JP6546808B2 - Chromatographic separation method and chromatographic separation system - Google Patents

Chromatographic separation method and chromatographic separation system Download PDF

Info

Publication number
JP6546808B2
JP6546808B2 JP2015160105A JP2015160105A JP6546808B2 JP 6546808 B2 JP6546808 B2 JP 6546808B2 JP 2015160105 A JP2015160105 A JP 2015160105A JP 2015160105 A JP2015160105 A JP 2015160105A JP 6546808 B2 JP6546808 B2 JP 6546808B2
Authority
JP
Japan
Prior art keywords
stock solution
adsorptive fraction
eluent
weakly
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160105A
Other languages
Japanese (ja)
Other versions
JP2017037048A (en
Inventor
正樹 鶴田
正樹 鶴田
響介 山田
響介 山田
佐藤 康平
康平 佐藤
一夫 岡田
一夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015160105A priority Critical patent/JP6546808B2/en
Priority to PCT/JP2016/071758 priority patent/WO2017029949A1/en
Publication of JP2017037048A publication Critical patent/JP2017037048A/en
Application granted granted Critical
Publication of JP6546808B2 publication Critical patent/JP6546808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、クロマト分離方法及びクロマト分離システムに関する。より詳細には、擬似移動層方式を用いたクロマト分離方法及びクロマト分離システムに関する。   The present invention relates to a chromatographic separation method and a chromatographic separation system. More specifically, the present invention relates to a chromatographic separation method and a chromatographic separation system using a simulated moving bed system.

クロマト分離方法は、固定層方式と移動層方式に大別される。固定層方式では、多成分からなる試料(以下、「原液」ともいう。)を吸着剤が充填されたカラムに注入し、当該カラム中に溶離液を一方向に流通させることにより、吸着剤に対する吸着力の違いに基づき原液中の目的の成分を他の成分から分離精製する。この固定層方式は、吸着剤を固定したまま溶離液を流通させるだけで目的の成分を分離精製することができる。しかし、精製対象とする目的の成分(以下、単に「精製対象成分」ともいう。)とその他の成分との間に、吸着剤に対する吸着力においてある程度大きな差が無いと、固定層方式によって良好な分離精製を実現することができない。さらに、固定層方式では試料を連続的に注入しながら目的成分を分離することができず、工業的応用には制約がある。   Chromatographic separation methods are roughly classified into fixed bed methods and moving bed methods. In the fixed bed method, a multicomponent sample (hereinafter, also referred to as "stock solution") is injected into a column filled with an adsorbent, and the eluent is allowed to flow in one direction in the column, thereby removing the adsorbent. The target component in the stock solution is separated and purified from other components based on the difference in adsorption power. In this fixed bed system, the target component can be separated and purified only by flowing the eluent while fixing the adsorbent. However, if there is no significant difference in the adsorptive power to the adsorbent between the target component to be purified (hereinafter, also simply referred to as "component to be purified") and the other components, the fixed bed system is good. Separation and purification can not be realized. Furthermore, in the fixed bed method, it is not possible to separate the target component while continuously injecting the sample, which limits the industrial application.

一方、移動層方式では、カラム中に溶離液を一方向に流通させながら、吸着剤を、溶離液の流通方向に対して逆方向に移動させる。移動層方式では、溶離液の流通速度や吸着剤の移動速度を調節することにより、原液の注入口を基準として、原液中の精製対象成分を、その他の成分の移動方向とは逆方向に移動させることができる。そのため、例えば原液中の精製対象成分がその他の成分に比べて強吸着性成分である場合には、原液の注入口を基準として、精製対象成分が上流側(流体の流通方向とは逆方向)へ、その他の成分が下流側(流体の流通方向)へと移動する系を構築することが可能となる。当該上流側において精製対象成分を抜き出し、当該下流側においてその他の成分を抜き出すことにより、原液を連続的に注入しながら、精製対象成分を連続的に、且つ、より高い純度で分離精製できる。
しかし、移動層方式の工業的応用は容易ではない。工業的に使用される大型のカラムを用いたクロマト分離システムにおいて、吸着剤を均一に移動させるのは技術的ハードルが高い。また、吸着剤を均一に移動させることができたとしても、この移動の際に吸着剤に大きな負荷がかかる。結果、吸着剤が破損(破砕)しやすくなり、構築したクロマト分離システムは耐久性等において実用性に劣るものとなりやすい。
On the other hand, in the moving bed method, the adsorbent is moved in the reverse direction with respect to the flowing direction of the eluting solution while flowing the eluting solution in one direction in the column. In the moving bed method, the component to be purified in the undiluted solution is moved in the direction opposite to the moving direction of the other components based on the inlet of the undiluted solution by adjusting the flow rate of the eluant and the moving velocity of the adsorbent. It can be done. Therefore, for example, when the component to be purified in the stock solution is a stronger adsorptive component than the other components, the component to be purified is upstream with respect to the inlet of the stock solution (reverse direction to the fluid flow direction) In addition, it is possible to construct a system in which other components move to the downstream side (flow direction of fluid). By extracting the purification target component on the upstream side and extracting the other components on the downstream side, the purification target component can be separated and purified continuously with higher purity while continuously injecting the stock solution.
However, industrial application of the moving bed system is not easy. In the chromatographic separation system using a large column used industrially, moving the adsorbent uniformly has high technical hurdles. Also, even if the adsorbent can be moved uniformly, the adsorbent is heavily loaded during this movement. As a result, the adsorbent is likely to be broken (fractured), and the constructed chromatographic separation system is likely to be less practical in durability and the like.

かかる移動層方式の問題点を解決すべく、擬似移動層方式によるクロマト分離技術が提案されている(例えば特許文献1、2)。この擬似移動層方式によるクロマト分離は、吸着剤が充填された複数の単位充填塔(カラム)を、配管を介して直列かつ無端状に連結してなる循環系を用いて実施される。この循環系において、上記配管には、精製対象成分を含む原液を供給するための原液供給口、弱吸着性成分の抜出口、溶離液供給口及び強吸着性成分の抜出口が、流体の流通方向に向けてこの順に設けられ、かつ、原液供給口と弱吸着性成分抜出口との間、弱吸着性成分抜出口と溶離液供給口との間、溶離液供給口と強吸着性成分抜出口との間、及び強吸着性成分抜出口と原液供給口との間には、それぞれに少なくとも1つの上記単位充填塔が配設される。そして、上記原液供給口、上記弱吸着性成分抜出口、上記溶離液供給口及び上記強吸着性成分抜出口を、これらの相対的な位置関係を維持した状態で流体の流通方向に向けて間欠的に移動させることにより、吸着剤を固定した状態であるにも関わらず、吸着剤を流体の流通方向に対して逆方向に移動させたのと同じような効果を得ることができる。   In order to solve the problems of the moving bed system, chromatographic separation techniques using a simulated moving bed system have been proposed (for example, Patent Documents 1 and 2). The chromatographic separation by the simulated moving bed method is performed using a circulatory system in which a plurality of unit packed columns (columns) packed with adsorbents are connected in series and endlessly via piping. In this circulation system, the pipe has a stock solution supply port for supplying a stock solution containing the component to be purified, an outlet for the weakly adsorptive component, an eluent supply port, and an outlet for the strongly adsorptive component. Between the stock solution supply port and the weakly adsorptive component outlet, between the weakly adsorptive component outlet and the eluent supply port, the eluent supply port and the strongly adsorptive component outlet. At least one unit packing tower is disposed between the outlet and between the strong adsorptive component outlet and the stock solution inlet. The undiluted solution supply port, the weakly adsorptive component outlet, the eluent feed port, and the strongly adsorptive component outlet are intermittently directed in the fluid flow direction while maintaining their relative positional relationship. By moving it in the opposite direction, although the adsorbent is fixed, it is possible to obtain the same effect as moving the adsorbent in the reverse direction with respect to the flow direction of the fluid.

特公昭60−55162号公報Japanese Patent Publication No. 60-55162 特開2009−36536号公報JP, 2009-36536, A

クロマト分離においては、精製対象成分を含む原液に加えて、原液を押し流す溶離液が供給される。そのため、精製対象成分を含む目的の画分(以下、「精製対象画分」ともいう。)は、精製対象成分が溶離液により一定程度希釈された状態にある。したがって、クロマト分離によって得られた精製対象画分は、通常は濃縮操作を経て出荷等されるのであるが、この濃縮操作は精製コストを押し上げる一因となる。
かかるコストを低減するためには、精製対象画分中の精製対象成分濃度を高めることが必要である。しかし、精製対象成分濃度を高めるべく、クロマト分離において溶離液の使用量を低減すると、一般に分離性能が低下し、得られる精製対象画分における精製対象成分の純度(精製対象画分中、溶離液と原液中の溶媒とを除いた残部に占める精製対象成分の割合)が低下してしまう。さらに、溶離液の使用量を低減すると、原液中に含まれる精製対象成分の、精製対象画分中への回収率も低下する傾向がある。
In the chromatographic separation, in addition to the stock solution containing the component to be purified, the eluent for flushing the stock solution is supplied. Therefore, the target fraction containing the purification target component (hereinafter, also referred to as "purification target fraction") is in a state where the purification target component is diluted to a certain extent by the eluent. Therefore, although the purification target fraction obtained by the chromatographic separation is usually shipped via a concentration operation, this concentration operation contributes to an increase in the purification cost.
In order to reduce the cost, it is necessary to increase the concentration of the purification target component in the purification target fraction. However, if the amount of eluent used in the chromatographic separation is reduced to increase the concentration of the component to be purified, the separation performance generally decreases, and the purity of the component to be purified in the fraction to be purified (the fraction to be purified The ratio of the component to be purified to the remainder excluding the solvent and the solvent in the undiluted solution decreases. Furthermore, when the amount of eluent used is reduced, the recovery rate of the component to be purified contained in the stock solution into the fraction to be purified tends to decrease.

本発明は、擬似移動層方式を用いたクロマト分離方法であって、溶離液の使用量を大きく低減でき、且つ、得られる精製対象画分中への精製対象成分の回収率と、当該精製対象画分中における精製対象成分の純度のいずれも高度に高めることができるクロマト分離方法を提供することを課題とする。
また、本発明は上記クロマト分離方法の実施に好適なクロマト分離システムを提供することを課題とする。
The present invention is a chromatographic separation method using a simulated moving bed method, which can greatly reduce the amount of eluent used, and the recovery rate of the component to be purified into the fraction to be purified obtained, and the purification target It is an object of the present invention to provide a chromatographic separation method capable of highly enhancing any of the purity of the component to be purified in the fraction.
Another object of the present invention is to provide a chromatographic separation system suitable for carrying out the above-mentioned chromatographic separation method.

本発明者らは上記課題に鑑み鋭意検討を重ねた結果、擬似移動層方式を用いたクロマト分離方法において、原液供給操作及び溶離液供給操作から選ばれる液供給操作と、強吸着性画分抜出操作及び弱吸着性画分抜出操作から選ばれる液抜出操作との特定の組み合わせを特定の順序で実施する工程と、液供給操作及び液抜出操作を一切行わずに系内に流体を流通させる循環工程とを組み合わせることにより、溶離液の使用量を大幅に低減しながらも、精製対象画分中における精製対象成分の純度及び精製対象画分中への精製対象成分の回収率のいずれも所望のレベルに高めることができることを見い出した。すなわち、精製対象画分中に、精製対象成分を、高濃度に、高純度に、且つ高い回収率で分離精製できることを見い出した。
本発明は、これらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
As a result of intensive investigations in view of the above problems, the inventors of the present invention have found that, in a chromatographic separation method using a simulated moving bed method, a liquid supply operation selected from a stock solution supply operation and an eluent supply operation and a strongly adsorptive fraction extraction. The step of performing a specific combination of the liquid extraction operation selected from the extraction operation and the weakly adsorptive fraction extraction operation in a specific order, the fluid in the system without performing any liquid supply operation and liquid extraction operation By combining the method with the circulation step of circulating the mixture, thereby significantly reducing the amount of the eluent used, while at the same time the purity of the component to be purified in the fraction to be purified and the recovery of the component to be purified into the fraction to be purified It has been found that either can be raised to the desired level. That is, it was found that the component to be purified can be separated and purified at high concentration, high purity, and high recovery rate in the purification target fraction.
The present invention has been further studied based on these findings and has been completed.

