JP5060400B2 - Chromatographic separation device - Google Patents

Chromatographic separation device Download PDF

Info

Publication number
JP5060400B2
JP5060400B2 JP2008148050A JP2008148050A JP5060400B2 JP 5060400 B2 JP5060400 B2 JP 5060400B2 JP 2008148050 A JP2008148050 A JP 2008148050A JP 2008148050 A JP2008148050 A JP 2008148050A JP 5060400 B2 JP5060400 B2 JP 5060400B2
Authority
JP
Japan
Prior art keywords
packed
raw material
unit
pipe
unit packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008148050A
Other languages
Japanese (ja)
Other versions
JP2009294084A (en
Inventor
響介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008148050A priority Critical patent/JP5060400B2/en
Publication of JP2009294084A publication Critical patent/JP2009294084A/en
Application granted granted Critical
Publication of JP5060400B2 publication Critical patent/JP5060400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明はクロマト分離装置に関する。   The present invention relates to a chromatographic separation apparatus.

従来、クロマトグラフィーの手法により液体中の複数の成分を分離(クロマト分離)する方法が、工業的に利用されている。クロマト分離は、固体の吸着剤を用い、この吸着剤に対する吸着特性の差を利用して、原料液中の成分を分離する。クロマト分離の原理は、吸着剤を充填した充填層に、分離しようとする2以上の成分を含む原料液を供給し、この原料液を水等の溶離液で流下させることで、上記各成分の吸着剤に対する吸着性の違いにより、吸着性の弱い成分は相対的に速く流下し、吸着性の強い成分は相対的に遅く流下することで、各成分を含む画分に分離するものである。   Conventionally, a method of separating (chromatographic separation) a plurality of components in a liquid by a chromatographic technique has been used industrially. In the chromatographic separation, a solid adsorbent is used, and components in the raw material liquid are separated by utilizing the difference in adsorption characteristics with respect to the adsorbent. The principle of chromatographic separation is that a raw material liquid containing two or more components to be separated is supplied to a packed bed packed with an adsorbent, and this raw material liquid is caused to flow down with an eluent such as water, whereby each of the above components is separated. Due to the difference in the adsorptivity with respect to the adsorbent, the weakly adsorbing component flows down relatively quickly, and the strongly adsorbing component flows down relatively slowly, so that the fraction containing each component is separated.

クロマト分離の方式としては、例えば固定層方式、移動層方式、擬似移動層方式がある。擬似移動層方式は、原料液中に含まれる2以上の成分の中で、特定成分に対して選択的吸着能力を有する吸着剤を充填した複数の単位充填塔を直列に連結し、最下流部の単位充填塔と最上流部の単位充填塔を連結することで無端状になっている循環系に、原料液と溶離液を通流して分離するものである。擬似移動層方式では、循環系内を移動する速度が大きい成分を含む画分(非吸着質画分)と循環系内を移動する速度が小さい成分を含む画分(吸着質画分)をそれぞれ異なる位置から抜き出し、かつ、原料液供給位置、溶離液供給位置、非吸着質画分抜き出し位置、吸着質画分抜き出し位置を、一定の位置関係に保ちながら循環系の循環方向下流側に順次移動させることで、移動層の処理操作を擬似的に実現する装置であることは良く知られている。   Examples of chromatographic separation methods include a fixed bed method, a moving bed method, and a simulated moving bed method. In the simulated moving bed system, among the two or more components contained in the raw material liquid, a plurality of unit packed towers packed with an adsorbent having a selective adsorption capacity for a specific component are connected in series, and the most downstream portion By connecting the unit packed column and the unit packed column in the most upstream part, the raw material liquid and the eluent are passed through the endless circulation system for separation. In the simulated moving bed method, a fraction containing a component that moves fast in the circulation system (non-adsorbate fraction) and a fraction containing a component that moves slowly in the circulation system (adsorbate fraction) Extract from different positions and move sequentially downstream in the circulation direction of the circulation system while maintaining a fixed positional relationship between the raw material supply position, eluent supply position, non-adsorbate fraction extraction position, and adsorbate fraction extraction position. By doing so, it is well known that the apparatus realizes the processing operation of the moving layer in a pseudo manner.

また、3以上の成分を分離するために1つの成分を抜き出す工程と、残りの成分を抜き出す工程とを段階的に行う方法等、原料液、溶離液の供給位置や、各成分の画分の抜き出し位置を切り替える擬似移動層方式のクロマト分離方法の改良法が多数提案されている(例えば、特許文献1)。   In addition, a method for performing step by step of extracting one component to separate three or more components and a step of extracting remaining components, such as a method of supplying raw material liquid and eluent, and fractions of each component Many methods for improving the chromatographic separation method of the pseudo moving bed method for switching the extraction position have been proposed (for example, Patent Document 1).

また、複数の単位充填塔を直列に連結すると共に、最下流部の単位充填塔と最上流部の単位充填塔を連結することにより、無端状になっている循環系に対して、原料液や溶離液の供給や、各成分の抜き出し位置を変更せずに、循環系内の液を循環系に循環しながら、供給した原料液中の各成分を分離する方法も提案されている(例えば、特許文献2)。   Further, by connecting a plurality of unit packed towers in series, and connecting the most downstream unit packed tower and the most upstream unit packed tower to the endless circulation system, There has also been proposed a method of separating each component in the supplied raw material liquid while circulating the liquid in the circulation system without changing the supply position of the eluent and the extraction position of each component (for example, Patent Document 2).

これらの方法は、原料液、溶離液を循環系の一端に供給し、他端から液を流出させるバッチ方式とは、原理的にはクロマト分離方法として共通している。しかし、循環系内の液を無端状に連結された単位充填塔に通流させる点で異なっており、工業的に重要な、高い生産性、高濃度・高純度での成分の採取ができる点で、バッチ方式に比べて優れている。   These methods are in principle common as a chromatographic separation method with the batch method in which the raw material liquid and the eluent are supplied to one end of the circulation system and the liquid is discharged from the other end. However, it is different in that the liquid in the circulatory system is passed through the unit packed tower connected endlessly, and it is possible to collect components with high productivity, high concentration and high purity which are industrially important. Therefore, it is superior to the batch method.

このような無端状に連結されている単位充填塔で構成されているクロマト分離装置に、粘性の高い原料液を供給する場合、一部の単位充填塔において、過大な圧力損失を生じることとなる。また、原料液との接触等による吸着剤の劣化により、単位充填塔の差圧が上昇する場合もある。加えて、差圧や浸透圧による膨潤収縮により、吸着剤が破損し、充填層が目詰まりを起こし、さらなる差圧上昇の要因ともなる。また、一般的に、クロマト分離装置における充填層は、通流距離をより長くすることで、分離性能を上げることができる。その反面、充填層の通流距離を長くすると、差圧が上昇する。このような状況下では、圧力損失を下げるために流速を下げて運転する必要が生じる等の問題がある。   When a highly viscous raw material liquid is supplied to a chromatographic separation apparatus constituted by such endlessly connected unit packed towers, an excessive pressure loss occurs in some of the unit packed towers. . In addition, the differential pressure in the unit packed column may increase due to deterioration of the adsorbent due to contact with the raw material liquid or the like. In addition, due to swelling and shrinkage due to differential pressure or osmotic pressure, the adsorbent is damaged, the packed bed is clogged, and this further increases the differential pressure. In general, the packed bed in the chromatographic separation apparatus can improve the separation performance by increasing the flow distance. On the other hand, if the flow distance of the packed bed is increased, the differential pressure increases. Under such circumstances, there is a problem that it is necessary to operate at a lower flow rate in order to reduce the pressure loss.

