JP4771460B2 - Chromatographic separation method - Google Patents

Chromatographic separation method Download PDF

Info

Publication number
JP4771460B2
JP4771460B2 JP2005237646A JP2005237646A JP4771460B2 JP 4771460 B2 JP4771460 B2 JP 4771460B2 JP 2005237646 A JP2005237646 A JP 2005237646A JP 2005237646 A JP2005237646 A JP 2005237646A JP 4771460 B2 JP4771460 B2 JP 4771460B2
Authority
JP
Japan
Prior art keywords
eluent
supplying
extracting
fraction
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005237646A
Other languages
Japanese (ja)
Other versions
JP2007051945A (en
Inventor
響介 山田
康平 佐藤
俊哉 片岡
隆之 増田
菊造 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005237646A priority Critical patent/JP4771460B2/en
Publication of JP2007051945A publication Critical patent/JP2007051945A/en
Application granted granted Critical
Publication of JP4771460B2 publication Critical patent/JP4771460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、光学分割用吸着剤を用いた、簡素にかつ高純度に光学活性物質を分離精製するクロマト分離方法に関するものである。   The present invention relates to a chromatographic separation method that uses an optical resolution adsorbent to separate and purify an optically active substance simply and with high purity.

擬似移動層式クロマト分離装置は、原液中に含まれる2成分以上の成分中の特定成分に対して選択的吸着能力を有する吸着剤を充填した多数の単位充填塔(以下、単に充填塔ということもある。)を直列に連結するとともに最下流部の単位充填塔と最上流部の単位充填塔を連結することにより無端状になっている充填層に対して、原液と溶離液を供給するとともに、充填層内を移動する速度が大きい画分(第1の画分:A画分)と充填層内を移動する速度が小さい画分(第2の画分:C画分)をそれぞれ異なる位置から抜き出し、かつ原液供給位置、溶離液供給位置、A画分抜き出し位置、C画分抜き出し位置を、一定の位置関係に保ちながら充填層の流体循環方向下流側に順次移動させることで、原液供給を連続的に行うことができる移動層の処理操作を擬似的に実現する装置であることはよく知られている(例えば特許文献1)。   The simulated moving bed type chromatographic separation apparatus is composed of a large number of unit packed towers (hereinafter simply referred to as packed towers) packed with an adsorbent having a selective adsorption ability with respect to a specific component of two or more components contained in the stock solution. In addition, the stock solution and the eluent are supplied to the endless packed bed by connecting the unit packed column at the most downstream part and the unit packed column at the most upstream part in series. , A position where the fraction moving in the packed bed (first fraction: A fraction) and the fraction moving in the packed bed (second fraction: C fraction) are different. The stock solution is supplied by sequentially moving the stock solution supply position, the eluent supply position, the A fraction extraction position, and the C fraction extraction position to the downstream side in the fluid circulation direction of the packed bed while maintaining a fixed positional relationship. Can be performed continuously It is well known that the processing operations is an apparatus for artificial manner (for example, Patent Document 1).

擬似移動層方式のクロマト分離装置はさまざまな分離に利用されているが、光学異性体の分離においては、光学分割用吸着剤を充填したカラムを用いて、公知の擬似移動層方式のクロマト分離方式で光学異性体を分離する方法が提案されている(特許文献2)。   The simulated moving bed type chromatographic separation apparatus is used for various separations, but in the separation of optical isomers, a column packed with an adsorbent for optical resolution is used, and a known pseudo moving bed type chromatographic separation method is used. Has proposed a method for separating optical isomers (Patent Document 2).

また、常に原液と溶離液の供給およびA画分とC画分の抜き出しを行いながら被処理液が充填層を循環しているような一般的な擬似移動層方式のクロマト分離ではない運転方法として、特許文献3、特許文献4に記載された運転方法が提案されている。これらの運転方法は、イオン交換樹脂を充填剤とし、分子篩の作用を有する固体の吸着剤を充填したカラムを使用した運転方法において利用されている。
特許2962589号公報 特許2925753号公報 特開2001-334103号公報 特公昭60-55162号公報
In addition, as an operation method that is not a general pseudo moving bed type chromatographic separation in which the liquid to be treated circulates through the packed bed while always supplying the stock solution and the eluent and extracting the A fraction and the C fraction. The operation methods described in Patent Document 3 and Patent Document 4 have been proposed. These operation methods are used in an operation method using a column packed with a solid adsorbent having an ion exchange resin as a filler and having a molecular sieve action.
Japanese Patent No. 2962589 Japanese Patent No.2925753 JP 2001-334103 A Japanese Patent Publication No. 60-55162

光学異性体に対して光学分割用吸着剤を使用してクロマト分離精製を実施する際には、特許文献1のような擬似移動層方式の装置が用いられている。光学分割用吸着剤と分離対象物との相互作用により分離が達成されているが、ここでいう相互作用とは分子篩の作用のような物理的作用ではなく、分子間力による作用により吸着剤との間に親和性を持つということである。   When performing chromatographic separation and purification on an optical isomer using an optical resolution adsorbent, an apparatus of a pseudo moving bed system as in Patent Document 1 is used. Separation has been achieved by the interaction between the adsorbent for optical resolution and the object to be separated, but the interaction here is not a physical action like the action of a molecular sieve, but the action of intermolecular force and the adsorbent. It has an affinity between.

このような作用を有する吸着剤を使用してクロマト分離精製を実施する場合、吸着剤への吸着量が濃度に対して比例関係にはならないことが多い(つまり、非線形の吸着等温線になることが多い)ため、溶出曲線がテーリングを起こしやすい。また、濃度により溶出曲線の移動速度が変化しやすい。このため、一般的な擬似移動層方式において分離する際は、分離対象物となる成分のそれぞれの濃度分布が重なりやすくなり、一般的な擬似移動層方式において高い分離性能を求める場合には、単位吸着剤あたりの原液供給量を減らすか、製品区分の回収率を落とすか、カラムの本数を増やす必要がある。結果として吸着剤量を増加させたり、溶離液の消費量を増加させたりする必要があり、処理装置およびランニングコストが高価になる傾向にある。   When chromatographic separation and purification is performed using an adsorbent having such an action, the amount adsorbed on the adsorbent is often not proportional to the concentration (that is, it becomes a non-linear adsorption isotherm). Therefore, the elution curve tends to tail. Moreover, the moving speed of the elution curve is likely to change depending on the concentration. For this reason, when separating in the general simulated moving bed system, the concentration distributions of the components to be separated are easily overlapped, and when high separation performance is required in the general simulated moving bed system, the unit It is necessary to reduce the stock solution supply per adsorbent, reduce the product category recovery rate, or increase the number of columns. As a result, it is necessary to increase the amount of the adsorbent or increase the consumption of the eluent, and the processing apparatus and running cost tend to be expensive.

本発明者らが鋭意研究した結果、擬似移動層方式では連続的に原液、溶離液の供給および目的成分が精製された画分の抜き出しを実施しており、抜き出し位置が下流側に移動してから再度移動するまでの間に抜き出し位置を通過する液を収集している結果、濃度分布がテーリングによって重なりやすいため分離性能が低下することが分かった。   As a result of intensive studies by the present inventors, the simulated moving bed system continuously supplies the stock solution and the eluent, and extracts the fraction in which the target component is purified, and the extraction position moves downstream. As a result of collecting the liquid that passes through the extraction position during the period from the start to the second transfer, it was found that the separation performance deteriorates because the concentration distribution tends to overlap due to tailing.

そこで本発明の課題は、上記のような従来の方法における種々の問題点に着目し、光学分割用吸着剤を吸着剤とするクロマト分離方法において、簡素にかつ高い分離性能が得られる、擬似移動層式クロマト分離方法を提供することにある。   Accordingly, the object of the present invention is to pay attention to various problems in the conventional method as described above, and in a chromatographic separation method using an adsorbent for optical resolution as an adsorbent, a pseudo-moving that provides a simple and high separation performance. The object is to provide a layered chromatographic separation method.

また、本発明の課題は、上記のクロマト分離方法により光学異性体を分離する方法を提供することにある。   Moreover, the subject of this invention is providing the method of isolate | separating an optical isomer with said chromatographic separation method.

上記課題を解決するために、本発明に係るクロマト分離方法は、光学分割用吸着剤を充填した複数の単位充填塔を有し、これらの単位充填塔を配管で直列に連結するとともに最下流部の単位充填塔と最上流部の単位充填塔を連結することにより無端状の循環系を構成した充填層に、2以上の成分を含む原液流体を通流させることにより、前記吸着剤に対する親和力の順に順次分けた吸着帯域を形成させた循環系に対し、
原液と溶離液の少なくとも一方を循環系内に供給し、循環系内においてある成分が富化された充填塔に対応する箇所から循環系内に供給された液量と等しい量を全量抜き出す第1工程と、一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させる第2工程を組み合わせ、かつ、
前記第1工程では、原液供給ポンプにより循環系内に供給される原液の供給位置または溶離液供給ポンプにより循環系内に供給される原液または溶離液供給ポンプにより循環系内に供給される溶離液の供給位置と各成分の抜き出し位置を、循環系内の吸着帯域の移動に合わせて循環系の下流側に順次移動させる操作を行うことで分離を実施し、
前記第2工程では、循環系内の一箇所または二箇所から循環系外に抜き出した循環流体の全量を溶離液供給ポンプおよび/または原液供給ポンプを用い再び循環系内に供給することによって循環系内の循環を行うクロマト分離装置を用いることを特徴とする方法からなる。
In order to solve the above-mentioned problems, a chromatographic separation method according to the present invention has a plurality of unit packed towers packed with an optical resolution adsorbent, and these unit packed towers are connected in series with a pipe and at the most downstream portion. By connecting the unit packed column and the unit packed column in the uppermost stream portion to the packed bed constituting the endless circulation system, the stock fluid containing two or more components is allowed to flow, so that the affinity for the adsorbent is increased. For the circulation system in which adsorption zones are formed in order,
First, at least one of the stock solution and the eluent is supplied into the circulation system, and a total amount equal to the amount of the liquid supplied into the circulation system is extracted from a location corresponding to the packed tower enriched with a certain component in the circulation system. Combining the step with the second step of circulating the liquid in the circulation system without supplying any undiluted solution and eluent, and removing the separated components, and
In the first step, the eluent supplied to the circulation system by stock or eluant feed pump is fed into the circulation system by the supply position or the eluent supply pump stock supplied to the circulatory system by the starting solution feed pump Separation is performed by sequentially moving the supply position and the extraction position of each component to the downstream side of the circulation system in accordance with the movement of the adsorption zone in the circulation system,
In the second step, the total amount of circulating fluid extracted outside the circulatory system from one location or two locations in the circulatory system, by supplying again the circulating system using an eluent supply pump and / or the starting solution feed pump It consists of a method characterized by using a chromatographic separation device that circulates in the circulation system.