本発明の上記課題は下記手段により解決された。
〔1〕
吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離方法であって、
前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
下記ステップ(a)及び(b)を順に繰り返す、方法:
(a)下記サブステップ(i)〜(iv)をこの順に実施するステップ;
(i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
(ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
〔2〕
前記ステップ(a)において、前記抜出口Cから抜き出される前記強吸着性画分の総量が、前記供給口Fから供給される前記原液の総量よりも少ない、〔1〕に記載のクロマト分離方法。
〔3〕
前記原液がぶどう糖及び果糖を含有し、前記強吸着性画分中に該果糖を分離精製する、〔1〕又は〔2〕に記載のクロマト分離方法。
〔4〕
前記循環系が前記単位充填塔を少なくとも4塔有する、〔1〕〜〔3〕のいずれか1つに記載のクロマト分離方法。
〔5〕
前記ステップ(a)において、原液の総供給量に対する溶離液の総供給量の比が、体積比で、[溶離液の総供給量]/[原液の総供給量]<1.2を満たす、〔1〕〜〔4〕のいずれか1つに記載のクロマト分離方法。
〔6〕
吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離システムであって、
前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
下記ステップ(a)及び(b)を順に繰り返す、システム:
(a)下記サブステップ(i)〜(iv)をこの順に実施するステップ;
(i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
(ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
The above problems of the present invention are solved by the following means.
[1]
A chromatographic separation method of separating and purifying components in a stock solution by a simulated moving bed method using a circulating system in which a plurality of unit packed towers filled with an adsorbent are connected in series and endlessly via a pipe,
The circulation system includes the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strongly adsorptive fraction outlet C in the pipe in this order in the fluid flow direction. Between the undiluted solution feed port F and the weakly adsorptive fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent feed port D, and the eluent feed port D and At least one unit packing tower is disposed between the strongly adsorptive fraction outlet C and between the strongly adsorptive fraction outlet C and the stock solution feed port F,
Repeat the following steps (a) and (b) in sequence:
(A) performing the following sub-steps (i) to (iv) in this order;
(I) A substep of supplying a stock solution from the stock solution supply port F and extracting a strongly adsorptive fraction from the strongly adsorptive fraction outlet C;
(Ii) a substep of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iii) a substep of supplying an eluent from the eluent supply port D and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iv) A substep of circulating the fluid in the circulatory system without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction,
(B) After the step (a) is completed, the undiluted solution supply port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strong adsorptive fraction outlet C are relative to one another. Step of moving in the fluid flow direction while maintaining the positional relationship.
[2]
The chromatographic separation method according to [1], wherein in the step (a), the total amount of the strong adsorptive fraction extracted from the outlet C is smaller than the total amount of the undiluted solution supplied from the supply port F. .
[3]
The chromatographic separation method according to [1] or [2], wherein the stock solution contains glucose and fructose, and the fructose is separated and purified in the strongly adsorptive fraction.
[4]
The chromatographic separation method according to any one of [1] to [3], wherein the circulating system has at least four unit packed towers.
[5]
In the step (a), the ratio of the total supply amount of the eluent to the total supply amount of the stock solution satisfies, in a volume ratio, [total supply amount of the eluent] / [total supply amount of the stock solution] <1.2 The chromatographic separation method according to any one of [1] to [4].
[6]
A chromatographic separation system for separating and purifying components in a stock solution by a simulated moving bed method using a circulating system in which a plurality of unit packed towers packed with adsorbents are connected in series and endlessly via a pipe,
The circulation system includes the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strongly adsorptive fraction outlet C in the pipe in this order in the fluid flow direction. Between the undiluted solution feed port F and the weakly adsorptive fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent feed port D, and the eluent feed port D and At least one unit packing tower is disposed between the strongly adsorptive fraction outlet C and between the strongly adsorptive fraction outlet C and the stock solution feed port F,
System which repeats the following steps (a) and (b) in order:
(A) performing the following sub-steps (i) to (iv) in this order;
(I) A substep of supplying a stock solution from the stock solution supply port F and extracting a strongly adsorptive fraction from the strongly adsorptive fraction outlet C;
(Ii) a substep of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iii) a substep of supplying an eluent from the eluent supply port D and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iv) A substep of circulating the fluid in the circulatory system without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction,
(B) After the step (a) is completed, the undiluted solution supply port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strong adsorptive fraction outlet C are relative to one another. Step of moving in the fluid flow direction while maintaining the positional relationship.

本明細書において、「上流」、「下流」との用語は、循環系内の流体の流通方向に対して用いられる。すなわち、循環系のある部位に対して「上流側」とは、当該部位に向けて流体が流通してくる側を意味し、「下流側」とは、当該部位から流体が流れ出ていく側を意味する。
本明細書において、「強吸着性成分」とは、原液中に含まれる複数成分のうち、吸着剤に対する吸着力が強い成分を意味し、「弱吸着性成分」とは、上記強吸着性成分よりも吸着剤に対する吸着性の弱い成分を意味する。つまり「強吸着性」及び「弱吸着性」との用語は、原液中に含まれる各成分について、吸着剤に対する吸着力を相対的に比較した際の、当該吸着力の強さの度合を表すものである。
また、「強吸着性成分」及び「弱吸着性成分」は、それぞれ、単一成分からなってもよく、吸着力の異なる複数の成分からなってもよい。精製対象成分は単一成分であることが多いため、強吸着性成分が精製対象成分である場合、当該強吸着性成分は通常は、原液中で、吸着剤に対する吸着力が最も強い成分となるが、本発明はこの態様に限定されるものではない。弱吸着性成分は、当該強吸着性成分よりも吸着剤に対する吸着性の弱い、1種又は2種以上の成分となる。同様に、弱吸着性成分が精製対象成分である場合、当該弱吸着性成分は通常は、原液中で、吸着剤に対する吸着力が最も弱い成分となるが、本発明はこの態様に限定されるものではない。強吸着性成分は、当該弱吸着性成分よりも吸着剤に対する吸着性の強い、1種又は2種以上の成分となる。
As used herein, the terms "upstream" and "downstream" are used with respect to the flow direction of fluid in the circulatory system. That is, "upstream" with respect to a part of the circulatory system means the side through which the fluid flows toward the site, and "downstream" means the side from which the fluid flows out from the site means.
In the present specification, the "strongly adsorptive component" means a component having a strong adsorptive power to the adsorbent among a plurality of components contained in the stock solution, and the "weakly adsorptive component" means the above-mentioned strongly adsorptive component It means a component that is less adsorptive to the adsorbent. In other words, the terms "strongly adsorptive" and "weakly adsorptive" refer to the degree of strength of the adsorptive power of the components contained in the stock solution when the adsorptive powers of the components are relatively compared. It is a thing.
The “strongly adsorptive component” and the “weakly adsorptive component” may each be composed of a single component or may be composed of a plurality of components having different adsorptive powers. Since the component to be purified is often a single component, when the strongly adsorptive component is the component to be purified, the strongly adsorptive component is usually the component having the strongest adsorptive power to the adsorbent in the stock solution. However, the present invention is not limited to this embodiment. The weakly adsorptive component is one or two or more components that are less adsorptive to the adsorbent than the strong adsorptive component. Similarly, when the weakly adsorptive component is a component to be purified, the weakly adsorptive component is usually the component having the weakest adsorptive power to the adsorbent in the undiluted solution, but the present invention is limited to this aspect It is not a thing. The strongly adsorptive component is one or two or more components that are more adsorptive to the adsorbent than the weakly adsorptive component.

本発明のクロマト分離方法によれば、原液中の精製対象成分を、高濃度に、高純度に、且つ高い回収率で分離精製することができる。また、本発明のクロマト分離システムは、上記本発明のクロマト分離方法の実施に用いることができる。   According to the chromatographic separation method of the present invention, the components to be purified in the stock solution can be separated and purified at high concentration, high purity, and high recovery rate. Further, the chromatographic separation system of the present invention can be used to carry out the above-mentioned chromatographic separation method of the present invention.

図1は、本発明のクロマト分離システムの一実施形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the chromatographic separation system of the present invention. 図2は、擬似移動層方式によるクロマト分離の基本概念を説明するための説明図である。FIG. 2 is an explanatory view for explaining the basic concept of the chromatographic separation by the simulated moving bed method.

本発明のクロマト分離方法(以下、単に「本発明の方法」ともいう。)の好ましい実施形態について説明する。   A preferred embodiment of the chromatographic separation method of the present invention (hereinafter, also simply referred to as "the present method") will be described.

本発明の方法は、吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて実施される。擬似移動層方式に用いられる循環系自体は公知であり、例えば、特開2009−36536号公報や、特公平7−46097号公報を参照することができる。
当該循環系について図面を用いて以下に説明するが、本発明はこれらの態様に限定されるものではない。
なお、以下で言及する図面は本発明の理解を容易にするための説明図であり、各構成のサイズや相対的な大小関係は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された形状、相対的な位置関係等に限定されるものでもない。
The method of the present invention is carried out using a circulation system in which a plurality of unit packed towers packed with adsorbent are connected in series and endlessly via piping. The circulatory system itself used in the simulated moving bed system is known, and, for example, JP-A-2009-36536 and JP-B-7-46097 can be referred to.
Although the said circulatory system is demonstrated below using drawing, this invention is not limited to these aspects.
Note that the drawings referred to below are explanatory diagrams for facilitating the understanding of the present invention, and the sizes of relative configurations and relative magnitude relationships may be different in magnitude for convenience of explanation, and actual relationships It does not show as it is. Further, other than the matters specified in the present invention, the present invention is not limited to the shapes, relative positional relationships, etc. shown in these drawings.

本発明の方法に用いる循環系の好ましい一実施形態を図1に示す。図1に示される循環系100は、吸着剤Abが充填された単位充填塔を4本(単位充填塔10a、10b、10c、10d)備え、各単位充填塔の出口は、隣接する単位充填塔の入口へと配管1を介して連結され、全体として各単位充填塔が直列に連結されている。
そして、最後部の単位充填塔(例えば単位充填塔10d)の出口は、最前部の単位充填塔(例えば単位充填塔10a)の入口へと配管1を介して連結され、全単位充填塔は無端状に(円環状に)連結されている。かかる構成により、循環系100内に、流体を循環させることが可能となる。単位充填塔10a〜10dは、内部の形、サイズ、吸着剤の充填量がいずれも等価なもの(好ましくは同じもの)を用いることが好ましい。
A preferred embodiment of the circulatory system used in the method of the present invention is shown in FIG. The circulatory system 100 shown in FIG. 1 includes four unit packed towers (unit packed towers 10a, 10b, 10c, 10d) packed with the adsorbent Ab, and the outlet of each unit packed column is an adjacent unit packed tower The unit packing towers are connected in series as a whole.
And, the outlet of the last unit packed tower (for example, unit packed tower 10d) is connected to the inlet of the foremost unit packed tower (for example, unit packed tower 10a) through piping 1, and all unit packed towers are endless. Are connected in a ring shape. With this configuration, it is possible to circulate the fluid in the circulatory system 100. It is preferable that unit packing towers 10a to 10d have the same internal shape, size, and adsorbent loading amount (preferably the same).

上記循環系100内には、流体を矢印方向に流通させるための循環ポンプP1が配設されている。循環ポンプP1は定量ポンプであることが好ましい。また、循環系100内において、隣接する2つの単位充填塔の間の配管1には、その下流側の単位充填塔への流体の流通を遮断可能な遮断弁R1、R2、R3、R4が設けられている。   In the circulation system 100, a circulation pump P1 for circulating a fluid in the arrow direction is disposed. The circulation pump P1 is preferably a metering pump. Further, in the circulation system 100, the piping 1 between two adjacent unit packing towers is provided with shutoff valves R1, R2, R3, and R4 capable of blocking the flow of fluid to the unit packing towers on the downstream side thereof. It is done.