上述の問題に対する手段として、一部の単位充填塔に充填する吸着剤の平均粒径を大きくする方法(例えば、特許文献3)や、高架橋度のイオン交換樹脂を吸着剤に用いる方法が提案されている(例えば、特許文献4)。
特公平7−24724号公報 特開昭55−61903号公報 特開2001−70704号公報 特開2002−143605号公報
As means for solving the above problems, a method of increasing the average particle size of the adsorbent packed in some unit packed towers (for example, Patent Document 3) and a method using an ion exchange resin having a high degree of crosslinking as the adsorbent have been proposed. (For example, Patent Document 4).
Japanese Patent Publication No. 7-24724 JP 55-61903 A JP 2001-70704 A JP 2002-143605 A

しかしながら、特許文献3および特許文献4の技術では、複数種の吸着剤を必要とするため、クロマト分離装置の利用者にとって、管理が煩雑になるという問題があった。また、単に平均粒径の大きな吸着剤を用いたり、吸着剤をイオン交換樹脂とした場合に高架橋度のイオン交換樹脂を用いた場合は、クロマト分離装置の分離性能が低下するという問題があった。
そこで本発明は、圧力損失の影響を軽減できる、クロマト分離装置を目的とする。さらに、本発明は、圧力損失の影響を軽減しながら、分離性能が低下せず、かつ、メンテナンスが容易であるクロマト分離装置を目的とする。
However, since the techniques of Patent Document 3 and Patent Document 4 require a plurality of types of adsorbents, there is a problem that management becomes complicated for the user of the chromatographic separation apparatus. In addition, when an adsorbent having a large average particle size is used, or when an ion exchange resin with a high degree of crosslinking is used when the adsorbent is an ion exchange resin, there is a problem that the separation performance of the chromatographic separation apparatus is deteriorated. .
Therefore, the present invention is directed to a chromatographic separation apparatus that can reduce the influence of pressure loss. Another object of the present invention is to provide a chromatographic separation apparatus in which the separation performance does not deteriorate and maintenance is easy while reducing the influence of pressure loss.

本発明のクロマト分離装置は、吸着剤が充填され、原料液と溶離液の流路長、および/または、原料液と溶離液の通液方向に直交する断面の面積、の異なる充填層が形成された複数の単位充填塔を直列に連結し、該単位充填塔に通流された原料液および溶離液が循環可能に構成された循環系を有し、該循環系は、略同等の体積の充填層が形成された単位充填塔で構成されていることを特徴とする。 The chromatographic separation apparatus of the present invention is filled with an adsorbent and forms packed layers having different channel lengths of the raw material liquid and the eluent and / or cross-sectional areas perpendicular to the flow direction of the raw material liquid and the eluent. A plurality of unit packed towers connected in series, and having a circulation system configured to circulate the raw material liquid and the eluent passed through the unit packed tower , and the circulation system has substantially the same volume. It is characterized by comprising a unit packed tower in which a packed bed is formed .

さらに、原料液が供給される単位充填塔は、前記循環系を構成する他の単位充填塔よりも、原料液と溶離液の流路長が短い充填層、および/または、原料液と溶離液の通液方向に直交する断面の面積が大きい充填層、が形成された単位充填塔であることが好ましい。 Furthermore , the unit packed tower to which the raw material liquid is supplied has a packed bed in which the flow path length of the raw material liquid and the eluent is shorter than the other unit packed towers constituting the circulation system, and / or the raw material liquid and the eluent It is preferable that the unit packed column has a packed bed having a large cross-sectional area perpendicular to the liquid passing direction.

本発明のクロマト分離装置によれば、圧力損失の影響を軽減できる。さらに、本発明のクロマト分離装置は、圧力損失の影響を軽減しながら、分離性能が低下せず、かつ、メンテナンスが容易である。   According to the chromatographic separation apparatus of the present invention, the influence of pressure loss can be reduced. Furthermore, the chromatographic separation apparatus of the present invention reduces the influence of pressure loss, does not deteriorate the separation performance, and is easy to maintain.

本発明の実施形態の一例について、図1を用いて説明するが、本発明は、下記の実施形態に限定されるものではない。
図1は、本発明の実施形態の一例であるクロマト分離装置8の模式図である。図1に示すように、クロマト分離装置8は、吸着剤が充填された単位充填塔11〜20を直列に連結して、該単位充填塔11〜20に通流された原料液および溶離液が循環可能な循環系100を有している。
An example of an embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to the following embodiment.
FIG. 1 is a schematic diagram of a chromatographic separation apparatus 8 which is an example of an embodiment of the present invention. As shown in FIG. 1, the chromatographic separation device 8 includes unit packed columns 11 to 20 packed with an adsorbent connected in series, and a raw material solution and an eluent passed through the unit packed columns 11 to 20 are It has a circulation system 100 that can circulate.

単位充填塔11は配管111により単位充填塔12と接続され、単位充填塔12は配管112により単位充填塔13と接続され、単位充填塔13は配管113により単位充填塔14と接続され、単位充填塔14は配管114により単位充填塔15と接続されている。単位充填塔15は、遮蔽弁Zが設けられた配管115により単位充填塔16(以下、低圧単位充填塔ということがある)と接続されている。単位充填塔16は配管116により単位充填塔17と接続され、単位充填塔17は配管117により単位充填塔18と接続され、単位充填塔18は配管118により単位充填塔19と接続され、単位充填塔19は配管119により単位充填塔20と接続されている。そして、単位充填塔20は、ポンプ122を備えた配管120により、単位充填塔11と接続されている。こうして、単位充填塔11〜15、17〜20と、単位充填塔16と、配管111〜120と、ポンプ122と、遮蔽弁Zとで、循環系100が構成されている。   The unit packed tower 11 is connected to the unit packed tower 12 by a pipe 111, the unit packed tower 12 is connected to the unit packed tower 13 by a pipe 112, and the unit packed tower 13 is connected to the unit packed tower 14 by a pipe 113. The tower 14 is connected to the unit packed tower 15 by a pipe 114. The unit packed column 15 is connected to a unit packed column 16 (hereinafter sometimes referred to as a low pressure unit packed column) by a pipe 115 provided with a shielding valve Z. The unit packed tower 16 is connected to the unit packed tower 17 by a pipe 116, the unit packed tower 17 is connected to the unit packed tower 18 by a pipe 117, and the unit packed tower 18 is connected to the unit packed tower 19 by a pipe 118. The tower 19 is connected to the unit packed tower 20 by a pipe 119. The unit packed tower 20 is connected to the unit packed tower 11 by a pipe 120 provided with a pump 122. Thus, the circulation system 100 is configured by the unit packed towers 11 to 15 and 17 to 20, the unit packed tower 16, the pipes 111 to 120, the pump 122, and the shielding valve Z.