Development of chiral stationary phases consisting of polysaccharide derivatives(Kazuma Ogumi,Hirofumi Oda,Akito Ichida、Journal of Chromatography A,694,91-100、1995)によると、光学分割用吸着剤としては、光学活性な高分子化合物を利用した光学分割用吸着剤と、光学分離能を有する低分子化合物を利用した光学分割用吸着剤とに分類できる。前記光学活性な高分子化合物としては、例えば多糖誘導体(セルロースやアミロースのエステルあるいはカルバメートなど)、ポリアクリレート誘導体、あるいはポリアミド誘導体をシリカゲルに化学修飾させた吸着剤、またはシリカゲルを使用せずに前記ポリマーそのものを粒状にしたビーズ型吸着剤およびポリマーを更に架橋させてなる架橋型吸着剤などを挙げることができる。また、光学分割能を有する低分子化合物としては、例えばアミノ酸あるいはその誘導体、クラウンエーテルあるいはその誘導体、シクロデキストリンあるいはその誘導体等を挙げることができる。これら低分子化合物は、通常シリカゲル、アルミナ、ジルコニア、酸化チタン、ケイ酸塩、珪藻土などの無機担体、ポリウレタン、ポリスチレン、ポリアクリル酸誘導体などの有機担体に化学修飾して使用される。   According to Development of chiral stationary phases consisting of polysaccharide derivatives (Kazuma Ogumi, Hirofumi Oda, Akito Ichida, Journal of Chromatography A, 694, 91-100, 1995) It can be classified into an optical resolution adsorbent used and an optical resolution adsorbent using a low molecular weight compound having optical resolution. Examples of the optically active polymer compound include, for example, polysaccharide derivatives (such as cellulose and amylose esters or carbamates), polyacrylate derivatives, or adsorbents obtained by chemically modifying polyamide derivatives on silica gel, or the polymer without using silica gel. Examples thereof include a bead-type adsorbent obtained by granulating itself and a cross-linked adsorbent obtained by further crosslinking a polymer. Examples of the low molecular weight compound having optical resolution include amino acids or derivatives thereof, crown ethers or derivatives thereof, cyclodextrins or derivatives thereof, and the like. These low molecular compounds are usually used after chemically modifying an inorganic carrier such as silica gel, alumina, zirconia, titanium oxide, silicate, diatomaceous earth, or an organic carrier such as polyurethane, polystyrene, or polyacrylic acid derivative.

これらの吸着剤は市販品を使用することもでき、例えば光学分割用吸着剤としてダイセル化学工業社製CHIRALCEL OB(登録商標、以下同様)、CHIRALCEL OD、CROWNPAK CR(+)、CHIRALCEL CA-1、CHIRALCEL OA、CHIRALCEL OK、CHIRALCEL OJ、CHIRALCEL OC、CHIRALCEL OF、CHIRALCEL OG、CHIRALPAK WH、CHIRALPAK WM、CHIRALPAK WE、CHIRALPAK OT(+)、CHIRALPAK OP(+)、CHIRALPAK AS、CHIRALPAK AD等が挙げられる。   Commercially available products of these adsorbents can also be used. For example, Daicel Chemical Industries, Ltd. CHIRALCEL OB (registered trademark, the same applies hereinafter), CHIRALCEL OD, CROWNPAK CR (+), CHIRALCEL CA-1, CHIRALCEL OA, CHIRALCEL OK, CHIRALCEL OJ, CHIRALCEL OC, CHIRALCEL OF, CHIRALCEL OG, CHIRALPAK WH, CHIRALPAK WM, CHIRALPAK WE, CHIRALPAK OT (+), CHIRALPAK AD (+), IR

原液と溶離液の少なくとも一方を循環系内に供給し、循環系内においてある成分が富化された充填塔に対応する箇所から循環系内に供給された液量と等しい量を全量抜き出す第1工程とは、具体的には以下のF−A、D−A、F−C、D−C、FD−A、FD−C工程のことを指す。   First, at least one of the stock solution and the eluent is supplied into the circulation system, and a total amount equal to the amount of the liquid supplied into the circulation system is extracted from a location corresponding to the packed tower enriched with a certain component in the circulation system. The process specifically refers to the following FA, DA, FC, DC, FD-A, and FD-C processes.

すなわち、本発明に係るクロマト分離方法においては、運転工程として、例えば以下のような工程順で繰り返す運転工程とすることができる。例えば運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すF−A工程またはFD−A工程、(3)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返すような工程とすることができる。   That is, in the chromatographic separation method according to the present invention, the operation process can be an operation process that is repeated in the following process order, for example. For example, as an operation process, (1) a D-A process for supplying the eluent and extracting the entire amount of the extracted liquid from the first fraction extraction position; (2) supplying the stock solution or the stock solution and the eluent and extracting the amount of the liquid The FA process or the FD-A process in which the total amount of the first fraction is extracted from the first fraction extraction position, (3) supply of any undiluted solution and eluent, and removal of the liquid in the circulation system without extracting the separated components R step to circulate, (4) DC step for supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extracting position, (5) Supplying all undiluted solution and eluent, separated components The process can be repeated in the order of the R process in which the liquid in the circulation system is circulated without removing the liquid.

また、本発明に係るクロマト分離方法においては、運転工程として、(1)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すF−A工程またはFD−A工程、(2)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(3)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返すような工程とすることができる。   Further, in the chromatographic separation method according to the present invention, as an operation step, (1) an FA process or FD in which the stock solution or the stock solution and the eluent are supplied and the entire amount of the withdrawn liquid is withdrawn from the first fraction extraction position. -A step, (2) D-A step of supplying the eluent and extracting the entire amount of the extracted liquid from the first fraction extracting position, (3) Supplying all the stock solution and eluent, R step for circulating the liquid in the circulation system without performing extraction, (4) DC step for supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extraction position, (5) The process may be repeated in the order of the R process in which the liquid in the circulation system is circulated without supplying the stock solution and the eluent and extracting the separated components.

また、本発明に係るクロマト分離方法においては、運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(3)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(4)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すF−C工程またはFD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返すような工程とすることができる。   Further, in the chromatographic separation method according to the present invention, as an operation step, (1) a D-A step of supplying an eluent and extracting the total amount of the extracted liquid from the first fraction extraction position, (2) R step of circulating the liquid in the circulation system without supplying the stock solution and the eluent, and extracting the separated components, (3) The second fraction extraction position for supplying the eluent and for the total amount of the extracted liquid (4) Extraction process from the second fraction extraction position while supplying the stock solution or the stock solution and the eluent and extracting the total amount of the extraction solution from the second fraction extraction position, (5) The process may be repeated in the order of the R process in which the liquid in the circulation system is circulated without supplying the stock solution and the eluent and extracting the separated components.

また、本発明に係るクロマト分離方法においては、運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(3)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すF−C工程またはFD−C工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返すような工程とすることができる。   Further, in the chromatographic separation method according to the present invention, as an operation step, (1) a D-A step of supplying an eluent and extracting the total amount of the extracted liquid from the first fraction extraction position, (2) R step of circulating the liquid in the circulation system without supplying the undiluted solution and the eluent, and (3) supplying the undiluted solution or the undiluted solution and the eluent, FC process or FD-C process for extracting from the fraction extraction position, (4) DC process for supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extraction position, (5) The process may be repeated in the order of the R process in which the liquid in the circulation system is circulated without supplying the stock solution and the eluent and extracting the separated components.

また、本発明に係るクロマト分離方法においては、上記吸着剤の粒径が150μm以下、理論段数が200段/m以上、目的物の純度95%以上、のすべての条件を満たすような高い分離性能が必要とされるような条件において効果が著しい。ここで、理論段数(N:Number of theoretical plate)とは、カラムの性能・効率を判断する指標の一つであり、さまざまな計算方法があるが第十四改正日本薬局方(JP=Japanese Pharmacopeia)では、以下の式(1)を用いており、本発明でもこの計算式を使用し、カラムの長さから1mあたりに換算する。また本発明では、試料は例えば分離対象となる光学異性体とし、溶媒は分離に使用する溶離液と同じものとする。理段段数を決めるに際しては、注入量は、注入量を半分もしくは2倍としたときに理論段数が変化しない程度の量とする。
N=5.55(Tr/W0.5 2 ・・・(1)
ここで、
Tr:物質の保持時間
0.5:ピーク高さの中点におけるピーク幅
である。ただし、TrとW0.5は同じ単位を用いる。
In the chromatographic separation method according to the present invention, high separation performance satisfying all the conditions that the particle size of the adsorbent is 150 μm or less, the theoretical plate number is 200 plates / m or more, and the purity of the target product is 95% or more. The effect is remarkable in the condition where is required. Here, the number of theoretical plate (N) is one of the indicators for judging the performance and efficiency of the column. There are various calculation methods, but the 14th revised Japanese Pharmacopeia (JP = Japanese Pharmacopeia) ) Uses the following formula (1), and this calculation formula is also used in the present invention to convert the column length per 1 m. In the present invention, the sample is, for example, an optical isomer to be separated, and the solvent is the same as the eluent used for separation. When determining the number of stages, the injection amount is set to such an amount that the theoretical stage number does not change when the injection amount is halved or doubled.
N = 5.55 (Tr / W 0.5 ) 2 (1)
here,
Tr: Retention time of substance W 0.5 : Peak width at the midpoint of the peak height. However, Tr and W 0.5 uses the same unit.