各遮断弁R1〜R4と、その上流側に位置する各単位充填塔10a〜10dの出口との間には、それぞれ、吸着剤Abに対する弱吸着性成分を多く含む画分(本明細書において「吸着剤Abに対する弱吸着性画分」又は単に「弱吸着性画分」という。)を抜き出す弱吸着性画分抜出ライン2a、2b、2c、2dが分岐されている。各弱吸着性画分抜出ライン2a、2b、2c、2dには、それぞれ、各弱吸着性画分抜出ラインを開閉可能な弱吸着性画分抜出弁A1、A2、A3、A4が設けられている。各弱吸着性画分抜出ライン2a、2b、2c、2dは、合流されて一つの弱吸着性画分合流管3にまとめられる。   A fraction containing a large amount of a weakly adsorptive component to the adsorbent Ab between each of the shutoff valves R1 to R4 and the outlets of the unit packed towers 10a to 10d located upstream thereof (herein, “the fraction The weakly adsorptive fraction extraction lines 2a, 2b, 2c and 2d for extracting the weakly adsorptive fraction "or simply the" weakly adsorptive fraction "to the adsorbent Ab are branched. In each weakly adsorptive fraction extracting line 2a, 2b, 2c, 2d, weakly adsorptive fraction extracting valves A1, A2, A3, A4 capable of opening and closing each weakly adsorptive fraction extracting line are provided. It is provided. The weakly adsorptive fraction extracting lines 2a, 2b, 2c and 2d are merged and combined into one weakly adsorptive fraction combining pipe 3.

また同様に、各遮断弁R1〜R4と、その上流側に位置する各単位充填塔10a〜10dの出口との間には、吸着剤Abに対する強吸着性成分を多く含む画分(本明細書において「吸着剤Abに対する強吸着性画分」又は単に「強吸着性画分」という。)を抜き出す強吸着性画分抜出ライン4a、4b、4c、4dが分岐されている。各強吸着性画分抜出ライン4a、4b、4c、4dには、それぞれ、各強吸着性画分抜出ラインを開閉可能な強吸着性画分抜出弁C1、C2、C3、C4が設けられている。各強吸着性画分抜出ライン4a、4b、4c、4dは、合流されて一つの強吸着性画分合流管5にまとめられる。   Similarly, between each shutoff valve R1 to R4 and the outlet of each unit packed tower 10a to 10d located upstream thereof, a fraction containing a large amount of strongly adsorptive component to the adsorbent Ab (this specification The strongly adsorptive fraction extraction lines 4a, 4b, 4c and 4d for extracting the "strongly adsorptive fraction to the adsorbent Ab" or simply the "strongly adsorptive fraction" are branched. In each strongly adsorptive fraction extracting line 4a, 4b, 4c, 4d, strongly adsorptive fraction extracting valves C1, C2, C3, C4 capable of opening and closing each strongly adsorptive fraction extracting line are provided. It is provided. The strongly adsorptive fraction extracting lines 4a, 4b, 4c and 4d are merged and combined into one strongly adsorptive fraction merging pipe 5.

後述するステップ(a)の中で、上記弱吸着性画分抜出弁A1、A2、A3、A4のいずれかが開弁された状態となる。当該開弁された抜出弁が設置された弱吸着性画分抜出ラインと、配管1との連結部位が、当該ステップ(a)における弱吸着性画分の抜出口Aとなる。また、ステップ(a)においては、上記強吸着性画分抜出弁C1、C2、C3、C4のいずれかが開弁された状態となる。当該開弁された抜出弁の設置された強吸着性画分抜出ラインと、配管1との連結部位が、ステップ(a)における強吸着性画分の抜出口Cとなる。   In step (a) to be described later, any one of the weakly adsorptive fraction extraction valves A1, A2, A3 and A4 is opened. The connection site between the weakly adsorptive fraction extraction line in which the opened valve is installed and the pipe 1 is the outlet A of the weakly adsorptive fraction in the step (a). In step (a), one of the strongly adsorptive fraction extracting valves C1, C2, C3 and C4 is opened. The connection site between the pipe 1 and the strongly adsorptive fraction extraction line in which the opened extraction valve is installed, and the pipe 1 form the outlet C of the strongly adsorptive fraction in step (a).

循環系100には、循環系100の圧力が上昇し過ぎるのを防ぐために、適当な部位に図示していない安全弁(又はリリーフ弁)を設けることが好ましい。また、隣接する2つの単位充填塔の間には、逆流防止用の逆止弁T1、T2、T3、T4を設けることも好ましい。   In order to prevent the pressure of the circulatory system 100 from rising excessively, the circulatory system 100 is preferably provided with a safety valve (or a relief valve), not shown, at an appropriate site. It is also preferable to provide check valves T1, T2, T3 and T4 for backflow prevention between two adjacent unit packing towers.

循環系100内には、図1に示されるように、原液タンク6に収容された原液7と、溶離液タンク8に収容された溶離液9が供給可能な構成となっている。原液7は、供給流量を制御可能な原液供給ポンプP2により、原液供給ライン11を介して供給される。原液供給ポンプP2は定量ポンプであることが好ましい。原液供給ライン11は、原液の供給中、供給圧が設定圧を超えた場合に、原液を原液タンク6に戻すリリーフ弁Uを備えることが好ましい。原液供給ライン11は、図1に示すように4本の原液供給分岐ライン11a、11b、11c、11dに分岐され、各原液供給分岐ライン11a、11b、11c、11dを介して、原液を、それぞれ各単位充填塔10a、10b、10c、10dの入り口へと供給可能な構成となっている。各原液供給分岐ライン11a、11b、11c、11dには、開閉可能な原液供給弁F1、F2、F3、F4が設けられ、開弁された原液供給弁を有する原液供給分岐ラインを通って、その下流に連結する単位充填塔へと原液が供給される。
後述するステップ(a)の中で、上記原液供給弁F1、F2、F3、F4のいずれかが開弁された状態となる。当該開弁された原液供給弁が設置された原液供給分岐ラインと、配管1との連結部位が、ステップ(a)における原液供給口Fとなる。
In the circulation system 100, as shown in FIG. 1, the stock solution 7 contained in the stock solution tank 6 and the eluent 9 contained in the eluent tank 8 can be supplied. The undiluted solution 7 is supplied via the undiluted solution supply line 11 by an undiluted solution supply pump P2 whose feed flow rate can be controlled. The stock solution supply pump P2 is preferably a metering pump. The stock solution supply line 11 preferably includes a relief valve U that returns the stock solution to the stock solution tank 6 when the supply pressure exceeds the set pressure while the stock solution is being supplied. The stock solution supply line 11 is branched into four stock solution supply branch lines 11a, 11b, 11c and 11d as shown in FIG. 1, and the stock solution is respectively supplied via the stock solution supply branch lines 11a, 11b, 11c and 11d. It can be supplied to the inlet of each unit packed tower 10a, 10b, 10c, 10d. Each of the stock solution supply branch lines 11a, 11b, 11c and 11d is provided with openable stock solution supply valves F1, F2, F3 and F4, and is passed through the stock solution supply branch line having an open stock solution supply valve. The stock solution is supplied to a unit packed tower connected downstream.
In step (a) to be described later, any one of the stock solution supply valves F1, F2, F3, and F4 is opened. The connection part with the undiluted | stock solution supply branch line in which the said undiluted | flowed undiluted | stock solution supply valve was installed, and the piping 1 becomes the undiluted | stock solution supply port F in step (a).

溶離液9は、供給流量の制御が可能な溶離液供給ポンプP3により、溶離液供給ライン12を介して供給される。溶離液供給ポンプP3は定量ポンプであることが好ましい。溶離液供給ライン12は、溶離液の供給中、供給圧が設定圧を超えた場合に、溶離液を溶離液タンク8に戻すリリーフ弁Vを備えることが好ましい。溶離液供給ライン12は、図1に示すように4本の溶離液供給分岐ライン12a、12b、12c、12dに分岐され、各溶離液供給分岐ライン12a、12b、12c、12dを介して、溶離液を、各単位充填塔10a、10b、10c、10dの入り口へと供給可能な構成となっている。各溶離液供給分岐ライン12a、12b、12c、12dには、開閉可能な溶離液供給弁D1、D2、D3、D4が設けられ、開弁された溶離液供給弁を有する溶離液供給分岐ラインを通って、その下流に連結する単位充填塔へと溶離液が供給される。
後述するステップ(a)の中で、上記溶離液供給弁D1、D2、D3、D4のいずれかが開弁された状態となる。当該開弁された溶離液供給弁が設置された溶離液供給分岐ラインと、配管1との連結部位が、ステップ(a)における溶離液供給口Dとなる。
The eluent 9 is supplied via the eluent supply line 12 by the eluent supply pump P3 capable of controlling the supply flow rate. The eluent supply pump P3 is preferably a metering pump. The eluent supply line 12 preferably includes a relief valve V that returns the eluent to the eluent tank 8 when the supply pressure exceeds the set pressure during the supply of the eluent. The eluent supply line 12 is branched into four eluent supply branch lines 12a, 12b, 12c and 12d as shown in FIG. 1, and elution is performed via the respective eluent supply branch lines 12a, 12b, 12c and 12d. The liquid can be supplied to the inlet of each unit packed column 10a, 10b, 10c, 10d. Each of the eluent supply branch lines 12a, 12b, 12c and 12d is provided with an eluent supply valve D1, D2, D3, D4 which can be opened and closed, and the eluent supply branch line having an opened eluent supply valve. Eluate is fed through to the unit packed column connected downstream thereof.
In step (a) to be described later, any one of the eluent supply valves D1, D2, D3 and D4 is opened. The connection site between the pipe 1 and the eluent supply branch line where the opened eluent supply valve is installed, and the pipe 1 form the eluent supply port D in step (a).

続いて、上記循環系により本発明の方法を実施する際の、当該循環系の作動について説明する。本発明の方法では、上記循環系を用いて、下記ステップ(a)及び(b)を順に繰り返す。   Subsequently, the operation of the circulatory system when the method of the present invention is carried out by the circulatory system will be described. In the method of the present invention, the following steps (a) and (b) are sequentially repeated using the above-mentioned circulatory system.

(a)下記サブステップ(i)〜(iv)をこの順に実施するステップ。
(i)原液供給口Fから原液を供給すると共に、強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ。
(ii)原液供給口Fから原液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ。
(iii)溶離液供給口Dから溶離液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ。
(iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ。
(b)上記ステップ(a)終了後(すなわち、上記サブステップ(iv)の終了後)、上記原液供給口F、上記弱吸着性画分抜出口A、上記溶離液供給口D及び上記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
(A) performing the following sub-steps (i) to (iv) in this order:
(I) A substep of supplying the stock solution from the stock solution supply port F and extracting the strongly adsorptive fraction from the strongly adsorptive fraction outlet C.
(Ii) A substep of supplying the stock solution from the stock solution supply port F and extracting the weakly adsorptive fraction from the weakly adsorptive fraction outlet A.
(Iii) A substep of supplying the eluent from the eluent supply port D and extracting the weakly adsorptive fraction from the weakly adsorptive fraction outlet A.
(Iv) A substep of circulating the fluid in the circulatory system without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction.
(B) After the step (a) is completed (that is, after the substep (iv) is completed), the stock solution supply port F, the weakly adsorptive fraction outlet A, the eluent supply port D and the strong adsorption Moving the sex fraction outlet C in the fluid flow direction while maintaining the relative positional relationship between them.

[ステップ(a)]
上記ステップ(a)は、4つのサブステップ(i)〜(iv)を順次実行するステップである。各サブステップについて、図1に示す循環系を参照して説明する。
[Step (a)]
The step (a) is a step of sequentially executing the four sub steps (i) to (iv). Each substep will be described with reference to the circulatory system shown in FIG.

<サブステップ(i)>
サブステップ(i)では、上記原液供給口Fから原液を供給しながら、上記強吸着性画分抜出口Cから強吸着性画分を抜き出す。例えば、原液供給弁F1を開弁し、原液供給ポンプP2を作動させて、原液供給分岐ライン11aと配管1との連結部位を原液供給口Fとする場合には、抜出弁C3を開き、強吸着性画分抜出ライン4cと配管1との連結部位を抜出口Cとする。
<Substep (i)>
In substep (i), the strong adsorptive fraction is extracted from the strongly adsorptive fraction outlet C while supplying the undiluted solution from the undiluted solution supply port F. For example, when the undiluted solution supply valve F1 is opened and the undiluted solution supply pump P2 is operated to connect the undiluted solution supply branch line 11a and the pipe 1 to the undiluted solution supply port F, the extraction valve C3 is opened. A connecting portion between the strongly adsorptive fraction extraction line 4 c and the pipe 1 is taken as an outlet C.