配管115は、遮蔽弁Zと単位充填塔16との間に、配管42と分岐配管66が、接続されている。配管42には、原料液供給弁fが設けられ、配管42は、原料液供給ポンプ40と接続されている。   In the pipe 115, a pipe 42 and a branch pipe 66 are connected between the shielding valve Z and the unit packed tower 16. The pipe 42 is provided with a raw material liquid supply valve f, and the pipe 42 is connected to the raw material liquid supply pump 40.

分岐配管66は、配管52に接続された配管である。配管52は、溶離液供給ポンプ50と接続されている。配管52は、分岐配管61〜70が接続され、分岐配管61〜70には、それぞれ溶離液供給弁D1〜D10(以下、総じて溶離液供給弁Dということがある)が設けられている。分岐配管61は配管120と、分岐配管62は配管111と、分岐配管63は配管112と、分岐配管64は配管113と、分岐配管65は配管114と、分岐配管66は配管115と、分岐配管67は配管116と、分岐配管68は配管117と、分岐配管69は配管118と、分岐配管70は配管119と、それぞれ接続されている。   The branch pipe 66 is a pipe connected to the pipe 52. The pipe 52 is connected to the eluent supply pump 50. The pipe 52 is connected to branch pipes 61 to 70, and the branch pipes 61 to 70 are respectively provided with eluent supply valves D1 to D10 (hereinafter sometimes collectively referred to as eluent supply valves D). The branch pipe 61 is the pipe 120, the branch pipe 62 is the pipe 111, the branch pipe 63 is the pipe 112, the branch pipe 64 is the pipe 113, the branch pipe 65 is the pipe 114, the branch pipe 66 is the pipe 115, and the branch pipe. 67 is connected to the pipe 116, the branch pipe 68 is connected to the pipe 117, the branch pipe 69 is connected to the pipe 118, and the branch pipe 70 is connected to the pipe 119.

配管115は、遮蔽弁Zと単位充填塔15との間に、配管170と分岐配管135と分岐配管155とが接続されている。配管170には、抜き出し弁B5が設けられている。   In the pipe 115, a pipe 170, a branch pipe 135, and a branch pipe 155 are connected between the shielding valve Z and the unit packed tower 15. The piping 170 is provided with an extraction valve B5.

分岐配管135は、配管130に接続された配管である。配管130は、抜き出し弁C10を介して配管120と接続されている。また、配管130は、分岐配管131〜139と接続され、分岐配管131〜139には、それぞれ抜き出し弁C1〜C9が設けられている。分岐配管131は配管111と、分岐配管132は配管112と、分岐配管133は配管113と、分岐配管134は配管114と、分岐配管135は配管115と、分岐配管136は配管116と、分岐配管137は配管117と、分岐配管138は配管118と、分岐配管139は配管119と、それぞれ接続されている。   The branch pipe 135 is a pipe connected to the pipe 130. The pipe 130 is connected to the pipe 120 via the extraction valve C10. Moreover, the piping 130 is connected with branch piping 131-139, and extraction valves C1-C9 are provided in the branch piping 131-139, respectively. The branch pipe 131 is the pipe 111, the branch pipe 132 is the pipe 112, the branch pipe 133 is the pipe 113, the branch pipe 134 is the pipe 114, the branch pipe 135 is the pipe 115, the branch pipe 136 is the pipe 116, and the branch pipe. Reference numeral 137 denotes a pipe 117, branch pipe 138 is connected to a pipe 118, and branch pipe 139 is connected to a pipe 119.

分岐配管155は、配管150に接続された配管である。配管150は、抜き出し弁A10を介して配管120と接続されている。また、配管150は、分岐配管151〜159と接続され、分岐配管131〜139には、それぞれ抜き出し弁A1〜A9が設けられている。分岐配管151は配管111と、分岐配管152は配管112と、分岐配管153は配管113と、分岐配管154は配管114と、分岐配管155は配管115と、分岐配管156は配管116と、分岐配管157は配管117と、分岐配管158は配管118と、分岐配管159は配管119と、それぞれ接続されている。   The branch pipe 155 is a pipe connected to the pipe 150. The pipe 150 is connected to the pipe 120 via the extraction valve A10. The pipe 150 is connected to the branch pipes 151 to 159, and the branch pipes 131 to 139 are provided with extraction valves A1 to A9, respectively. The branch pipe 151 is the pipe 111, the branch pipe 152 is the pipe 112, the branch pipe 153 is the pipe 113, the branch pipe 154 is the pipe 114, the branch pipe 155 is the pipe 115, the branch pipe 156 is the pipe 116, and the branch pipe. Reference numeral 157 is connected to the pipe 117, the branch pipe 158 is connected to the pipe 118, and the branch pipe 159 is connected to the pipe 119.

単位充填塔11〜15、17〜20には、吸着剤が充填されて、充填層101が形成されている。充填層101の吸着剤は、原料液に含まれる2以上の成分に対して、選択的吸着能力を有するものであれば特に限定されず、例えば、例えば、イオン交換樹脂、シリカゲル、ODS(オクタデシル基結合シリカゲル;長鎖脂肪族のオクタデシル基が導入されたシリカゲル)、合成吸着剤等を挙げることができる。これらは単独で用いても良く、2種以上を組み合わせて用いても良い。吸着剤の種類と組み合わせは、分離対象となる成分に応じて決定することができる。また、吸着剤の平均粒子径や架橋度は、特に限定されず、分離対象となる成分に応じて決定することができる。   The unit packed towers 11 to 15 and 17 to 20 are filled with an adsorbent to form a packed bed 101. The adsorbent of the packed bed 101 is not particularly limited as long as it has a selective adsorption capability with respect to two or more components contained in the raw material liquid. For example, ion-exchange resin, silica gel, ODS (octadecyl group) Bonded silica gel; silica gel having a long-chain aliphatic octadecyl group introduced), synthetic adsorbent, and the like. These may be used alone or in combination of two or more. The type and combination of the adsorbent can be determined according to the component to be separated. Moreover, the average particle diameter and the degree of crosslinking of the adsorbent are not particularly limited, and can be determined according to the component to be separated.

充填層101の流路長は特に限定されず、原料液中の成分や、得られる画分の純度等を勘案して決定することができる。ここで、流路長とは、原料液および溶離液が、充填層101または106を通流する距離である。
また、充填層101における、原料液および/または溶離液の通流方向と直交する断面の面積(以下、単に断面積と言うことがある)は特に限定されず、原料液の処理量等を勘案して決定することが好ましい。
The flow path length of the packed bed 101 is not particularly limited, and can be determined in consideration of the components in the raw material liquid, the purity of the obtained fraction, and the like. Here, the channel length is a distance through which the raw material liquid and the eluent flow through the packed bed 101 or 106.
Further, the area of the cross section perpendicular to the flow direction of the raw material liquid and / or the eluent in the packed bed 101 (hereinafter sometimes simply referred to as a cross-sectional area) is not particularly limited, and the processing amount of the raw material liquid is taken into consideration. Is preferably determined.