さらに、本発明に係るクロマト分離方法においては、上記第2工程では、循環系内の一箇所または二箇所から循環系外に抜き出した循環流体の全量を溶離液供給ポンプおよび/または原液供給ポンプを用い再び循環系内に供給することによって循環系内の循環を行うことを特徴とするクロマト分離装置を用いる。これにより、循環系内に循環ポンプを設ける場合の該循環ポンプ内部における分離対象物の混合を避けることができ、より高い分離性能を得ることができる。
Furthermore, in the chromatographic separation method according to the present invention, in the second step, the entire amount of the circulating fluid extracted from one or two locations in the circulation system to the outside of the circulation system is used as an eluent supply pump and / or a stock solution supply pump. A chromatographic separation device is used which performs circulation in the circulation system by supplying it again into the circulation system. Thereby, the mixing of the separation object in the circulation pump when the circulation pump is provided in the circulation system can be avoided, and higher separation performance can be obtained.

本発明は、上記のような方法により、光学異性体を分離することを特徴とするクロマト分離方法についても提供する。   The present invention also provides a chromatographic separation method characterized by separating optical isomers by the method as described above.

ここで光学異性体とは、次のようなものを言う。すなわち、左右対称の化学構造を有し、ニコルのプリズムを通した一方向のみに振動する波動である偏光を当てたとき、1つは偏光面を右に、他は左に回転させる、右旋性、左旋性をそれぞれ発現する場合、互いに光学異性体であるという。例えば、乳酸の構造式を平面的に書くと2つの構造が考えられ、不斉炭素の左側に−OH基があるものをL型(または、L体)、右側に−OH基があるものをD型(または、D体)と呼ぶが、このような物質に上記の如く偏光を当てると、それぞれ右旋性、左旋性を発現し、互いに光学異性体となる。   Here, the optical isomer refers to the following. In other words, it has a symmetrical chemical structure, and when polarized light, which is a wave that vibrates in only one direction through a Nicol prism, is applied, one rotates the plane of polarization to the right and the other rotates to the left. When both sex and levorotality are expressed, they are said to be optical isomers. For example, when the structural formula of lactic acid is written two-dimensionally, two structures can be considered: those having —OH groups on the left side of the asymmetric carbon are L-type (or L-form), and those having —OH groups on the right side. Although it is called D-type (or D-form), when polarized light is applied to such a substance as described above, it exhibits dextrorotatory and levorotatory properties, and becomes an optical isomer.

本発明のクロマト分離方法によれば、光学分割用吸着剤を充填したカラムを用いたクロマト分離工程において、従来の方法に比べ、簡素に、かつ高い分離性能が得ることができる。とくに、光学異性体を高い分離性能をもって分離することができる。   According to the chromatographic separation method of the present invention, in the chromatographic separation step using the column packed with the optical resolution adsorbent, it is possible to obtain a simpler and higher separation performance than the conventional method. In particular, optical isomers can be separated with high separation performance.

以下に、本発明に係るクロマト分離方法の望ましい実施の形態を、図面を参照しながら説明する。但し、本発明はその要旨を逸脱しない限り以下の実施形態に限定されるものでない。   Hereinafter, preferred embodiments of a chromatographic separation method according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments without departing from the gist thereof.

図1は、本発明の一実施態様に係るクロマト分離方法を実施するに適したクロマト分離装置を示している。クロマト分離装置1は、4つの単位充填塔4(No.1〜No.4充填塔)を備えており、各充填塔4内には、原液タンク2から供給されてくる原液3中に含まれる2成分以上の成分中の特定成分に対し選択的吸着能力を有する吸着剤5(光学分割用吸着剤)が充填されている。各充填塔4は、配管6により、各充填塔4の出口から隣接する充填塔4の入口へと連結されて、全体として直列に連結されており、最後部の単位充填塔4(たとえば、図1におけるNo.4充填塔4)の出口から最前部の単位充填塔4(たとえば、図1におけるNo.1充填塔4)の入口へと配管6で連結されることにより、全単位充填塔4が無端状に連結されている。したがって、この全単位充填塔4が無端に連結された充填層は、流体が矢印方向に循環可能な系7として形成されている。   FIG. 1 shows a chromatographic separation apparatus suitable for carrying out a chromatographic separation method according to an embodiment of the present invention. The chromatographic separation apparatus 1 includes four unit packed columns 4 (No. 1 to No. 4 packed columns), and each packed column 4 is contained in a stock solution 3 supplied from a stock solution tank 2. An adsorbent 5 (adsorbent for optical resolution) having a selective adsorption ability with respect to a specific component in two or more components is packed. Each packed column 4 is connected by piping 6 from the outlet of each packed column 4 to the inlet of the adjacent packed column 4 and connected in series as a whole, and the last unit packed column 4 (for example, FIG. 1 is connected to the inlet of the foremost unit packed column 4 (for example, No. 1 packed column 4 in FIG. 1) by a pipe 6, so that all the unit packed columns 4 are connected. Are connected endlessly. Therefore, the packed bed in which all the unit packed columns 4 are connected endlessly is formed as a system 7 in which the fluid can circulate in the direction of the arrow.

循環系7内の各隣接充填塔4間には、各充填塔間を遮断することが可能な遮断弁R1、R2、R3、R4が設けられている。各遮断弁R1〜R4と、その上流側に位置する各充填塔4の出口との間には、充填層内を移動する速度が大きい画分(A画分:吸着剤に対し吸着能力の低い非吸着物質を多く含む第1の画分)の抜き出しを目的としたA画分抜き出し弁A1、A2、A3、A4が設けられている。各A画分抜き出しライン8は、合流されて一つのA画分合流管9にまとめられている。また、同様に、充填層内を移動する速度が小さい画分(C画分:吸着剤に対し吸着能力の高い吸着物質を多く含む第2の画分)の抜き出しを目的としたC画分抜き出し弁C1、C2、C3、C4が設けられている。各C画分抜き出しライン10は、合流されて一つのC画分合流管11にまとめられている。このほかに循環工程において全量抜き出しを行うことを目的とした2方弁Z1、Z2、Z3、Z4が設けられている。各循環抜出しライン12は、合流されて循環抜出し合流管13にまとめられ、溶離液供給ポンプPDの上流側で溶離液供給ライン20に合流されている。   Between each adjacent packed tower 4 in the circulation system 7, shut-off valves R1, R2, R3, R4 capable of blocking the packed towers are provided. Between each shut-off valve R1 to R4 and the outlet of each packed tower 4 located on the upstream side thereof, a fraction having a high moving speed in the packed bed (Fraction A: low adsorption capacity for the adsorbent) A fraction extraction valves A1, A2, A3, and A4 are provided for the purpose of extracting the first fraction containing a large amount of non-adsorbing substances. Each A fraction extraction line 8 is merged into a single A fraction merging pipe 9. Similarly, extraction of the C fraction for the purpose of extracting a fraction having a low moving speed in the packed bed (C fraction: a second fraction containing a large amount of an adsorbent having a high adsorption capacity with respect to the adsorbent). Valves C1, C2, C3, C4 are provided. Each C fraction extraction line 10 is merged and grouped into one C fraction merge pipe 11. In addition, two-way valves Z1, Z2, Z3, and Z4 are provided for the purpose of extracting the entire amount in the circulation process. Each circulation extraction line 12 is merged and collected in a circulation extraction / merging pipe 13 and merged with the eluent supply line 20 upstream of the eluent supply pump PD.

循環系7には、原液タンク2に収容された原液3と、溶離液タンク15に収容された溶離液16が供給可能となっている。原液3は、本実施態様では、供給流量の制御が可能な原液供給ポンプPFにより、原液供給ライン17を介して供給される。原液供給ライン17は、各原液分岐供給ライン18に分岐され、原液は各原液分岐供給ライン18を介して各単位充填塔4の入口側に供給可能となっている。各原液分岐供給ライン18には、開閉可能な原液供給弁F1、F2、F3、F4が設けられており、開弁された原液供給弁のラインを介して対応する単位充填塔に原液が供給される。なお、原液供給ポンプPFの安定運転のために原液が供給されない工程でも原液供給ポンプPFを作動させておきたい場合は、原液供給弁の手前に弁F0および原液循環ライン19を設けて原液タンク2に戻すようにしてもよい。   The circulation system 7 can be supplied with the stock solution 3 contained in the stock solution tank 2 and the eluent 16 contained in the eluent tank 15. In this embodiment, the stock solution 3 is supplied via the stock solution supply line 17 by a stock solution supply pump PF capable of controlling the supply flow rate. The stock solution supply line 17 is branched to each stock solution branch supply line 18, and the stock solution can be supplied to the inlet side of each unit packed tower 4 via each stock solution branch supply line 18. Each stock solution branch supply line 18 is provided with open and close stock solution supply valves F1, F2, F3, and F4, and the stock solution is supplied to the corresponding unit packed tower via the opened stock solution supply valve line. The In addition, when it is desired to operate the raw solution supply pump PF even in a process in which the raw solution is not supplied for stable operation of the raw solution supply pump PF, a valve F0 and a raw solution circulation line 19 are provided in front of the raw solution supply valve to provide a solution tank 2 You may make it return to.

循環流体は、本実施態様では全量抜き出し弁Z1〜Z4のいずれかにおいて全量引き抜かれ、循環抜出し合流管13を通して溶離液タンク15と溶離液供給ポンプPDの間の溶離液供給ポンプPDの上流部に合流し、供給流量の制御が可能な溶離液供給ポンプPDにより、溶離液供給ライン20を介して再び循環系7に供給されるようになっている。溶離液供給ライン20は、各溶離液分岐供給ライン21に分岐され、溶離液は各溶離液分岐供給ライン21を介して各単位充填塔4の入口側に供給可能となっている。各溶離液分岐供給ライン21には、開閉可能な溶離液供給弁D1、D2、D3、D4が設けられており、開弁された溶離液供給弁のラインを介して対応する単位充填塔4に溶離液が供給される。なお、溶離液供給ポンプPDの安定運転のために溶離液が供給される工程と循環工程以外の工程でも溶離液供給ポンプPDを作動させておきたい場合は、溶離液供給弁の手前に溶離液循環ラインを設けて溶離液タンク15に戻すようにしてもよい。   In this embodiment, the total amount of the circulating fluid is extracted at any one of the extraction valves Z1 to Z4, and is passed through the circulation extraction confluence pipe 13 to the upstream portion of the eluent supply pump PD between the eluent tank 15 and the eluent supply pump PD. The effluent is supplied to the circulation system 7 again through the eluent supply line 20 by the eluent supply pump PD which can be joined and the supply flow rate can be controlled. The eluent supply line 20 is branched to each eluent branch supply line 21, and the eluent can be supplied to the inlet side of each unit packed column 4 via each eluent branch supply line 21. Each eluent branch supply line 21 is provided with eluent supply valves D1, D2, D3, and D4 that can be opened and closed, and connected to the corresponding unit packed tower 4 via the opened eluent supply valve line. Eluent is supplied. If the eluent supply pump PD is to be operated in steps other than the step of supplying the eluent and the circulation step for stable operation of the eluent supply pump PD, the eluent is provided before the eluent supply valve. A circulation line may be provided to return to the eluent tank 15.

