの種々の物性に適合した切断ベクトルを設定することができる。
On the other hand, the inventor of the present invention has focused on the following points.
By setting the shape of the cutting bead to a shape that can arbitrarily set one cutting amount Δt and widen the setting range of tension, the setting range of cutting vector can be expanded, and various metal materials can be used. It is possible to set cutting vectors adapted to various physical properties up to concrete.

また、切削屑を適正に除去し、切削用ビーズの砥粒が切断対象物に適正に押し付けられるようにする。
さらに、ワイヤーソー単位メートル当りの切削用ビーズの数を多くし、ワイヤーソーの走行速度を下げることにより、ワイヤーソーの走行速度を低下させても単位時間当りの切断量を増加させ、切削用ビーズと切断対象物との摩擦による発熱を少なくし、前述の切断ベクトルの適正な設定と切削用ビーズの適正な押付けと相まって切削用ビーズ1個当りの走行エネルギーは発熱よりも切断エネルギーに変換することができる。
In addition, cutting chips are properly removed so that the abrasive grains of the cutting beads can be properly pressed against the object to be cut.
Furthermore, by increasing the number of cutting beads per meter of wire saw and lowering the traveling speed of the wire saw, the cutting amount per unit time can be increased even if the traveling speed of the wire saw is decreased, and the cutting beads Heat generation due to friction with the object to be cut is reduced, and the running energy per cutting bead is converted to cutting energy rather than heat generation, combined with the proper setting of the cutting vector and the appropriate pressing of the cutting bead mentioned above Can.

切削用ビーズ上の砥粒が切断対象物の切断面側壁との接触で磨耗しないようにするとともに、金属切断時に砥粒への不純物の付着を防止することが重要である。  It is important to prevent the abrasive grains on the cutting beads from being worn by contact with the side wall of the cut surface of the object to be cut, and to prevent the adhesion of impurities to the abrasive grains during metal cutting.

そこで、切削用ビーズを図8に示されるような形状とすると、切断ベクトルは押付け力ベクトルに近い方向から走行速度ベクトルに近い方向までの何れの方向であっても砥粒が適正に切断対象物に接し、又切断ベクトルが過度に下方を指向した場合には切削用ビーズが切断対象物に引っ掛かることなく切断対象物上に浮き上がろうとし、この作用によって切断対象物の物性に適した切断ベクトルを作り出すことができ、ひいては適正な切断量Δtを設定することができる。  Therefore, if the cutting bead has a shape as shown in FIG. 8, the abrasive grains are properly cut in any direction from the direction close to the pressing force vector to the direction close to the traveling speed vector. When the cutting vector is directed to the lower side too much, the cutting bead tends to float on the object without being caught by the object to be cut, and this action causes the cutting suitable for the physical properties of the object to be cut. A vector can be created, and thus an appropriate cutting amount Δt can be set.

しかしながら、個々の切削用ビーズによって切削された切削屑が図8に示されるように、切削用ビーズの走行方向に存在し、この切削屑がワイヤーソーの走行を阻害し砥粒の無駄な磨耗を招来し、摩擦による熱の発生などの問題を引き起こすので、適正な切断ベクトルの発生を阻害する原因になるので、前述のようにワイヤーソー走行路を切削屑を気体や液体の流れを作ることで常に清浄にする。  However, as shown in FIG. 8, cutting chips cut by the individual cutting beads are present in the traveling direction of the cutting beads, and the cutting chips inhibit the traveling of the wire saw and cause unnecessary wear of the abrasive grains. This causes problems such as heat generation due to friction, which will cause the generation of a proper cutting vector to be impeded. Always clean.

これらの対策によって切削用ビーズ1個当りの切断量Δtを適正に設定することがてき、その切削用ビーズが定ピッチで連続して固定されたワイヤーソー全体としての切断速度を向上できると考えられる。  By these measures, the cutting amount Δt per cutting bead can be properly set, and it is considered that the cutting speed as a whole of the wire saw in which the cutting bead is fixed continuously at a constant pitch can be improved. .

換言すると、本願発明ではワイヤーソーの張力を高くして低速度で切断するという考え方であるのに対し、従来の方法ではワイヤーソーの張力を低くして高速度で切断するという考え方であったと言える。  In other words, while the present invention is based on the idea of increasing the tension of the wire saw and cutting at low speed, it can be said that the conventional method was based on the idea of lowering the tension of the wire saw and cutting at high speed. .

この場合、ワイヤーソーの走行速度を低速にしても単位メートル当りの切削用ビーズの数を増加させると、仕事×切削用ビーズ数によりワイヤーソーとしての総仕事量を増やすことができる。この点、従来の方法では総仕事量を増やすためにはワイヤーソーの走行速度をより一層増加させなければならず、ワイヤー破断や過度の発熱問題が発生していたのと異なる点である。  In this case, if the number of cutting beads per unit meter is increased even if the traveling speed of the wire saw is reduced, the total work load as the wire saw can be increased by the number of work × cutting beads. In this point, in the conventional method, in order to increase the total work amount, the traveling speed of the wire saw has to be further increased, which is different from the problem of wire breakage and excessive heat generation.

すなわち、本発明によれば、切削用ビーズの径がφ9〜12mmの範囲内の径、切削用ビーズの長さが2〜8mmの範囲内の長さ、切削用ビーズの単位メートル当りの数が60個以上250個以下の数、ワイヤーの破断強度が2000kgf、ワイヤーソーの走行速度が3〜17m/sの範囲内の速度、ワイヤー張力(T)による切削用ビーズ1個当りの切断対象物への平均押付け力が1.5kgf以上という具体的な条件を提案することができる。  That is, according to the present invention, the diameter of the cutting bead is in the range of 9 to 12 mm, the length of the cutting bead is in the range of 2 to 8 mm, and the number of cutting beads per unit meter is Number of 60 or more and 250 or less, wire breaking strength of 2000 kgf, speed of wire saw within 3 to 17 m / s, cutting target per cutting bead by wire tension (T) It is possible to propose a specific condition that the average pressing force of 1.5 kgf or more.

図9は本発明に係るワイヤーソー切断方法において用いられる切削用ビーズの形状の他の例を示す。本例では切削用ビーズ11のワイヤーソー走行方向の前端面が凸状の端面40aと凹状の端面40bを滑らかな曲面で連続させた形状をなしており、凸状の端面40aで切断対象物が切削されると、切削屑が滑らかに連続する凹状端面40bによって径方向に排出され、切削屑の排出が効率よく行われる結果、切削屑がワイヤーソーの走行を阻害し砥粒の無駄な磨耗を招来し、摩擦による熱の発生などの問題を引き起こすことが少ないので、前述の場合と同様に切削用ビーズ1個当りの切断量Δtを適正に設定することができ、その切削用ビーズが定ピッチで連続して固定されたワイヤーソー全体としての切断速度を向上できる。
なお、凸状端面及び凹状端面としたが、切削屑の径方向への排除機能を考慮すると、切削用ビーズ11はワイヤーソー10の回転方向に沿って滑らかな曲線状の前端縁を有する形状とすればよい。
FIG. 9 shows another example of the shape of the cutting bead used in the wire saw cutting method according to the present invention. In this example, the front end face of the cutting bead 11 in the wire saw traveling direction has a shape in which the convex end face 40a and the concave end face 40b are continuous with a smooth curved surface, and the object to be cut is the convex end face 40a. When it is cut, cutting chips are radially discharged by the concave surface 40b where the cutting edges are smoothly continued, and cutting chips are efficiently discharged. As a result, the cutting chips inhibit the running of the wire saw and waste of abrasive grains is wasted. In this case, problems such as heat generation due to friction are less likely to occur, so the cutting amount Δt per cutting bead can be properly set as in the above case, and the cutting bead has a constant pitch. Can improve the cutting speed as a whole and continuously fixed wire saw.
Although the convex end face and the concave end face are used, the cutting bead 11 has a shape having a smooth curved front end edge along the rotation direction of the wire saw 10 in consideration of the radial scraping function of the cutting chips. do it.