単位充填塔16は、循環系100を構成する他の単位充填塔11〜15、17〜20の充填層101と比べて、流路長が短い充填層106が形成された単位充填塔である。加えて、単位充填塔16は、循環系100を構成する他の単位充填塔11〜15、17〜20の充填層101よりも、断面積が大きい充填層106が形成されている単位充填塔である。   The unit packed tower 16 is a unit packed tower in which a packed bed 106 having a shorter flow path length is formed as compared with the packed bed 101 of the other unit packed towers 11 to 15 and 17 to 20 constituting the circulation system 100. In addition, the unit packed tower 16 is a unit packed tower in which a packed bed 106 having a larger cross-sectional area than the packed bed 101 of the other unit packed towers 11 to 15 and 17 to 20 constituting the circulation system 100 is formed. is there.

単位充填塔16には、吸着剤が充填されて、充填層106が形成されている。
充填層106の流路長、即ち充填層106の高さは、充填層101の流路長である充填層101の高さよりも低くなるように、吸着剤が充填されている。充填層101の流路長に対する、充填層106の流路長の比率は特に限定されず、原料液の成分や、クロマト分離装置8に求める分離性能に応じて決定することができる。例えば、充填層106の流路長/充填層101の流路長で表される比率が、0.1以上1未満の範囲で決定されることが好ましい。0.1未満であると、単位充填塔106における分離性能の低下が著しく、クロマト分離装置8全体の分離性能に与える影響が大きくなるおそれがある。1以上であると単位充填塔16における通液差圧を有効に下げられないためである。また、分離性能を確保するために、流路長は一定の長さを必要とするためである。
The unit packed tower 16 is filled with an adsorbent to form a packed bed 106.
The adsorbent is filled so that the flow path length of the packed bed 106, that is, the height of the packed bed 106 is lower than the height of the packed bed 101 that is the flow path length of the packed bed 101. The ratio of the flow path length of the packed bed 106 to the flow path length of the packed bed 101 is not particularly limited, and can be determined according to the components of the raw material liquid and the separation performance required for the chromatographic separation device 8. For example, it is preferable that the ratio represented by the flow path length of the packed bed 106 / the flow path length of the packed bed 101 is determined in a range of 0.1 or more and less than 1. If it is less than 0.1, the separation performance in the unit packed column 106 is remarkably lowered, and the influence on the separation performance of the entire chromatographic separation apparatus 8 may be increased. This is because if it is 1 or more, the liquid flow differential pressure in the unit packed column 16 cannot be effectively reduced. Moreover, in order to ensure separation performance, the flow path length needs to be a certain length.

また、充填層106における断面積は、充填層101における断面積よりも大きくなるように、吸着剤が充填されている。充填層101の断面積に対する、充填層106の断面積の比率は特に限定されず、原料液の成分や。クロマト分離装置8に求める分離精度に応じて決定することができる。例えば充填層106の断面積/充填層101の断面積で表される比率が、1を超えて、2以下の範囲で決定されることが好ましい。上記比率が1以下であると、単位充填塔16における原料液または溶離液の線速度(LV)を有効に下げられないためである。2を超えると、充填層106の流路長が短くなりすぎて、単位充填塔106における分離性能の低下が著しく、クロマト分離装置8全体の分離性能に与える影響が大きくなるおそれがあるためである。また、分離性能を確保するために、流路長は一定の長さを必要とするためである。なお、LVとは、単位時間における、単位面積当たりの流量で、m/hで表される線速度である。   Further, the adsorbent is filled so that the cross-sectional area of the packed bed 106 is larger than the cross-sectional area of the packed bed 101. The ratio of the cross-sectional area of the filling layer 106 to the cross-sectional area of the filling layer 101 is not particularly limited. It can be determined according to the separation accuracy required for the chromatographic separation device 8. For example, it is preferable that the ratio represented by the cross-sectional area of the filling layer 106 / the cross-sectional area of the filling layer 101 is determined in the range of more than 1 and 2 or less. This is because if the ratio is 1 or less, the linear velocity (LV) of the raw material liquid or the eluent in the unit packed column 16 cannot be effectively reduced. If it exceeds 2, the flow path length of the packed bed 106 becomes too short, the separation performance in the unit packed column 106 is significantly lowered, and the influence on the separation performance of the entire chromatographic separation apparatus 8 may be increased. . Moreover, in order to ensure separation performance, the flow path length needs to be a certain length. Note that LV is a flow rate per unit area per unit time and is a linear velocity expressed in m / h.

充填層106の吸着剤の種類は、充填層101の吸着剤の種類と同様である。また、充填層106の吸着剤は、充填層101の吸着剤と、平均粒子径や架橋度が異なっていても良い。なお、充填層106の吸着剤と充填層101の吸着剤とは、同じものであることが好ましい。充填層101と同じ吸着剤を用いることで、メンテナンスの煩雑さが軽減されるためである。また、充填層106に、圧力損失の影響を軽減させるための分離性能が異なる吸着剤を使用しないため、クロマト分離装置8の分離性能を維持できるためである。   The type of adsorbent of the packed bed 106 is the same as the type of adsorbent of the packed bed 101. Further, the adsorbent of the packed bed 106 may be different from the adsorbent of the packed bed 101 in average particle diameter and degree of crosslinking. Note that the adsorbent of the packed bed 106 and the adsorbent of the packed bed 101 are preferably the same. This is because the use of the same adsorbent as the packed bed 101 reduces the complexity of maintenance. In addition, since the adsorbent having different separation performance for reducing the influence of pressure loss is not used for the packed bed 106, the separation performance of the chromatographic separation device 8 can be maintained.

充填層101の体積に対する充填層106の体積の比率は特に限定されないが、略同等であることが好ましい。充填層101、106の体積が同等であれば、充填層106における流路長を短くしても、充填層101と同等の分離性能を維持し、クロマト分離装置8全体の分離性能の低下を防ぐことができるためである。特に、擬似移動層方式のクロマト分離装置は、原料液または溶離液の供給位置、および、任意の画分の抜き出し位置を下流側に切り替えながら、分離を行うため、循環系100を構成する全ての単位充填塔の充填層の体積が略同等であることが好ましい。ここで、「略同等」として、充填層101の体積/充填層106の体積で表される比が、1/1.05〜1.05/1であることが好適である。体積比が、かかる範囲であれば、充填層101と充填層106とは、分離性能に著しい差が生ぜず、循環系10全体の分離性能を維持することができるためである。   The ratio of the volume of the filler layer 106 to the volume of the filler layer 101 is not particularly limited, but is preferably substantially the same. If the volumes of the packed beds 101 and 106 are the same, even if the flow path length in the packed bed 106 is shortened, the separation performance equivalent to that of the packed bed 101 is maintained and the separation performance of the chromatographic separation apparatus 8 as a whole is prevented from being lowered. Because it can. In particular, the simulated moving bed type chromatographic separation apparatus performs separation while switching the supply position of the raw material liquid or the eluent and the extraction position of an arbitrary fraction to the downstream side. It is preferable that the volume of the packed bed of the unit packed column is substantially equal. Here, as “substantially equivalent”, it is preferable that the ratio represented by the volume of the packed bed 101 / the volume of the packed bed 106 is 1 / 1.05 to 1.05 / 1. This is because if the volume ratio is within such a range, the packed bed 101 and the packed bed 106 can maintain the separation performance of the entire circulation system 10 without causing a significant difference in separation performance.