このように構成されたクロマト分離装置1において分離処理は次のように行われる。すなわち、クロマト分離装置1では、原液を供給するとともに全量をA画分抜き出し位置より抜き出す工程、溶離液を供給するとともに全量をC画分抜き出し位置より抜き出す工程、溶離液を供給するとともに全量をA画分抜き出し位置より抜き出す工程、および一切の供給、抜き出し、遮断を行わずに循環系内の液を循環させる工程の4つの工程の運転が可能となっており、これらの工程を組み合わせることで分離を行うことができる。   In the chromatographic separation apparatus 1 configured as described above, the separation process is performed as follows. That is, in the chromatographic separation apparatus 1, the step of supplying the stock solution and extracting the entire amount from the A fraction extraction position, the step of supplying the eluent and extracting the entire amount from the C fraction extraction position, supplying the eluent and supplying the total amount of A It is possible to operate in four steps: the step of extracting from the fraction extraction position, and the step of circulating the liquid in the circulation system without any supply, extraction, or shutoff. It can be performed.

原液を供給するとともに全量をA画分抜き出し位置より抜き出す工程(F−A工程)では、いずれかの原液供給弁を開き、原液を対応する単位充填塔4の入口側から循環系7内に供給し、A画分の抜き出し位置に相当するA画分抜き出し弁A(A1〜A4のいずれか)を開き、そのすぐ下流側にある遮断弁R(R1〜R4のいずれか)を閉め、A画分抜き出しライン8を通してA画分の全量を抜き出す。   In the step of supplying the stock solution and extracting the entire amount from the A fraction extraction position (FA step), one of the stock solution supply valves is opened and the stock solution is supplied into the circulation system 7 from the inlet side of the corresponding unit packed column 4. Then, open the A fraction extraction valve A (any one of A1 to A4) corresponding to the extraction position of the A fraction, close the shutoff valve R (any one of R1 to R4) immediately downstream thereof, and The entire amount of the A fraction is extracted through the extraction line 8.

溶離液を供給するとともに全量をC画分抜き出し位置より抜き出す工程(D−C工程)では、いずれかの溶離液供給弁を開き、溶離液を対応する単位充填塔4の入口側から循環系7内に供給し、C画分の抜き出し位置に相当するC画分抜き出し弁C(C1〜C4のいずれか)を開き、そのすぐ下流側にある遮断弁R(R1〜R4のいずれか)を閉め、C画分抜き出しライン10を通してC画分の全量を抜き出す。   In the step of supplying the eluent and extracting the entire amount from the C fraction extraction position (DC step), one of the eluent supply valves is opened, and the eluent is introduced into the circulation system 7 from the inlet side of the corresponding unit packed column 4. The C fraction extraction valve C (any one of C1 to C4) corresponding to the C fraction extraction position is opened, and the shutoff valve R (any one of R1 to R4) immediately downstream is closed. , C fraction is extracted through the C fraction extraction line 10.

溶離液を供給するとともに全量をA画分抜き出し位置より抜き出す工程(D−A工程)では、いずれかの溶離液供給弁を開き、溶離液を対応する単位充填塔4の入口側から循環系7内に供給し、A画分の抜き出し位置に相当するA画分抜き出し弁A(A1〜A4のいずれか)を開き、そのすぐ下流側にある遮断弁R(R1〜R4のいずれか)を閉め、A画分抜き出しライン8を通じてA画分の全量を抜き出す。   In the step of supplying the eluent and extracting the entire amount from the A fraction extraction position (D-A step), one of the eluent supply valves is opened, and the eluent is introduced into the circulation system 7 from the inlet side of the corresponding unit packed column 4. The A fraction extraction valve A (any one of A1 to A4) corresponding to the A fraction extraction position is opened, and the shutoff valve R (any one of R1 to R4) immediately downstream is closed. The entire amount of the A fraction is extracted through the A fraction extraction line 8.

一切の供給、抜き出しを行わずに循環系内の液を移動させる工程(循環工程:R工程)では、いずれかの循環流体抜き出し弁Z(Z1〜Z4のいずれか)を開き、そのすぐ下流にある遮断弁R(R1〜R4のいずれか)を閉め、循環抜出しライン12より全量を循環系7外に抜き出し、溶離液供給ポンプPDと介し、溶離液の供給位置に相当する溶離液供給バルブD(D1〜D4のいずれか)より供給する。   In the process of moving the liquid in the circulation system without performing any supply or extraction (circulation process: R process), one of the circulating fluid extraction valves Z (any one of Z1 to Z4) is opened and immediately downstream thereof. A certain shutoff valve R (any one of R1 to R4) is closed, and the entire amount is drawn out of the circulation system 7 from the circulation extraction line 12, and the eluent supply valve D corresponding to the eluent supply position via the eluent supply pump PD. Supply from (any of D1 to D4).

次に、各バルブ開閉サイクルについて説明する。この運転の一例を表1に示す。表1においては、F、D弁の開閉制御状態を示し、表中の数字は各弁の番号を示し(たとえば、Fの項で1はF1の弁を示している)、その番号が記入されている弁が開弁されることを表している。空欄の場合には、閉弁の状態を示している。また、A、C弁および循環流体抜き出し弁Zの項では、全量抜き出しを行う弁の番号を示している。空欄の場合にはその弁での抜き出しは行わない。R弁については、その番号が記入されている弁が閉弁されることを表している。空欄の場合には、開弁の状態を示している。さらに、原液供給ポンプPFと溶離液供給ポンプPDの項では、丸印は運転状態を示しており、空欄の場合には、停止状態を示している。この表1において、工程No.1−1〜1−5から工程No.4−1〜No.4−5までが、本クロマト装置1における分離処理の1サイクルを示している。   Next, each valve opening / closing cycle will be described. An example of this operation is shown in Table 1. In Table 1, the open / close control states of the F and D valves are shown, and the numbers in the table indicate the numbers of the respective valves (for example, 1 in the F section indicates the F1 valve), and the numbers are entered. It means that the valve is opened. When the column is blank, the valve is closed. In addition, in the terms of the A and C valves and the circulating fluid extraction valve Z, the numbers of valves for extracting the entire amount are shown. If the field is blank, the valve is not extracted. The R valve indicates that the valve in which the number is written is closed. In the case of a blank, the valve open state is indicated. Further, in the terms of the stock solution supply pump PF and the eluent supply pump PD, a circle indicates an operating state, and a blank state indicates a stopped state. In Table 1, the process No. 1-1 to 1-5 to step No. 4-1. Up to 4-5 shows one cycle of the separation process in the present chromatographic apparatus 1.

Figure 0004771460
Figure 0004771460

(工程1−1について)
表1に示した工程No.1−1〜1−5についてみるに、工程1−1では、溶離液供給弁D3を開き溶離液を循環系7内に供給するとともに、A画分抜き出し弁A1を開き、そこからA画分の全量を抜き出す。したがって、この工程1−1は本発明で言う溶離液を供給するとともに全量をA画分抜き出し位置より抜き出すD−A工程に相当している。このとき、原液はF0弁を通して原液タンクに戻している。
(About step 1-1)
Step No. shown in Table 1 As for 1-1 to 1-5, in step 1-1, the eluent supply valve D3 is opened to supply the eluent into the circulation system 7, and the A fraction extraction valve A1 is opened, from which the A fraction is separated. Extract the entire amount of. Therefore, this step 1-1 corresponds to the D-A step of supplying the eluent as referred to in the present invention and extracting the entire amount from the A fraction extraction position. At this time, the stock solution is returned to the stock solution tank through the F0 valve.

(工程1−2について)
工程1−2では、原液供給弁F1を開き原液を循環系7内に供給するとともに、A画分抜き出し弁A1を開き、そこからA画分の全量を抜き出す。したがって、この工程1−2は本発明で言う原液を供給するとともに全量をA画分抜き出し位置より抜き出すF−A工程に相当している。
(About step 1-2)
In step 1-2, the stock solution supply valve F1 is opened to supply the stock solution into the circulation system 7, and the A fraction extraction valve A1 is opened, from which the entire amount of the A fraction is extracted. Therefore, this step 1-2 corresponds to the FA step of supplying the stock solution in the present invention and extracting the whole amount from the A fraction extraction position.

(工程1−3について)
工程1−3では、循環流体抜き出し弁Z2を開き、そこから循環流体を循環系7から全量抜き出す。抜き出された循環流体を循環ポンプとしての溶離液供給ポンプPDによって溶離液供給弁D3から再度、循環系7内に供給する。したがって、この工程1−3は本発明で言う一切の供給、抜き出し、遮断を行わずに循環系内の液を移動させる工程(第2工程:循環工程R)に相当している。このとき、原液はF0弁を通して原液タンクに戻している。
(About step 1-3)
In step 1-3, the circulating fluid extraction valve Z2 is opened, and the entire amount of circulating fluid is extracted from the circulating system 7 therefrom. The extracted circulating fluid is supplied again into the circulation system 7 from the eluent supply valve D3 by the eluent supply pump PD as a circulation pump. Therefore, this step 1-3 corresponds to the step of moving the liquid in the circulation system (second step: circulation step R) without performing any supply, extraction, or shutoff in the present invention. At this time, the stock solution is returned to the stock solution tank through the F0 valve.