サブステップ(i)では、原液供給弁F2〜F4、弱吸着性画分抜出弁A1〜A4、強吸着性画分抜出弁C1、C2及びC4、及び遮断弁R3はいずれも閉じられる。また、溶離液供給弁D1〜D4は、溶離液供給ポンプP3が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、溶離液供給弁D1〜D4は閉じられていることが好ましい。遮断弁R1及びR2は開弁しており、遮断弁R4は開いていても閉じていてもよい。循環ポンプP1及び溶離液供給ポンプP3は通常は停止させる。   In substep (i), all of the stock solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A1 to A4, the strongly adsorptive fraction extraction valves C1, C2 and C4, and the shutoff valve R3 are closed. In addition, the eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped, but in order to carry out the supply and withdrawal of the solution with high accuracy, the eluent supply is performed. The valves D1 to D4 are preferably closed. The shutoff valves R1 and R2 may be open, and the shutoff valve R4 may be open or closed. The circulation pump P1 and the eluent feed pump P3 are normally stopped.

サブステップ(i)において、上記原液供給口Fから供給される原液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填されている吸着剤Abの1リットル当たり、0.032〜0.059リットルとすることが好ましく、0.036〜0.054リットルとすることがより好ましい。サブステップ(i)における原液の総供給量は、すなわち、サブステップ(i)において強吸着性画分抜出口Cから抜き出される強吸着性画分の総量と事実上同じ量となる。   In the substep (i), the amount of the stock solution supplied from the above-mentioned stock solution supply port F is not particularly limited, but per hour, per liter of adsorbent Ab packed in the unit packed tower 10a, 0.032 It is preferable to set it as -0.059 liter, and it is more preferable to set it as 0.036-0.054 liter. The total supply amount of the stock solution in sub-step (i) is substantially the same as the total amount of the strongly-adsorbable fraction extracted from the strongly-adsorbable fraction outlet C in sub-step (i).

<サブステップ(ii)>
サブステップ(ii)では、原液供給口Fから原液を供給しながら、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。すなわち、上記サブステップ(i)において開弁していた強吸着性画分抜出弁C3を閉じ、代わりに弱吸着性画分抜出弁A1を開く。つまり、弱吸着性画分抜出弁A1を有する弱吸着性画分抜出ライン2aと配管1との連結部位を弱吸着性画分抜出口Aとして、当該抜出口Aから弱吸着性画分を抜き出す。
<Sub-step (ii)>
In sub-step (ii), the weakly adsorptive fraction is extracted from the weakly adsorptive fraction outlet A while supplying the undiluted solution from the undiluted solution supply port F. That is, the strong adsorptive fraction extraction valve C3 which has been opened in the above sub-step (i) is closed, and instead the weakly adsorptive fraction extraction valve A1 is opened. That is, the connection site between the weakly adsorptive fraction extraction line 2a having the weakly adsorptive fraction extraction valve A1 and the pipe 1 is taken as the weakly adsorptive fraction extraction outlet A, and the weakly adsorptive fraction from the relevant outlet A Pull out.

サブステップ(ii)では、原液供給弁F2〜F4、弱吸着性画分抜出弁A2〜A4、強吸着性画分抜出弁C1〜C4、及び遮断弁R1はいずれも閉じられる。また、溶離液供給弁D1〜D4は、溶離液供給ポンプP3が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、溶離液供給弁D1〜D4は閉じられていることが好ましい。遮断弁R2〜4は開いていても閉じていてもよい。また、サブステップ(i)と同様に、循環ポンプP1及び溶離液供給ポンプP3は通常は停止させる。   In substep (ii), all of the undiluted solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A2 to A4, the strongly adsorptive fraction extraction valves C1 to C4, and the shutoff valve R1 are closed. In addition, the eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped, but in order to carry out the supply and withdrawal of the solution with high accuracy, the eluent supply is performed. The valves D1 to D4 are preferably closed. The shutoff valves R2 to R4 may be open or closed. Further, as in sub-step (i), the circulation pump P1 and the eluent feed pump P3 are normally stopped.

サブステップ(ii)において、上記原液供給口Fから供給される原液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.020〜0.036リットルとすることが好ましく、0.022〜0.034リットルとすることがより好ましい。サブステップ(ii)における原液の総供給量は、すなわち、サブステップ(ii)において弱吸着性画分抜出口Aから抜き出される弱吸着性画分の総量と事実上同じ量となる。   In sub-step (ii), the amount of the stock solution supplied from the above-mentioned stock solution feed port F is not particularly limited, but per hour, per liter of adsorbent Ab packed in unit packed tower 10a, 0.020 to 20%. It is preferable to set it as 0.036 liter, and it is more preferable to set it as 0.022-0.034 liter. The total supply amount of the stock solution in sub-step (ii) is substantially the same as the total amount of the weakly adsorptive fraction withdrawn from the weakly adsorptive fraction outlet A in sub-step (ii).

<サブステップ(iii)>
サブステップ(iii)では、溶離液供給口Dから溶離液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。すなわち、上記サブステップ(ii)において開弁していた供給弁F1を閉じ、原液供給ポンプP2の作動を停止し、代わりに溶離液供給弁D3を開き、溶離液供給ポンプP3を作動させる。つまり、供給弁D3を有する溶離液供給分岐ライン12cと、配管1との連結部位が、溶離液供給口Dとなり、この溶離液供給口Dから溶離液が供給されると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。
<Substep (iii)>
In substep (iii), the eluent is supplied from the eluent supply port D, and the weakly adsorptive fraction is withdrawn from the weakly adsorptive fraction outlet A. That is, the supply valve F1 which has been opened in the substep (ii) is closed to stop the operation of the stock solution supply pump P2, and instead the eluent supply valve D3 is opened to operate the eluent supply pump P3. That is, the connection portion between the eluent supply branch line 12c having the supply valve D3 and the pipe 1 becomes the eluent supply port D, the eluent is supplied from the eluent supply port D, and the weakly adsorptive fraction The weakly adsorptive fraction is withdrawn from the outlet A.

サブステップ(iii)では、溶離液供給弁D1、D2及びD4、弱吸着性画分抜出弁A2〜A4、強吸着性画分抜出弁C1〜C4、及び遮断弁R1はいずれも閉じられている。原液供給弁F1〜F4は、原液供給ポンプP2が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、原液供給弁F1〜F4は閉じられていることが好ましい。遮断弁R2は開いていても閉じていてもよい。遮断弁R3及びR4はいずれも開かれている。また、循環ポンプP1は作動させてもよいし、停止してもよい。   In substep (iii), the eluent supply valves D1, D2 and D4, the weakly adsorptive fraction extraction valves A2 to A4, the strongly adsorptive fraction extraction valves C1 to C4, and the shutoff valve R1 are all closed. ing. Undiluted solution supply valves F1 to F4 may be opened as long as undiluted solution pump P2 is stopped, but undiluted solution supply valves F1 to F4 may be opened to carry out liquid supply and extraction with higher accuracy. It is preferably closed. The shutoff valve R2 may be open or closed. The shutoff valves R3 and R4 are both open. Further, the circulation pump P1 may be operated or may be stopped.

サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.051〜0.095リットルとすることが好ましく、0.058〜0.088リットルとすることがより好ましい。サブステップ(iii)における溶離液の総供給量は、すなわち、サブステップ(iii)において弱吸着性画分抜出口Aから抜き出される弱吸着性画分の総量と事実上同じ量となる。   In sub-step (iii), the amount of the eluent supplied from the eluent supply port D is not particularly limited, but per liter of the adsorbent Ab packed in the unit packed tower 10a per hour, it is 0. It is preferable to set it as 051-0.095 liter, and it is more preferable to set it as 0.058-0.088 liter. The total amount of eluent supplied in substep (iii) is, in effect, substantially the same as the total amount of weakly adsorptive fraction withdrawn from weakly adsorptive fraction outlet A in substep (iii).

<サブステップ(iv)>
サブステップ(iv)では、原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環ポンプP1を作動させて循環系内の流体を単に循環させる。原液供給ポンプP2と溶離液供給ポンプP3が停止していれば、原液供給弁F1〜F4及び溶離液供給弁D1〜D4は開いていてもよいが、より高精度に流体を制御する観点から、原液供給弁F1〜F4及び溶離液供給弁D1〜D4は閉じていることが好ましい。抜出弁A1〜A4及び抜出弁C1〜C4はいずれも閉じており、遮断弁R1〜R4はいずれも開いている。
<Substep (iv)>
In sub-step (iv), the circulation pump P1 is operated without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction. Simply circulate. If the undiluted solution supply pump P2 and the eluant solution supply pump P3 are stopped, the undiluted solution supply valves F1 to F4 and the eluant solution supply valves D1 to D4 may be open, but from the viewpoint of controlling the fluid with higher accuracy, The stock solution supply valves F1 to F4 and the eluent supply valves D1 to D4 are preferably closed. The extraction valves A1 to A4 and the extraction valves C1 to C4 are all closed, and the shutoff valves R1 to R4 are all open.

サブステップ(iv)において、系内の流体の循環流量は、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.133〜0.247リットルとすることが好ましく、0.152〜0.228リットルとすることがより好ましい。   In sub-step (iv), the circulating flow rate of the fluid in the system is preferably 0.133 to 0.247 liters per liter of adsorbent Ab packed in unit packed tower 10a per hour, It is more preferable to set it as 0.152-0.228 liter.

各サブステップにおける液の供給量ないし循環流量の関係は、特に制限されず、原液中の成分の種類等に応じて適宜に調節されるものである。通常は、上記サブステップ(i)において、原液供給口Fから供給される原液の総量(I)と、上記サブステップ(ii)において、上記原液供給口Fから供給される原液の総量(II)との関係は、体積比で、総量(II)/総量(I)=0.30〜0.70とすることが好ましく、0.40〜0.60とすることがより好ましい。   The relationship between the supply amount of the liquid and the circulation flow rate in each substep is not particularly limited, and is appropriately adjusted in accordance with the type of the component in the stock solution. Usually, the total amount (I) of the undiluted solution supplied from the undiluted solution supply port F in the sub-step (i) and the total amount (II) of undiluted solution supplied from the undiluted solution supply port F in the sub-step (ii) In terms of volume ratio, it is preferable to set the total amount (II) / total amount (I) = 0.30 to 0.70, and more preferably 0.40 to 0.60.

また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の総量(III)との関係は、体積比で、総量(III)/総量(I)=1.14〜2.11とすることが好ましく、1.30〜1.95とすることがより好ましい。   Further, in the sub-step (i), the total amount (I) of the undiluted solution supplied from the undiluted solution supply port F, and in the sub-step (iii), the total amount of eluant supplied from the eluant It is preferable to set it as total amount (III) / total amount (I) = 1.14-2.11 by a volume ratio, and, as for a relationship with III), it is more preferable to set it as 1.30-1.95.

また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(ii)において、上記原液供給口Fから供給される原液の総量(II)との合計量(I+II)と、上記サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の総量(III)との関係は、体積比で、総量(III)/合計量(I+II)=0.5〜1.5とすることが好ましく、0.7〜1.2とすることがより好ましい。   Further, in the sub-step (i), the total amount (I) of the undiluted solution supplied from the undiluted solution supply port F, and in the sub-step (ii), the total amount (II) of undiluted solution supplied from the undiluted solution supply port F The relationship between the total amount (I + II) and the total amount (III) of the eluent supplied from the eluent supply port D in the above sub-step (iii) is the total volume (III) / total amount by volume ratio It is preferable to set it as (I + II) = 0.5-1.5, and it is more preferable to set it as 0.7-1.2.

また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(iv)における上記循環総流量との関係は、体積比で、循環総流量/総量(I)=3.0〜5.0とすることが好ましく、3.5〜4.5とすることがより好ましい。   Further, in the sub-step (i), the relationship between the total amount (I) of the undiluted solution supplied from the undiluted solution supply port F and the total circulating flow rate in the sub-step (iv) The total amount (I) is preferably 3.0 to 5.0, and more preferably 3.5 to 4.5.

本発明に用いる循環系において、単位充填塔1つに充填される吸着剤の充填量に特に制限はなく、目的に応じて適宜に選択すればよいが、通常は10mL〜150mであり、好ましくは150mL〜30mであり、より好ましくは300mL〜15mである。
また、循環系内のすべての単位充填塔に充填された吸着剤Abの総容量と、配管1の全容積(配管1の空洞内の全容積)との関係は、体積比で、[配管1の全容積]/[吸着剤Abの総容量]=0.01〜0.2が好ましい。
In the circulating system used in the present invention, the loading amount of the adsorbent charged in one unit packing tower is not particularly limited and may be appropriately selected according to the purpose, but it is usually 10 mL to 150 m 3 , preferably Is 150 mL to 30 m 3 , more preferably 300 mL to 15 m 3 .
Further, the relationship between the total volume of the adsorbent Ab filled in all unit packed towers in the circulation system and the total volume of the pipe 1 (total volume in the cavity of the pipe 1) is the volume ratio [Pipe 1 The total volume of [(total volume of adsorbent Ab)] = [0.01 to 0.2] is preferable.