クロマト分離装置8を用いた、クロマト分離方法について説明する。説明は、吸着剤に対する吸着性が異なる3成分を含む原料液Fを分離する場合を例にして説明する。なお、前記の3成分は、吸着剤に対する吸着性が弱い成分(A成分)、吸着剤に対する吸着性が強い成分(C成分)、吸着剤に対する吸着性が、前記A成分と前記C成分の中間の成分(B成分)である。   A chromatographic separation method using the chromatographic separation apparatus 8 will be described. The description will be given by taking as an example the case of separating the raw material liquid F containing three components having different adsorptive properties to the adsorbent. The three components are a component having a weak adsorptivity to the adsorbent (A component), a component having a strong adsorbability to the adsorbent (C component), and an adsorbing property to the adsorbent between the A component and the C component. Component (component B).

まず、原料液供給弁f、溶離液供給弁D1、抜き出し弁B5を開、溶離液供給弁D2〜D10、抜き出し弁A1〜A10、抜き出し弁C1〜C10を閉とする。次いで、ポンプ40を起動して、原料液供給弁fを介して、原料液Fを単位充填塔16に供給すると共に、ポンプ122を起動して、循環系100の液を単位充填塔16から、単位充填塔17、18、19、20、11、12、13、14、15の順で、循環系100に通流させる。また、ポンプ50を起動して、溶離液供給弁D1を介して、溶離液Dを単位充填塔11に供給する。そして、遮蔽弁Zよりも、循環系100における循環方向上流側に設けられている抜き出し弁B5を介して、単位充填塔15に富化したB成分の画分(B画分)を配管170に抜き出す。この間、A画分とC画分とが、循環方向に分かれて、循環系100に吸着帯域が形成される。
なお、この際同時に、抜き出し弁A8を開として、単位充填塔18に富化したA成分の画分(A画分)を分岐配管158から配管150に抜き出すことができる。さらに、抜き出し弁C2を開として、単位充填塔12に富化したC成分の画分(C画分)を分岐配管132から配管130に抜き出すことができる(第一工程)。
First, the raw material liquid supply valve f, the eluent supply valve D1, and the extraction valve B5 are opened, and the eluent supply valves D2 to D10, the extraction valves A1 to A10, and the extraction valves C1 to C10 are closed. Next, the pump 40 is activated to supply the raw material liquid F to the unit packed tower 16 via the raw material liquid supply valve f, and the pump 122 is activated to supply the liquid in the circulation system 100 from the unit packed tower 16. The unit packed towers 17, 18, 19, 20, 11, 12, 13, 14, and 15 are passed through the circulation system 100 in this order. Moreover, the pump 50 is started and the eluent D is supplied to the unit packed column 11 through the eluent supply valve D1. Then, the B component fraction (B fraction) enriched in the unit packed column 15 is supplied to the pipe 170 via the extraction valve B5 provided upstream of the shielding valve Z in the circulation direction in the circulation system 100. Extract. During this time, the A fraction and the C fraction are separated in the circulation direction, and an adsorption zone is formed in the circulation system 100.
At the same time, the extraction valve A8 can be opened to extract the A component fraction (A fraction) enriched in the unit packed column 18 from the branch pipe 158 to the pipe 150. Furthermore, the extraction valve C2 is opened, and the C component fraction (C fraction) enriched in the unit packed column 12 can be extracted from the branch pipe 132 to the pipe 130 (first step).

第一工程に続く第二工程では、原料液Fの供給は停止し、溶離液Dの供給位置、A画分の抜き出し位置、C画分の抜き出し位置をそれぞれの富化画分の移動に合わせて、順次に循環方向下流側に1塔ずつ切り替えて移行させる操作を行う。これにより、A画分は、循環系100内を循環方向下流側に移動する。他方、溶離液Dの供給位置を循環方向下流側に移動させることで、見かけ上、循環系100が循環方向上流側に移動することにより、C画分は循環方向上流側に見かけ上移動する。そして、抜き出し弁A1〜A10(以下、総じて抜き出し弁Aと言うことがある)のいずれかであって、A画分が富化した単位充填塔に対応する抜き出し弁Aを開とし、抜き出し弁C1〜C10(以下、総じて抜き出し弁Cと言うことがある)のいずれかであって、C画分が富化した単位充填塔に対応する抜き出し弁Cを開とすることで、連続的に、分離したA画分とC画分を採取することができる(第二工程)。   In the second step following the first step, the supply of the raw material liquid F is stopped, and the supply position of the eluent D, the extraction position of the A fraction, and the extraction position of the C fraction are adjusted to the movement of each enriched fraction. Then, the operation of switching the tower one by one to the downstream side in the circulation direction is performed. Thereby, the A fraction moves in the circulation system 100 to the downstream side in the circulation direction. On the other hand, by moving the supply position of the eluent D downstream in the circulation direction, the circulation system 100 apparently moves upstream in the circulation direction, so that the C fraction apparently moves upstream in the circulation direction. The extraction valve A1 is one of the extraction valves A1 to A10 (hereinafter sometimes collectively referred to as the extraction valve A), and the extraction valve A corresponding to the unit packed column enriched with the A fraction is opened, and the extraction valve C1 is opened. -C10 (hereinafter sometimes collectively referred to as "extraction valve C"), and the separation is continuously performed by opening the extraction valve C corresponding to the unit packed column enriched in the C fraction. The A and C fractions can be collected (second step).

第二工程として、例えば、溶離液供給弁D2、抜き出し弁A9、抜き出し弁C3、遮蔽弁Zを開、原料液供給弁f、溶離液供給弁D1、D3〜D10、抜き出し弁A1〜A8、A10、抜き出し弁C1、C2、C4〜10、抜き出し弁B5を閉とし、ポンプ40を停止して、原料液Fの循環系100への供給を停止する。次いで、ポンプ50を起動し、溶離液供給弁D2を介して、溶離液Dを単位充填塔12に供給すると共に、ポンプ122を起動して、循環系100内の液を循環させる。そして、抜き出し弁A9を介して、単位充填塔19に富化したA画分を分岐配管159から配管150に抜き出す。また、抜き出し弁C3を介して、単位充填塔13に富化したC画分を分岐配管133から配管130に抜き出す。   As the second step, for example, the eluent supply valve D2, the extraction valve A9, the extraction valve C3, and the shielding valve Z are opened, the raw material liquid supply valve f, the eluent supply valves D1, D3-D10, and the extraction valves A1-A8, A10. The extraction valves C1, C2, C4 to 10 and the extraction valve B5 are closed, the pump 40 is stopped, and the supply of the raw material liquid F to the circulation system 100 is stopped. Next, the pump 50 is started, and the eluent D is supplied to the unit packed column 12 via the eluent supply valve D2, and the pump 122 is started to circulate the liquid in the circulation system 100. Then, the A fraction enriched in the unit packed column 19 is extracted from the branch pipe 159 to the pipe 150 via the extraction valve A9. Further, the C fraction enriched in the unit packed column 13 is extracted from the branch pipe 133 to the pipe 130 via the extraction valve C3.