(工程1−4について)
工程1−4では、溶離液供給弁D3を開き溶離液を循環系7内に供給するとともに、C画分抜き出し弁C3を開き、そこからC画分の全量を抜き出す。したがって、この工程1−4は本発明で言う溶離液を供給するとともに全量をC画分抜き出し位置より抜き出すD−C工程に相当している。このとき、原液はF0弁を通して原液タンクに戻している。
(About step 1-4)
In step 1-4, the eluent supply valve D3 is opened to supply the eluent into the circulation system 7, and the C fraction extraction valve C3 is opened, from which the entire amount of the C fraction is extracted. Therefore, this step 1-4 corresponds to the DC step of supplying the eluent as used in the present invention and extracting the entire amount from the C fraction extraction position. At this time, the stock solution is returned to the stock solution tank through the F0 valve.

(工程1−5について)
工程1−5では、循環流体抜き出し弁Z2を開き、そこから循環流体を循環系7から全量抜き出す。抜き出された循環流体を循環ポンプとしての溶離液供給ポンプPDによって溶離液供給弁D3から再度、循環系7内に供給する。したがって、この工程1−5は本発明で言う一切の供給、抜き出し、遮断を行わずに循環系内の液を移動させる工程(第2工程:循環工程R)に相当している。このとき、原液はF0弁を通して原液タンクに戻している。
(About Step 1-5)
In step 1-5, the circulating fluid extraction valve Z2 is opened, and the entire amount of circulating fluid is extracted from the circulating system 7 therefrom. The extracted circulating fluid is supplied again into the circulation system 7 from the eluent supply valve D3 by the eluent supply pump PD as a circulation pump. Therefore, this step 1-5 corresponds to the step of moving the liquid in the circulation system (second step: circulation step R) without performing any supply, extraction, or shutoff in the present invention. At this time, the stock solution is returned to the stock solution tank through the F0 valve.

以上の一連の工程1−1〜1−5では、原液、溶離液の供給位置、A画分、C画分の抜き出し位置、および循環工程における循環流体抜き出し弁の位置は、ある特定の位置関係に保って実行され、これら一連の工程1−1〜1−5が終了すると、その特定の位置関係を維持しつつ、各制御対象弁の位置を下流側に一つ移行し、次の一連の工程2−1〜2−5を実行する。この移行を順次行うことにより、周知の擬似移動層式クロマト分離装置の運転操作と同等の機能を達成できる。   In the series of steps 1-1 to 1-5 described above, the supply position of the stock solution and the eluent, the extraction position of the A fraction and the C fraction, and the position of the circulating fluid extraction valve in the circulation process are in a specific positional relationship. When the series of steps 1-1 to 1-5 is completed, the position of each control target valve is shifted to the downstream side while maintaining the specific positional relationship, and the next series of steps is performed. Steps 2-1 to 2-5 are executed. By performing this transition sequentially, a function equivalent to the operation operation of the known pseudo moving bed type chromatographic separation apparatus can be achieved.

一連の工程1−1〜1−5に続く工程2−1〜2−5、工程3−1〜3−5、工程4−1〜4−5では、上記の如く各弁の位置を一つずつ移行した状態にて、上記工程1−1〜1−5と同様の運転を実行する。工程1−1〜4−5までが実行されると、分離処理の1サイクルが終了する。   In steps 2-1 to 2-5, steps 3-1 to 3-5, and steps 4-1 to 4-5 following the series of steps 1-1 to 1-5, the position of each valve is set to one as described above. The operation | movement similar to the said process 1-1 to 1-5 is performed in the state which shifted to each. When steps 1-1 to 4-5 are executed, one cycle of the separation process is completed.

なお、上記分離操作においては、原液供給ポンプPFおよび溶離液供給ポンプPDは、定流量吐出設定としてもよいし、流量制御を行ってもよい。   In the above separation operation, the stock solution supply pump PF and the eluent supply pump PD may be set to a constant flow rate discharge setting or may perform flow rate control.

上記のクロマト分離装置1においては、循環工程では、循環系7において溶離液供給直前の循環流体を循環流体抜き出し弁Zより全量を抜き出し、溶離液供給ポンプPDを利用して抜き出した弁Zのすぐ下流の溶離液供給弁Dより供給する。つまり、溶離液を供給する工程と循環系7内の循環を行う工程において溶離液供給ポンプPDを共有化することで、分離運転において必要とされるポンプの数を合計2台に減らすことが可能となり、クロマト分離装置1全体として簡素化することができる。   In the chromatographic separation apparatus 1 described above, in the circulation step, the entire amount of the circulating fluid immediately before the eluent supply in the circulation system 7 is extracted from the circulating fluid extraction valve Z, and immediately after the valve Z extracted using the eluent supply pump PD. Supply from the downstream eluent supply valve D. In other words, by sharing the eluent supply pump PD in the step of supplying the eluent and the step of circulating in the circulation system 7, the number of pumps required in the separation operation can be reduced to a total of two. Thus, the entire chromatographic separation apparatus 1 can be simplified.

また、循環工程において抜き出される循環流体は、循環系7内において原液濃度が最も低く、比重、粘性等の物性が溶離液に最も近い部分であるため、溶離液供給ポンプPDに流入する溶離液および循環流体の比重、粘性等の物性は分離運転において常に安定する。これにより循環工程において制御装置なしで、あるいは安価で簡便な制御装置のみで従来の方法より設定値に近い安定した流量で運転することが可能になり、分離性能を安定させることができる。   Further, the circulating fluid extracted in the circulation step has the lowest concentration of the stock solution in the circulation system 7 and the physical properties such as specific gravity and viscosity are the closest to the eluent, so that the eluent flowing into the eluent supply pump PD The physical properties of the circulating fluid such as specific gravity and viscosity are always stable in the separation operation. This makes it possible to operate at a stable flow rate that is closer to the set value than the conventional method without a control device in the circulation process, or with only a cheap and simple control device, and can stabilize the separation performance.

また、抜き出し弁側に背圧弁を使用しなくとも通常の弁によって各成分の引抜きが可能となるので、循環系内の圧力仕様を低下させることができる。この面からも、クロマト分離装置1の簡素化、コストダウンが可能になる。   Further, each component can be extracted by a normal valve without using a back pressure valve on the extraction valve side, so that the pressure specification in the circulation system can be lowered. From this aspect, the chromatographic separation apparatus 1 can be simplified and the cost can be reduced.

図2は、本発明の一参考態様に係るクロマト分離方法を実施するに適した図1とは別のクロマト分離装置を示している。すなわち、循環系7内に、循環ポンプPRを設けた形態を示している。 FIG. 2 shows another chromatographic separation apparatus different from FIG. 1 suitable for carrying out the chromatographic separation method according to one reference embodiment of the present invention. That is, an embodiment in which a circulation pump PR is provided in the circulation system 7 is shown.

図2において、クロマト分離装置31は、4つの単位充填塔4(No.1〜No.4充填塔)を備えており、各充填塔4内には、原液3中に含まれる2成分以上の成分中の特定成分に対し選択的吸着能力を有する吸着剤5(光学分割用吸着剤)が充填されている。各充填塔4は、配管6により、各充填塔4の出口から隣接する充填塔4の入口へと連結されて、全体として直列に連結されており、最後部の単位充填塔4(たとえば、図1におけるNo.4充填塔4)の出口から最前部の単位充填塔4(たとえば、図1におけるNo.1充填塔4)の入口へと配管6で連結されることにより、全単位充填塔4が無端状に連結されている。したがって、この全単位充填塔4が無端に連結された充填層は、流体が矢印方向に循環可能な系7として形成されている。この循環系7に、循環ポンプPRが配置されている。   2, the chromatographic separation apparatus 31 includes four unit packed columns 4 (No. 1 to No. 4 packed columns), and each packed column 4 includes two or more components contained in the stock solution 3. An adsorbent 5 (adsorbent for optical resolution) having a selective adsorption ability for a specific component in the components is packed. Each packed column 4 is connected by piping 6 from the outlet of each packed column 4 to the inlet of the adjacent packed column 4 and connected in series as a whole, and the last unit packed column 4 (for example, FIG. 1 is connected to the inlet of the foremost unit packed column 4 (for example, No. 1 packed column 4 in FIG. 1) by a pipe 6, so that all the unit packed columns 4 are connected. Are connected endlessly. Therefore, the packed bed in which all the unit packed columns 4 are connected endlessly is formed as a system 7 in which the fluid can circulate in the direction of the arrow. A circulation pump PR is disposed in the circulation system 7.

循環系7内の各隣接充填塔4間には、各充填塔間を遮断することが可能な遮断弁R1、R2、R3、R4が設けられている。各遮断弁R1〜R4と、その上流側に位置する各充填塔4の出口との間には、充填層内を移動する速度が大きい画分(A画分)の抜き出しを目的としたA画分抜き出し弁A1、A2、A3、A4が設けられている。各A画分抜き出しライン8は、合流されて一つのA画分合流管9にまとめられている。また、同様に、充填層内を移動する速度が小さい画分(C画分)の抜き出しを目的としたC画分抜き出し弁C1、C2、C3、C4が設けられている。各C画分抜き出しライン10は、合流されて一つのC画分合流管11にまとめられている。   Between each adjacent packed tower 4 in the circulation system 7, shut-off valves R1, R2, R3, R4 capable of blocking the packed towers are provided. Between the shutoff valves R1 to R4 and the outlet of each packed tower 4 located on the upstream side thereof, an A picture for the purpose of extracting a fraction (A fraction) that moves at a high speed in the packed bed. Extraction valves A1, A2, A3, A4 are provided. Each A fraction extraction line 8 is merged into a single A fraction merging pipe 9. Similarly, C fraction extraction valves C1, C2, C3, and C4 are provided for the purpose of extracting a fraction (C fraction) that moves at a low speed in the packed bed. Each C fraction extraction line 10 is merged and grouped into one C fraction merge pipe 11.

循環系7には、原液タンク2に収容された原液3と、溶離液タンク15に収容された溶離液16が供給可能となっている。原液3は、本参考態様では、供給流量の制御が可能な原液供給ポンプPFにより、原液供給ライン17を介して供給される。原液供給ライン17は、各原液分岐供給ライン18に分岐され、原液は各原液分岐供給ライン18を介して各単位充填塔4の入口側に供給可能となっている。各原液分岐供給ライン18には、開閉可能な原液供給弁F1、F2、F3、F4が設けられており、開弁された原液供給弁のラインを介して対応する単位充填塔に原液が供給される。 The circulation system 7 can be supplied with the stock solution 3 contained in the stock solution tank 2 and the eluent 16 contained in the eluent tank 15. Stock solution 3, in this reference embodiment, the starting solution feed pump PF capable of controlling the supply flow rate is supplied via the starting solution feed line 17. The stock solution supply line 17 is branched to each stock solution branch supply line 18, and the stock solution can be supplied to the inlet side of each unit packed tower 4 via each stock solution branch supply line 18. Each stock solution branch supply line 18 is provided with open and close stock solution supply valves F1, F2, F3, and F4, and the stock solution is supplied to the corresponding unit packed tower via the opened stock solution supply valve line. The

溶離液16は、本参考態様では、供給流量の制御が可能な原液供給ポンプPDにより、溶離液供給ライン20を介して供給される。溶離液供給ライン20は、各溶離液分岐供給ライン21に分岐され、溶離液は各溶離液分岐供給ライン21を介して各単位充填塔4の入口側に供給可能となっている。各溶離液分岐供給ライン21には、開閉可能な溶離液供給弁D1、D2、D3、D4が設けられており、開弁された溶離液供給弁のラインを介して対応する単位充填塔に溶離液が供給される。 Eluent 16 is in this reference embodiment, the starting solution feed pump PD capable of controlling the supply flow rate, is supplied through an eluent supply line 20. The eluent supply line 20 is branched to each eluent branch supply line 21, and the eluent can be supplied to the inlet side of each unit packed column 4 via each eluent branch supply line 21. Each eluent branch supply line 21 is provided with eluent supply valves D1, D2, D3, and D4 that can be opened and closed. The eluent supply valves 21 are eluted to the corresponding unit packed tower through the opened eluent supply valve line. Liquid is supplied.

原液供給ライン17から原液タンク2への循環ライン32、溶離液供給ライン20から溶離液タンク15への循環ライン33、循環系7のいずれかの部位に接続された排出ライン34には、それぞれ、安全弁35、36、37が設けられており、過大な圧力が加わった場合に、各タンクへの循環あるいは系外排出により、装置の破損等を防止できるようになっている。   A circulation line 32 from the stock solution supply line 17 to the stock solution tank 2, a circulation line 33 from the eluent supply line 20 to the eluent tank 15, and a discharge line 34 connected to any part of the circulation system 7, respectively, Safety valves 35, 36, and 37 are provided so that when an excessive pressure is applied, the apparatus can be prevented from being damaged by circulation to each tank or discharge outside the system.

このように構成されたクロマト分離装置31において分離処理は次のように行われる。すなわちクロマト分離装置1では、原液を供給するとともに全量をA画分抜き出し位置より抜き出す工程、溶離液を供給するとともに全量をC画分抜き出し位置より抜き出す工程、溶離液を供給するとともに全量をA画分抜き出し位置より抜き出す工程、および一切の供給、抜き出し、遮断を行わずに系内の液を循環させる工程の4つの工程の運転が可能となっており、これらの工程を組み合わせることで分離を行うことができる。   In the chromatographic separation apparatus 31 configured as described above, the separation process is performed as follows. That is, in the chromatographic separation apparatus 1, the step of supplying the stock solution and extracting the entire amount from the A fraction extraction position, the step of supplying the eluent and extracting the entire amount from the C fraction extraction position, supplying the eluent and supplying the entire amount to the A fraction It is possible to operate in four steps: a step of extracting from the parting position and a step of circulating the liquid in the system without performing any supply, extraction or shut-off, and separation is performed by combining these steps. be able to.

原液を供給するとともに全量をA画分抜き出し位置より抜き出す工程(F−A工程)では、いずれかの原液供給弁を開き、原液を対応する単位充填塔4の入口側から系7内に供給し、A画分の抜き出し位置に相当するA画分抜き出し弁Aを開き、そのすぐ下流側にある遮断弁を閉め、A画分抜き出しライン8を通じてA画分の全量を抜き出す。   In the step of supplying the stock solution and extracting the entire amount from the A fraction extraction position (FA step), one of the stock solution supply valves is opened and the stock solution is supplied into the system 7 from the inlet side of the corresponding unit packed column 4. The A fraction extraction valve A corresponding to the extraction position of the A fraction is opened, the shut-off valve immediately downstream thereof is closed, and the entire amount of the A fraction is extracted through the A fraction extraction line 8.

溶離液を供給するとともに全量をC画分抜き出し位置より抜き出す工程(D−C工程)では、いずれかの溶離液供給弁を開き、溶離液を対応する単位充填塔4の入口側から系7内に供給し、C画分の抜き出し位置に相当するC画分抜き出し弁Cを開き、そのすぐ下流側にある遮断弁を閉め、C画分抜き出しライン10を通じてC画分の全量を抜き出す。   In the process of supplying the eluent and extracting the entire amount from the C fraction extraction position (DC process), one of the eluent supply valves is opened, and the eluent is introduced into the system 7 from the inlet side of the corresponding unit packed column 4. The C fraction extraction valve C corresponding to the C fraction extraction position is opened, the shut-off valve immediately downstream thereof is closed, and the entire C fraction is extracted through the C fraction extraction line 10.

溶離液を供給するとともに全量をA画分抜き出し位置より抜き出す工程(D−A工程)では、いずれかの溶離液供給弁を開き、溶離液を対応する単位充填塔4の入口側から系7内に供給し、A画分の抜き出し位置に相当するA画分抜き出し弁Aを開き、そのすぐ下流側にある遮断弁を閉め、A画分抜き出しライン8を通じてA画分の全量を抜き出す。   In the step of supplying the eluent and extracting the entire amount from the A fraction extraction position (D-A step), one of the eluent supply valves is opened, and the eluent is introduced into the system 7 from the inlet side of the corresponding unit packed column 4. The A fraction extraction valve A corresponding to the extraction position of the A fraction is opened, the shut-off valve immediately downstream thereof is closed, and the entire amount of the A fraction is extracted through the A fraction extraction line 8.

一切の供給、抜き出しを行わずに系内の液を移動させる工程(循環工程)では、すべての原液供給弁、溶離液供給弁、A画分抜き出し弁A、C画分抜き出し弁Cを閉じ、すべての遮断弁を開いた状態で、循環ポンプPRを起動させることにより、系内の液を循環させる。   In the process of moving the liquid in the system without performing any supply or extraction (circulation process), all the stock solution supply valve, eluent supply valve, A fraction extraction valve A, and C fraction extraction valve C are closed, By starting the circulation pump PR with all the shut-off valves open, the liquid in the system is circulated.

上記クロマト分離装置31を用いた運転の一例を、表2に示す。表2には、F、D弁の開閉制御状態を示し、表中の数字は各弁の番号を示し(たとえば、Fの項で1はF1の弁を示している)、その番号が記入されている弁が開弁されることを表している。空欄の場合には、閉弁の状態を示している。また、A、C弁の項では、全量抜き出しを行う弁の番号を示している。空欄の場合にはその弁での抜き出しは行わない。R弁については、その番号が記入されている弁が閉弁されることを表している。空欄の場合には、開弁の状態を示している。さらに、原液供給ポンプPF、溶離液供給ポンプPDおよび循環ポンプPRの項では、丸印は運転状態を示しており、空欄の場合には、停止状態を示す。   An example of operation using the chromatographic separation apparatus 31 is shown in Table 2. Table 2 shows the open / close control status of the F and D valves. The numbers in the table show the numbers of the respective valves (for example, 1 in the F section indicates 1 valve), and the numbers are entered. It means that the valve is opened. When the column is blank, the valve is closed. Further, in the terms of the A and C valves, the number of the valve from which the entire amount is extracted is shown. If the field is blank, the valve is not extracted. The R valve indicates that the valve in which the number is written is closed. In the case of a blank, the valve open state is indicated. Further, in the terms of the stock solution supply pump PF, the eluent supply pump PD, and the circulation pump PR, a circle indicates an operating state, and a blank state indicates a stopped state.

Figure 0004771460
Figure 0004771460

表2において、工程No.1−1〜1−5から工程No.4−1〜No.4−5までが、本クロマト分離装置31における分離処理の1サイクルを示している。   In Table 2, the process No. 1-1 to 1-5 to step No. 4-1. Up to 4-5 shows one cycle of the separation process in the present chromatographic separation apparatus 31.

(工程1−1について)
工程No.1−1〜1−5についてみるに、工程1−1では、溶離液供給弁D3を開き溶離液を循環系7内に供給するとともに、A画分抜き出し弁A1を開き、そこからA画分の全量を抜き出す。したがって、この工程1−1は本発明で言う溶離液を供給するとともに全量をA画分抜き出し位置より抜き出すD−A工程に相当している。
(About step 1-1)
Step No. As for 1-1 to 1-5, in step 1-1, the eluent supply valve D3 is opened to supply the eluent into the circulation system 7, and the A fraction extraction valve A1 is opened, from which the A fraction is separated. Extract the entire amount of. Therefore, this step 1-1 corresponds to the D-A step of supplying the eluent as referred to in the present invention and extracting the entire amount from the A fraction extraction position.

(工程1−2について)
工程1−2では、原液供給弁F1を開き原液を循環系7内に供給するとともに、A画分抜き出し弁A1を開き、そこからA画分の全量を抜き出す。したがって、この工程1−2は本発明で言う原液を供給するとともに全量をA画分抜き出し位置より抜き出すF−A工程に相当している。
(About step 1-2)
In step 1-2, the stock solution supply valve F1 is opened to supply the stock solution into the circulation system 7, and the A fraction extraction valve A1 is opened, from which the entire amount of the A fraction is extracted. Therefore, this step 1-2 corresponds to the FA step of supplying the stock solution in the present invention and extracting the whole amount from the A fraction extraction position.

(工程1−3について)
工程1−3では、すべての原液供給弁、溶離液供給弁、A画分抜き出し弁A、C画分抜き出し弁Cを閉じ、すべての遮断弁を開いた状態で、循環ポンプPRを起動させることにより、循環系内の液を循環させる。したがって、この工程1−3は本発明で言う一切の供給、抜き出し、遮断を行わずに系内の液を移動させる工程(第2工程:循環工程R)に相当している。
(About step 1-3)
In step 1-3, all the undiluted solution supply valves, the eluent supply valve, the A fraction extraction valve A, the C fraction extraction valve C are closed, and the circulation pump PR is started with all the shut-off valves open. To circulate the liquid in the circulation system. Therefore, this step 1-3 corresponds to the step (second step: circulation step R) of moving the liquid in the system without performing any supply, extraction, or shutoff referred to in the present invention.

(工程1−4について)
工程1−4では、溶離液供給弁D3を開き溶離液を循環系7内に供給するとともに、C画分抜出弁C3を開き、そこからC画分の全量を抜き出す。したがって、この工程1−4は本発明で言う溶離液を供給するとともに全量をC画分抜き出し位置より抜き出すD−C工程に相当している。
(About step 1-4)
In step 1-4, the eluent supply valve D3 is opened to supply the eluent into the circulation system 7, and the C fraction extraction valve C3 is opened, from which the entire amount of the C fraction is extracted. Therefore, this step 1-4 corresponds to the DC step of supplying the eluent as used in the present invention and extracting the entire amount from the C fraction extraction position.

(工程1−5について)
工程1−5では、すべての原液供給弁、溶離液供給弁、A画分抜き出し弁A、C画分抜き出し弁Cを閉じ、すべての遮断弁を開いた状態で、循環ポンプPRを起動させることにより、循環系内の液を循環させる。
したがって、この工程1−5は本発明で言う一切の供給、抜き出し、遮断を行わずに系内の液を移動させる工程(第2工程:循環工程R)に相当している。
(About Step 1-5)
In step 1-5, all the undiluted solution supply valves, the eluent supply valve, the A fraction extraction valve A, the C fraction extraction valve C are closed, and the circulation pump PR is started with all the shut-off valves open. To circulate the liquid in the circulation system.
Therefore, this step 1-5 corresponds to the step (second step: circulation step R) in which the liquid in the system is moved without performing any supply, extraction, or shut-off in the present invention.

以上の一連の工程1−1〜1−5では、原液、溶離液の供給位置、A画分、C画分の抜き出し位置、および循環工程における循環流体抜き出し弁の位置は、ある特定の位置関係に保って実行され、これら一連の工程1−1〜1−5が終了すると、その特定の位置関係を維持しつつ、各制御対象弁の位置を下流側に一つ移行し、次の一連の工程2−1〜2−5を実行する。この移行を順次行うことにより、周知の擬似移動層式クロマト分離装置の運転操作と同等の機能を達成できる。   In the series of steps 1-1 to 1-5 described above, the supply position of the stock solution and the eluent, the extraction position of the A fraction and the C fraction, and the position of the circulating fluid extraction valve in the circulation process are in a specific positional relationship. When the series of steps 1-1 to 1-5 is completed, the position of each control target valve is shifted to the downstream side while maintaining the specific positional relationship, and the next series of steps is performed. Steps 2-1 to 2-5 are executed. By performing this transition sequentially, a function equivalent to the operation operation of the known pseudo moving bed type chromatographic separation apparatus can be achieved.

一連の工程1−1〜1−5に続く工程2−1〜2−5、工程3−1〜3−5、工程4−1〜4−5では、上記の如く各弁の位置を一つずつ移行した状態にて、上記工程1−1〜1−5と同様の運転を実行する。工程1−1〜4−5までが実行されると、分離処理の1サイクルが終了する。   In steps 2-1 to 2-5, steps 3-1 to 3-5, and steps 4-1 to 4-5 following the series of steps 1-1 to 1-5, the position of each valve is set to one as described above. The operation | movement similar to the said process 1-1 to 1-5 is performed in the state which shifted to each. When steps 1-1 to 4-5 are executed, one cycle of the separation process is completed.

上記分離操作においては、原液供給ポンプPFおよび溶離液供給ポンプPDは、定流量吐出設定としてもよいし、流量制御を行ってもよい。   In the above separation operation, the stock solution supply pump PF and the eluent supply pump PD may be set to a constant flow rate discharge setting or may perform flow rate control.

次に、本発明を実施例を用いてさらに具体的に説明するが、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.

実施例1
内径1.0cm、長さ20cmの充填塔4本を無端直列に連結した図1に示す様なクロマト分離装置を用い、吸着剤にCHIRALCEL OD(ダイセル化学社製)、脱離液にn-ヘキサン:イソプロパノール=8:2の混合溶液を用い、充填層温度を45℃に保ちながら、原液供給量Uf=1.684(kg/kg−CSP/day)、脱離液使用比率D/F(脱離液供給量/原液供給量)=25という運転条件で分離精製を行った。運転工程はD−A、F−A、循環1、D−C、循環2の順に操作することを1ステップとして、これを繰り返した。本試験に用いたPhenyl Glycidyl Etherの原液組成を表3に示す。本実施例では、光学活性を持った二成分の分離となっており、高純度の各成分がラフィネート成分抜きだし口、エクストラクト成分抜きだし口から取り出される。このような条件で、クロマト分離装置を運転した結果(成分組成)を表4に示す。また、分離対象物を試料として、充填塔4本分の理論段数を測定した。充填塔出口で検出されたピークを記録紙にとり、記録紙に記録させたピークから物質の保持時間Tr、ピーク高さの中点におけるピーク幅W0.5を表5に示すように読み取った。理論段数Nは1m当たりに換算した。
Example 1
Using a chromatographic separation apparatus as shown in FIG. 1 in which four packed towers having an inner diameter of 1.0 cm and a length of 20 cm are connected in an endless series, the adsorbent is CHIRALCEL OD (manufactured by Daicel Chemical) and the desorbing liquid is n-hexane. : Using a mixed solution of isopropanol = 8: 2 and keeping the packed bed temperature at 45 ° C., the stock solution supply amount Uf = 1.684 (kg / kg-CSP / day), the desorbed liquid use ratio D / F (desorption) Separation and purification were performed under the operating condition of (separated liquid supply amount / stock solution supply amount) = 25. The operation process was repeated by setting the operation in the order of DA, FA, circulation 1, DC, and circulation 2 as one step. Table 3 shows the stock solution composition of Phenyl Glycidyl Ether used in this test. In the present embodiment, two components having optical activity are separated, and each high-purity component is taken out from the raffinate component outlet and the extract component outlet. Table 4 shows the results (component composition) of operating the chromatographic separation apparatus under such conditions. The number of theoretical plates for four packed towers was measured using the separation object as a sample. The peak detected at the exit of the packed tower was taken on a recording paper, and the retention time Tr of the substance and the peak width W 0.5 at the midpoint of the peak height were read from the peak recorded on the recording paper as shown in Table 5. The theoretical plate number N was converted per 1 m.

Figure 0004771460
Figure 0004771460

Figure 0004771460
Figure 0004771460

Figure 0004771460
Figure 0004771460

比較例1
内径1.0cm、長さ10cmの充填塔8本を無端直列に連結した、特開2001-354690号公報に示されている、図3のようなクロマト分離装置51を用い、表6のような運転工程表を用いてPhenyl Glycidyl Etherの分離を行った結果を表7に示す。
Comparative Example 1
As shown in Table 6, using a chromatographic separation apparatus 51 as shown in FIG. 3, in which eight packed towers having an inner diameter of 1.0 cm and a length of 10 cm are connected in an endless series, as shown in JP-A-2001-354690. Table 7 shows the results of separation of phenyl glycidyl ether using the operation process table.

Figure 0004771460
Figure 0004771460

Figure 0004771460
Figure 0004771460

表4、表7から明らかなように、本発明によれば、4塔と少ない単位充填塔数でありながら、かつ同じ吸着剤量でありながら高い分離効率、高い回収率を達成できた。   As is apparent from Tables 4 and 7, according to the present invention, high separation efficiency and high recovery rate can be achieved while the number of unit packed columns is as small as four columns and the same adsorbent amount.

本発明に係るクロマト分離方法に用いるクロマト分離装置の一例を示す機器系統図である。It is an equipment system diagram showing an example of a chromatographic separation device used for a chromatographic separation method according to the present invention. 本発明に係るクロマト分離方法に用いるクロマト分離装置の参考例を示す機器系統図である。It is an equipment system diagram showing a reference example of a chromatographic separation apparatus used for a chromatographic separation method according to the present invention. 従来の方法(特開2001-354690号公報)に係るクロマト分離装置の機器系統図である。It is an equipment system diagram of a chromatographic separation apparatus according to a conventional method (Japanese Patent Laid-Open No. 2001-354690).

符号の説明Explanation of symbols

1、31 クロマト分離装置
2 原液タンク
3 原液
4 単位充填層
5 吸着剤
6 配管
7 系
8 A画分抜出しライン
9 A画分合流管
10 C画分抜出しライン
11 C画分合流管
12 循環抜出しライン(溶離液供給ポンプを循環ポンプとして用いる場合)
13 循環抜出し合流管(溶離液供給ポンプを循環ポンプとして用いる場合)
14 逆止弁
15 溶離液タンク
16 溶離液
17 原液供給ライン
18 原液分岐供給ライン
19 原液戻りライン
20 溶離液供給ライン
21 溶離液分岐供給ライン
32、33 循環ライン
34 排出ライン
35、36、37 安全弁
1, 31 Chromatographic separation device 2 Stock solution tank 3 Stock solution 4 Unit packed bed 5 Adsorbent 6 Pipe 7 System 8 A fraction extraction line 9 A fraction confluence tube
10 C fraction extraction line
11 C fraction confluence pipe
12 Circulation extraction line (when using eluent supply pump as circulation pump)
13 Circulation extraction junction pipe (when using eluent supply pump as circulation pump)
14 Check valve
15 Eluent tank
16 Eluent
17 Stock solution supply line
18 Stock solution branch supply line
19 Stock solution return line
20 Eluent supply line
21 Eluent branch supply line
32, 33 Circulation line
34 Discharge line
35, 36, 37 Safety valve

Claims (7)

光学分割用吸着剤を充填した複数の単位充填塔を有し、これらの単位充填塔を配管で直列に連結するとともに最下流部の単位充填塔と最上流部の単位充填塔を連結することにより無端状の循環系を構成した充填層に、2以上の成分を含む原液流体を通流させることにより、前記吸着剤に対する親和力の順に順次分けた吸着帯域を形成させた循環系に対し、 原液と溶離液の少なくとも一方を循環系内に供給し、循環系内においてある成分が富化された充填塔に対応する箇所から循環系内に供給された液量と等しい量を全量抜き出す第1工程と、一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させる第2工程を組み合わせ、かつ、
前記第1工程では、原液供給ポンプにより循環系内に供給される原液の供給位置または溶離液供給ポンプにより循環系内に供給される溶離液の供給位置と各成分の抜き出し位置を、循環系内の吸着帯域の移動に合わせて循環系の下流側に順次移動させる操作を行うことで分離を実施し、
前記第2工程では、循環系内の一箇所または二箇所から循環系外に抜き出した循環流体の全量を溶離液供給ポンプおよび/または原液供給ポンプを用い再び循環系内に供給することによって循環系内の循環を行うクロマト分離装置を用いることを特徴とするクロマト分離方法。
By having a plurality of unit packed towers packed with an adsorbent for optical resolution, and connecting these unit packed towers in series by piping and connecting the unit packed tower at the most downstream part and the unit packed tower at the most upstream part By passing a stock fluid containing two or more components through a packed bed that constitutes an endless circulation system, a circulation system in which an adsorption zone that is sequentially divided in order of affinity for the adsorbent is formed. A first step of supplying at least one of the eluent into the circulation system, and extracting all of the amount equal to the amount of liquid supplied into the circulation system from a location corresponding to the packed tower enriched with a certain component in the circulation system; , Combining the second step of circulating the liquid in the circulation system without supplying any undiluted solution and eluent, and extracting the separated components, and
In the first step, the supply position of the stock solution supplied into the circulation system by the stock solution supply pump or the supply position of the eluent supplied into the circulation system by the eluent supply pump and the extraction position of each component are set in the circulation system. Separation is carried out by performing an operation of sequentially moving to the downstream side of the circulation system in accordance with the movement of the adsorption zone of
In the second step, the total amount of circulating fluid extracted outside the circulatory system from one location or two locations in the circulatory system, by supplying again the circulating system using an eluent supply pump and / or the starting solution feed pump A chromatographic separation method characterized by using a chromatographic separation device that circulates in a circulation system.
運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すF−A工程またはFD−A工程、(3)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返す、請求項1に記載のクロマト分離方法。   Operation steps are as follows: (1) D-A step of supplying the eluent and extracting the entire amount of the extracted liquid from the first fraction extraction position; (2) Supplying the stock solution or the stock solution and the eluent and The FA process or FD-A process in which the entire amount is extracted from the first fraction extraction position, (3) Circulation of the liquid in the circulation system without supplying any undiluted solution and eluent, and extracting the separated components R step, (4) D-C step of supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extracting position, (5) Supplying all undiluted solution and eluent, The chromatographic separation method according to claim 1, wherein the method is repeated in the order of the R step in which the liquid in the circulation system is circulated without extraction. 運転工程として、(1)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すF−A工程またはFD−A工程、(2)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(3)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返す、請求項1に記載のクロマト分離方法。   As the operation process, (1) the stock solution or the stock solution and the eluent are supplied, and the entire amount of the extracted liquid is extracted from the first fraction extraction position, the FA process or the FD-A process, and (2) the eluent is supplied. At the same time, the D-A step of extracting the entire amount of the extracted liquid from the first fraction extracting position, (3) circulating the liquid in the circulation system without supplying any undiluted solution and eluent, and extracting the separated components. R step, (4) D-C step of supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extracting position, (5) Supplying all undiluted solution and eluent, The chromatographic separation method according to claim 1, wherein the method is repeated in the order of the R step in which the liquid in the circulation system is circulated without extraction. 運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(3)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(4)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すF−C工程またはFD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返す、請求項1に記載のクロマト分離方法。   Operational steps are as follows: (1) D-A step of supplying the eluent and extracting the entire amount of the extracted liquid from the first fraction extracting position; (2) Supplying all undiluted solutions and eluents, R step for circulating the liquid in the circulation system without extracting, (3) DC step for supplying the eluent and extracting the entire amount of the extracted liquid from the second fraction extracting position, (4) Stock solution or F-C process or FD-C process for supplying the stock solution and the eluent and extracting the total amount of the extracted solution from the second fraction extraction position, (5) Supplying all the undiluted solution and eluent, The chromatographic separation method according to claim 1, wherein the method is repeated in the order of the R step in which the liquid in the circulation system is circulated without extraction. 運転工程として、(1)溶離液を供給するとともに抜き出し液量の全量を第1の画分抜き出し位置から抜き出すD−A工程、(2)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程、(3)原液または原液および溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すF−C工程またはFD−C工程、(4)溶離液を供給するとともに抜き出し液量の全量を第2の画分抜き出し位置から抜き出すD−C工程、(5)一切の原液、溶離液の供給、分離された成分の抜き出しを行わずに循環系内の液を循環させるR工程の順序で繰り返す、請求項1に記載のクロマト分離方法。   Operational steps are as follows: (1) D-A step of supplying the eluent and extracting the entire amount of the extracted liquid from the first fraction extracting position; (2) Supplying all undiluted solutions and eluents, R step for circulating the liquid in the circulation system without performing extraction, (3) F-C step or FD for supplying the stock solution or the stock solution and the eluent and extracting the entire amount of the extracted solution from the second fraction extraction position -C step, (4) Supplying the eluent and taking out the total amount of the extracted liquid from the second fraction extracting position, DC step, (5) Supplying all undiluted solution and eluent, The chromatographic separation method according to claim 1, wherein the method is repeated in the order of the R step in which the liquid in the circulation system is circulated without extraction. 前記吸着剤の粒径が150μm以下、理論段数が200段/m以上、分離目的成分の純度が95%以上、のすべての条件を満たす、請求項1〜5のいずれかに記載のクロマト分離方法。   The chromatographic separation method according to any one of claims 1 to 5, wherein the adsorbent has a particle size of 150 µm or less, a theoretical plate number of 200 plates / m or more, and a purity of a separation target component of 95% or more. . 請求項1〜6のいずれかに記載の方法により、光学異性体を分離することを特徴とするクロマト分離方法。   A chromatographic separation method, wherein optical isomers are separated by the method according to claim 1.
JP2005237646A 2005-08-18 2005-08-18 Chromatographic separation method Active JP4771460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237646A JP4771460B2 (en) 2005-08-18 2005-08-18 Chromatographic separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237646A JP4771460B2 (en) 2005-08-18 2005-08-18 Chromatographic separation method

Publications (2)

Publication Number Publication Date
JP2007051945A JP2007051945A (en) 2007-03-01
JP4771460B2 true JP4771460B2 (en) 2011-09-14

Family

ID=37916488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237646A Active JP4771460B2 (en) 2005-08-18 2005-08-18 Chromatographic separation method

Country Status (1)

Country Link
JP (1) JP4771460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071312A (en) * 2013-02-05 2013-05-01 山东兆光色谱分离技术有限公司 Intermittent chromatographic separation device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938728B2 (en) * 2008-06-02 2012-05-23 オルガノ株式会社 Chromatographic separation method
JP6732575B2 (en) * 2016-07-07 2020-07-29 オルガノ株式会社 Chromatographic separation method and chromatographic separation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925753B2 (en) * 1990-02-23 1999-07-28 ダイセル化学工業株式会社 Optical isomer separation method
JP4176240B2 (en) * 1999-07-02 2008-11-05 オルガノ株式会社 Chromatographic separation device
JP4632327B2 (en) * 2000-05-26 2011-02-16 オルガノ株式会社 Chromatographic separation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071312A (en) * 2013-02-05 2013-05-01 山东兆光色谱分离技术有限公司 Intermittent chromatographic separation device and method

Also Published As

Publication number Publication date
JP2007051945A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP2964347B2 (en) Continuous method and apparatus for chromatographic separation of a mixture of at least three components in a three-purified effluent with two solvents
EP0471082B1 (en) Process for separating optical isomers
US5114590A (en) Continuous process and device for the chromatographic separation of a mixture of at least three constituents into three purified effluents by means of a single solvent at two different temperatures and/or at two different pressures
JP2007064944A (en) Chromatography
JP4627841B2 (en) Psicose separation method
Macaudiere et al. Chiral resolutions in SFC: mechanisms and applications with various chiral stationary phases
US20040129137A1 (en) Versatile simulated moving bed systems
US8722932B2 (en) Method for separating a mixture comprising three components by simulated moving bed chromatography
US6325940B1 (en) Simulated moving bed chromatographic separation system
JP4771460B2 (en) Chromatographic separation method
US20140251912A1 (en) Methods and Controllers for Simulated Moving Bed Chromatography for Multicomponent Separation
JP4945364B2 (en) Separation method of sugar alcohol
CN113453777B (en) Improvements in and relating to optimizing the operation of chromatography systems
JP4518477B2 (en) Chromatographic separation method and apparatus
WO1992016274A1 (en) Enantiomer separating process on chiral separation phases by means of a continuous counter-current chromatography process
Tiritan et al. Preparative enantioseparation on polysaccharide phase using microporous silica as a support
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
US20150231528A1 (en) Method and apparatus for multi column chromatographic purification
JPH0843371A (en) Separation method by chromatography in simulated moving phase using correction of gap capacity caused by increase in flow rate
JP2012098052A (en) Method and apparatus for chromatographic separation
JP2018004567A (en) Chromatographic separation method and chromatographic separation system
JP2962589B2 (en) Simulated moving bed chromatographic separator
JP3256349B2 (en) Separation method and apparatus using simulated moving bed
JP4603114B2 (en) Method and apparatus for separating a plurality of components contained in a liquid
JP4938728B2 (en) Chromatographic separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4771460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250