上記ステップ(a)における(すなわち上記サブステップ(i)〜(iv)における)原液の総供給量に対する溶離液の総供給量の比(上記の総量(III)/合計量(I+II)に相当)は、[溶離液の総供給量]/[原液の総供給量]<1.2を満たすことがより好ましく、[溶離液の総供給量]/[原液の総供給量]≦1.1を満たすことがさらに好ましい。また、当該比の下限値に特に制限はなく、[溶離液の総供給量]/[原液の総供給量]≧0.5とするのがより実際的である。当該比は、さらに好ましくは0.5≦[溶離液の総供給量]/[原液の総供給量]≦1.1であり、0.8≦[溶離液の総供給量]/[原液の総供給量]≦1.1とすることも好ましい。   The ratio of the total feed of the eluent to the total feed of the stock solution in step (a) (that is, in the above substeps (i) to (iv)) (corresponding to the total (III) / total (I + II) above) It is more preferable that [total supply amount of eluent] / [total supply amount of stock solution] <1.2, and [total supply amount of eluent] / [total supply amount of stock solution] ≦ 1.1. It is further preferable to satisfy. There is no particular limitation on the lower limit value of the ratio, and it is more practical to set [total supply amount of eluent] / [total supply amount of stock solution] 原 0.5. The ratio is more preferably 0.5 ≦ [total supply amount of eluent] / [total supply amount of stock solution] ≦ 1.1, and 0.8 ≦ [total supply amount of eluent] / [total stock amount] It is also preferable to set the total supply amount] ≦ 1.1.

本発明の方法を実施する温度は、循環系内の流体が液状であれば特に制限はなく、目的に応じて適宜に選択される。通常は40〜80℃で実施される。
また、本発明の方法において、供給される液の流速ないし循環系内に循環する液の流速は、各サブステップ中において一定であってもよく、変動させてもよいが、通常は一定とする。また、各サブステップ間において、供給される液の流速ないし循環系内に循環する液の流速は一定であってもよく、変動させてもよいが、通常は一定とする。すなわち、サブステップ(i)〜(iii)において、供給される液の流速は一定であることが好ましく、サブステップ(iv)において循環系内を循環する液の流速も、サブステップ(i)〜(iii)において供給される液の流速と同一とすることが好ましい。
The temperature at which the method of the present invention is carried out is not particularly limited as long as the fluid in the circulation system is liquid, and may be appropriately selected depending on the purpose. It is usually carried out at 40-80 ° C.
In the method of the present invention, the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulatory system may be constant or may be varied during each substep, but is usually constant. . In addition, the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulatory system may be constant or may be varied between the substeps, but is usually constant. That is, in sub-steps (i) to (iii), the flow rate of the supplied liquid is preferably constant, and in sub-step (iv), the flow rate of the liquid circulating in the circulatory system is also sub-step (i) to It is preferable to make it the same as the flow rate of the liquid supplied in (iii).

[ステップ(b)]
上記ステップ(a)が完了後(サブステップ(iv)の完了後)、ステップ(b)を実施する。上記ステップ(b)は、上記原液供給口F、上記弱吸着性画分抜出口A、上記溶離液供給口D及び上記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップである。
本明細書において「原液供給口F、弱吸着性画分抜出口A、溶離液供給口D及び強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させる」とは、直前のステップ(a)において流体の流通方向に向けて順に並んでいた原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、強吸着性画分抜出口Cの並びを、それぞれ強吸着性画分抜出口C、原液供給口F、弱吸着性画分抜出口A、溶離液供給口Dの並びに切り替えることを意味する。
換言すれば、すべての単位充填塔の位置を固定したままの状態で、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D及び強吸着性画分抜出口Cの位置を切り替えることにより、
1)直前のステップ(a)における原液供給口Fと弱吸着性画分抜出口Aとの間の単位充填塔を、強吸着性画分抜出口Cと原液供給口Fとの間に、
2)直前のステップ(a)における弱吸着性画分抜出口Aと溶離液供給口Dとの間の単位充填塔を、原液供給口Fと弱吸着性画分抜出口Aとの間に、
3)直前のステップ(a)における溶離液供給口Dと強吸着性画分抜出口Cとの間の単位充填塔を、弱吸着性画分抜出口Aと溶離液供給口Dとの間に、
4)直前のステップ(a)における強吸着性画分抜出口Cと原液供給口Fとの間の単位充填塔を、溶離液供給口Dと強吸着性画分抜出口Cとの間に
それぞれ配置された状態になるようにすることを意味する。
図1の循環系の形態においては、このステップ(b)は、循環系の構造に物理的な変化を与えるステップではなく、このステップ(b)に続くステップ(a)を実施するための準備工程である。
[Step (b)]
After the above step (a) is completed (after the completion of sub step (iv)), step (b) is performed. The step (b) maintains the relative positional relationship among the undiluted solution supply port F, the weakly adsorptive fraction outlet A, the eluent supply port D, and the strong adsorptive fraction outlet C. This is a step of shifting the flow direction of the fluid as it is.
In the present specification, “the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strongly adsorptive fraction outlet C are maintained in their relative positional relationship, and the fluid flow direction is maintained. In the previous step (a), the stock solution supply port F, the weakly adsorptive fraction extraction port A, the eluent supply port D, and the strongly adsorptive property are arranged in order in the flow direction of the fluid. It means that the line of the fraction outlet C is switched to the line of the strong adsorptive fraction outlet C, the stock solution feed port F, the weakly adsorptive fraction outlet A, and the eluent feed port D, respectively.
In other words, the positions of the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D and the strongly adsorptive fraction outlet C with all the unit packing towers fixed in position By switching
1) A unit packed tower between the undiluted solution feed port F and the weakly adsorptive fraction outlet A in the immediately preceding step (a), between the strongly adsorptive fraction outlet C and the undiluted solution feed port F,
2) A unit packed tower between the weakly adsorptive fraction outlet A and the eluent feed port D in the immediately preceding step (a), between the stock solution feed port F and the weakly adsorptive fraction outlet A,
3) The unit packed tower between the eluent supply port D and the strong adsorptive fraction outlet C in the step (a) immediately before step A, between the weakly adsorptive fraction outlet A and the eluent supply port D ,
4) The unit packed tower between the strongly adsorptive fraction outlet C and the stock solution feed port F in the previous step (a), and between the eluent feed port D and the strongly adsorptive fraction outlet C It means to be in a placed state.
In the form of the circulatory system of FIG. 1, this step (b) is not a step of physically changing the structure of the circulatory system, but a preparatory step for performing step (a) following this step (b) It is.

上記ステップ(b)について、図1を参照して具体的に説明する。
ステップ(b)の直前のステップ(a)において、供給弁F1を開いて原液を供給していた場合を想定する。この場合、当該ステップ(a)において
原液供給口Fは、原液供給分岐ライン11aと配管1との連結部位、
弱吸着性画分抜出口Aは、弱吸着性画分抜出ライン2aと配管1との連結部位、
溶離液供給口Dは、溶離液供給分岐ライン12cと配管1との連結部位、
強吸着性画分抜出口Cは、強吸着性画分抜出ライン4cと配管1との連結部位
となる。
ステップ(a)における上記各口F、A,D、Cは、ステップ(b)によって以下のように切り替わる。すなわち、
原液供給口Fが、原液供給分岐ライン11bと配管1との連結部位となり、
弱吸着性画分抜出口Aが、弱吸着性画分抜出ライン2bと配管1との連結部位となり、
溶離液供給口Dが、溶離液供給分岐ライン12dと配管1との連結部位となり、
強吸着性画分抜出口Cが、強吸着性画分抜出ライン4dと配管1との連結部位となる。
つまり、当該ステップ(b)の直後に続くステップ(a)においては、サブステップ(i)及び(ii)における原液の供給が原液供給分岐ライン11bを通して行われ、サブステップ(iii)における溶離液の供給が溶離液供給分岐ライン12dを通して行われ、サブステップ(i)における強吸着性画分の抜き出しが強吸着性画分抜出ライン4dを通して行われ、サブステップ(ii)及び(iii)における弱吸着性画分の抜き出しが弱吸着性画分抜出ライン2bを通して行われることになる。
The step (b) will be specifically described with reference to FIG.
In the step (a) immediately before the step (b), it is assumed that the supply valve F1 is opened to supply the stock solution. In this case, in the step (a), the stock solution supply port F is a connection portion between the stock solution supply branch line 11 a and the pipe 1,
The weakly adsorptive fraction outlet A is a connection site between the weakly adsorptive fraction withdrawal line 2 a and the pipe 1,
The eluent supply port D is a connection portion between the eluent supply branch line 12 c and the pipe 1,
The strongly adsorptive fraction extraction outlet C is a connection site between the strongly adsorptive fraction extraction line 4 c and the pipe 1.
The respective ports F, A, D and C in the step (a) are switched as follows by the step (b). That is,
The undiluted solution supply port F is a connection portion between the undiluted solution supply branch line 11 b and the pipe 1,
The weakly adsorptive fraction extraction outlet A is a connection site between the weakly adsorptive fraction extraction line 2 b and the pipe 1,
The eluent supply port D is a connection site between the eluent supply branch line 12 d and the pipe 1,
The strongly adsorptive fraction outlet C is a connection site between the strongly adsorptive fraction withdrawal line 4 d and the pipe 1.
That is, in the step (a) following immediately after the step (b), the supply of the stock solution in sub-steps (i) and (ii) is performed through the stock solution supply branch line 11b, and the eluent in the sub-step (iii) Feeding is performed through eluent feed branch line 12d, withdrawal of the strongly adsorbed fraction in sub-step (i) is carried out through strongly adsorbed fraction withdrawal line 4d, weak in sub-steps (ii) and (iii) Extraction of the adsorptive fraction will be carried out through the weakly adsorptive fraction extraction line 2b.

上記ステップ(a)と(b)を順に繰り返すことにより、擬似移動方式による本発明の方法が実施される。   By repeating the above steps (a) and (b) in order, the method of the present invention according to the pseudo movement method is implemented.

上記ステップ(a)及び(b)を順に繰り返すことにより、通常の擬似移動層方式によるクロマト分離に比べて、溶離液の使用量を大きく低減することができ、強吸着性画分中及び弱吸着性画分中における溶離液の割合を効果的に低減することができる(すなわち、強吸着性画分中及び弱吸着性画分中における溶離液以外の成分濃度を高めることができる)。しかも、本発明の方法は精製対象成分とその他の成分との分離性能も高めることができる。したがって、精製対象成分が強吸着性成分である場合には、強吸着性画分中に強吸着性成分を高純度に、且つ高い回収率で得ることができ、また、精製対象成分が弱吸着性成分である場合には、弱吸着性画分中に弱吸着性成分を高純度に、且つ高い回収率で得ることができる。つまり、本発明の方法により、強吸着性画分及び弱吸着性画分から選ばれる画分中に、目的の精製対象成分を、高濃度に、高純度に、且つ高い回収率で得ることができる。
本発明の方法において、精製対象成分は強吸着性成分であることが好ましい。
By repeating the above steps (a) and (b) sequentially, the amount of eluent used can be greatly reduced as compared with the conventional chromatographic separation by the simulated moving bed method, and adsorption in the strongly adsorptive fraction and weak adsorption can be achieved. The proportion of eluent in the sex fraction can be effectively reduced (ie, the concentration of components other than the eluent in the strongly adsorbed fraction and in the weakly adsorbed fraction can be increased). Moreover, the method of the present invention can also enhance the separation performance of the component to be purified and other components. Therefore, when the component to be purified is a strongly adsorptive component, the strongly adsorbable component can be obtained with high purity and high recovery rate in the strongly adsorptive fraction, and the component to be purified is weakly adsorbed. In the case of the sex component, the weakly adsorptive component can be obtained with high purity and high recovery rate in the weakly adsorptive fraction. That is, according to the method of the present invention, the target component to be purified can be obtained at high concentration, in high purity, and in high recovery rate, in the fraction selected from the strongly adsorptive fraction and the weakly adsorptive fraction. .
In the method of the present invention, the component to be purified is preferably a strong adsorptive component.

ここで、擬似移動層方式によるクロマト分離において、良好な分離精製を実現するために満たすべきとされる、液の供給、抜出の一般的な条件について、図2に示す擬似移動層方式の概念図を参照して説明する。図2は、溶離液供給口Dと強吸着性成分抜出口Cとの間をセクション1、強吸着性成分抜出口Cと原液供給口Fとの間をセクション2、原液供給口Fと弱吸着性成分抜出口Aまでの間をセクション4として表している。また、V1〜V4はそれぞれ、1サイクル(各口D,C,F、Aを一回移動させるまでの間)当たりの、セクション1〜4の流量を意味する。図2中の矢印は流体の流れる方向を示す   Here, the concept of the simulated moving bed method shown in FIG. 2 is applied to the general conditions of liquid supply and extraction which should be satisfied in order to realize good separation and purification in the chromatographic separation by the simulated moving bed method. Description will be made with reference to the drawings. FIG. 2 shows that the section between the eluent supply port D and the strong adsorptive component outlet C is section 1, the section between the strong adsorptive component outlet C and the stock solution feed port F is the section 2, the stock solution inlet F and weak adsorption The section to the sex component outlet A is shown as section 4. Also, V1 to V4 respectively mean the flow rates of the sections 1 to 4 per one cycle (during which each port D, C, F, A is moved once). Arrows in FIG. 2 indicate the flow direction of the fluid

セクション2及び3に着目すると、擬似移動層方式を実現するには、流量V2で、弱吸着性成分がセクション2の長さを超えて移動し、強吸着性成分の移動は、セクション2の距離未満に抑える必要があり、また、流量V3で、弱吸着性成分がセクション3の長さを超えて移動し、強吸着性成分の移動は、セクション3の距離未満に抑える必要がある。こうすることで、各口D、C,F、Aの位置を基準として、これらを下流側へと移動させた際に、弱吸着性成分はさらに下流側へ、強吸着性成分については上流側へと、相対的に(擬似的に)移動させることができる。すなわち、弱吸着性成分を抜出口Aから、強吸着性成分を抜出口Cから、それぞれ抜き出すことができる。
一方、セクション1に着目すると、流量V1で、強吸着性成分の移動距離がセクション1の長さ未満であると、強吸着性成分(抜出口Cから抜き出されずに上流側へと通過してしまった強吸着性成分)を抜出口Cから抜き出すことができない。したがって、セクション1においては、流量V1で、強吸着性成分の移動距離がセクション1の長さを超えて移動する必要があるとされる。
また、セクション4に着目すると、流量V4で、弱吸着性成分の移動距離がセクション4の長さを超えると、弱吸着性成分(抜出口Aから抜き出されずに通過してしまった弱吸着性成分)を抜出口Aから抜き出すことができない。したがって、セクション4においては、流量V4で、弱吸着性成分の移動距離がセクション4の長さ未満とする必要があるとされる。
Focusing on sections 2 and 3, in order to realize the simulated moving bed method, the weakly adsorptive component moves over the length of section 2 at the flow rate V2, and the movement of the strongly adsorptive component is the distance of section 2 It is necessary to keep the amount less than this, and at the flow rate V3, the weakly adsorptive component moves over the length of the section 3 and the movement of the strongly adsorptive component needs to be suppressed less than the distance of the section 3. By doing this, the weakly adsorptive component is further downstream, and the strong adsorptive component is upstream when the respective ports D, C, F, A are moved downstream based on the position of each port D, C, F, A It can be moved relatively (pseudo). That is, the weakly adsorptive component can be extracted from the outlet A, and the strong adsorptive component can be extracted from the outlet C.
On the other hand, focusing on the section 1, if the moving distance of the strong adsorptive component is less than the length of the section 1 at the flow rate V1, the strong adsorptive component (passed to the upstream side without being extracted from the outlet C The strong adsorptive component) can not be extracted from the outlet C. Therefore, in section 1, it is said that the moving distance of the strong adsorptive component needs to move over the length of section 1 at flow rate V1.
Also, focusing on the section 4, when the moving distance of the weakly adsorptive component exceeds the length of the section 4 at the flow rate V4, the weakly adsorptive component (weakly adsorbed component which has passed without being extracted from the outlet A) Component can not be extracted from the outlet A. Therefore, in section 4, it is said that the moving distance of the weakly adsorptive component needs to be less than the length of section 4 at flow rate V4.

上記セクション3とセクション1との関係に着目すると、流量V3と流量V1を、V3<V1とすることが必要であることが理解できる(セクション1の方が、強吸着性成分をより遠くまで移動させる必要がある)。
ここで、V3=V2+[原液の供給量]であり、V1=V2+[強吸着性画分の抜出量]であるから、
V3<V1は、V2+[原液の供給量]<V2+[強吸着性画分の抜出量]であり、すなわち[原液の供給量]<[強吸着性画分の抜出量]となる。
したがって、擬似移動層方式のクロマト分離においては、原液の供給量を、強吸着性画分の抜出量よりも少なくするのが通常である。
Focusing on the relationship between section 3 and section 1 above, it can be understood that it is necessary to set flow rates V3 and V1 to be V3 <V1 (section 1 moves the strong adsorptive component farther) Need to).
Here, V3 = V2 + [supply amount of stock solution], and V1 = V2 + [extraction amount of strongly adsorbed fraction], so
V3 <V1 is V2 + [supply amount of stock solution] <V2 + [extraction amount of strongly adsorbed fraction], that is, [supply amount of stock solution] <[extraction amount of strongly adsorbed fraction].
Therefore, in the simulated moving bed type chromatographic separation, it is usual to make the supply amount of the stock solution smaller than the removal amount of the strongly adsorptive fraction.

これに対し、本発明の方法では、原液の供給量を強吸着性画分の抜出量よりも多くすることが好ましい。ステップ(a)において、原液の供給量を強吸着性画分の抜出量よりも多くなるように、上記各サブステップを実施することにより、精製対象画分中に、精製対象成分を、より高濃度に、より高純度に、且つより高い回収率で得ることができる。
本発明の方法において、ステップ(a)における強吸着性画分の抜出量(総抜出量)に対する、ステップ(a)における原液の供給量(総供給量)の比は、体積比で、[原液の供給量]/[強吸着性画分の抜出量]=1.0〜2.0が好ましく、[原液の供給量]/[強吸着性画分の抜出量]=1.2〜1.8がより好ましい。
On the other hand, in the method of the present invention, it is preferable to make the supply amount of the stock solution larger than the removal amount of the strongly adsorptive fraction. In the step (a), by carrying out the above-mentioned respective sub-steps so that the supply amount of the stock solution is larger than the withdrawal amount of the strongly adsorptive fraction, the component to be purified is further purified It can be obtained in high concentration, in higher purity, and in higher recovery.
In the method of the present invention, the ratio of the supply amount (total supply amount) of the stock solution in step (a) to the extraction amount (total extraction amount) of the strongly adsorptive fraction in step (a) is the volume ratio [Supply amount of stock solution] / [extraction amount of strongly adsorptive fraction] = 1.0 to 2.0 is preferable, and [supply amount of stock solution] / [extraction amount of strongly adsorptive fraction] = 1.1. 2-1.8 are more preferable.

本発明の方法には、上記で具体的に説明した形態の他、種々の変形例も包含される。例えば、原液供給口Fと弱吸着性画分抜出口Aとの間、弱吸着性画分抜出口Aと溶離液供給口Dとの間、溶離液供給口Dと強吸着性画分抜出口Cとの間、強吸着性画分抜出口Cと原液供給口Fとの間には、単位充填塔が1本ずつ配設された態様であってもよいし、2本以上配設されていてもよい。すなわち、上記循環系は単位充填塔を少なくとも4塔有することが好ましく、単位充填塔を4塔有することがより好ましい。
また、本発明の効果を実質的に損なわない範囲で、上記ステップ(a)中に、上記サブステップ(i)〜(iv)以外のサブステップを短時間挿入してもよい。かかる形態も本発明の方法に包含される。例えば、長期使用等により吸着剤が劣化してきた場合には、サブステップ(ii)において、原液供給口Fから原液を供給すると共に前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出す工程(FA工程)に加えて、溶離液供給口Dから溶離液を供給すると共に強吸着性画分抜出口Cから強吸着性画分を抜き出す工程(DC工程)を組み込むことにより、分離が改善しうる。ステップ(ii)にDC工程を組み込む場合、ステップ(ii)におけるFA工程と同時にDC工程を実施することが好ましい。但し、溶離液を効果的に削減する観点からは、サブステップ(ii)においてFA工程のみを実施することが好ましい。
The method of the present invention includes various modifications in addition to the modes specifically described above. For example, between the undiluted solution feed port F and the weakly adsorptive fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent feed port D, the eluent feed port D and the strongly adsorptive fraction outlet A unit packing tower may be disposed one by one between C and between the strongly adsorptive fraction outlet C and the stock solution feed port F, or two or more may be disposed. May be That is, the circulation system preferably has at least four unit packed columns, and more preferably four unit packed columns.
In addition, substeps other than the above substeps (i) to (iv) may be inserted for a short time during the above step (a), as long as the effects of the present invention are not substantially impaired. Such forms are also included in the method of the present invention. For example, when the adsorbent has deteriorated due to long-term use, etc., in substep (ii), the stock solution is supplied from the stock solution supply port F and the weakly adsorptive fraction is extracted from the weakly adsorptive fraction outlet A Separation is improved by incorporating a process (DC process) for supplying the eluent from the eluent supply port D and extracting the strongly adsorptive fraction from the strongly adsorptive fraction outlet C in addition to the process (FA process) It can. When incorporating a DC process into step (ii), it is preferable to carry out the DC process simultaneously with the FA process in step (ii). However, from the viewpoint of effectively reducing the amount of eluent, it is preferable to carry out only the FA step in sub-step (ii).

本発明の方法において、単位充填塔に充填される吸着剤は、精製対象成分に応じて適宜に選択されるものであり、種々の吸着剤を採用することができる。例えば、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、合成吸着剤、ゼオライト、及びシリカゲル(好ましくはオクタデシルシリル修飾シリカゲル)を吸着剤として用いることができる。
なかでも、本発明の方法は、吸着剤として強酸性陽イオン交換樹脂を用いて、複数の単糖を含む原液から、特定の単糖を分離精製するために好適な方法である。特に、ぶどう糖と果糖を含有する原液から、果糖を分離精製する方法として好適な方法である。上記強酸性陽イオン交換樹脂はカルシウム形、銀形、鉛形、ストロンチウム形であることが好ましく、また、経済性や安全性を考慮するとカルシウム形であることがより好ましい。このカルシウム形強酸性陽イオン交換樹脂としては、例えば、アンバーライト(登録商標)CR−1310Ca、CR−1320Ca(いずれもオルガノ社製)、DOWEX(登録商標)Monosphere 99Ca/310、Monosphere 99Ca/320(いずれもダウ・ケミカル社製)、ダイヤイオン(登録商標)UBK535、UBK555(いずれも三菱化学社製)、PCR642Ca(ピュロライト社製)、CS11GC、CS16GC(いずれもFinex社製)を挙げることができる。
In the method of the present invention, the adsorbent packed in the unit packed tower is appropriately selected according to the component to be purified, and various adsorbents can be adopted. For example, strong acid cation exchange resin, weak acid cation exchange resin, strong base anion exchange resin, weak base anion exchange resin, synthetic adsorbent, zeolite, and silica gel (preferably octadecylsilyl modified silica gel) are adsorbed It can be used as an agent.
Among them, the method of the present invention is a method suitable for separating and purifying a specific monosaccharide from a stock solution containing a plurality of monosaccharides using a strongly acidic cation exchange resin as an adsorbent. In particular, it is a method suitable as a method for separating and purifying fructose from a stock solution containing glucose and fructose. The strongly acidic cation exchange resin is preferably in the form of calcium, silver, lead or strontium, and more preferably in the form of calcium in consideration of economy and safety. As this calcium type strong acid cation exchange resin, for example, Amberlite (registered trademark) CR-1310Ca, CR-1320Ca (all are manufactured by Organo), DOWEX (registered trademark) Monosphere 99Ca / 310, Monosphere 99Ca / 320 ( In all, Dow Chemical Co., Ltd., Diaion (registered trademark) UBK 535, UBK 555 (all manufactured by Mitsubishi Chemical Co., Ltd.), PCR 642Ca (Purolite Co., Ltd.), CS11 GC, CS 16 GC (all manufactured by Finex Co.) can be mentioned.

本発明のクロマト分離システムは、本発明の方法を実施するためのシステムである。すなわち、本発明のクロマト分離システムは、上述した循環系の構成を有し、当該循環系が、上述したステップ(a)の作動とステップ(b)の作動を順に繰り返すシステムである。   The chromatographic separation system of the present invention is a system for carrying out the method of the present invention. That is, the chromatography separation system of the present invention is a system having the configuration of the circulatory system described above, and the circulatory system sequentially repeats the operation of the step (a) and the operation of the step (b) described above.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。また、下記実施例において、成分組成を表す「%」は、特に断りの無い限り質量基準である。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples. Moreover, in the following examples, “%” representing the component composition is on a mass basis unless otherwise noted.

[原液の調製]
ぶどう糖53.49質量部、果糖41.81質量部、及びオリゴ糖4.70質量部を脱イオン水に溶解し、全糖濃度60%の水溶液を調製し、原液とした。
[Preparation of stock solution]
53.49 parts by mass of glucose, 41.81 parts by mass of fructose and 4.70 parts by mass of oligosaccharide were dissolved in deionized water to prepare an aqueous solution with a total sugar concentration of 60%, and used as a stock solution.

[溶離液の調製]
イオン交換水を溶離液とした。
[Preparation of eluent]
Ion exchange water was used as the eluent.

[クロマト分離システム]
図1に示す循環系を用いて、上記原液から果糖の分離精製を行った。単位充填塔10a〜10dとして、内径:22mm、高さ1.5mの円筒型の充填塔を用いた。また、単位充填塔10a〜10d内には、吸着剤として、カルシウム形の強酸性陽イオン交換樹脂(商品名:Monoshere99Ca/320、ダウ・ケミカル社製)0.57Lを充填した。各単位充填塔内は60℃に調節した。
Chromatographic separation system
Using the circulating system shown in FIG. 1, fructose was separated and purified from the stock solution. A cylindrical packed tower with an inner diameter of 22 mm and a height of 1.5 m was used as the unit packed towers 10a to 10d. In addition, in the unit packed towers 10a to 10d, 0.57 L of a strongly acidic cation exchange resin (trade name: Monoshere 99Ca / 320, manufactured by Dow Chemical Company) in the form of calcium was packed as an adsorbent. The inside of each unit packed column was adjusted to 60 ° C.

[実施例]
上記循環系を下記表1−1に示す運転工程にしたがって作動させ、擬似移動層方式のよるクロマト分離を実施した。各サブステップにかけた時間、並びに、各サブステップにおいて抜き出した弱吸着性画分(以下、「A画分」という。)の量及び強吸着性画分(以下、「C画分」という。)の量を下記表1−2に示す。
表1−2に示される条件は、表1−1に示す運転工程を採用し、C画分において果糖の純度が90%以上となるような条件で、溶離液の供給量を極力少なくした条件である。
下記表1−1に示されるように、ステップ(a)とそれに続くステップ(b)の組み合わせからなるサイクルが1サイクル〜4サイクルまで4回繰り返されると、各供給弁及び抜出弁の位置は、1サイクル目のステップ(a)の位置に戻る。
また、表1−1の弁開閉表のカラムに記載の数字は、図1に対応している。例えば、Fのカラムに1、2、3、4と記載されているのは、それぞれ、原液供給弁F1、F2、F3、F4が開弁していることを意味し、数字が記載されていないとき(空欄のとき)は、原液供給弁が閉じていることを意味する。このことは、溶離液供給弁D、弱吸着性画分抜出弁A、強吸着性画分抜出弁C及び遮断弁Rのカラムについても同様である。
また、表1−1の循環ポンプのカラムの「○」は、循環ポンプを作動させていることを意味し、空欄のときは、循環ポンプが作動していないことを意味する。
[Example]
The above circulatory system was operated according to the operation steps shown in the following Table 1-1, and the chromatographic separation was performed according to the simulated moving bed system. The time taken for each substep, and the amount of weakly adsorbed fraction (hereinafter referred to as "A fraction") extracted in each substep and the strongly adsorbed fraction (hereinafter referred to as "C fraction") The amount of is shown in Table 1-2 below.
As the conditions shown in Table 1-2, the operation steps shown in Table 1-1 were adopted, and the conditions where the supply amount of the eluent was reduced as much as possible under the condition that the purity of fructose became 90% or more in the C fraction It is.
As shown in Table 1-1 below, when the cycle consisting of the combination of step (a) and the subsequent step (b) is repeated four times from one cycle to four cycles, the positions of the respective supply valves and extraction valves become , Return to the position of step (a) of the first cycle.
Moreover, the numbers described in the column of the valve switching table in Table 1-1 correspond to FIG. For example, the fact that 1, 2, 3 and 4 are described in the column of F means that the stock solution supply valves F1, F2, F3 and F4 are opened, and the numbers are not described. When (empty), it means that the stock solution supply valve is closed. The same applies to the columns of the eluent supply valve D, the weakly adsorptive fraction extraction valve A, the strongly adsorptive fraction extraction valve C and the shutoff valve R.
Moreover, "(circle)" of the column of the circulation pump of Table 1-1 means operating the circulation pump, and when blank, it means that the circulation pump is not working.

このクロマト分離においては、果糖を精製対象成分(強吸着性成分)とし、ぶどう糖とオリゴ糖とを合わせて弱吸着性成分としている。   In this chromatographic separation, fructose is used as a component to be purified (strongly adsorptive component), and glucose and an oligosaccharide are combined as a weakly adsorptive component.

Figure 0006546808
Figure 0006546808

Figure 0006546808
Figure 0006546808

上記A画分及びC画分の糖組成を、東ソー製HPLC8020シリーズを用いて分析した。分析条件は下記の通りとした。結果を下記表1−3に示す。
<分析条件>
デュアルポンプDP−8020
示差屈折系RI−8020
オートサンプラAS−8020
カラム:東ソー製 SCX−Ca 7.8mmφ×300mm
溶離液:脱イオン水
流速:0.8ml/min
カラム温度:70℃
サンプル注入量:10μL
The sugar composition of the above-mentioned A fraction and C fraction was analyzed using Toso HPLC 8020 series. The analysis conditions were as follows. The results are shown in Table 1-3 below.
<Analytical conditions>
Dual pump DP-8020
Differential refraction system RI-8020
Auto sampler AS-8020
Column: Tosoh SCX-Ca 7.8 mmφ × 300 mm
Eluent: deionized water Flow rate: 0.8 ml / min
Column temperature: 70 ° C
Sample injection volume: 10 μL

Figure 0006546808
Figure 0006546808

上記表1−3に示されるように、実施例のクロマト分離では、C画分中に、果糖を91.2%もの高純度に回収することができ、しかも、C画分中の糖濃度は40.8%と高濃度であった。つまり、実施例のクロマト分離により、C画分中に果糖を高純度且つ高濃度に回収できることがわかった。   As shown in the above Table 1-3, in the chromatographic separation of the example, fructose can be recovered as high as 91.2% in the C fraction, and the sugar concentration in the C fraction is It was as high as 40.8%. That is, it was found that fructose in the C fraction can be recovered with high purity and high concentration by the chromatographic separation of the example.

続いて、上記A画分中に回収されたオリゴ糖の回収率(原液中のオリゴ糖のうち、A画分中に回収されたオリゴ糖の割合、以下同様。)、上記A画分中に回収されたぶどう糖の回収率(原液中のぶどう糖のうち、A画分中に回収されたぶどう糖の割合、以下同様。)、及び上記C画分中に回収された果糖の回収率(原液中の果糖のうち、C画分中に回収された果糖の割合、以下同様。)を下記表1−4に示す。   Subsequently, the recovery rate of the oligosaccharides recovered in the A fraction (the ratio of the oligosaccharides recovered in the A fraction of the oligosaccharides in the stock solution, the same applies hereinafter), in the A fraction Recovery rate of recovered glucose (proportion of glucose recovered in fraction A of glucose in the stock solution, and so on), and recovery rate of fructose recovered in the above-mentioned C fraction (in stock solution) The ratio of fructose recovered in the C fraction among the fructose, the same applies hereinafter) is shown in Table 1-4 below.

Figure 0006546808
Figure 0006546808

表1−4に示される通り、実施例のクロマト分離では、原液中に含まれていた果糖の92.7%をC画分中に回収できた。   As shown in Table 1-4, in the chromatographic separation of the example, 92.7% of fructose contained in the stock solution could be recovered in the C fraction.

[比較例1]
実施例において、循環系を下記表2−1及び表2−2に示す運転工程にしたがって作動させたこと以外は、実施例と同様にして、擬似移動層方式によるクロマト分離を実施した。この比較例は、特公昭60−55162号公報の実施例3記載の方法に相当する。
表2−2に示される条件は、表2−1に示す運転工程を採用し、C画分において果糖の純度が90%以上となるような条件で、溶離液の供給を極力少なくした条件である。
Comparative Example 1
In the examples, except that the circulatory system was operated according to the operation steps shown in Table 2-1 and Table 2-2 below, the chromatographic separation by the simulated moving bed system was performed in the same manner as the examples. This comparative example corresponds to the method described in Example 3 of Japanese Patent Publication No. 60-55162.
The conditions shown in Table 2-2 adopt the operation process shown in Table 2-1, and under the conditions that the purity of fructose is 90% or more in the C fraction, the condition that the supply of the eluent is minimized is there.

Figure 0006546808
Figure 0006546808

Figure 0006546808
Figure 0006546808

上記A画分及びC画分の糖組成を、上記実施例1における分析と同様にして分析した。結果を下記表2−3に示す。   The sugar composition of the A fraction and the C fraction was analyzed in the same manner as the analysis in Example 1 above. The results are shown in Table 2-3 below.

Figure 0006546808
Figure 0006546808

上記表2−3に示されるように、比較例1のクロマト分離では、C画分中に果糖を純度90.2%で回収した場合、C画分中の糖濃度は38.1%となった。すなわち、実施例に比べて、C画分中の果糖が低純度であり、且つ、C画分中の果糖濃度も大きく低下することがわかった。   As shown in the above Table 2-3, in the chromatographic separation of Comparative Example 1, when fructose is recovered with a purity of 90.2% in the C fraction, the sugar concentration in the C fraction is 38.1%. The That is, it was found that fructose in the C fraction had a low purity and the fructose concentration in the C fraction was significantly reduced as compared with the examples.

次に、上記A画分中に回収されたオリゴ糖の回収率、上記A画分中に回収されたぶどう糖の回収率、及び上記C画分中に回収された果糖の回収率を下記表2−4に示す。   Next, the recovery rate of the oligosaccharide recovered in the A fraction, the recovery rate of glucose recovered in the A fraction, and the recovery rate of fructose recovered in the C fraction are shown in Table 2 below. -4.

Figure 0006546808
Figure 0006546808

表2−4に示される通り、比較例1のクロマト分離では、原液中に含まれていた果糖の92.3%をC画分中に回収できた。この回収率は、実施例をわずかながら下回る。
また、比較例1では、実施例に比べて溶離液をより多く使用しないと、果糖の純度を90%以上とすることができなかった(表1−2と表2−2の「Dv/Fv」のカラム参照)。
As shown in Table 2-4, in the chromatographic separation of Comparative Example 1, 92.3% of fructose contained in the stock solution could be recovered in the C fraction. This recovery rate is slightly lower than the example.
Moreover, in Comparative Example 1, the purity of fructose could not be made 90% or more unless the eluent was used more than in the Examples (see “Dv / Fv” in Tables 1-2 and 2-2). See the column of

[比較例2]
比較例1において、各サブステップにかけた時間、並びに、各サブステップにおいて抜き出したA画分の量及びC画分の量を下記表3−1に示す通りに変更したこと以外は、比較例1と同様にして、擬似移動層方式によるクロマト分離を実施した。
表3−1に示される条件は、サブステップ(ic)〜(iiic)における原液総供給量を実施例のサブステップ(i)〜(iii)における原液総供給量と同じ量とし、且つ、サブステップ(ic)〜(iiic)における溶離液総供給量を実施例のサブステップ(i)〜(iii)における溶離液総供給量と同じ量とした上で、C画分における果糖の純度が極力高まるように設定した条件である。
Comparative Example 2
Comparative Example 1 except that the time spent on each substep, and the amount of the A fraction and the amount of the C fraction extracted in each substep in Comparative Example 1 were changed as shown in Table 3-1 below. In the same manner as in the above, chromatographic separation by the simulated moving bed system was performed.
Under the conditions shown in Table 3-1, the total supply amount of stock solution in sub-steps (ic) to (iiic) is the same as the total supply amount of stock solution in sub-steps (i) to (iii) of the embodiment, and In the steps (ic) to (iiic), the total supplied amount of eluent is the same as the total supplied amount of eluent in sub-steps (i) to (iii) of the example, and the fructose purity in the C fraction is as much as possible. It is a condition set to increase.

Figure 0006546808
Figure 0006546808

上記A画分及びC画分の糖組成を上記実施例1における分析と同様にして分析した。結果を下記表3−2に示す。   The sugar composition of the A fraction and the C fraction was analyzed in the same manner as the analysis in Example 1 above. The results are shown in Table 3-2 below.

Figure 0006546808
Figure 0006546808

上記表3−2に示されるように、比較例2のクロマト分離では、C画分中の果糖の純度を90%以上とすることができなかった。また、C画分中の糖濃度は39.5%となった。すなわち、実施例に比べて、C画分中の果糖の純度が大きく低減し、且つ、C画分中の果糖濃度も低下することがわかった。   As shown in the above Table 3-2, in the chromatographic separation of Comparative Example 2, the purity of fructose in the C fraction could not be 90% or more. The sugar concentration in the C fraction was 39.5%. That is, it was found that the purity of fructose in the C fraction was greatly reduced and the fructose concentration in the C fraction was also reduced as compared with the examples.

次に、上記A画分中に回収されたオリゴ糖の回収率、上記A画分中に回収されたぶどう糖の回収率、及び上記C画分中に回収された果糖の回収率を下記表3−3に示す。   Next, the recovery rate of the oligosaccharide recovered in the A fraction, the recovery rate of glucose recovered in the A fraction, and the recovery rate of fructose recovered in the C fraction are shown in Table 3 below. -3.

Figure 0006546808
Figure 0006546808

表3−3に示される通り、比較例2のクロマト分離では、原液中に含まれていた果糖の85.7%しかC画分中に回収できなかった。   As shown in Table 3-3, in the chromatographic separation of Comparative Example 2, only 85.7% of fructose contained in the stock solution could be recovered in the C fraction.

100 循環系
10a、10b、10c、10d 単位充填塔
Ab 吸着剤
R1、R2、R3、R4 遮断弁
2a、2b、2c、2d 弱吸着性画分抜出ライン
A1、A2、A3、A4 弱吸着性画分抜出弁
4a、4b、4c、4d 強吸着性画分抜出ライン
C1、C2、C3、C4 強吸着性画分抜出弁
T1、T2、T3、T4 逆止弁
1 配管
3 弱吸着性画分合流管
5 強吸着性画分合流管
6 原液タンク
7 原液
8 溶離液タンク
9 溶離液
11 原液供給ライン
11a、11b、11c、11d 原液供給分岐ライン
F1、F2、F3、F4 原液供給弁
12 溶離液供給ライン
12a、12b、12c、12d 溶離液供給分岐ライン
D1、D2、D3、D4 溶離液供給弁
P1 循環ポンプ
P2 原液供給ポンプ
P3 溶離液供給ポンプ
U、V リリーフ弁
100 Circulating system 10a, 10b, 10c, 10d unit packed tower Ab Adsorbent R1, R2, R3, R4 Shutoff valve 2a, 2b, 2c, 2d weak adsorptive fraction extraction line A1, A2, A3, A4 weak adsorptive Fractional withdrawal valve 4a, 4b, 4c, 4d Strongly adsorptive fractionated line C1, C2, C3, C4 Strongly adsorptive fractionated withdrawal valve T1, T2, T3, T4 Check valve 1 Piping 3 Weak adsorption Extractable fraction combining pipe 5 strong adsorptive fraction combining pipe 6 stock solution tank 7 stock solution 8 eluent liquid tank 9 eluent 11 stock solution supply line 11a, 11b, 11c, 11d stock solution supply branch line F1, F2, F3, F4 stock solution supply valve 12 Eluent Supply Line 12a, 12b, 12c, 12d Eluent Supply Branch Line D1, D2, D3, D4 Eluent Supply Valve P1 Circulation Pump P2 Undiluted Liquid Supply Pump P3 Eluent Supply Pump U, V Leaf valve

Claims (6)

吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離方法であって、
前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
下記ステップ(a)及び(b)を順に繰り返す、方法:
(a)下記サブステップ(i)〜(iv)をこの順に実施するステップ;
(i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
(ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
A chromatographic separation method of separating and purifying components in a stock solution by a simulated moving bed method using a circulating system in which a plurality of unit packed towers filled with an adsorbent are connected in series and endlessly via a pipe,
The circulation system includes the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strongly adsorptive fraction outlet C in the pipe in this order in the fluid flow direction. Between the undiluted solution feed port F and the weakly adsorptive fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent feed port D, and the eluent feed port D and At least one unit packing tower is disposed between the strongly adsorptive fraction outlet C and between the strongly adsorptive fraction outlet C and the stock solution feed port F,
Repeat the following steps (a) and (b) in sequence:
(A) performing the following sub-steps (i) to (iv) in this order;
(I) A substep of supplying a stock solution from the stock solution supply port F and extracting a strongly adsorptive fraction from the strongly adsorptive fraction outlet C;
(Ii) a substep of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iii) a substep of supplying an eluent from the eluent supply port D and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iv) A substep of circulating the fluid in the circulatory system without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction,
(B) After the step (a) is completed, the undiluted solution supply port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strong adsorptive fraction outlet C are relative to one another. Step of moving in the fluid flow direction while maintaining the positional relationship.
前記ステップ(a)において、前記抜出口Cから抜き出される前記強吸着性画分の総量が、前記供給口Fから供給される前記原液の総量よりも少ない、請求項1に記載のクロマト分離方法。   The chromatography separation method according to claim 1, wherein the total amount of the strong adsorptive fraction extracted from the outlet C in the step (a) is smaller than the total amount of the stock solution supplied from the supply port F. . 前記原液がぶどう糖及び果糖を含有し、前記強吸着性画分中に該果糖を分離精製する、請求項1又は2に記載のクロマト分離方法。   The chromatographic separation method according to claim 1 or 2, wherein the stock solution contains glucose and fructose, and the fructose is separated and purified in the strongly adsorptive fraction. 前記循環系が前記単位充填塔を少なくとも4塔有する、請求項1〜3のいずれか1項に記載のクロマト分離方法。   The chromatographic separation method according to any one of claims 1 to 3, wherein the circulating system has at least four unit packed towers. 前記ステップ(a)において、原液の総供給量に対する溶離液の総供給量の比が、体積比で、[溶離液の総供給量]/[原液の総供給量]<1.2を満たす、請求項1〜4のいずれか1項に記載のクロマト分離方法。   In the step (a), the ratio of the total supply amount of the eluent to the total supply amount of the stock solution satisfies, in a volume ratio, [total supply amount of the eluent] / [total supply amount of the stock solution] <1.2 The chromatographic separation method according to any one of claims 1 to 4. 吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離システムであって、
前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
下記ステップ(a)及び(b)を順に繰り返す、システム:
(a)下記サブステップ(i)〜(iv)をこの順に実施するステップ;
(i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
(ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
(iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
A chromatographic separation system for separating and purifying components in a stock solution by a simulated moving bed method using a circulating system in which a plurality of unit packed towers packed with adsorbents are connected in series and endlessly via a pipe,
The circulation system includes the undiluted solution feed port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strongly adsorptive fraction outlet C in the pipe in this order in the fluid flow direction. Between the undiluted solution feed port F and the weakly adsorptive fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent feed port D, and the eluent feed port D and At least one unit packing tower is disposed between the strongly adsorptive fraction outlet C and between the strongly adsorptive fraction outlet C and the stock solution feed port F,
System which repeats the following steps (a) and (b) in order:
(A) performing the following sub-steps (i) to (iv) in this order;
(I) A substep of supplying a stock solution from the stock solution supply port F and extracting a strongly adsorptive fraction from the strongly adsorptive fraction outlet C;
(Ii) a substep of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iii) a substep of supplying an eluent from the eluent supply port D and extracting a weakly adsorptive fraction from the weakly adsorptive fraction outlet A;
(Iv) A substep of circulating the fluid in the circulatory system without supplying the stock solution and the eluent and without extracting the strongly adsorptive fraction and the weakly adsorptive fraction,
(B) After the step (a) is completed, the undiluted solution supply port F, the weakly adsorptive fraction outlet A, the eluent feed port D, and the strong adsorptive fraction outlet C are relative to one another. Step of moving in the fluid flow direction while maintaining the positional relationship.
JP2015160105A 2015-08-14 2015-08-14 Chromatographic separation method and chromatographic separation system Active JP6546808B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015160105A JP6546808B2 (en) 2015-08-14 2015-08-14 Chromatographic separation method and chromatographic separation system
PCT/JP2016/071758 WO2017029949A1 (en) 2015-08-14 2016-07-25 Chromatographic separation method and chromatographic separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160105A JP6546808B2 (en) 2015-08-14 2015-08-14 Chromatographic separation method and chromatographic separation system

Publications (2)

Publication Number Publication Date
JP2017037048A JP2017037048A (en) 2017-02-16
JP6546808B2 true JP6546808B2 (en) 2019-07-17

Family

ID=58048542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160105A Active JP6546808B2 (en) 2015-08-14 2015-08-14 Chromatographic separation method and chromatographic separation system

Country Status (2)

Country Link
JP (1) JP6546808B2 (en)
WO (1) WO2017029949A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168114A1 (en) * 2018-03-01 2019-09-06 三菱ケミカルアクア・ソリューションズ株式会社 Chromatographic separation method and chromatographic separation device
JP7225024B2 (en) * 2018-11-16 2023-02-20 オルガノ株式会社 Simulated moving bed chromatographic separation method and simulated moving bed chromatographic separation system
US11839835B2 (en) 2018-11-16 2023-12-12 Organo Corporation Simulated moving-bed type chromatographic separation method and simulated moving-bed type chromatographic separation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190106A (en) * 1997-09-26 1999-04-06 Daicel Chem Ind Ltd Pseudo moving bed type chromatographic separating device
JP4518477B2 (en) * 2004-04-05 2010-08-04 オルガノ株式会社 Chromatographic separation method and apparatus
JP2007064944A (en) * 2005-09-02 2007-03-15 Japan Organo Co Ltd Chromatography
JP2012098052A (en) * 2010-10-29 2012-05-24 Japan Organo Co Ltd Method and apparatus for chromatographic separation
CN102895799B (en) * 2011-07-28 2015-09-23 中国石油化工股份有限公司 The moving-bed adsorption separation method that control valve quantity reduces and equipment
JP6675704B2 (en) * 2013-05-16 2020-04-01 オルガノ株式会社 Method for producing high-purity cerebroside

Also Published As

Publication number Publication date
WO2017029949A1 (en) 2017-02-23
JP2017037048A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4627841B2 (en) Psicose separation method
JP6546808B2 (en) Chromatographic separation method and chromatographic separation system
EP1733774B1 (en) Chromatographic separation process
JP4945364B2 (en) Separation method of sugar alcohol
JP6013639B1 (en) Chromatographic separation method and apparatus for separating multiple components into three or more fractions
JP7225024B2 (en) Simulated moving bed chromatographic separation method and simulated moving bed chromatographic separation system
JP3453516B2 (en) Chromatographic separation method
US6331250B1 (en) Method and equipment for chromatographic separation
JP6732575B2 (en) Chromatographic separation method and chromatographic separation system
JPH11183459A (en) Method and apparatus for chromatographic separation
JP6912320B2 (en) Chromatographic separation method and chromatographic separation system
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
US11839835B2 (en) Simulated moving-bed type chromatographic separation method and simulated moving-bed type chromatographic separation system
JP5060400B2 (en) Chromatographic separation device
JP4632327B2 (en) Chromatographic separation device
JP4938728B2 (en) Chromatographic separation method
WO2023181655A1 (en) Simulated moving-bed chromatographic separation method and simulated moving-bed chromatographic separation system
JPH04227804A (en) Method for separating multiple components and device therefor
JPH05204A (en) Separation of multicomponent system and device
JP2962590B2 (en) Simulated moving bed chromatographic separator
JP2001070704A (en) Method and apparatus for separating a plurality of components contained in liquid
JPH0724208A (en) Separation by pseudo moving bed
JPH04363102A (en) Separation of plural components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6546808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250