前記第二工程の操作は、開とする溶離液供給弁Dと抜き出し弁Aと抜き出し弁Cと、を循環方向下流側の溶離液供給弁Dと抜き出し弁Aと抜き出し弁Cとに切り替えながら、9回繰り返されて、クロマト分離操作の1サイクルが終了する。第二工程終了後は、第一工程に戻る。クロマト分離操作は、該サイクルが繰り返し行われることで、A画分とC画分とを連続的に、B画分を間欠的に分離する。   In the operation of the second step, the eluent supply valve D, the extraction valve A, and the extraction valve C to be opened are switched to the eluent supply valve D, the extraction valve A, and the extraction valve C on the downstream side in the circulation direction. Repeated nine times to complete one cycle of the chromatographic separation operation. After the end of the second step, the process returns to the first step. In the chromatographic separation operation, the A and C fractions are continuously separated and the B fraction is intermittently separated by repeating the cycle.

原料液Fは、2以上の成分を含むものであれば特に限定されず、例えば、ショ糖製造途中における糖液や、生体抽出物、微生物醗酵により得られる培養液等を挙げることができる。   The raw material liquid F is not particularly limited as long as it contains two or more components, and examples thereof include a sugar liquid in the middle of sucrose production, a biological extract, and a culture liquid obtained by microbial fermentation.

溶離液Dとしては、原料液中の各成分を単位充填塔内に流下させ、かつ、分離対象とする成分を適切に分離できるものであれば特に限定されず、目的に応じて決定することができる。例えば、水、水酸化ナトリウム水溶液等の塩基性水溶液、塩酸水溶液等の酸性水溶液、メタノール、エタノール、n−プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール類等を挙げることができる。溶離液は、これらの一種を単独で溶離液としても良いし、二種以上を混合した混合溶液を溶離液としても良い。また、溶離液は、酸、塩基、緩衝剤、塩を含んでいても良い。   The eluent D is not particularly limited as long as each component in the raw material liquid is allowed to flow down into the unit packed tower and the components to be separated can be appropriately separated, and can be determined according to the purpose. it can. For example, water, basic aqueous solution such as sodium hydroxide aqueous solution, acidic aqueous solution such as hydrochloric acid aqueous solution, alcohols such as methanol, ethanol, n-propanol, isopropanol, butanol, isobutanol and the like can be mentioned. As the eluent, one kind of these may be used alone, or a mixed solution obtained by mixing two or more kinds may be used as the eluent. The eluent may contain an acid, a base, a buffer, and a salt.

第一工程における、原料液Fの単位充填塔への供給量は特に限定されず、分離対象とする成分や、単位充填塔に充填した吸着剤の種類、吸着帯域の状態等を勘案して決定することが好ましい。第一工程における溶離液Dの単位充填塔への供給量は特に限定されず、分離対象とする成分や、単位充填塔に充填した吸着剤の種類、吸着帯域の状態等を関して決定することが好ましい。   The supply amount of the raw material liquid F to the unit packed column in the first step is not particularly limited, and is determined in consideration of the components to be separated, the type of adsorbent packed in the unit packed column, the state of the adsorption zone, and the like. It is preferable to do. The amount of eluent D supplied to the unit packed column in the first step is not particularly limited, and should be determined with respect to the components to be separated, the type of adsorbent packed in the unit packed column, the state of the adsorption zone, and the like. Is preferred.

第二工程における、溶離液Dの供給量は特に限定されず、分離対象とする成分や、単位充填塔に充填した吸着剤の種類、吸着帯域の状態等を勘案して決定することが好ましい。   The supply amount of the eluent D in the second step is not particularly limited, and is preferably determined in consideration of the component to be separated, the type of adsorbent packed in the unit packed column, the state of the adsorption zone, and the like.

クロマト分離装置において、分離性能の向上を図るためには、長い流路長の充填層を形成することが有効である。反面、長い流路長の充填層に通液すると、差圧が上昇する傾向にある。充填層における流路長と、差圧の上昇とは比例する。
ここで、例えば、低圧単位充填塔の流路長を1/1.5倍とすれば、差圧は、1/1.5倍となる。また、断面積を1.5倍とすれば、通液時のLVは1/1.5倍となる。差圧は、LVに比例すると考えられ、通液時の差圧は1/1.5倍に低減できる。さらに、低圧単位充填塔の充填層の体積を維持したまま、充填層の流路長を1/1.5倍とすると、充填層の断面積は1.5/1倍、即ち、LVは1/1.5倍となる。前述したように、通液時の差圧は、流路長とLVの双方に比例するため、通液時の差圧を流路長の比率である1/1.5倍と、LVの比率である1/1.5倍との積により求められた、1/2.25倍に低減できると考えられる。
In a chromatographic separation apparatus, it is effective to form a packed bed having a long channel length in order to improve the separation performance. On the other hand, when the liquid is passed through the packed bed having a long flow path length, the differential pressure tends to increase. The flow path length in the packed bed is proportional to the increase in the differential pressure.
Here, for example, if the flow path length of the low-pressure unit packed tower is 1 / 1.5 times, the differential pressure becomes 1 / 1.5 times. Moreover, if the cross-sectional area is 1.5 times, the LV during liquid passing will be 1 / 1.5 times. The differential pressure is considered to be proportional to the LV, and the differential pressure during liquid flow can be reduced to 1 / 1.5 times. Further, when the flow path length of the packed bed is 1 / 1.5 times while maintaining the volume of the packed bed of the low-pressure unit packed tower, the sectional area of the packed bed is 1.5 / 1 times, that is, the LV is 1. /1.5 times. As described above, since the differential pressure during liquid flow is proportional to both the flow path length and the LV, the differential pressure during liquid flow is 1 / 1.5 times the ratio of the flow path length and the LV ratio. It is thought that it can be reduced to 1 / 2.25 times obtained by the product of 1 / 1.5 times.