本発明に係るワイヤーソー切断理論を説明するための図である。It is a figure for demonstrating the wire saw cutting theory which concerns on this invention. 上記切断理論を説明するための図である。It is a figure for demonstrating the said cutting theory. ワイヤーの運動エネルギーとワイヤー速度に対する切断エネルギー及び熱エネルギーの関係を示す図である。外周形状を電界モード分布に対応する形状に形成した例を示す平面図である。It is a figure which shows the relationship between the kinetic energy of a wire, and the cutting energy and thermal energy with respect to a wire speed. It is a top view which shows the example which formed the outer periphery shape in the shape corresponding to electric field mode distribution. 本発明に係るワイヤーソー切断装置の好ましい実施形態を示す概略構成図である。It is a schematic block diagram which shows the preferable embodiment of the wire saw cutting device which concerns on this invention. 上記実施形態における切削用ビーズの挙動を示す図である。It is a figure which shows the behavior of the bead for cutting in the said embodiment. 第2の実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment. 従来の円筒形状の切削ビーズを用いる場合における問題点を説明するための図である。It is a figure for demonstrating the problem in the case of using the conventional cylindrical shaped cutting bead. 本発明に係るワイヤーソー切断方法における切削用ビーズの形状の例を示す図である。It is a figure which shows the example of the shape of the bead for cutting in the wire saw cutting method which concerns on this invention. 本発明に係るワイヤーソー切断方法における切削用ビーズの形状の他の例を示す図である。It is a figure which shows the other example of the shape of the bead for cutting in the wire saw cutting method which concerns on this invention. 中実四角形切断対象物に対する切削用ビーズの最大負荷点を説明するための図である。It is a figure for demonstrating the maximum load point of the bead for cuttings with respect to a solid square cutting object. 円筒切断対象物に対する切削用ビーズの最大負荷点を説明するための図である。It is a figure for demonstrating the maximum load point of the bead for cuttings with respect to a cylindrical cutting object. 角筒切断対象物に対する切削用ビーズの最大負荷点を説明するための図である。It is a figure for demonstrating the maximum load point of the bead for cutting with respect to a rectangular-tube cutting target object.

以下、本発明を図面に示す具体例に基づいて詳細に説明する。図4及び図5は本発明に係るワイヤーソー切断装置の好ましい実施形態を示す。図において、ワイヤーソー10は例えば破断強度の2000kgfのワイヤーにビーズ径φ10mm(φ9〜13mm)、シャンク長8mm(2〜8mm)の切削用ビーズ11を60〜250個/mの数だけ間隔をあけて固定して構成され、切削用ビーズ11にはワイヤーソー10の走行方向前方側から後方側に向けて次第に外径が増大するような凸状曲面に形成されている。  Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. 4 and 5 show a preferred embodiment of a wire saw cutting device according to the present invention. In the figure, the wire saw 10 has, for example, an interval of 60 to 250 pieces / m for the bead diameter of φ10 mm (φ9 to 13 mm) and shank length 8 mm (2 to 8 mm) with a breaking strength of 2000 kgf wire. The cutting bead 11 is formed in a convex curved surface such that the outer diameter gradually increases from the front side to the rear side in the traveling direction of the wire saw 10.

このワイヤーソー10は両端が接続されて無端状に組み立てられ、ワイヤーソー10は切断対象物、例えば鉄筋コンクリート構造物30に切断予定のラインによって掛けわたされ、左右のガイドプーリー21を経て駆動プーリー20に無端状にかつ捻じりを与えられて張架されている。  The wire saw 10 is connected at both ends and assembled in an endless shape, and the wire saw 10 is hung on a cutting object, for example, a reinforced concrete structure 30 by a line to be cut and passes through the left and right guide pulleys 21 to the drive pulleys 20. It is stretched endlessly and twisted.

駆動プーリー20には広範囲の回転域で一定の回転トルクを発生するサーボモータ等の駆動モータ22の駆動軸が直接又は減速ギア群を経て連結され、又駆動プーリー20には引っ張り機構23が緩衝装置32を介して設けられ、駆動モータ22及び引っ張り機構23はワイヤーソー10の張力が1000kgf以下の範囲内の張力になり、これによって1個の切削用ビーズ11の押付け力が1.5kgf以上の大きさとなり、又ワイヤーソー10の走行速度を3m/sec以上17m/sec以下の範囲内から選択される速度となるようにコントローラ24によって制御されるようになっている。  A drive shaft of a drive motor 22 such as a servomotor which generates a constant rotational torque in a wide range of rotation range is connected to the drive pulley 20 directly or through a reduction gear group, and a tension mechanism 23 is a shock absorber for the drive pulley 20. 32 and the drive motor 22 and the pulling mechanism 23 have a tension within the range of 1000 kgf or less of the wire saw 10, whereby the pressing force of one cutting bead 11 is as large as 1.5 kgf or more. Also, the controller 24 controls the traveling speed of the wire saw 10 to be a speed selected from the range of 3 m / sec to 17 m / sec.

コントローラ24はワイヤーソー10の張力及びワイヤーソー10の走行速度を検知して表示する機能を備え、作業者が切断作業中に張力及び走行速度の表示を見ながら摘まみを操作することによって駆動モータ22及び引っ張り機構23に対する制御信号を与えて駆動モータ22のトルクやワイヤーソー10の張力を変更できるようになっている。なお、緩衝装置32は駆動プーリー20の引っ張り力Tがワイヤー走行により脈動するのを防止し、所定の引っ張り力に実質的に一定に維持されるようにコントロールするためのものである。  The controller 24 has a function to detect and display the tension of the wire saw 10 and the traveling speed of the wire saw 10, and the operator operates the knob while viewing the tension and the traveling speed during the cutting operation. The control signal to 22 and the pulling mechanism 23 is given to change the torque of the drive motor 22 and the tension of the wire saw 10. The shock absorbing device 32 prevents the pulling force T of the drive pulley 20 from pulsating due to the traveling of the wire, and is controlled so as to be maintained substantially constant at a predetermined pulling force.

また、切断対象物20にはワイヤーソー10の走行経路を覆って集塵カバー25が設けられ、集塵カバー25には集塵カバー25内にエアーを送給する送給口28がワイヤーソー10の走行手前側に形成され、ワイヤーソー10の走行側には集塵カバー25内のエアーを吸引する吸引口26が形成され、吸引口26にはバッグフィルターなどの除塵装置27が設けられ、除塵後のエアーの一部が送給口28に戻されるようになっている。
ここで、送給口28からのエアーの送給速度や吸引口26からのエアー吸引速度はワイヤーソー10の走行速度よりも高速に設定され、しかもエアーの吸引量がエアーの送給量よりも多くなるように設定される。
Further, the object to be cut 20 is provided with a dust collection cover 25 to cover the traveling path of the wire saw 10, and the dust collection cover 25 has a feed port 28 for feeding air into the dust collection cover 25. The suction port 26 for suctioning the air in the dust collection cover 25 is formed on the traveling side of the wire saw 10, and the suction port 26 is provided with a dust removing device 27 such as a bag filter. A portion of the air afterward is returned to the feed port 28.
Here, the feeding speed of air from the feeding port 28 and the suction speed of air from the suction port 26 are set to be higher than the traveling speed of the wire saw 10, and the suction quantity of air is higher than the feeding quantity of air. It is set to be more.

今、図5に示されるように、切削用ビーズ11の押付け力ベクトルP1とワイヤーソー10の走行速度ベクトルF1+S1の合成ベクトルをC1としたとき、ワイヤーソー10の走行速度ベクトルをF1+S1からF1’+S1に低下させると、合成ベクトルC1’は押付け力の方向に近づく。また、切削用ビーズ11の押付け力を大きくすると、同様に、合成ベクトルは押付け力の方向に近づけることができる。  Now, as shown in FIG. 5, assuming that the composite vector of the pressing force vector P1 of the cutting bead 11 and the traveling speed vector F1 + S1 of the wire saw 10 is C1, the traveling speed vector of the wire saw 10 is F1 + S1 to F1 'to F1' + S1. The resultant vector C1 'approaches the direction of the pressing force. In addition, when the pressing force of the cutting bead 11 is increased, the combined vector can be brought closer to the direction of the pressing force.

そこで、送給口28から集塵カバー25内にエアーを送給し、吸引口26からエアー吸引して切削屑12を排出し、同時に、コントローラ24によって駆動モータ22の回転数を低くなるように、又引っ張り機構23の張力Tを大きくなるように制御することによって切断対象物30を効率よく、短時間で切断することができ、且つ切削屑12を順次切断面から排出することにより切削用ビーズが円滑に回転し、ビーズの片摩耗が解消、又切削屑によるビーズの摩耗も軽減され切削用ビーズの切削寿命も長くなった。
本件発明者らの実験によれば、30mmφ×10本の鉄筋を配筋した1m×1mのコンクリートブロックを、ワイヤー張力を100kg、ワイヤーソー10の走行速度9m/sで切断したところ、15分で乾式切断できることが確認された。
Therefore, air is fed from the feed port 28 into the dust collection cover 25 and suctioned from the suction port 26 to discharge the cuttings 12, and at the same time, the controller 24 reduces the rotational speed of the drive motor 22. Also, the cutting object 30 can be efficiently cut in a short time by controlling the tension T of the pulling mechanism 23 to be large, and the cutting beads are sequentially discharged from the cutting surface 12 Smoothly rotated, the bead wear was eliminated, and the bead wear due to cutting chips was also reduced, and the cutting life of the cutting bead was also extended.
According to the experiments of the present inventors, a 1 m x 1 m concrete block with 30 mm diameter x 10 bars arranged is cut at a wire tension of 100 kg and a traveling speed of 9 m / s of the wire saw 10, 15 minutes It has been confirmed that dry cutting is possible.

図6は第2の実施形態を示し、図において図4と同一符号は同一又は相当部分を示す。本例では4つのガイドプーリー21と駆動プーリー20とによってワイヤーソー10を押し切り方向に掛け渡しており、このように押し切り方式で切断することもできる。
本件発明者らの実験によれば、30cm×30cmの機械構造用炭素鋼S35Cのブロックを切断したところ、25分で切断できることが確認された。なお、金属材料の場合には発熱が多くなるので、ノズル29によって冷却水を噴霧するのがよい。
FIG. 6 shows a second embodiment, in which the same reference numerals as in FIG. 4 denote the same or corresponding parts. In this example, the wire saw 10 is stretched in the push-off direction by the four guide pulleys 21 and the drive pulleys 20, and it is also possible to cut in this way by the push-off method.
According to the experiments of the present inventors, when a block of 30 cm × 30 cm of carbon steel for machine structure S35C was cut, it was confirmed that the cutting can be performed in 25 minutes. In the case of a metal material, the heat generation is increased, so it is preferable to spray the cooling water by the nozzle 29.

10 ワイヤーソー 11 切削用ビーズ
12 切削屑 20 駆動プーリー
21 ガイドプーリー 22 駆動モータ
23 引っ張り機構 24 コントローラ
30 切断対象物
DESCRIPTION OF SYMBOLS 10 wire saw 11 bead for cutting 12 cutting waste 20 drive pulley 21 guide pulley 22 drive motor 23 pulling mechanism 24 controller 30 cutting object

Claims (6)

ワイヤーに複数の切削用ビーズを所定のピッチで付設してなるワイヤーソーを複数のガイドプーリーと駆動プーリーとの間に無端状に掛け渡し、ワイヤーソーを切断対象物に押し付けるとともに、ワイヤーソーを中心軸線廻りに回転させながら走行させて切断対象物を切断するにあたり、
ワイヤーソー(10)の走行方向前方側に後方になるにつれて拡径するような凸状曲面を有するか又はワイヤーソー(10)の回転方向に沿って曲線状の前端縁を有する複数の各切削用ビーズ(11)を用い、切削用ビーズ(11)の最大負荷点における切削用ビーズ(11)の押付け力ベクトル(T1)とワイヤーソーの走行速度ベクトル(F1)との合成ベクトル(C1)の指向方向が切削用ビーズ(11)の切断対象物に対する最適な切断方向に近づくように、切削用ビーズ(11)の切断対象物への押付け力及びワイヤーソー(10)の走行速度の両方又は一方を設定し又は調整する一方、
切削用ビーズ(11)の径がφ9〜12mmの範囲内の径、切削用ビーズ(11)の長さが2〜8mmの範囲内の長さ、切削用ビーズ(11)の単位メートル当りの数が60個以上250個以下の数、ワイヤーの破断強度が2000kgf、ワイヤーソー(10)の走行速度が3〜17m/sの範囲内の速度、ワイヤー張力(T)による切削用ビーズ(11)1個当りの切断対象物への平均押付け力が1.5kgf以上であることを特徴とするワイヤーソー切断方法。
A wire saw obtained by attaching a plurality of cutting beads to a wire at a predetermined pitch is endlessly bridged between a plurality of guide pulleys and a driving pulley, and the wire saw is pressed against the object to be cut. When traveling while cutting around the axis while cutting around the axis,
For cuttings that have a convexly curved surface that increases in diameter toward the rear in the direction of travel of the wire saw (10) or has a curved front edge along the direction of rotation of the wire saw (10) Directing the composite vector (C1) of the pressing force vector (T1) of the cutting bead (11) and the traveling speed vector (F1) of the wire saw at the maximum load point of the cutting bead (11) using the bead (11) The pressing force of the cutting bead (11) against the cutting object and / or the traveling speed of the wire saw (10) are set so that the direction approaches the optimum cutting direction of the cutting bead (11) for the cutting object While setting or adjusting,
The diameter of the cutting bead (11) is in the range of 9 to 12 mm, the length of the cutting bead (11) is in the range of 2 to 8 mm, the number of cutting beads (11) per unit meter Number of 60 or more and 250 or less, wire breaking strength of 2000 kgf, speed of wire saw (10) within 3 to 17 m / s, bead for cutting by wire tension (T) (11) 1 A wire saw cutting method characterized in that an average pressing force on an object to be cut per piece is 1.5 kgf or more.
切削用ビーズ(11)の最適な切断方向を、低硬度又は低靱性の切断対象物に対する最適な切断方向が高硬度又は高靱性の切断対象物に対する最適な切断方向に比較してワイヤーソーの走行速度ベクトル(F1)の指向方向に近づき、角部のある切断対象物に対する最適な切断方向が角部のない切断対象物に対する最適な切断方向に比較してワイヤーソーの走行速度ベクトル(F1)の指向方向に近づくように設定するようにした請求項1記載のワイヤーソー切断方法。 The wire saw runs with the optimum cutting direction of the cutting bead (11) compared to the optimum cutting direction for the high hardness or high toughness cutting object for the low hardness or low toughness cutting object The cutting direction of the wire saw approaches the direction in which the velocity vector (F1) is directed , and the optimum cutting direction for the cutting object with the corners is compared with the optimum cutting direction for the cutting object without the corners . The wire saw cutting method according to claim 1, wherein the wire saw is set to approach a pointing direction . 切削用ビーズ(11)の切断対象物への押付け力及びワイヤーソー(10)の走行速度の両方又は一方を切断中にワイヤーソー(10)の走行を維持したまま任意に設定し又は調整するようにした請求項1記載のワイヤーソー切断方法。   To set or adjust arbitrarily while keeping the traveling of the wire saw (10) while cutting the pressing force of the cutting bead (11) against the cutting object and / or the traveling speed of the wire saw (10) The wire saw cutting method according to claim 1. 金属製の切断対象物を切断するにあたり、ワイヤーソー(10)の走行速度が10m/sec以下であり、ワイヤーソー(10)の切削用ビーズ(11)の1個あたりの切断対象物への平均押付け力が3kgf以上である請求項1記載のワイヤーソー切断方法。   When cutting a metal cutting object, the traveling speed of the wire saw (10) is 10 m / sec or less, and the average per one cutting object of cutting beads (11) of the wire saw (10) The wire saw cutting method according to claim 1, wherein the pressing force is 3 kgf or more. コンクリート製の切断対象物を切断するにあたり、ワイヤーソー(10)の走行速度が14m/sec以下であり、ワイヤーソー(10)の切削用ビーズ(11)の1個あたりの切断対象物への平均押付け力が1.5kgf以上である請求項1記載のワイヤーソー切断方法。   When cutting a concrete cutting object, the traveling speed of the wire saw (10) is 14 m / sec or less, and the average per cutting object of the cutting bead (11) of the wire saw (10) The wire saw cutting method according to claim 1, wherein the pressing force is 1.5 kgf or more. 切断対象物におけるワイヤーソー(10)の走行経路を集塵カバー(25)で覆い、該集塵カバー(25)のワイヤーソー(10)の走行側からエアーを吸引し、除塵後の吸引エアーの一部をワイヤーソー(10)走行手前側に戻して集塵カバー(25)にエアーを送給し、エアーの速度をワイヤーソー(10)の走行速度よりも高速とし、エアーの吸引量を送給量よりも多くするようにした請求項1記載のワイヤーソー切断方法。
Cover the traveling path of the wire saw (10) in the object to be cut with a dust collection cover (25), suction air from the traveling side of the wire saw (10) of the dust collection cover (25) some feeds feeding air to the dust collection cover (25) back to the wire saw (10) running front side, the speed of the air is faster than the traveling speed of the wire saw (10), feeding the amount of suction air The wire saw cutting method according to claim 1, wherein the wire saw is made to be larger than a supply amount.
JP2017560423A 2016-01-07 2017-01-06 Wire saw cutting method and apparatus thereof Active JP6548342B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016001547A JP2018144112A (en) 2016-01-07 2016-01-07 Wire saw cutting method and device therefor
PCT/JP2017/000222 WO2017119471A1 (en) 2016-01-07 2017-01-06 Method and device for cutting with wire saw

Publications (2)

Publication Number Publication Date
JPWO2017119471A1 JPWO2017119471A1 (en) 2018-09-27
JP6548342B2 true JP6548342B2 (en) 2019-07-24

Family

ID=59273659

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016001547A Pending JP2018144112A (en) 2016-01-07 2016-01-07 Wire saw cutting method and device therefor
JP2017560423A Active JP6548342B2 (en) 2016-01-07 2017-01-06 Wire saw cutting method and apparatus thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016001547A Pending JP2018144112A (en) 2016-01-07 2016-01-07 Wire saw cutting method and device therefor

Country Status (2)

Country Link
JP (2) JP2018144112A (en)
WO (1) WO2017119471A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112318209B (en) * 2020-10-27 2022-03-25 南京美诚铝业科技有限公司 Machining center for aluminum product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225934A (en) * 1996-02-27 1997-09-02 Tokyo Seimitsu Co Ltd Apparatus for interlocking wire saw
JP2001300848A (en) * 2000-04-18 2001-10-30 Toda Constr Co Ltd Dressing device and wire saw cutter
JP2006168226A (en) * 2004-12-16 2006-06-29 Sumco Corp Cutter, method of controlling cutter, and method of cutting silicon single crystal
JP2015136853A (en) * 2014-01-22 2015-07-30 株式会社ダイアテック Diamond wire saw cutting device

Also Published As

Publication number Publication date
JP2018144112A (en) 2018-09-20
WO2017119471A1 (en) 2017-07-13
JPWO2017119471A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
Babu et al. A study on recycling of abrasives in abrasive water jet machining
CA2495300C (en) A bucket for crushing and screening stone
US20060040584A1 (en) Method and apparatus for grinding
US7082743B1 (en) Land clearing apparatus
CN205588088U (en) Stainless steel stamping workpiece grinding burr
JP6548342B2 (en) Wire saw cutting method and apparatus thereof
JP2009297705A (en) Mobile crusher
KR100582290B1 (en) Method for cutting blocks of stone and frame cutting machine for carrying out said method
US4052822A (en) Method and apparatus for abrasively cutting objects
JP5151851B2 (en) Band saw cutting device and ingot cutting method
CN109731633A (en) A kind of waste asphalt mixture flexibility crushing plant
JP2016209822A (en) Knife blade for crusher, and crusher
JP2002172564A (en) Grinding rope
US5992404A (en) Process and device for clearing out joints in masonry
JP2009255403A (en) Wire saw cutting method and wire saw cutter
JP6111382B2 (en) Cutting method of reinforced concrete
CN112247646A (en) Machine tool chip removal cleaning device for numerical control machine tool
CN113021650A (en) Rope saw mechanism and rope saw device for stone cutting
SK95299A3 (en) A shot-blasting machine for cleaning a linear metal element
JP2007216187A (en) Disintegration device, and crushing facility
JP3758919B2 (en) Sorting conveyor
CN216499807U (en) Iron fillings recovery unit for digit control machine tool
CN108993745A (en) A kind of efficient ore reduction device
US6478662B1 (en) Descaler/finisher for elongated or continuous stock materials
CN105170657B (en) A kind of clear roller arrangement and its clear roller method for removing hot rough rolling mill roller-way dirt and viscous aluminium phenomenon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6548342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350