本発明によれば、循環系を構成する一部の単位充填塔を他の単位充填塔よりも、流路長が短い充填層、および/または、断面積が大きい充填層が形成された低圧単位充填塔とすることで、該低圧単位充填塔における通液時の差圧を下げることができる。このため、循環系全体として、過大な圧力損失が生じることを抑制し、流速を下げずに運転を行うことができる。また、循環系内全体の圧力上昇を防止することで、単位充填塔や配管等の圧力仕様を下げることができる。   According to the present invention, some unit packed towers constituting the circulation system have a low-pressure unit in which a packed bed having a shorter flow path length and / or a packed bed having a larger cross-sectional area than other unit packed towers are formed. By setting it as a packed tower, the differential pressure at the time of liquid flow in this low-pressure unit packed tower can be lowered. For this reason, it can suppress that an excessive pressure loss arises as a whole circulation system, and can operate | move, without reducing a flow velocity. Moreover, the pressure specification of a unit packed tower, piping, etc. can be lowered | hung by preventing the pressure rise in the whole circulation system.

従って、低圧単位充填塔に、循環系を構成する他の単位充填塔と同一の吸着剤を充填して、過大な圧力損失が生じることを抑制できるため、循環系を構成する全ての単位充填塔に充填する吸着剤を1種類で賄うことができる。このため、吸着剤管理やメンテナンスにおける負担を軽減できる。   Therefore, since the same adsorbent as the other unit packed towers constituting the circulation system can be packed in the low pressure unit packed tower, it is possible to suppress excessive pressure loss, so that all the unit packed towers constituting the circulation system One type of adsorbent can be supplied. For this reason, the burden in adsorbent management and maintenance can be reduced.

本発明によれば、循環系を構成する全ての単位充填塔の充填層の体積を略同等にすることで、クロマト分離装置全体の分離性能を低下させることなく、かつ、従来の運転方法を変更せずにクロマト分離を行うことができる。   According to the present invention, the conventional operation method is changed without reducing the separation performance of the entire chromatographic separation apparatus by substantially equalizing the volume of the packed bed of all unit packed towers constituting the circulation system. Without chromatographic separation.

原料液を供給する単位充填塔は、原料液の粘度や、吸着剤への吸着成分による影響で、最も差圧が生じやすい。本発明によれば、原料液を供給する単位充填塔が固定されている場合、該単位充填塔を低圧単位充填塔とすることで、原料液の粘度や吸着成分による差圧上昇を緩和し、循環系全体の圧力損失の影響を抑制することができる。   The unit packed tower for supplying the raw material liquid is most likely to generate a differential pressure due to the influence of the viscosity of the raw material liquid and the adsorbed component on the adsorbent. According to the present invention, when the unit packed tower for supplying the raw material liquid is fixed, by making the unit packed tower a low-pressure unit packed tower, the increase in the differential pressure due to the viscosity of the raw material liquid and the adsorbing component is reduced, The influence of the pressure loss of the entire circulatory system can be suppressed.

上述の実施形態では、隣接する単位充填塔を接続する配管の内、原料液が供給される単位充填塔の上流側の配管にのみ遮蔽弁が設けられているが、遮蔽弁は複数個所に設けられていても良い。   In the above-described embodiment, the shielding valve is provided only on the upstream side pipe of the unit packed tower to which the raw material liquid is supplied among the pipes connecting adjacent unit packed towers, but the shielding valve is provided at a plurality of locations. It may be done.

上述の実施形態では、原料液を供給する配管は、低圧単位充填塔にのみ接続されているが、原料液を供給する配管に接続された複数の分岐配管を設け、該分岐配管が複数の単位充填塔と接続されていても良い。かかる構成により、原料液を供給する単位充填塔、溶離液を供給する単位充填塔、A画分を抜き出す単位充填塔、C画分を抜き出す単位充填塔を一定の位置関係を保ちながら、順次、循環方向下流側の単位充填塔に移動させて、原料得供給を連続的に行うクロマト分離を行うことができる。   In the above-described embodiment, the pipe for supplying the raw material liquid is connected only to the low-pressure unit packed tower, but a plurality of branch pipes connected to the pipe for supplying the raw material liquid are provided, and the branch pipe is a plurality of units. It may be connected to a packed tower. With this configuration, the unit packed column for supplying the raw material liquid, the unit packed column for supplying the eluent, the unit packed column for extracting the A fraction, and the unit packed column for extracting the C fraction are sequentially maintained while maintaining a certain positional relationship. It is possible to perform chromatographic separation in which the raw material is continuously supplied by moving to the unit packed tower on the downstream side in the circulation direction.

上述の実施形態では、循環系が、他の単位充填塔よりも、流路長が短く、かつ、断面積が大きい充填層が形成された低圧単位充填塔を有している。しかし、該低圧単位充填塔の充填層は、他の単位充填塔の充填層よりも、流路長が短いだけであっても良いし、断面積が大きいだけであっても良い。   In the above-described embodiment, the circulation system has a low-pressure unit packed column in which a packed bed having a shorter channel length and a larger cross-sectional area is formed than other unit packed columns. However, the packed bed of the low-pressure unit packed column may only have a shorter channel length or a larger cross-sectional area than the packed bed of other unit packed columns.

上述の実施形態では、原料液が供給される単位充填塔のみが、他の単位充填塔よりも流路長が短く、かつ、断面積が大きい充填層、を形成した低圧単位充填塔とされている。しかし、本発明はこれに限られることはなく、循環系を構成する単位充填塔のいずれを低圧単位充填塔としても良いし、複数個を低圧単位充填塔としても良い。ただし、原料液が供給される単位充填塔が固定されているクロマト分離装置においては、原料液の粘度等により差圧上昇を抑制すべく、原料液が供給される単位充填塔を低圧単位充填塔とすることが好ましい。一方、原料液が供給される単位充填塔が固定されていないクロマト分離装置においては、低圧単位充填塔の充填層は、他の単位充填塔の充填層と、略同等の体積であることが好ましい。単位充填塔毎の分離性能を略同等とし、クロマト分離装置全体の分離性能を安定させるためである。   In the above-described embodiment, only the unit packed column to which the raw material liquid is supplied is a low-pressure unit packed column in which a packed bed having a shorter flow path length and a larger cross-sectional area than other unit packed columns is formed. Yes. However, the present invention is not limited to this, and any of the unit packed columns constituting the circulation system may be a low pressure unit packed column, or a plurality of unit packed columns may be low pressure unit packed columns. However, in the chromatographic separation apparatus in which the unit packed tower to which the raw material liquid is supplied is fixed, the unit packed tower to which the raw material liquid is supplied is used as the low pressure unit packed tower in order to suppress the increase in the differential pressure due to the viscosity of the raw material liquid. It is preferable that On the other hand, in the chromatographic separation apparatus in which the unit packed tower to which the raw material liquid is supplied is not fixed, the packed bed of the low-pressure unit packed tower is preferably substantially the same volume as the packed bed of the other unit packed tower. . This is to make the separation performance of each unit packed column substantially equal and stabilize the separation performance of the entire chromatographic separation apparatus.

加えて、上述の実施形態では、循環系を構成する単位充填塔の内、1つのみが、他の単位充填塔よりも流路長が短く、断面積の大きな充填層が形成されているが、循環系を形成する単位充填塔の組み合わせはこれに限られることはない。例えば、循環系を構成する単位充填塔の内、複数の単位充填塔に、流路長が短く、断面積の大きな充填層を形成させても良い。また、例えば、低圧単位充填塔と、流路長が長い充填層が形成された単位充填塔とを交互に配置しても良い。また、例えば、循環系を構成する全ての単位充填塔には、流路長および/または断面積が異なる充填層が形成されていても良い。   In addition, in the above-described embodiment, only one of the unit packed towers constituting the circulation system is formed with a packed bed having a shorter flow path length and a larger cross-sectional area than the other unit packed towers. The combination of unit packed towers forming the circulation system is not limited to this. For example, a packed bed having a short channel length and a large cross-sectional area may be formed in a plurality of unit packed towers among the unit packed towers constituting the circulation system. Further, for example, a low-pressure unit packed column and a unit packed column in which a packed bed having a long channel length is formed may be alternately arranged. Further, for example, packed packing layers having different flow path lengths and / or cross-sectional areas may be formed in all unit packed towers constituting the circulation system.

充填層における流路長の長短、断面積の大小の組み合わせは、原料液の性状や、得られる画分の純度等を勘案して、適切な組み合わせを選択することが好ましい。かかる態様により、原料液を供給する単位充填塔を移動させて、クロマト分離を行うような擬似移動層方式クロマト分離装置においても、差圧の上昇を有効に制御できる。   The combination of the length of the flow path in the packed bed and the size of the cross-sectional area is preferably selected in consideration of the properties of the raw material liquid, the purity of the obtained fraction, and the like. According to such an embodiment, even in the pseudo moving bed type chromatographic separation apparatus in which the unit packed tower for supplying the raw material liquid is moved to perform chromatographic separation, the increase in the differential pressure can be effectively controlled.

上述の実施形態では、3成分を含む原料液を用いてクロマト分離を行っているが、分離する対象は、2成分であっても良いし、4成分以上であっても良い。   In the above-described embodiment, chromatographic separation is performed using a raw material liquid containing three components, but the target to be separated may be two components or four or more components.

本発明のクロマト分離装置の一例を示す模式図である。It is a schematic diagram which shows an example of the chromatographic separation apparatus of this invention.

符号の説明Explanation of symbols

8 クロマト分離装置
100 循環系
11〜20 単位充填塔
101、106 充填層
111〜120 配管
122 ポンプ
Z 遮蔽弁
8 Chromatographic Separator 100 Circulation System 11-20 Unit Packing Tower 101, 106 Packed Bed 111-120 Piping 122 Pump Z Shielding Valve

Claims (2)

吸着剤が充填され、原料液と溶離液の流路長、および/または、原料液と溶離液の通液方向に直交する断面の面積、の異なる充填層が形成された複数の単位充填塔を直列に連結し、該単位充填塔に通流された原料液および溶離液が循環可能に構成された循環系を有し、該循環系は、略同等の体積の充填層が形成された単位充填塔で構成されていることを特徴とする、クロマト分離装置。 A plurality of unit packed towers filled with an adsorbent and formed with packed layers having different channel lengths of the raw material liquid and the eluent and / or cross-sectional areas orthogonal to the flow direction of the raw material liquid and the eluent. The unit system is connected in series and has a circulation system configured to circulate the raw material liquid and the eluent passed through the unit packed column, and the circulation system is a unit packing in which a packed bed having a substantially equal volume is formed. A chromatographic separation device comprising a tower . 原料液が供給される単位充填塔は、前記循環系を構成する他の単位充填塔よりも、原料液と溶離液の流路長が短い充填層、および/または、原料液と溶離液の通液方向に直交する断面の面積が大きい充填層、が形成された単位充填塔であることを特徴とする、請求項に記載のクロマト分離装置。 The unit packed column to which the raw material liquid is supplied has a packed bed in which the flow path length of the raw material liquid and the eluent is shorter than that of the other unit packed towers constituting the circulation system, and / or the flow of the raw material liquid and the eluent. 2. The chromatographic separation apparatus according to claim 1 , wherein the chromatographic separation apparatus is a unit packed column in which a packed bed having a large cross-sectional area perpendicular to the liquid direction is formed.
JP2008148050A 2008-06-05 2008-06-05 Chromatographic separation device Expired - Fee Related JP5060400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148050A JP5060400B2 (en) 2008-06-05 2008-06-05 Chromatographic separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148050A JP5060400B2 (en) 2008-06-05 2008-06-05 Chromatographic separation device

Publications (2)

Publication Number Publication Date
JP2009294084A JP2009294084A (en) 2009-12-17
JP5060400B2 true JP5060400B2 (en) 2012-10-31

Family

ID=41542388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148050A Expired - Fee Related JP5060400B2 (en) 2008-06-05 2008-06-05 Chromatographic separation device

Country Status (1)

Country Link
JP (1) JP5060400B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675704B2 (en) * 2013-05-16 2020-04-01 オルガノ株式会社 Method for producing high-purity cerebroside

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223344A (en) * 1988-03-02 1989-09-06 Hitachi Ltd Apparatus and method for introducing sample for liquid chromatography
JP4603114B2 (en) * 1999-09-07 2010-12-22 オルガノ株式会社 Method and apparatus for separating a plurality of components contained in a liquid
JP2004226225A (en) * 2003-01-23 2004-08-12 Daicel Chem Ind Ltd Chromatography sampling method

Also Published As

Publication number Publication date
JP2009294084A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP2007064944A (en) Chromatography
CN203108263U (en) Double column circulating chromatographic system
JP2002143605A (en) Chromatographic separation method
JP2001354690A (en) Method for isolating psicose
JP6732575B2 (en) Chromatographic separation method and chromatographic separation system
CN103157295B (en) Double-column recycling chromatographic system
JP6013639B1 (en) Chromatographic separation method and apparatus for separating multiple components into three or more fractions
JP4945364B2 (en) Separation method of sugar alcohol
WO2005097286A1 (en) Chromatographic separation equipment
JP5060400B2 (en) Chromatographic separation device
JP6546808B2 (en) Chromatographic separation method and chromatographic separation system
US6331250B1 (en) Method and equipment for chromatographic separation
CN109836479B (en) Method for separating and purifying FMD inactivated virus antigen by using simulated fluid bed
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
JP6912320B2 (en) Chromatographic separation method and chromatographic separation system
JP4771460B2 (en) Chromatographic separation method
JP2012098052A (en) Method and apparatus for chromatographic separation
JP2014224063A (en) Method for producing of high purity cerebroside
WO2020100471A1 (en) Chromatographic separation method using simulated moving-bed technique, and chromatographic separation system using simulated moving-bed technique
JP4938728B2 (en) Chromatographic separation method
JP3256349B2 (en) Separation method and apparatus using simulated moving bed
JP4603114B2 (en) Method and apparatus for separating a plurality of components contained in a liquid
JP7181278B2 (en) Chromatographic separation method and chromatographic separation apparatus
WO2023181655A1 (en) Simulated moving-bed chromatographic separation method and simulated moving-bed chromatographic separation system
JPH04227804A (en) Method for separating multiple components and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110825

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees