JP6546318B2 - 心血管系リスクイベントの予測およびその使用 - Google Patents

心血管系リスクイベントの予測およびその使用 Download PDF

Info

Publication number
JP6546318B2
JP6546318B2 JP2018103211A JP2018103211A JP6546318B2 JP 6546318 B2 JP6546318 B2 JP 6546318B2 JP 2018103211 A JP2018103211 A JP 2018103211A JP 2018103211 A JP2018103211 A JP 2018103211A JP 6546318 B2 JP6546318 B2 JP 6546318B2
Authority
JP
Japan
Prior art keywords
biomarkers
individual
risk
biomarker
event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103211A
Other languages
English (en)
Other versions
JP2018159713A (ja
Inventor
ギル,ロザリン・ダイアン
ウィリアムズ,ステファン・アラリック
スチュアート,アレックス・エイ.イー.
メーラー,ロバート
フォアマン,トルーディ
シンガー,ブリッタ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SomaLogic Inc
Original Assignee
SomaLogic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SomaLogic Inc filed Critical SomaLogic Inc
Publication of JP2018159713A publication Critical patent/JP2018159713A/ja
Application granted granted Critical
Publication of JP6546318B2 publication Critical patent/JP6546318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96486Metalloendopeptidases (3.4.24)
    • G01N2333/96491Metalloendopeptidases (3.4.24) with definite EC number
    • G01N2333/96494Matrix metalloproteases, e. g. 3.4.24.7
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

発明の関連
[0001]本出願は、その全体が本明細書に組み入れられるところの2011年9月30日付けで出願された同時係属中の米国出願第61/541,828号に基づく優先権の利益を主張する。
発明の分野
[0002]本出願は、一般的には、個体における将来的な心血管系イベントリスクを評価するためのバイオマーカーの検出および方法に関し、より詳細には、5年間の心血管系(CV)イベントを発生させるリスクを予測するために個体を評価するのに用いられる1種またはそれより多くのバイオマーカー、方法、装置、試薬、システム、およびキットに関する。このようなイベントとしては、これらに限定されないが、心筋梗塞、卒中、うっ血性心不全または死亡が挙げられる。
[0003]以下の説明において、本出願に関連する情報の要約を示すが、提供された情報または本明細書で参照された出版物はいずれも本出願の従来技術であるということを認めたものではない。
[0004]米国での主な死亡原因は、心血管疾患である。一次イベントリスク(D’Agostino, R等、「General Cardiovascular Risk Profile for Use in Primary Care:The Framingham Heart Study」Circulation 117:743〜53(2008);およびRidker, P.等、「Development and Validation of Improved Algorithms for the Assessment of Global Cardiovascular Risk in Women」JAMA 297(6):611〜619(2007))および二次イベントリス
ク(Shlipak, M.等「Biomarkers to Predict Recurrent Cardiovascular Disease:The Heart & Soul Study」Am.J.Med.121:50〜57(2008))についての多数の既存の重要な
予測因子があり、これらは臨床実践や治験で広く用いられている。残念ながら、既存のリスク因子およびバイオマーカーの性能は、受信者操作特性曲線、ハザード比、およびコンコーダンスからあまり高くないことが示されている(約0.75のAUCは、これらの因子が偶然性(coin-flip)と完全性(perfection)の中間程度でしかないことを示す)。
診断性能改善の必要性に加えて、各個体において有益な(および侵襲的な)介入と生活様式の変化に対する近い将来の反応性と個人的な反応性との両方を示すリスク商品が求められている。広く利用されているフラミンガム方程式は、3つの主要な問題がある。第一に、フラミンガム方程式は時間がかかりすぎる点である。フラミンガム方程式により10年のリスク計算が得られるが、ヒトは将来的なリスクを過小評価するため、それに基づいて行動や生活様式を変えることには抵抗がある。第二に、フラミンガム方程式は、介入に対する応答があまりよくない点である。フラミンガム方程式が最も重点を置く要素は暦年齢であるが、暦年齢を小さくすることは不可能である。第三に、フラミンガム因子は、ここで想定された高リスク集団内で高リスクと低いリスクとをうまく区別することができない。高い四分位数と低い四分位数とのハザード比はわずか2である。
[0005]心血管疾患に関するリスク因子は、薬物療法の強度と性質を向上させるのに広く用いられており、これらの使用は過去20年にわたり観察された心血管系疾患の罹患率と死亡率の減少に貢献してきたことは間違いない。これらの因子を慣例的手順で組み合わせてアルゴリズムを作製したが、残念ながらそれによっても全てのリスクを捕らえられない(心疾患に関して最も一般的な最初の発現は、それでもなお死である)。実際には、このアルゴリズムでは恐らくリスクの半分しか捕らえられない。このようなリスク因子のRO
C曲線下面積は一般的には約0.76であり、従ってここでも0.5の偶然線と1.0の完全性との中間程度にすぎない。
[0006]臨床的リスクスコアに新規のバイオマーカーを追加しても期待通りにはいかなかった。例えば3209人でのフラミンガム研究において(Wang等、「Multiple Biomarkers for the Prediction of First Major Cardiovascular Events and Death」N.Eng.J.Med.355:2631〜2637(2006))、既存のリスク因子に10種のバイオマーカー(CRP、BNP、NT−proBNP、アルドステロン、レニン、フィブリノーゲン、Dダイマー、プラスミノーゲン活性化因子阻害剤1型、ホモシステイン、および尿アルブミンとクレアチニンとの比)を追加してもAUCはそれほど改善されなかった。0〜5年の間のイベントに関するAUCは、加齢、性別、および従来のリスク因子を用いた場合は0.76であり、この複合要素にバイオマーカーを足した最良の組み合わせを用いた場合は0.77であった。
[0007]1〜10年の期間で心血管イベントのより高リスクを有する患者を早期同定することが重要であるが、これはなぜなら高リスクを有する個体により積極的な治療を行うことで結果を改善できるためである。従って、より高リスクを有するとみなされる患者において心血管イベントリスクを減らすためには、最適な管理のために積極的な介入を必要とする一方で、心血管イベントリスクがより低い患者は、患者にとって有益な作用がない可能性がある、高価な、場合によっては侵襲的な処置を省くことができる。
[0008]所定期間内で特定の病状または状態を示すリスクを予測するためのバイオマーカーの選択は、まず特定の医療的処置期間中にイベントを起こす集団または起こさない集団において、測定可能で統計学的に有意な差を有するマーカーを同定することを含む。バイオマーカーは、疾患または状態の発症または進行と並行して分泌または放出された分子であってもよく、このような分子は心血管イベントに応答して心血管組織から、または周囲組織や循環細胞からの血流に容易に放散される。通常、同定されたバイオマーカーまたはバイオマーカー群は、臨床的に確認されるか、あるいはそれが選択された本来意図した用途にとって信頼できる指標であるかどうかが証明される。バイオマーカーとしては、低分子物質、ペプチド、タンパク質、および核酸が挙げられる。バイオマーカー同定に影響を与える主要な問題のいくつかは、利用可能なデータの過剰適合とデータのバイアスである。
[0009]バイオマーカーを同定して、疾患または状態を有するリスクを診断または予測する試みにおいて、様々な方法が利用されてきた。タンパク質ベースのマーカーの場合、このような方法としては、二次元電気泳動、質量分析法、およびイムノアッセイ法が挙げられる。核酸マーカーの場合、このような方法としては、mRNA発現プロファイル、マイクロRNAプロファイル、FISH、遺伝子発現の連続解析(SAGE)、ラージスケールの遺伝子発現アレイ、遺伝子配列解析、および遺伝子型解析(SNPまたは希少変異解析(small variant analysis))が挙げられる。
[0010]二次元電気泳動の有用性の限界は、低い検出感度;タンパク質の溶解性、電荷、および疎水性の問題;ゲルの再現性;および単一のスポットが複数種のタンパク質を示す可能性に起因する。質量分析法の場合、その限界は、用いられる様式に応じて、サンプルの処理と分離、低い発生量のタンパク質に対する感度、シグナル対ノイズ比の考察、および検出されたタンパク質を即座に同定できないことを中心に展開している。イムノアッセイアプローチにおけるバイオマーカー発見の問題点は、主に、多数の分析物を測定するための抗体ベースの多重分析が不可能な点にある。単に、高品質の抗体のアレイをプリントして、サンドイッチしないでこれらの抗体に結合した分析物を測定するだけである。(これは、形式的には、生物または細胞中の全てのDNAまたはRNA配列をハイブリダイゼ
ーションで判定するのに、核酸配列の全ゲノムを用いることに匹敵すると思われる。ハイブリダイゼーションは同一性に関してストリンジェントな試験であり得るため、ハイブリダイゼーション実験が行われる。非常に優れた抗体でさえも、それらの結合パートナーを選択する際、血液に関して、または細胞抽出物に関してもそれらを実験に用いるには十分なストリンジェンシーを有するとはいえず、これはなぜならそれらのマトリックス中のタンパク質集団の存在度が極めて異なっているためである。)従って、イムノアッセイベースのバイオマーカー発見アプローチによる異なるアプローチを使用しなければならない。すなわち、多くの分析物を同時に測定してどの分析物が本当のバイオマーカーであるかを決定するのに十分なストリンジェンシーを獲得するために、多重化ELISA分析(すなわちサンドイッチ)を使用する必要があると予想される。サンドイッチイムノアッセイは高含量スケールにできないため、標準的なアレイフォーマットでは、ストリンジェントなサンドイッチイムノアッセイを用いたバイオマーカーの発見は不可能である。最後に、抗体試薬は、実質的なロット間変動と試薬の不安定さの影響を受ける。本発明のタンパク質バイオマーカー発見のためのプラットフォームは、この問題を克服する。
[0011]これらの方法の多くは、解析前にいくつかのタイプのサンプルの分画化を頼りにしているか、必須である。従って、一連の明確なサンプル群で統計学的に関連するバイオマーカーを同定および発見するように設計された、十分強力な研究を行うのに必要なサンプルの調製は極めて難しく、多大な費用を要し、時間がかかる。分画化中、様々なサンプルに多様な変異性を導入してもよい。例えば、可能性のあるマーカーが処理に対して不安定な場合もあり、マーカー濃度が変化する場合もあり、不適切な凝集または解離が起こる場合もあり、偶発的なサンプル汚染が起こる場合もあることから、疾患初期で予測される微妙な変化が曖昧になる可能性がある。
[0012]これらの技術を用いたバイオマーカーの発見および検出方法には、診断または予測バイオマーカーの同定において深刻な限定があることが広く認められている。このような限定としては、低発生量のバイオマーカーを検出できないこと、プロテオームの全ダイナミックレンジを一貫してカバーできないこと、サンプル処理および分画化において再生不可能なこと、およびこの方法は全体的に再生不可能でありロバスト性に欠けることが挙げられる。さらにこれらの研究のデータにはにバイアスが導入されており、標的疾患の集団中でバイオマーカーを同定して確認するのに必要な分布およびランダム化に関して適切なコントロールを含むサンプル群の複雑さを適切に処理できない。
[0013]数十年にわたり新規の有効なバイオマーカーを見つけようとする努力が続けられているが、この努力の大部分がうまくいっていない。様々な疾患のバイオマーカーは一般的に、大学の研究室で、いくつかの疾患の経過に関する基礎調査を行いつつ通常は偶発的な発見を介して同定されてきた。このような発見に基づき、わずかな臨床データにより、新しいバイオマーカーの同定を示唆する論文が公表された。しかしながらこれらの提唱されているバイオマーカーのほとんどが、現実の、または有用なバイオマーカーであるとは確認されておらず、その原因は、主として、試験された臨床サンプルが少数なために、有効なバイオマーカーが実際に見出されたことを示す統計学的な証明が弱いためである。すなわち、初期の同定は統計の基礎的な要素に関して厳密ではなかった。1994年から2003年の各年において科学文献を検索したところ、バイオマーカーを対象にした何千もの参考文献が公開されていることがわかる。しかしながら、同じ時間枠で、FDAが診断用途を承認した新規タンパク質バイオマーカーは、1年で3種が最高であり、そのうち数年間は承認された新規タンパク質バイオマーカーは1件もなかった。
[0014]このような不成功に終わったバイオマーカー発見の努力の歴史に基づいて、疾患および状態を発症させるリスクの診断、予後予測または予測のためのバイオマーカーが発見されることは稀であり困難であるという一般的理解をさらに推進する理論が提唱されて
きた。このような観念は、二次元ゲルまたは質量分析法に基づくバイオマーカーの調査によって裏付けられている。これらのアプローチでは有用なバイオマーカーはほとんど同定されていない。しかしながら、通常、二次元ゲルおよび質量分析法で測定されるタンパク質は、およそ血中1nMの濃度およびそれより高い濃度で存在するタンパク質であること、加えてこのような一式のタンパク質はおそらく、疾患または特定の状態の発症に伴い変化する可能性が最も低いであろうということは見過ごされている。本発明のバイオマーカー発見プラットフォームの他に、かなり低い濃度でタンパク質の発現レベルを正確に測定することができるプロテオミクスのバイオマーカー発見プラットフォームはない。
[0015]複雑なヒト生物学の生化学的経路に関して多くのことがわかっている。多くの生化学的経路の結果として病理学の範疇で局所的に作用するタンパク質が分泌されたり、あるいはそのようなタンパク質によって生化学的経路が開始したりする。例えば増殖因子が分泌されると、他の細胞の複製を病理学的に刺激したり、免疫系を回避するためにその他の因子が分泌されたりする。これらの分泌タンパク質の多くがパラクリン様式で作用するが、そのうちいくつかは、体内において遠位で働く。生化学的経路の基礎的な知識を有する当業者であれば理解しているものと思われるが、血中において、多くの病理学に特異的なタンパク質は、二次元ゲルおよび質量分析法の検出限界未満の濃度で(さらにそれを下回る濃度で)存在する。この比較的多数の疾患バイオマーカーの同定の前に優先すべきものは、二次元ゲルまたは質量分析法によって検出可能な濃度より低い濃度でタンパク質を解析することができるプロテオミクスのプラットフォームである。
[0016]上記で考察したように、心血管イベントの性質を正確に決定することができる場合、心血管イベントは積極的治療によって防ぐことができる。既存の多重マーカー試験は、個体から複数のサンプルを回収するか、あるいはサンプルを複数の分析に分ける必要がある。1種の血液、尿またはその他のサンプルと1回の分析しか必要としない改善された試験が最適である。従って、5年の期間の心血管イベントの予測を可能にするバイオマーカー、方法、装置、試薬、システム、およびキットが必要である。
D’Agostino, R等、「General Cardiovascular Risk Profile for Use in Primary Care:The Framingham Heart Study」Circulation 117:743〜53(2008) Ridker, P.等、「Development and Validation of Improved Algorithms for the Assessment of Global Cardiovascular Risk in Women」JAMA 297(6):611〜619(2007) Shlipak, M.等「Biomarkers to Predict Recurrent Cardiovascular Disease:The Heart & Soul Study」Am.J.Med.121:50〜57(2008)) Wang等、「Multiple Biomarkers for the Prediction of First Major Cardiovascular Events and Death」N.Eng.J.Med.355:2631〜2637(2006)
[0017]本出願は、5年の期間の心血管系(CV)イベントを有するリスクの予測のためのバイオマーカー、方法、試薬、装置、システム、およびキットを含む。本出願のバイオマーカーは、実施例1および2で詳細に説明されるマルチプレックスSOMAmerベースの分析を用いて同定された。本出願では、本明細書において説明されるSOMAmerベースのバイオマーカー同定方法を用いて驚くほど多数のCVイベントの予測に有用なCVイベントのバイオマーカーを説明する。CVイベントのリスクに関連するバイオマーカーを発見するのに用いられるサンプル群は、心筋梗塞の既往、1本またはそれより多くの冠血管における50%を超える狭窄の証拠、トレッドミルまたは心臓核試験による運動誘
発性虚血、または冠血行再建の既往などのCV疾患をすでに有する集団における冠動脈疾患の進行を試験した前向きコホート研究のハート・アンド・ソウル・スタディ(Heart & Soul Study)から入手した。参加者はサンフランシスコ・ベイエリアから採用した。表4に研究対象集団のCVイベントのタイプおよび時間を示す。これらのCVイベントのバイオマーカーを同定するために、900人より多くの個別サンプルからの1000種を超えるタンパク質を測定したところ、そのうちいくつかはフェムトモル濃度レベルの低い濃度であった。これは、二次元ゲルおよび/または質量分析法を用いてなされるバイオマーカー発見実験よりも約4桁低い。
[0018]説明されるCVイベントのバイオマーカーのうちいくつかは単独でもCVイベントを有するリスクの予測に有用であるが、本明細書ではバイオマーカーのパネルとして有用なCVイベントのバイオマーカーの複合サブセットのグループ分け法を説明する。個々のバイオマーカーまたはバイオマーカーのサブセットが同定されれば、個体におけるCVイベントリスクの予測は、生体サンプル中の選択されたバイオマーカーまたはバイオマーカー(複数)のレベルの差を測定することができるあらゆる分析プラットフォームまたは様式を用いて達成することができる。
[0019]しかしながら、本明細書において開示されたCVイベントのバイオマーカーの同定を可能にするのは、これまでに5年の時間枠内でCVイベント有りまたは無しのいずれかと診断された多数の個体から1000種を超える別個の可能性のあるバイオマーカー値を個々にスクリーニングすることにより得られた本明細書で説明されるSOMAmerベースのバイオマーカー同定方法を用いることのみであった。この発見法は、人体病理学に解釈し直す必要のないより患者に関連するシステムについて問い合わせるため、組織サンプル、馴化培地または溶解細胞からのバイオマーカー発見とは全く対照的である。その上この形態の血液ベースの測定は、はるかに臨床的適用性が高い。
[0020]従って、本出願の一形態において、5年の時間枠のCVイベントの出現リスクを予測するための、単独または様々な組み合わせのいずれかで使用される1種またはそれより多くのバイオマーカーが提供される。典型的な実施態様としては、表1第7列の「一般名称(PUBLIC_NAME)」に示されるバイオマーカーが挙げられ、これらは、上述したよう
に、全般的には実施例1で、より詳細には実施例2で説明されているようにマルチプレックスSOMAmerベースの分析を用いて同定された。表1に示したマーカーは、5年の期間のCVイベントを有するリスクの予測において有用である。表2および表3それぞれに記載されたバイオマーカーは、表1に記載の155種のバイオマーカーの数を減らして、同じタスクをそれより低い技術的複雑さとコストで実行する少数の群にしたものである。しかしながら、類似の有効性を有するその他の組み合わせを表1から編纂することもできる。
[0021]記載されたCVイベントリスクのバイオマーカーのいくつかは単独でも5年以内のCVイベントリスクを予測するには有用であるが、2種またはそれより多くのバイオマーカーのパネルとしてそれぞれ有用な、CVイベントリスクのバイオマーカーの複合サブセットのグループ分け法も本明細書で説明される。従って、本出願の様々な実施態様は、N種のバイオマーカーを含む組み合わせを提供し、ここでN種のバイオマーカーは、少なくとも2種のバイオマーカーである。その他の実施態様において、Nは、2〜155種のバイオマーカーのいずれかになるように選択される。
[0022]さらにその他の実施態様において、Nは、2〜7、2〜10、2〜15、2〜20、2〜25、2〜30、2〜35、2〜40、2〜45、2〜50、2〜55からのいずれかの数値、または最大2〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、3〜7、3〜1
0、3〜15、3〜20、3〜25、3〜30、3〜35、3〜40、3〜45、3〜50、3〜55からのいずれかの数値、または最大3〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、4〜7、4〜10、4〜15、4〜20、4〜25、4〜30、4〜35、4〜40、4〜45、4〜50、4〜55からのいずれかの数値、または最大4〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、5〜7、5〜10、5〜15、5〜20、5〜25、5〜30、5〜35、5〜40、5〜45、5〜50、5〜55からのいずれかの数値、または最大5〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、6〜10、6〜15、6〜20、6〜25、6〜30、6〜35、6〜40、6〜45、6〜50、6〜55からのいずれかの数値、または最大6〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、7〜10、7〜15、7〜20、7〜25、7〜30、7〜35、7〜40、7〜45、7〜50、7〜55からのいずれかの数値、または最大7〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、8〜10、8〜15、8〜20、8〜25、8〜30、8〜35、8〜40、8〜45、8〜50、8〜55からのいずれかの数値、または最大8〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、9〜15、9〜20、9〜25、9〜30、9〜35、9〜40、9〜45、9〜50、9〜55からのいずれかの数値、または最大9〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、10〜15、10〜20、10〜25、10〜30、10〜35、10〜40、10〜45、10〜50、10〜55からのいずれかの数値、または最大10〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。当然のことながら、Nは、類似の、ただしそれより高次の範囲を包含するように選択することができる。
[0023]上記で考察したように、心血管イベントの性質を正確に決定できれば、心血管イベントは積極的治療によって回避することが可能である。従来技術の多重マーカー試験は、一個体から複数のサンプルを回収することか、あるいはサンプルを複数の分析に分配することのいずれかを必要とする。異なる分析物のタイプ(脂質、タンパク質、代謝産物)または分析物のパネルごとに複数のサンプルを必要とするのではなく、単一分析での測定で必要な生体サンプルが1つだけの予後分析を提供することが好ましいと予想される。複数のサンプル回収が必要な試験の実施はより複雑であり、その複雑さが使用の障壁となるため、単一サンプル試験の中核となる利点は、使用時の簡便さである。追加の利点は、複数種のタンパク質に対して単一サンプルを単一分析で処理することにある。単一分析により、複数の分析結果を一緒に較正することによる不要な変動が少なくなると予想される。本出願の基礎となる試験は、このような「単一サンプル、単一分析」での試験である。この単一サンプルと単一分析との組み合わせは、本発明の心血管イベントリスク試験の新規の特徴であって、すなわち複数のサンプル回収の記号論理学的な複雑さ、それに加えて、サンプルを複数の独立した分析手法のために複数のアリコートに分けることに関する問題やバイオハザードを解決しようとするものである。
[0024]心血管疾患は、複数の生物学的過程と組織が関与することが知られている。心血管疾患に関連する生物学的システムおよび過程のよく知られている例は、炎症、血栓症、疾患関連血管新生、血小板活性化、マクロファージの活性化、肝臓の急性期反応、細胞外マトリックスのリモデリング、および腎機能である。これらの過程は、性別、閉経状態、および年齢に応じて、さらに凝固および血管機能の状態に従って観察することができる。これらのシステムは、部分的にタンパク質ベースのシグナル伝達システムを介して伝達し
、単一の血液サンプル中で複数のタンパク質が測定される可能性があるため、本発明は、心血管疾患に関与する特定の生物学的システムおよび過程由来のタンパク質に焦点を当てた、単一サンプル、単一分析による複数のタンパク質をベースとする試験を提供する。
[0025]本明細書で考察されるように、心血管イベントリスク測定における中核的な機能の一つは、治療に応答する進行と食事や運動などの行動に関する変化の評価を可能にすることである。フラミンガム方程式のような現在のリスク予測法は、相関が明らかな臨床的な共変量情報を考慮に入れており、そのうち最も大きい要素は、被験者の年齢である。年齢は集団の正確な情報であるが、そのために個体のリスク変化のモニターについてはフラミンガム方程式の有用性は低い。このCVイベントリスク試験の新規の特徴は、予後モデルの一部として年齢を必要としない点である。本発明は、老化の生物学の範疇で原因となる変動性の要素があるという前提に基づいているため、リスク評価によりよく利用される。本発明は、年齢それ自体は疾患の原因となる要素ではなく、年齢は、基礎となる生物学のサロゲートまたは代用として作用するという確信を前提とする。年齢は、実際にはCVイベントの予後予測になるが、年齢は個々の改善を評価するのには使用できず、おそらく年齢の作用は生物学的機能によってもたらされる。この作用は、それに関連する生物学的な測定によってよく決定することができる。本発明では、標的化されるタンパク質は、疾患の生物学に関与するものである。従って、本発明は、年齢とCVイベントリスクとの相関に反映される生物学的な情報を捕獲する。実際には、タンパク質に基づく我々のリスクモデルに年齢の要素を足しても、イベントの予測の性能は改善されない。
[0026]心血管疾患に関与する複合過程からタンパク質を同定する方策は、様々なイベントまたは症状を有する広範囲の/多様なCV疾患患者を提示するパラメーターを選択することを必要とする。心血管疾患に起因するイベントはヘテロジニアスであり、すなわち2つの主要なイベントのクラス、すなわち血栓関連イベントとCHF関連イベントとからなる。いくつかの提示イベントは、具体的な診断情報がない場合がある(例えば自宅での死亡)。これらのCV疾患の特徴を考慮して、本発明の試験は、様々なイベントからの血液サンプルで、CV疾患に関連する生物学的過程由来の関連タンパク質を測定することによって開発された。この方策により、疾患に関与する複合過程からの情報(例えば血管新生、血小板活性化、マクロファージの活性化、肝臓の急性期反応、その他のリンパ球性炎症、細胞外マトリックスのリモデリング、および腎機能)を一まとめにした。CV疾患に関する複数のタンパク質をベースとした予後予測のための単一サンプル試験を開発するために、「ハート・アンド・ソウル」スタディから選択された研究対象集団を高リスク被験者グループとした。この高いCVイベント発生率を有する被験者群を選択することにより、一般的な集団(上記イベントがめったに発生しない集団)で決定される場合よりも正確にタンパク質測定に関連するリスクを決定することができる。この高いリスクのグループで本発明の試験を行うことにより、一般的な生物学により汎用化することができるタンパク質バイオマーカーの組み合わせを同定することが可能になった。結果として、本発明の試験およびバイオマーカーは、「ハート・アンド・ソウル」スタディの組み入れ基準に適合する個体よりも大きい集団におけるイベントの予測よりも有効である可能性が高い。
[0027]上述したように、CV疾患は、血液凝固系、炎症性白血球、および血小板活性化に影響する。サンプル調製時における一般的なミスにより血漿サンプルから血小板および白血球の一部しか沈降しない事態が起こるが、それによりこれらの体内のシステムの活性化から生じるシグナルが曖昧になることがある。これらの細胞が完全に沈降しない場合は、サンプルが出荷されて分析されるときに凍結融解によってそれらを溶解させてもよい。本発明のバイオマーカーを同定する経過中に、少なくともいくつかのケースで、慣習的に調製されたサンプルには、凍結融解後、全細胞および血小板が含まれることが明らかになった。それに続くプロテオミクス分析の際に、全ての全細胞が溶菌すると、インビボにおける血小板および単球の活性化の疾患過程に特徴的なタンパク質の検出に干渉する。従っ
て、本発明の一実施態様において、分析の前に、サンプルを融解した後に追加で再遠心する工程が行われる。この追加の遠心工程により、別の状況で血小板および単球の活性化に関するバイオマーカーの同定を妨げると予想される血小板および単球を除去することができる。このようなサンプル中の不溶性の細胞成分を(遠心またはをろ過によって)除去する追加の工程は、従来技術では説明されていないと思われる心血管イベントリスク試験の利点の一つである。
[0028]例えばアポリポタンパク質B、アポリポタンパク質A−1、BNP、およびCRPなどの文献に記載されたCVイベントの予後予測となることが公知であり、CV疾患と関連を有することが公知の特異的タンパク質が存在するが、タンパク質の特定のセットの測定を組み合わせて、複数のタンパク質測定によって示される一般的な生物学的情報による予測性能という観点で、最適に能力を発揮することができるかどうかははっきりしなままである。CV疾患の過程で変動が観察されたタンパク質の、最適な予測性能を提供しない可能性がある組み合わせの具体的な例としては、尿中に排出された多くの低分子量の血清タンパク質があり、これは、糸球体ろ過率(GFR)によって測定されるような腎機能に関するタンパク質である。低いGFRで示されるような腎機能の低下は、心血管系リスクに関連する。従って、低いGFRに伴う多くの低分子量タンパク質はCV疾患に関連するようであるが、独立していない。本発明の試験の開発中に、推定のGFRに対してタンパク質測定を校正し、どのタンパク質がGFRとは別に追加の予後予測値を提供するかを決定した。
[0029]GFR測定は、CVイベントリスク予測において有用であることは明かである。しかしながら、GFRの臨床的測定は24時間にわたる尿の回収を要し、これは「単一サンプル、単一分析」での試験という本発明の基準に合わない。それほど煩わしくないその他のGFRの推測法もあるが、「単一サンプル」による予後予測試験という目的に到達するために、本発明の基礎をなす方策は、リスク解析のためのGFR情報を提供するタンパク質測定の使用を試みることであった。例えば、表3に記載の10種のマーカーモデルにおいて、タンパク質ESAMは、それとGFRとの相関によりCVイベントリスクを強力に予測する。タンパク質ESAM測定を校正して推定のGFRとの相関を除去したら、ESAMはリスク予測に利用されない。このようにして「単一サンプル、単一分析」でGFRに関する生物学的シグナルを処理するのにESAMなどのタンパク質を使用することは、CVイベントの予後予測に関する新規の利点の一つである。
[0030]表3のバイオマーカーの同定は、CVイベントの予後予測で共に作用し得るタンパク質の選択によってなされた。例えばWang, T.等 (2006) N.Eng.J.Med.355:2631〜9などの研究から、バイオマーカーの組み合わせは、年齢や脂質レベルなどの一般的な臨床的情報を用いた単純なリスク計算に追加の性能を提供できないことが多いことが示されている。バイオマーカーのアドホックの組み合わせを回避するために、本発明は、統計的分析手法を提供するものであり、このような手法では、タンパク質をそれら個々の予後予測力に関してスクリーニングし、それに加えて、重要なことに、タンパク質が共に相乗効果を奏して組み合わせの予後予測値を改善する能力に関してもスクリーニングした。複数の独立した生物学的過程は、本明細書で示される表3の10種のマーカータンパク質モデルで表される。
[0031]一実施態様において、本発明は、集団において5年の期間の将来の心血管系(CV)イベントリスクを評価する方法を含む。この方法は、集団の個体からの生体サンプルで、それぞれ表1から選択される少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値を検出することを含み、ここで個体のCVイベントリスクは、バイオマーカー値に基づいて評価され、N=2〜155である。その他の実施態様において、バイオマーカーは、表2から選択され、N=2〜46である。その他の実施態様において、バ
イオマーカーは、表3から選択され、N=2〜10である。
[0032]一実施態様において、心血管疾患の既往歴がないと特徴付けられる集団が選択される。その代わりに、心血管疾患の既往歴があると特徴付けられる集団が選択されてもよい。
[0033]既往歴には、心筋梗塞の既往、血管造影で1本またはそれより多くの冠血管で50%を超える狭窄が確認された証拠、トレッドミルまたは心臓核試験による運動誘発性虚血、または冠血行再建の既往が含まれていてもよい。
[0034]さらに、突然変異、単一ヌクレオチド多型、および挿入/欠失を含む遺伝学的リスク因子を特徴とする集団が選択されてもよい。このような遺伝学的リスク因子は、リスクの評価を補うのに用いることができる。
[0035]CVイベントリスクの評価は、長期にわたり、療法、栄養プログラム、補給、生活様式の改変、禁煙プログラム、および疾患管理プロトコールを含む介入に応答する変化に対応する動的はかりで測定することができる。
[0036]前述の5年間のCVイベントリスクの評価に関する方法を用いて、個体を、それらのバイオマーカー値に基づいて増加または減少させた疾患管理プログラムに配分することができる。また本方法を用いて、前記バイオマーカー値に応じて、生命保険の補償範囲に関する様々なリスク帯に個体を階層化することもできる。もまた本方法をCVイベントリスクの評価のために用いて、前記バイオマーカー値に応じて、健康保険の補償範囲に関する様々なリスク帯に個体を階層化することもできる。加えて、本方法を用いて、バイオマーカー値に応じて可能性のあるパートナーシップ候補を評価することもできる。
[0037]さらに、前述のCVイベントリスクの予測方法は、バイオマーカー値に基づいて集団の医療資源の消費量を予測すること;CV治療の臨床試験の組み入れ基準として個体のバイオマーカー値を使用すること;前記バイオマーカー値に基づいて臨床試験結果の有効性を予測すること;CV治療または何らかの治療における心血管安全性の監視のためにバイオマーカー値を使用すること;CV治療の有効性のサロゲート評価項目としてバイオマーカー値を使用すること;および/または前記バイオマーカー値に基づきあらゆる介入、食事または治療プロトコールを含むコンプライアンスをモニターすることに利用することができる。CV治療または何らかの治療におけるCV安全性の監視に関して、CV治療やほぼ毎回慢性的に使用される非心血管系の薬剤に関する大規模で多大な費用を要する必須の第3相CV安全性試験では、このような監視は重要である。
[0038]また本発明のCVイベントリスクを評価する方法は、前記バイオマーカー値に基づき、個体を選択したり、または個体をその他の診断手法で調査するのに使用することもできる。加えて、本発明の方法は、バイオマーカー値に基づいてCV治療を選択するのに用いることができる。
[0039]本発明のCVイベントリスクを評価する方法において、バイオマーカー値は、インビトロでの分析を行うことによって検出が可能である。インビトロでの分析は、それぞれのバイオマーカーに対応する少なくとも1種の捕獲試薬を使用するものであってもよく、さらに、SOMAmers、抗体、および核酸プローブからなる群より選択される少なくとも1種の捕獲試薬を含んでいてもよい。好ましい実施態様において、捕獲試薬は、SOMAmerである。
[0040]その他の実施態様において、インビトロでの分析は、イムノアッセイ、SOMA
merベースの分析、組織学的または細胞学的な分析、およびmRNA発現レベルの分析からなる群より選択することができる。
[0041]本発明の方法において、生体サンプルは、全血、血漿、血清、尿または同種のものであってもよい。好ましい実施態様において、生体サンプルは、血清、血漿または尿である。
[0042]加えて、本発明の方法において、個体が哺乳動物であってもよいとすれば、特にヒトである。
[0043]本発明の方法のその代りの実施態様において、N=3〜10;N=3〜15;N=2〜10;N=4〜10;またはN=5〜10である。
[0044]その他の実施態様において、本発明は、コンピューターにより実施される心血管系(CV)イベントのリスクを評価する方法を提供する。この方法は、コンピューターで個体のバイオマーカー情報を検索すること(ここでバイオマーカー情報は、それぞれ表1から選択される少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値を含む);コンピューターを用いてそれぞれのバイオマーカー値を分類すること;および複数の分類に基づいて前記個体のCVイベントリスクの評価の結果を示すことを含んでいてもよく、ここでN=2〜155である。この方法の代わりの実施態様において、バイオマーカーは、表2(N=2〜46)または表3(N=2〜10)から選択してもよい。
[0045]個体のCVイベントリスク評価の結果は、コンピューターディスプレイに表示してもよい。
[0046]その他の実施態様において、本発明は、CVイベントリスクを評価するためのコンピュータープログラム製品を含む。コンピュータープログラム製品は、計算装置またはシステムのプロセッサーによって実行可能なプログラムコードを具体化するコンピューターで読取り可能な媒体を含んでいてもよく、該プログラムコードは:個体からの生体サンプルに起因するデータを検索するコード(ここで該データは、それぞれ表1から選択される少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値を含み、該バイオマーカーは、生体サンプル中で検出されたものである);および前記バイオマーカー値に応じて個体のCVイベントリスクの評価の結果を示す分類方法を実行するコード、を含む。バイオマーカーが表1第7列から選択される場合、N=2〜155である。その他の実施態様において、バイオマーカーは、表2(N=2〜46)または表3(N=2〜10)から選択してもよい。
[0047]分類方法では、連続スコアもしくは測定、またはリスクの測定基準を使用してもよい。また分類方法では、2種またはそれより多くのクラスを使用してもよい。
[0048]本発明は、CVイベントリスクの評価に関して個体をスクリーニングする方法をさらに含む。この方法は、個体からの生体サンプルで、それぞれ表1から選択される少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値を検出することを含み、ここで個体は、CVイベントのリスクに関して前記バイオマーカー値に基づき評価され、ここでN=2〜155である。その他の実施態様において、バイオマーカーは、それぞれ表2(N=2〜46)または表3(N=2〜10)から選択してもよい。
[0049]本発明の方法において、バイオマーカー値の検出は、インビトロでの分析でなされてもよい。このようなインビトロでの分析は、それぞれのバイオマーカーに対応する少なくとも1種の捕獲試薬を含んでいてもよく、さらに、SOMAmers、抗体、および
核酸プローブからの少なくとも1種の捕獲試薬を選択することをさらに含んでいてもよい。好ましくは、少なくとも1種の捕獲試薬は、SOMAmerである。インビトロでの分析は、イムノアッセイ、SOMAmerベースの分析、組織学的または細胞学的な分析、およびmRNA発現レベルの分析から選択してもよい。
[0050]生体サンプルは、全血、血漿、血清、尿などから選択することができる。好ましくは、生体サンプルは、血清、血漿または尿である。本発明の方法において、個体は、哺乳動物であってもよく、好ましくはヒトである。
[0051]本発明の実施態様の一つにおいて、個体がCVイベントリスクに関して評価されるならば、前記バイオマーカー値、加えて前記個体に相当する追加の生物医学的情報のうち少なくとも1つの項目に基づき評価される。追加の生物医学的情報のうち少なくとも1つの項目としては、これらに限定されないが、以下に示すもの:(a)心筋梗塞の既往、血管造影で1本またはそれより多くの冠血管で50%を超える狭窄が確認された証拠、トレッドミルまたは心臓核試験による運動誘発性虚血、または冠血行再建の既往のうち1つまたはそれより多くの、心血管系リスク因子の存在に相当する情報;(b)前記個体の身体的な記述子に相当する情報;(c)前記個体の体重変化に相当する情報;(d)前記個体の民族性に相当する情報;(e)前記個体の性別に相当する情報;(f)前記個体の喫煙歴に相当する情報;(g)前記個体のアルコール摂取歴に相当する情報;(h)前記個体の職業歴に相当する情報;(i)前記個体の心血管疾患またはその他の循環系状態の家族歴に相当する情報;(j)前記個体または前記個体の家族におけるより高い心血管疾患リスクと相関する少なくとも1種の遺伝子マーカーの前記個体における存在または非存在に相当する情報;(k)個体の臨床症状に相当する情報;(l)その他の実験室試験に相当する情報;(m)個体の遺伝子発現値に相当する情報;(n)飽和脂肪が多く、高塩濃度の食事などの公知の心血管系リスク因子の前記個体における消費に相当する情報;(o)心電図、心エコー検査、頚動脈内膜中膜厚の超音波診断、血流依存性血管拡張反応検査、脈波伝播速度、足関節上腕血圧比、ストレス心エコー検査、心筋血流イメージング、冠CTによる冠動脈カルシウム検査、高分解能CT血管撮影法、MRIイメージング、およびその他のイメージング様式などの個体のイメージング研究に相当する情報;および(p)薬物療法に関する情報、が挙げられる。
[0052]本発明は、5年の期間内の将来的なCVイベントのリスクを評価するためのバイオマーカーのパネルをさらに含み、ここで本パネルは、表1に記載のバイオマーカーからなる群より選択されるN種のバイオマーカーを含み、N=2〜155である。その代りの実施態様において、バイオマーカーは、表2から選択され、N=2〜46であるか、あるいは表3から選択され、N=2〜10である。
[0053]その他の形態において、本発明は、5年の期間の将来のCVイベントリスクを評価または予後予測することにより、集団中の個体をスクリーニングする方法を含み、ここで上記評価または予後予測は、個体からの生体サンプルで、アンジオポエチン2に関するバイオマーカー値を検出すること、およびアンジオポエチン2のバイオマーカー値に基づいて将来的なCVイベントのリスクを決定することによってなされる。バイオマーカー値は、測定スコアとして示してもよいし、あるいは複数の分類のいずれか1つへの分類として示してもよい。
[0054]アンジオポエチン2を用いたスクリーニング方法の改変法において、本発明はさらに、決定工程の前に、個体のスタチン使用に関する情報を提供することを含む工程を方法に加えることも含む。従って、将来的なCVイベントのリスクの決定は、アンジオポエチン2のバイオマーカー値とスタチン情報に基づいてなされる。
[0055]アンジオポエチン2は、驚くべきことに、スタチンに関する個体の二次的な心血管イベントを予後予測することにおいて有用である。スタチンは、従来技術において、二次的な心血管イベントリスクを低減させるだけでなく、アンジオポエチン2の増加も引き起こすことが報告されている。このアンジオポエチン2の増加は、アンジオポエチン2をバイオマーカーとして使用できなくする要因となっていたかもしれない。意外なことに、アンジオポエチン2は、高リスク個体において二次的な心血管イベントを予測するための優れたマーカーであることが実証された。
[0056]アンジオポエチン2のバイオマーカー値を検出する方法は、追加の工程、すなわち生体サンプル中において、MMP7、CHRDL1、MATN2、PSA−ACTバイオマーカーのうち1種もしくはそれより多く、またはそれらの組み合わせに関するバイオマーカー値を検出する工程を含んでいてもよい。本方法はさらに、生体サンプル中において、それぞれ表3のバイオマーカーから選択されるN種のバイオマーカーに相当するバイオマーカー値を検出することをさらに含んでいてもよく、ここでN=2〜10である。
[0057]その他の形態において、本発明は、5年の期間の将来のCVイベントリスクを評価または予後予測することにより集団中の個体をスクリーニングするためのバイオマーカーのパネルを提供する。本パネルは、少なくともアンジオポエチン2バイオマーカーを含む。このパネルはさらに、MMP7、CHRDL1、MATN2、PSA−ACTバイオマーカーのうち1種もしくはそれより多く、またはそれらのあらゆる組み合わせを含んでいてもよい。加えて本パネルは、表3から選択される1種またはそれより多くのバイオマーカーを含んでいてもよく、ここでN=2〜10である。
[0058]その他の実施態様において、本発明は、5年の期間の将来のCVイベントリスクを評価することにより個体をスクリーニングする方法を提供し、上記評価は、血栓形成イベントまたはうっ血性心不全(CHF)イベントの差次的な(differential)予後予測を含む。この方法は、集団の個体からの生体サンプルで、それぞれ血栓形成イベントの予後予測のためのGPVIバイオマーカーおよびCHFイベントの予後予測のためのMATN2バイオマーカーに相当するバイオマーカー値を検出することを含む。本方法はさらに、追加の工程、すなわち生体サンプル中において、表3に記載のバイオマーカー群から選択されるN種のバイオマーカーに関するバイオマーカー値を検出する工程を含んでいてもよく、ここでN=3〜10である。血栓形成イベントは、心筋梗塞(MI)、一過性虚血発作(TIA)、卒中、急性冠症候群、および冠血行再建の必要性のいずれかであってもよい。
[0059]さらに、5年の期間の将来のCVイベントリスクを評価または予後予測することにより集団中の個体をスクリーニングするためのバイオマーカーのパネルが提供され、ここで本パネルは、GPVIバイオマーカーおよびMATN2バイオマーカーを含む。本パネルはさらに、表3に記載のバイオマーカーからなる群より選択されるN種のバイオマーカーのうち少なくとも1種を含んでいてもよい。
[0060]関与する様々な生物学的システムを考慮して、複数種のCV疾患治療を利用することができる。CV疾患の治療には、例えば抗血栓剤、血小板阻害剤、脂質代謝、流体および電解質バランスの薬物管理、およびベータブロッカーが用いられてきた。治療の指針とするために、全体のリスクを確認するだけでなく、指定されたイベントのクラスを生物学的に識別することが有用である。前述のMATN2とGPVIを用いる方法によれば、起こり得るイベントのクラスを血栓形成イベントおよびCHFイベントに分類することが可能になる。GPVIは、血栓形成イベントの発症により特異的であり、MATN2は、CHFイベントにより特異的である。図8Aおよび8Bに、GPVIの血栓形成イベントの特異度を示す。図9Aおよび9Bで、CHFを予後予測するためのMATN2の特異度
を説明する。これらの差は、関連する生物学的過程の観点で解釈することもできる。それゆえにこの複数のタンパク質をベースとした試験は、CHFを発症させるリスクと血栓形成イベントのリスクとを区別する情報を患者に提供することができる。これは、本発明の有意で重要な特徴であり、従来技術では説明されていないと思われる。
[0061]本発明の方法はまた、タンパク質測定単独に基づいてCVイベントリスクを予後予測することに加えて、性別、薬物療法などの単純な情報、LDLコレステロール、HDLコレステロール、総コレステロールなどのその他のマーカー、および糖尿病などのその他の状態を考慮に入れることにより得られるより詳細な像の利点も提供する。このようなモデルは、本明細書で示される表3に記載の10種のタンパク質モデルに基づき構築することができる。
[0062]さらに、5年の期間の将来のCVイベントリスクを評価または予後予測することにより集団中の個体をスクリーニングするためのキットを提供する。本キットは、以下の構成要素、すなわち表1に記載の少なくとも1種のバイオマーカー;それに対応する少なくとも1種の捕獲試薬(ここで対応する捕獲試薬はそれぞれ選択されたバイオマーカーに特異的である);およびシグナルを生成する材料(ここで前記材料は、選択された対応するバイオマーカーおよび/または対応する捕獲試薬に特異的であり、各シグナルは、各捕獲試薬と対応するバイオマーカーとが結合すると活性化される)、を含む。
[0063]その他の形態において、本キットは、アンジオポエチン2バイオマーカー;アンジオポエチン2バイオマーカーと、MMP7、CHRDL1、MATN2、PSA−ACT、およびそれらのあらゆる組み合わせからなる群より選択されるあらゆるバイオマーカー;GPVIバイオマーカー、MATN2バイオマーカー、およびそれらのあらゆる組み合わせからなる群より選択されるバイオマーカー;表3に記載のバイオマーカー群から選択されるN種のバイオマーカー(ここでN=2〜10である);およびそれらのあらゆる組み合わせからなる群より選択される1種またはそれより多くのバイオマーカーを含んでいてもよい。
[0064]本キットの捕獲試薬は、SOMAmer、抗体、および核酸プローブのいずれか1もしくはそれより多く、またはそれらの組み合わせであってもよい。本キットはさらに、生体サンプルを得た個体を、高いCVイベントリスクを有するまたは有さないのいずれかに分類するための、説明書または1つまたはそれより多くのソフトウェアまたはコンピュータープログラム製品を含んでいてもよい。
[0065]その他の実施態様において、本発明は、表1第7列、表2または表3に記載のバイオマーカーを含む分類器を含む。
図1Aは、生体サンプルでCVイベントを予測するための典型的な方法のフローチャートである。 図1Bは、単純ベイズ分類方法を用いて生体サンプルでCVイベントを予測するための典型的な方法のフローチャートである。 図2Aは、6ヶ月以内のイベントを伴うケースのサブグループおよびCVイベントを伴わないコントロールに関する主成分分析を示す。イベントを伴うケースは、垂直軸に沿って部分的にコントロールから分けられる。 図2Bは、6ヶ月以内のイベントを伴うケースのサブグループおよびCVイベントを伴わないコントロールに関するDSGA分析を示す。イベントを伴うケースは、横軸に沿って部分的にコントロールから分けられる。 図3Aは、研究対象集団のリスクのスコア分析を示す。このスコアは、表3に記載の10種のタンパク質の測定値の対数を用いて単純なコックス比例ハザードモデルを構築することによって計算された。このスコアに基づいて集団を五分位数に分けた。図3に記載のカプラン・マイヤープロットから、心血管イベントを経験する個体または様々なタイプのイベントで死亡した個体の比率について、これらの五分位数がどの程度異なっているかが示される。図3Aは、研究対象集団の全ての死亡および心血管イベントのカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図3Bは、CVイベント:未分類の死亡、すなわちMIまたはCHF(うっ血性心不全)のような近位の原因がわかっていない死亡を示すケースに関するカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図3Cは、CVイベント:偶発的なCHFを示すケースに関するカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図3Dは、CVイベント:慢性CHF患者(以前にCHFと診断された患者)のCHF再発を示すケースに関するカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図3Eは、CVイベント:血栓形成イベント(MI+卒中)を示すケースに関するカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図3Fは、CVイベント:全てのCHFを示すケースに関するカプラン・マイヤープロットを示し、集団は、表3に記載のタンパク質スコアに基づいて五分位数に分けられる。 図4は、本明細書で説明される様々なコンピューターにより実施される方法で使用するための典型的なコンピューターシステムを説明する。 図5は、一実施態様に従って、CVイベントリスク評価を示す方法のフローチャートである。 図6は、一実施態様に従ってCVイベントリスクを評価する方法のフローチャートである。 図7は、生体サンプル中の1つまたはそれより多くのCVイベントのバイオマーカーを検出するのに用いることができる典型的なアプタマー分析を説明する。 図8は、表3に記載の10種のタンパク質のうちの1種のGPVIに基づくカプラン・マイヤープロットを示しており、それにより、このタンパク質は血栓形成イベントとCHFイベントとを区別することが実証される。集団は、GPVIの四分位数に分けられる。図8Aは、GPVIの最上位の四分位数は、血栓性の心血管イベントの予後予測能があることを示す。図8Bは、GPVIの四分位数は、CHFイベントを予測する識別能力がほとんどないことを示す。 図9は、表3に記載の10種のタンパク質のうち1種のMATN2に基づくカプラン・マイヤープロットを示しており、これから、このタンパク質は血栓形成イベントとCHFイベントとを区別することが実証される。集団は、MATN2の四分位数に分けられる。図9Aから、MATN2の四分位数は、血栓性の心血管イベントの予後予測能がないことが示される。図9Bは、MATN2の最上位の四分位数に含まれる個体は、より高いCHFイベント発生率を有することを示す。 図10は、スタチン投与を受けた被験者538人全員のカプラン・マイヤープロットを示しており、これから、アンジオポエチン−2に関する集団分布の第4の四分位数に含まれる個体は、アンジオポエチン−2に関する第4の四分位数に含まれない個体と比較して高い割合で心血管イベントを経験していることが示される。従って、スタチン処理の作用に関係なく、アンジオポエチン−2は、CVイベントリスクの有用なバイオマーカーである。 図11は、スタチン投与を受けた被験者538人全員のカプラン・マイヤープロットを示しており、これから、CHRDL1は、スタチン処理した個体において心血管イベントフリー生存率と関連することが示される。従って、スタチン処理の作用にもかかわらず、CHRDL1は、CVイベントリスクの有用なバイオマーカーである。
詳細な説明
[0084]ここで本発明の代表的な実施態様について詳細に説明する。本発明は列挙された実施態様により説明されるが、当然のことながら本発明がこれらの実施態様に限定されることは目的としない。それとは逆に、本発明は、特許請求の範囲で定義される本発明の範囲に包含される可能性がある全ての代替物、改変、および等価体を含むものとする。
[0085]当業者であれば、本発明の実施の範囲で使用可能であってその範囲に含まれる、本明細書で説明されたものと類似するかまたは等価な多くの方法および材料を理解しているものと思われる。本発明は、説明された方法および材料によって限定されることは決してない。
[0086]特に他の指定がない限り、本明細書において用いられる専門用語や科学用語は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。本発明の実施または試験において本明細書で説明されるものと類似するかまたは等価なあらゆる方法、装置、および材料が使用できるが、以下で好ましい方法、装置、および材料を説明する。
[0087]本出願において引用された全ての公報、公開された特許文献、および特許出願は、本出願が関連する技術分野(複数可)の能力レベルの指標である。本明細書において引用された全ての公報、公開された特許文献、および特許出願は、参照により本発明に組み入れられ、それにより参照により本明細書に組み入れられたそれぞれ個々の公報、公開された特許文献または特許出願が個別かつ具体的に提示されたのと同様とする。
[0088]本出願、加えて添付の請求項で用いられるように、単数形「a」「an」、および
「the」は、その内容が明らかに別の意味を示していない限り、複数形の対象物も含み、
「少なくとも1つの」および「1またはそれより多くの」と同じ意味で用いられる。従って、「a SOMAmer」と記載される場合、それはSOMAmerの混合物を含み、「a probe」と記載される場合、それはプローブの混合物を含む(他も同様)。
[0089]本明細書で用いられる用語「約」は、その数値が関連する物事の基礎的な機能が変化しない程度のわずかな数値の改変または変動を示す。
[0090]用語「comprise」、「comprising」、「include」、「including」、「contain
」、「containing」、およびそれらのあらゆる変化形は、本明細書で用いられる場合、包括的な意味で用いられるものとし、要素または一連の要素を含む(comprise、include、contain)プロセス、方法、プロダクト−バイ−プロセス、または物質の組成物がその要素だけを含むのではなく、明確に列挙されていない要素、あるいはこのようなプロセス、方法、プロダクト−バイ−プロセス、または物質の組成物に本来備わっているその他の要素を含んでいてもよい。
[0091]本出願は、所定期間内の、例えば5年以内のCVイベントリスクを予測するためのバイオマーカー、方法、装置、試薬、システム、およびキットを含む。
[0092]「心血管イベント」とは、循環系のあらゆる部分の障害または機能不全を意味する。一実施態様において、「心血管イベント」は、卒中、一過性虚血発作(TIA)、心
筋梗塞(MI)、循環系の機能不全に起因する突然死、および/または心不全を意味する。その他の実施態様において、「心血管イベント」は、ステントまたは血管形成術などを要する前述の機能不全および/または不安定狭心症のいずれかを意味する。
[0093]心血管イベントは、「うっ血性心不全」または「CHF」および「血栓形成イベント」を含む。血栓形成イベントとしては、MI、一過性虚血発作(TIA)、卒中、急性冠症候群、および冠血行再建の必要性が挙げられる。
[0094]一形態において、5年の期間の将来のCVイベントリスクを評価するための、単独または様々な組み合わせのいずれかで使用される1種またはそれより多くのバイオマーカーが提供され、ここでCVイベントは、心筋梗塞、卒中、死亡、およびうっ血性心不全と定義される。血栓形成イベント(図3e)は、心筋梗塞と卒中との組み合わせからなる。以下で詳細に説明されるように、典型的な実施態様としては表1第7列に示されるバイオマーカーが挙げられ、これらは、全般的には実施例1で、より詳細には実施例2で説明されているマルチプレックスSOMAmerベースの分析を用いて同定されたものである。
[0095]表1第7列に、最初の採血(タイムポイント1)後に6ヶ月〜10年の時間枠内でCVイベントを有した患者(イベント陽性)数百人分の血液サンプルと、その時間枠内でCVイベントを起こさなかった個体数百人分の血液サンプル(イベント陰性)とを解析することにより得られた所見を記載する。イベント陽性およびイベント陰性の血液サンプルをプールするのではなく、個々のサンプルで可能性のあるバイオマーカーを測定した。それにより、CVイベントの存在および非存在に伴う表現型における個体変動および群変動についてよりよく理解することが可能になった。各サンプルに1000回を超えるタンパク質測定を行い、イベント陽性およびイベント陰性を示す集団それぞれからの数百のサンプルを個々に測定し、並外れて膨大なデータ群を解析することにより表1第7列で報告したバイオマーカーが得られた。その測定値を、本明細書の「バイオマーカーの分類およびリスクのスコアの計算」の章で説明されている方法を用いて解析した。表1第7列は、集団をそれらの性質に従って階層化して、血液サンプルを採取した後0〜5年の期間の将来的なCVイベントを示すことにおいて有用であることが見出された155種のバイオマーカーを列挙している。図3A〜3Fに記載のカプラン・マイヤー曲線から、イベントリスクがこのような表3に列挙したバイオマーカーの小さいサブセットによって決定したスコアの五分位数に強く依存していることが示される。
[0096]説明されるCVイベントのバイオマーカーのうちいくつかは単独でもCVイベントリスクを評価するのに有用であるが、本明細書ではCVイベントのバイオマーカーの複合サブセットのグループ分け法も説明され、この方法において、選択された各グループ分けまたはサブセットは、本明細書では同義的に「バイオマーカーパネル」やパネルと称される3種またはそれより多くのバイオマーカーのパネルとして有用である。従って、本出願の様々な実施態様は、N種のバイオマーカーを含む組み合わせを提供し、ここでN種のバイオマーカーは、少なくとも2種のバイオマーカーである。その他の実施態様において、Nは、2〜155種のバイオマーカーから選択される。
[0097]さらにその他の実施態様において、Nは、2〜7、2〜10、2〜15、2〜20、2〜25、2〜30、2〜35、2〜40、2〜45、2〜50、2〜55からのいずれかの数値、または最大2〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、3〜7、3〜10、3〜15、3〜20、3〜25、3〜30、3〜35、3〜40、3〜45、3〜50、3〜55からのいずれかの数値、または最大3〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、
Nは、4〜7、4〜10、4〜15、4〜20、4〜25、4〜30、4〜35、4〜40、4〜45、4〜50、4〜55からのいずれかの数値、または最大4〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、5〜7、5〜10、5〜15、5〜20、5〜25、5〜30、5〜35、5〜40、5〜45、5〜50、5〜55からのいずれかの数値、または最大5〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、6〜10、6〜15、6〜20、6〜25、6〜30、6〜35、6〜40、6〜45、6〜50、6〜55からのいずれかの数値、または最大6〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、7〜10、7〜15、7〜20、7〜25、7〜30、7〜35、7〜40、7〜45、7〜50、7〜55からのいずれかの数値、または最大7〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、8〜10、8〜15、8〜20、8〜25、8〜30、8〜35、8〜40、8〜45、8〜50、8〜55からのいずれかの数値、または最大8〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、9〜15、9〜20、9〜25、9〜30、9〜35、9〜40、9〜45、9〜50、9〜55からのいずれかの数値、または最大9〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。その他の実施態様において、Nは、10〜15、10〜20、10〜25、10〜30、10〜35、10〜40、10〜45、10〜50、10〜55からのいずれかの数値、または最大10〜155まで範囲の上限を連続的に5ずつ増やしてなるいずれかの数値になるように選択される。当然のことながら、Nは、類似の、ただしそれより高次の範囲を包含するように選択することができる。
[0098]一実施態様において、バイオマーカーのサブセットまたはパネルに有用なバイオマーカーの数は、特定のバイオマーカー値の組み合わせにおける感度および特異度の値に基づく。用語「感度」および「特異度」は、本明細書では、個体の生体サンプルで検出された1種またはそれより多くのバイオマーカー値に基づいて、5年以内にCVイベントを起こす高いリスクがあるかまたは同じ期間内にCVイベントを起こす高いリスクがないと個体を正確に分類する能力に関して用いられる。「感度」は、高いCVイベントリスクがある個体を正確に分類することに関するバイオマーカー(複数可)の性能を示す。「特異度」は、高いCVイベントリスクがない個体を正確に分類することに関するバイオマーカー(複数可)の性能を示す。例えば、イベント陰性サンプルとイベント陽性サンプルのセットを試験するのに用いられたマーカーのパネルについて特異度が85%および感度が90%であるということは、そのパネルによりコントロールサンプルの85%がイベント陰性サンプルに正確に分類され、そのパネルによりイベント陽性サンプルの90%がイベント陽性サンプルに正確に分類されたことを示す。
[0099]代わりの方法において、スコアは、CVイベントの高、中または低リスクの閾値と共に連続範囲で報告することもでき、閾値は、臨床所見に基づいて決定される。
[00100]本明細書において同定されたCVイベントリスクのバイオマーカーは、CVイ
ベントリスクを予測するのに用いることができるバイオマーカーのサブセットまたはパネルのための極めて多数の選択が可能である。このようなバイオマーカーの望ましい数の選択は、選択されるバイオマーカーの特定の組み合わせによって決まる。重要なことには、CVイベントリスクを予測するためのバイオマーカーのパネルはさらに、表1第7列に記載されていないバイオマーカーを含んでいてもよく、さらに表1第7列に記載されていない追加のバイオマーカーを取り入れることで、表1第7列から選択される特定のサブセットまたはパネル中のバイオマーカーの数を減らしてもよい。バイオマーカー値と共に追加
の生物医学的情報を用いて、所定の分析において許容できる閾値が確立される場合、サブセットまたはパネルで用いられる表1第7列のバイオマーカーの数を減らしてもよい。
[00101]バイオマーカーのサブセットまたはパネルで使用するバイオマーカーの数に影
響する可能性があるその他の要素は、CVイベントリスクを評価する個体から生体サンプルを得るために使用される手法である。望ましい感度および特異度ならびに/または閾値を達成するのに必要なバイオマーカー数は、慎重に管理されたサンプル調達環境であれば、サンプル回収、取り扱い、および貯蔵の際に比較的変動が起こりやすい状況よりも少なくなると予想される。
[00102]本出願の一形態は、図1Aおよび1Bを参照しながら一般的に説明することが
できる。対象の個体または個体(複数)から生体サンプルを得る。続いて生体サンプルを分析して、対象の1種またはそれより多くの(N種の)バイオマーカーの存在を検出し、前記N種のバイオマーカー(図1BではマーカーRFUと称される)それぞれのバイオマーカー値を決定する。バイオマーカーが検出され、バイオマーカー値が割り当てられたら、各マーカーを本明細書で詳細に説明されるようにスコア付けするかまたは分類する。次にマーカーのスコアを合計してトータルの診断スコアを得るが、このスコアは、特に連続範囲で報告される場合、サンプルを得た個体がCVイベントの高、中または低リスクを有する尤度を示す。
[00103]「生体サンプル」、「サンプル」、および「試験サンプル」は、本明細書では
同じ意味で用いられ、個体から得られた、または別の方法で個体から抽出されたあらゆる材料、生体液、組織、または細胞を意味する。この例としては、血液(例えば全血、白血球、末梢血単核細胞、軟層、血漿、および血清)、乾燥血液スポット(例えば乳児から得られたもの)、痰、涙、粘液、鼻の洗浄標本、鼻吸引液、呼吸、尿、精液、唾液、腹腔洗浄液、腹水、嚢胞液、髄膜液、羊水、腺液、膵液、リンパ液、胸膜液、乳頭吸引液、気管支吸引液、気管支擦過標本、滑液、関節吸引液、臓器分泌物、細胞、細胞抽出物、および髄液が挙げられる。さらにこの例としては、前述した全てのものを実験的に分離した画分も挙げられる。例えば血液サンプルは、血清、血漿に分画してもよいし、あるいは特定のタイプの血液細胞、例えば赤血球または白血球(白血球)を含む画分に分画してもよい。必要に応じて、サンプルは、個体からのサンプルの組み合わせであってもよく、例えば組織サンプルと流体サンプルとの組み合わせであってもよい。用語「生体サンプル」はさらに、例えば便サンプル、組織サンプル、または組織生検等をホモジナイズした固体材料を含む材料も含む。用語「生体サンプル」はさらに、組織培養または細胞培養から抽出された材料も含む。生体サンプルを得るためのあらゆる適切な方法を用いることができる;典型的な方法としては、例えば、静脈切開、綿棒(例えば口腔内用綿棒)、および穿刺吸引細胞診生検法が挙げられる。穿刺吸引細胞診に適した典型的な組織としては、リンパ節、肺、肺の洗浄標本、BAL(気管支肺胞洗浄液)、甲状腺、乳房、膵臓、および肝臓が挙げられる。サンプルはさらに、例えば、顕微解剖(例えばレーザーキャプチャーマイクロダイセクション(LCM)またはレーザーマイクロダイセクション(LMD))、膀胱の洗浄標本、塗抹標本(例えばPAP塗抹標本)、または乳管洗浄によっても回収することができる。個体から得られたまたは個体から抽出された「生体サンプル」は、個体から採取された後に何らかの適切な方式で処理したサンプルも含む。
[00104]さらに当然のことながら、多数の個体から生体サンプルを採取し、それらをプ
ールするかまたはそれぞれ個々の生体サンプルのアリコートをプールすることにより生体サンプルを得てもよい。プールしたサンプルは、一つの個体からのサンプルとして処理してもよいし、さらに、プールしたサンプルでCVイベントリスクの高低が確定したら、それぞれ個々の生体サンプルを再試験して、どの個体(複数可)が高いまたは低いCVイベントリスクを有するのかを決定してもよい。
[00105]上述したように、生体サンプルは、尿であってもよい。尿サンプルは、血液ま
たは血清サンプルよりも優れた所定の利点がある。静脈穿刺による血液または血漿サンプルの回収は、予想以上に複雑であり、入手できる体積が変動する可能性があり、患者にとっても厄介な場合があり、多少の(わずかな)感染リスクがある。また静脈切開は、熟練者を必要とする。尿サンプルの回収は簡単なため、本発明の方法の広範囲に及ぶ適用に貢献する可能性がある。
[00106]サンプルとして尿を使用することの適性を決定するために、健康な被験者から
の尿サンプルを各タンパク質の品質および量について評価し、この情報をCVリスク予後予測における表1〜3に記載のバイオマーカーの品質と組み合わせた。尿は血漿の限外ろ液液であることから、尿中に排出された特異的タンパク質の量は、血中タンパク質濃度に比例する。表1〜3のいずれかに記載の高品質なバイオマーカーが尿中で十分な量利用できる場合、これらのバイオマーカーは、CVイベントリスクを評価するために個体をスクリーニングする方法に使用するのに適している。尿中で見出されたCVイベントを予測できるバイオマーカーとしては、ESAM、MMP7、およびGP6が挙げられ、これらは強いシグナルを示す。これらのバイオマーカーは比較的小さいため、腎臓で十分に透過されて尿に排出される。加えてPSA−ACTおよびプラスミノーゲンは、尿中、個体間で変動することが見出されている。これは、尿中のこれらのバイオマーカーの定量化も、個体をCVイベントリスクでスクリーニングする方法において有用である可能性があることを示す。従って、これら5種のタンパク質により、本発明の個体をCVイベントリスクでスクリーニングする方法で、簡単な尿ベースの試験を使用できるようになる。
[00107]本明細書の目的において、成句「個体からの生体サンプルに起因するデータ」
とは、いくつかの形態のデータが、個体の生体サンプルから抽出されたものであるか、あるいは個体の生体サンプルを用いて作製したものであることを意味するものとする。このようなデータは、作製後に、再フォーマットしてもよいし、修正してもよいし、またはある程度数学的に変更してもよく、これは例えば、ある測定システムでの単位からその他の測定システムでの単位に変換することによってなされるが、このようなデータは、当然のことながら生体サンプルから抽出されたものであるか、あるいは生体サンプルを用いて作製されたものである。
[00108]「標的」、「標的分子」、および「分析物」は、本明細書では同じ意味で用い
られ、生体サンプル中のに存在し得るあらゆる対象の分子を意味する。「対象の分子」には、特定の分子の何らかのわずかな変化、タンパク質の場合、例えばアミノ酸配列、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化におけるわずかな変化、あるいはその他のあらゆる操作または改変、例えば標識成分との共役も含まれるが、それにより実質的に分子の同一性は変更されない。「標的分子」、「標的」または「分析物」は、1つのタイプの分子または分子種のコピー群であるか、あるいは多分子構造である。「標的分子(複数)」、「標的(複数)」、および「分析物(複数)」は、このような分子群が複数の場合を意味する。典型的な標的分子としては、タンパク質、ポリペプチド、核酸、炭水化物、脂質、多糖類、糖タンパク質、ホルモン、受容体、抗原、抗体、アフィボディ、抗体模倣体、ウイルス、病原体、有毒物質、基質、代謝産物、遷移状態類似体、補因子、阻害剤、薬物、色素、栄養素、増殖因子、細胞、組織、および前述のものいずれかのあらゆるフラグメントまたは部分が挙げられる。
[00109]本明細書で用いられる「ポリペプチド」、「ペプチド」、および「タンパク質
」は、本明細書では同じ意味で用いられ、あらゆる長さを有するアミノ酸のポリマーを意味する。このようなポリマーは、直鎖状であってもよいしまたは分岐状であってもよく、改変されたアミノ酸を含んでもよく、非アミノ酸が介在していてもよい。またこれらの用
語は、自然にまたは介入によって改変されたアミノ酸ポリマーも包含し;例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化、またはその他のあらゆる操作または改変、例えば標識成分との共役によって改変されたアミノ酸ポリマーも包含する。さらに、例えば、1つまたはそれより多くのアミノ酸類似体(例えば、自然にはないアミノ酸など)、加えて当業界公知のその他の改変を含むポリペプチドもこの定義の範囲内である。ポリペプチドは、単鎖であってもよいし、または共役した鎖であってもよい。プレタンパク質および無傷の成熟タンパク質;成熟タンパク質から誘導されたペプチドまたはポリペプチド;タンパク質フラグメント;スプライス変異体;タンパク質の組換え型;アミノ酸改変、欠失、または置換を有するタンパク質変異体;消化物;および翻訳後修飾、例えばグリコシル化、アセチル化、リン酸化などもこの定義の範囲内である。
[00110]「マーカー」および「バイオマーカー」は、本明細書で用いられる場合、同じ
意味で用いられ、個体における正常もしくは異常な過程または個体における疾患またはその他の状態を示す、あるいはそれらの徴候である標的分子を意味する。より具体的には、「マーカー」または「バイオマーカー」は、特定の生理学的な状態または過程の存在に関連する解剖学的、生理学的、生化学的、または分子的なパラメーターであり、このような状態または過程は、正常か異常かのいずれでもよく、異常な場合、慢性または急性のどちらでもよい。バイオマーカーは、実験室分析および医療用イメージングなどの様々な方法によって検出および測定が可能である。バイオマーカーがタンパク質である場合、それに対応する遺伝子の発現を、生体サンプル中のそれに対応するタンパク質バイオマーカーの量または存在もしくは非存在、あるいはバイオマーカーまたはバイオマーカーの発現を制御するタンパク質をコードする遺伝子のメチル化状態の代替的尺度として利用することも可能である。
[00111]本明細書で用いられる場合、「バイオマーカー値」、「値」、「バイオマーカ
ーレベル」、および「レベル」は、同じ意味で用いられ、生体サンプル中のバイオマーカーを検出するあらゆる分析法を用いて得られるものであって、生体サンプル中のバイオマーカーの、生体サンプル中のバイオマーカーに関する、または生体サンプル中のバイオマーカーに対応する、存在、非存在、絶対量または濃度、相対量または濃度、タイター、レベル、発現レベル、測定レベルの比率などを示す測定値を意味する。「値」または「レベル」の正確な性質は、バイオマーカーを検出するのに用いられる具体的な設計および具体的な分析法の構成要素によって決まる。
[00112]バイオマーカーが、個体における異常な過程または疾患もしくはその他の状態
を示すか、あるいはそれらの徴候である場合、そのバイオマーカーは、一般的に、個体における正常な過程または疾患もしくはその他の状態の非存在を示すか、あるいはそれらの徴候であるバイオマーカーの発現レベルまたは値と比較して、過剰発現されたかまたは過小発現されたかのいずれかと説明される。「アップレギュレーション」、「アップレギュレートされた」、「過剰発現」、「過剰発現された」、およびそれらのあらゆる変化形は、同じ意味で用いられ、生体サンプル中のバイオマーカーの値またはレベルが、一般的に健康または正常な個体からの類似の生体サンプルで検出されるバイオマーカーの値またはレベル(または値またはレベルの範囲)よりも高いことを意味する。この用語はさらに、生体サンプル中のバイオマーカーの値またはレベルが、特定の疾患の異なるステージで検出される可能性があるバイオマーカーの値またはレベル(または値またはレベルの範囲)よりも高いことを意味する場合もある。
[00113]「ダウンレギュレーション」、「ダウンレギュレートされた」、「過小発現」
、「過小発現された」、およびそれらのあらゆる変化形は、同じ意味で用いられ、生体サンプル中のバイオマーカーの値またはレベルが、一般的に健康または正常な個体からの類似の生体サンプルで検出されるバイオマーカーの値またはレベル(または値またはレベル
の範囲)よりも低いことを意味する。この用語はさらに、生体サンプル中のバイオマーカーの値またはレベルが、特定の疾患の異なるステージで検出される可能性があるバイオマーカーの値またはレベル(または値またはレベルの範囲)よりも低いことを意味する場合もある。
[00114]さらに、過剰発現または過小発現されたバイオマーカーは、個体における正常
な過程または疾患もしくはその他の状態の非存在を示すかまたはそれらの徴候である「正常な」バイオマーカーの発現レベルまたは値と比較して、「差次的に発現される」ことを意味する場合もあるし、あるいは「差次的レベル」または「差次的な値」を有することを意味する場合もある。従って、バイオマーカーの「差次的な発現」は、バイオマーカーの「正常な」発現レベルからの変動を意味する場合もある。
[00115]用語「差次的な遺伝子発現(differential gene expression)」、および「差
次的な発現」は、同じ意味で用いられ、特定の疾患または状態に罹った被検者において、正常なまたはコントロールの被験者におけるその発現と比較してそれよりも高いまたは低いレベルに遺伝子(またはそれに対応するタンパク質発現産物)の発現が活性化されることを意味する。この用語はさらに、遺伝子(またはそれに対応するタンパク質発現産物)の発現が、同じ疾患または状態の異なるステージでより高いまたは低いレベルに活性化されることも含む。また当然のことながら、差次的に発現された遺伝子は、核酸レベルまたはタンパク質レベルで活性化されるかまたは阻害されるかのいずれかであってもよく、あるいはオルタナティブスプライシング処理された結果、異なるポリペプチド産物を生じる可能性もある。このような差は、mRNAレベル、表面発現、分泌またはその他のポリペプチドの分配などの様々な変化によって証明することができる。差次的な遺伝子発現としては、2種もしくはそれより多くの遺伝子の発現またはそれらの遺伝子産物の比較;または2種またはそれより多くの遺伝子の発現またはそれらの遺伝子産物の比率の比較;または2種の異なってプロセシングされた同じ遺伝子産物の比較が挙げられ、このような遺伝子の発現またはそれらの遺伝子産物は、正常な被験者と疾患に罹った被験者とで異なっており;あるいは同じ疾患の様々なステージで異なっている。差次的な発現は、例えば正常な細胞と罹患した細胞との、または異なる疾患イベントまたは疾患のステージを経た細胞の、遺伝子またはその発現産物の一時的な発現パターンまたは細胞の発現パターンにおける定量的な差と定性的な差との両方を含む。
[00116]「個体」は、本明細書で用いられる場合、試験被験者または患者を意味する。
個体は、哺乳動物であってもいし、または哺乳動物以外でもよい。様々な実施態様において、個体は、哺乳動物である。哺乳動物の個体は、ヒトであってもよいし、またはヒト以外であってもよい。様々な実施態様において、個体は、ヒトである。健康または正常な個体は、従来の診断方法で対象の疾患または状態(例えば心筋梗塞、卒中、およびうっ血性心不全などの心血管イベント)が検出されない個体である。
[00117]「診断する」、「診断すること」、「診断」、およびそれらの変化形は、個体
の健康状態または状態を、徴候、症状、データまたはその個体に関するその他の情報の1つまたはそれより多くに基づき検出、決定、または確認することを意味する。個体の健康状態は、健康/正常と診断される場合もあるし(すなわち疾患または状態がないという診断)、あるいは不健康/異常と診断される場合もある(すなわち疾患もしくは状態の特徴があるという診断、または疾患もしくは状態の特徴の評価)。用語「診断する」、「診断すること」、「診断」等は、特定の疾患または状態に関して、疾患の初期の検出;疾患の特徴付けまたは分類;疾患の進行、寛解または再発の検出;および個体に処理または治療を施した後の疾患応答の検出を包含する。CVイベントリスクの予測は、高いCVイベントリスクを有する個体とそうではない個体とを区別することを含む。
[00118]「予後予測する」、「予後予測すること」、「予後予測」、およびそれらの変
化形は、疾患または状態を有する個体における疾患または状態の将来的な経過の予測(例えば患者の生存を予測すること)を意味し、このような用語は、個体に処理または治療を施した後の疾患または状態の応答を評価することを包含する。
[00119]「評価する」、「評価すること」、「評価」、およびそれらの変化形は、「診
断」と「予後予測」の両方を包含し、さらに疾患を有さない個体における疾患または状態の将来的な経過に関する決定または予測、加えて一見疾患が治癒したまたは状態が消散した個体において疾患または状態が再発するリスクに関する決定または予測も包含する。また用語「評価する」は、治療に対する個体の応答を評価すること、例えば個体が、治療剤によく応答する可能性が高いのか、あるいは治療剤に応答する可能性が低いのか(または例えば毒作用またはその他の望ましくない副作用を受けるのか)を予測すること、個体に投与する治療剤を選択すること、または個体に施された治療に対する個体の応答をモニターもしくは決定することも包含する。従って、CVイベントのリスクを「評価すること」は、例えば、以下のうちいずれか、すなわち個体における将来的なCVイベントリスクを予測すること;一見CVの問題がない個体におけるCVイベントリスクを予測すること;またはCV処理に対する個体の応答を決定もしくは予測すること、あるいは個体の生体サンプルから抽出されたバイオマーカー値の決定に基づいて個体に施されるCV処理を選択することのいずれかであってもよい。CVイベントリスクの評価は、例えば連続的なスケールでCVイベントリスクを評価する実施態様、または漸増式の分類でCVイベントリスクを分類する実施態様を含んでいてもよい。リスクの分類は、例えば「高いCVイベントリスクなし」および「高いCVイベントリスク」などの2つまたはそれより多くの分類に分類することを含む。CVイベントリスクの評価は、決められた期間でなされ、このような期間は、例えば5年であってもよい。
[00120]「追加の生物医学的情報」は、本明細書で用いられる場合、CVリスクまたは
より具体的にはCVイベントリスクと関連がある本明細書で説明されるバイオマーカーのいずれかを用いてなされた評価以外の個体の1つまたはそれより多くの評価を意味する。「追加の生物医学的情報」は、以下のうちいずれか、すなわち、個体の身体的な記述子、例えば個体の身長および/または体重;個体の年齢;個体の性別;体重変化;個体の民族性;職業歴;心血管疾患(またはその他の循環系障害)の家族歴;個体におけるより高い心血管疾患(またはその他の循環系障害)のリスクと相関する遺伝子マーカー(複数可)の存在、あるいは家族間の頚動脈内膜厚の変化;胸痛、体重増加などの臨床症状、または遺伝子発現値の消失;個体の身体的な記述子、例えば放射線学的画像検査によって観察された身体的な記述子;喫煙状態;アルコール摂取歴;職業歴;食事の習慣−塩、飽和脂肪、およびコレステロール摂取;カフェイン消費;および撮像情報、例えば心電図、心エコー検査、頚動脈内膜中膜厚の超音波診断、血流依存性血管拡張反応検査、脈波伝播速度、足関節上腕血圧比、ストレス心エコー検査、心筋血流イメージング、冠CTによる冠動脈カルシウム検査、高分解能CT血管撮影法、MRIイメージング、およびその他のイメージング様式;および個体の薬物療法のいずれかを含む。いずれかの追加の生物医学的情報、例えばその他の実験室試験(例えばHDL、LDL検査、CRPレベル、Nt−proBNP検査、血清アルブミン検査、クレアチン検査)の評価と組み合わせてバイオマーカーレベルを試験することは、バイオマーカー試験単独または追加の生物医学的情報のいずれかの特定の項目単独(例えば頚動脈内膜厚イメージング単独)の評価と比較して、例えばCVイベント予測に関する感度、特異度、および/またはAUCを改善する可能性がある。追加の生物医学的情報は、当業界公知の慣例的な技術を用いて個体から得ることができ、例えば慣例的な患者への質問事項または健康歴の質問事項などの使用によって個体自身から得てもよいし、あるいは医師などから得てもよい。いずれかの追加の生物医学的情報の評価と組み合わせてバイオマーカーレベルを試験することは、バイオマーカーを単独で試験すること、または追加の生物医学的情報のいずれかの特定の項目を単独で(例えば
、CTイメージング単独で)評価することと比較して、例えばCVイベントの予測(またはその他の心血管関連の用途)に関する感度、特異度、および/または閾値を改善する可能性がある。
[00121]バイオマーカー値に関して「検出すること」または「決定すること」は、本明
細書で用いられる場合、バイオマーカー値に対応するシグナルを観察し記録するのに必要な機器と、そのシグナルを生成するに必要な材料(複数可)との両方の使用を含む。様々な実施態様において、バイオマーカー値は、あらゆる適切な方法を用いて検出され、このような方法としては、蛍光、化学発光、表面プラズモン共鳴、表面弾性波、質量分析法、赤外分光分析、ラマン分光法、原子間力顕微鏡、走査トンネル顕微鏡法、電気化学的な検出方法、核磁気共鳴、量子ドットなどが挙げられる。
[00122]「固体支持体」は、本明細書では、分子が共有結合または非共有結合のいずれ
かを介して直接的または間接的に結合する可能性がある表面を有するあらゆる基質を意味する。「固体支持体」は、様々な物理的構造を有するものでもよく、このような固体支持体としては、例えば、メンブレン;チップ(例えばタンパク質チップ);スライド(例えばスライドガラスまたはカバーガラス);カラム;中空の、固体の、半固体の、孔または空孔を含む粒子、例えばビーズ;ゲル;ファイバー、例えば光ファイバー材料;マトリックス;およびサンプル容器が挙げられる。典型的なサンプル容器としては、サンプルウェル、チューブ、毛細血管、バイアル、およびその他のあらゆる容器、サンプルを保持することができる溝またはくぼみが挙げられる。サンプル容器は、例えばマイクロタイタープレート、スライド、マイクロフルイディクス装置などのマルチサンプルプラットフォーム上に含まれていてもよい。支持体は、天然または合成材料、有機または無機材料で構成されていてもよい。捕獲試薬を結合させる固体支持体の組成は、一般的に、結合の方法(例えば共有結合)によって決まる。その他の典型的な容器としては、分析および関連の操作をその中で起こすことができる、微小液滴や、マイクロ流体工学的に制御された、またはバルクの水中油型エマルジョンが挙げられる。適切な固体支持体としては、例えば、プラスチック、樹脂、多糖類、シリカまたはシリカベースの材料、官能化ガラス、変性ケイ素、炭素、金属、無機ガラス、メンブレン、ナイロン、天然繊維(例えば絹、羊毛、および綿)、ポリマーなどが挙げられる。固体支持体を構成する材料は、例えばカルボキシ、アミノまたはヒドロキシル基などの反応性基を含んでいてもよく、これらは捕獲試薬の結合に利用される。高分子固体支持体としては、例えば、ポリスチレン、ポリエチレングリコールテトラフタレート、ポリ酢酸ビニル、塩化ビニル、ポリビニルピロリドン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ブチルゴム、スチレンブタジエンゴム、天然ゴム、ポリエチレン、ポリプロピレン、(ポリ)テトラフルオロエチレン、(ポリ)フッ化ビニリデン、ポリカーボネート、およびポリメチルペンテンが挙げられる。用いることができる適切な固体支持体粒子としては、例えば、コード化粒子、例えばルミネックス(Luminex)(登録商標)タイプのコード化粒子、磁気粒子、
およびガラス粒子が挙げられる。
バイオマーカーの典型的な使用
[00123]様々な典型的な実施態様において、個体におけるCVイベントのリスクを評価す
るための方法が提供され、本方法は、多数の分析方法、例えば本明細書で説明される分析方法のいずれかによって、個体の循環系中、例えば血清または血漿中に存在する1種またはそれより多くのバイオマーカーに対応する1種またはそれより多くのバイオマーカー値を検出することによってなされる。これらのバイオマーカーは、例えば、高いCVイベントリスクを有する個体において、高いCVイベントリスクを有さない個体と比較して差次的に発現される。個体におけるバイオマーカーの差次的な発現の検出を用いて、例えば5年の時間枠以内のCVイベントリスクを予測することができる。
[00124]独立型の診断テストとしてバイオマーカーレベルを試験することに加えて、バ
イオマーカーレベルの決定は、疾患または状態の罹患性に関する高リスクを有するSNPもしくはその他の遺伝子の損傷または変動性の決定と共になされてもよい。(例えばAmos等、Nature Genetics 40、616〜622 (2009)を参照)。
[00125]独立型の診断テストとしてバイオマーカーレベルを試験することに加えて、バ
イオマーカーレベルは、放射線学的なスクリーニングと共に用いてもよい。バイオマーカーレベルは、関連する症状または遺伝学的試験と共に用いてもよい。個体の適切な臨床ケアの方向性を示すために、CVイベントのリスクを評価した後に本明細書で説明されるバイオマーカーのいずれかを検出することが有用な可能性があり、例えばCVイベントリスクを決定した後に高リスク個体のケアのレベルをより積極的なものに高めるといったことができる。関連する症状またはリスク因子と共にバイオマーカーレベルを試験することに加えて、バイオマーカーに関する情報はさらに、その他のタイプのデータと共に評価することもでき、このようなその他のタイプのデータとしては、具体的には個体の心血管イベントに関するリスクを有するデータ(例えば患者の病歴、症状、心血管疾患の家族歴、喫煙またはアルコール摂取歴、リスク因子、例えば遺伝子マーカー(複数可)の存在および/またはその他のバイオマーカーの状態など)が挙げられる。これらの様々なデータは、コンピュータープログラム/ソフトウェアなどの自動化された方法によって評価してもよく、このような方法は、コンピューターまたはその他の器具/装置で具体化することができる。
[00126]高リスク個体において放射線学的なスクリーニングと共にバイオマーカーレベ
ルを試験すること(例えば、冠動脈造影図で検出された閉塞と共にバイオマーカーレベルを評価すること)に加えて、バイオマーカーに関する情報はさらに、その他のタイプのデータと共に評価することもでき、このようなその他のタイプのデータとしては、具体的には個体のCVイベントリスクを有するデータ(例えば、患者の病歴、症状、心血管疾患の家族歴、リスク因子、例えば個体が喫煙者、重度のアルコール飲用者であるかどうか、および/またはその他のバイオマーカーの状態など)が挙げられる。これらの様々なデータは、コンピュータープログラム/ソフトウェアなどの自動化された方法によって評価してもよく、このような方法は、コンピューターまたはその他の器具/装置で具体化することができる。
[00127]バイオマーカーの試験はさらに、現在のところ臨床業務において利用されてい
るガイドラインおよび心血管系リスクのアルゴリズムと連携させてもよい。例えば、フラミンガムのリスクのスコアは以下のリスク因子、すなわち血管緊張、LDL−コレステロールおよびHDL−コレステロール値、グルコースレベルの異常、喫煙、収縮期血圧、および糖尿病を使用して、リスクのスコアを作製する。高リスク患者の頻度は加齢に伴って増加し、高リスク患者のうち男性のほうが女性よりも高い比率を占める。
[00128]説明されるバイオマーカーはいずれも、イメージング試験で利用することがで
きる。例えば造影剤を説明されるバイオマーカーのいずれかにカップリングしてもよく、これを利用して、その他の用途のなかでも特に、心血管イベントリスクの予測を補助したり、治療的介入への応答をモニターしたり、臨床試験において標的集団を選択したりすることができる。
バイオマーカーおよびバイオマーカー値の検出および決定
[00129]本明細書で説明されるバイオマーカーのバイオマーカー値は、様々な公知の分析
方法のいずれかを用いて検出することができる。一実施態様において、バイオマーカー値は捕獲試薬を用いて検出される。「キャプチャー物質」または「捕獲試薬」は、本明細書で用いられる場合、バイオマーカーに特異的に結合することができる分子を意味する。様
々な実施態様において、捕獲試薬は、溶液中でバイオマーカーと接触させてもよいし、あるいは捕獲試薬を固体支持体に固定した状態でバイオマーカーと接触させてもよい。その他の実施態様において、捕獲試薬は、固体支持体上で二次的な機構との反応性を有する機構を含む。これらの実施態様において、溶液中で捕獲試薬とバイオマーカーとを接触させて、捕獲試薬上の機構と固体支持体上の二次的な機構とを共にを用いてバイオマーカーを固体支持体に固定することもできる。捕獲試薬は、行われる解析のタイプに基づいて選択される。捕獲試薬としては、これらに限定されないが、SOMAmer、抗体、アドネクチン、アンキリン、その他の抗体模倣剤、およびその他のタンパク質の足場、自己抗体、キメラ、低分子物質、F(ab’)フラグメント、単鎖抗体フラグメント、Fvフラグメント、単鎖Fvフラグメント、核酸、レクチン、リガンド結合受容体、アフィボディ、ナノボディ、インプリントポリマー、アビマー、ペプチドミメティクス、ホルモン受容体、サイトカイン受容体、および合成受容体、ならびにこれらの改変体およびフラグメントが挙げられる。
[00130]いくつかの実施態様において、バイオマーカー値は、バイオマーカー/捕獲試
薬複合体を用いて検出される。
[00131]その他の実施態様において、バイオマーカー値は、バイオマーカー/捕獲試薬
複合体から抽出されるか、あるいは間接的に検出され、例えばバイオマーカー/捕獲試薬の相互作用の後に起こる反応の結果として検出されるが、これは、バイオマーカー/捕獲試薬複合体の形成に依存する。
[00132]いくつかの実施態様において、バイオマーカー値は、生体サンプル中のバイオ
マーカーから直接検出される。
[00133]一実施態様において、バイオマーカーは、多重化様式を用いて検出され、それ
により生体サンプル中の2種またはそれより多くのバイオマーカーの同時検出が可能になる。多重化様式の一実施態様において、捕獲試薬は、固体支持体上の別々の位置に、共有結合または非共有結合によって、直接的または間接的に固定される。その他の実施態様において、多重化様式は、別々の固体支持体を使用しており、各固体支持体は、その固体支持体に関連する固有の捕獲試薬、例えば量子ドットを有する。その他の実施態様において、生体サンプル中で検出される複数のバイオマーカーのそれぞれ1つの検出ごとに別個の装置が用いられる。別個の装置は、生体サンプル中の各バイオマーカーを同時に処理できるように設計してもよい。例えばマイクロタイタープレートを用いることができ、この場合、プレート中の各ウェルは、生体サンプル中で検出される複数のバイオマーカーのうち1つを個別に解析するのに用いられる。
[00134]前述の実施態様の1またはそれより多くにおいて、蛍光タグを用いてバイオマ
ーカー/捕獲複合体の構成要素を標識することができ、それによりバイオマーカー値の検出が可能になる。様々な実施態様において、蛍光標識を、公知の技術を用いて本明細書で説明されるバイオマーカーのいずれかに特異的な捕獲試薬に共役させて、蛍光標識を用いてそれに対応するバイオマーカー値を検出することもできる。適切な蛍光標識としては、希土類キレート、フルオレセインおよびその誘導体、ローダミンおよびその誘導体、ダンシル、アロフィコシアニン、PBXL−3、Qdot605、リサミン、フィコエリトリン、テキサスレッド、およびその他の類似の化合物が挙げられる。
[00135]一実施態様において、蛍光標識は、蛍光色素分子である。いくつかの実施態様
において、蛍光色素分子は、少なくとも1つの置換インドリウム環系を含み、インドリウム環の3位の炭素における置換基は、化学反応性を有する基または共役物質を含む。いくつかの実施態様において、色素分子としては、アレクサフルオロ(AlexFluor)分子、例
えばアレクサフルオロ(Alexafluor)488、アレクサフルオロ532、アレクサフルオロ647、アレクサフルオロ680、またはアレクサフルオロ700が挙げられる。その他の実施態様において、色素分子は、第一のタイプの色素分子と第二のタイプの色素分子とを含み、例えば2種の異なるアレクサフルオロ分子を含む。その他の実施態様において、色素分子は、第一のタイプの色素分子と第二のタイプの色素分子とを含み、このような2種の色素分子は、異なる放出スペクトルを有する。
[00136]蛍光は、多様な分析様式に対応可能な様々な機器で測定することができる。例
えば、分光蛍光計は、マイクロタイタープレート、顕微鏡スライド、プリントされたアレイ、キュベットなどを解析できるように設計されている。J.R.LakowiczによるPrinciples of Fluorescence Spectroscopy, Springer Science + Business Media, Inc.、2004を
参照されたい。Bioluminescence & Chemiluminescence:Progress & Current Applications; Philip E.StanleyおよびLarry J.Kricka編、World Scientific Publishing Company、2002年1月を参照されたい。
[00137]前述の実施態様の1またはそれより多くにおいて、任意選択で化学発光タグを
用いてバイオマーカー/捕獲複合体の構成要素を標識することができ、それによりバイオマーカー値の検出が可能になる。適切な化学発光物質としては、塩化オキサリル、ローダミン6G、Ru(bipy)32+、TMAE(テトラキス(ジメチルアミノ)エチレン)、ピロガロール(1,2,3−トリヒドロキシベンゼン)、ルシゲニン、ペルオキシオキサレート、アリールオキサレート、アクリジニウムエステル、ジオキセタンなどのいずれかが挙げられる。
[00138]さらにその他の実施態様において、検出方法は、バイオマーカー値に対応する
検出可能なシグナルを生成する酵素/基質の組み合わせを含む。一般的に、酵素は、発色性基質の化学的変化を触媒し、この化学的変化は、分光光度法、蛍光、および化学発光などの様々な技術を用いて測定することができる。適切な酵素としては、例えば、ルシフェラーゼ、ルシフェリン、リンゴ酸デヒドロゲナーゼ、ウレアーゼ、ホースラディッシュペルオキシダーゼ(HRPO)、アルカリホスファターゼ、ベータ−ガラクトシダーゼ、グルコアミラーゼ、リゾチーム、グルコースオキシダーゼ、ガラクトースオキシダーゼ、およびグルコース−6−リン酸塩デヒドロゲナーゼ、ウリカーゼ、キサンチンオキシダーゼ、ラクトペルオキシダーゼ、ミクロペルオキシダーゼなどが挙げられる。
[00139]さらにその他の実施態様において、検出方法は、測定可能なシグナルを生成す
る、蛍光、化学発光、放射性核種または酵素/基質の組み合わせであってもよい。多モードのシグナル伝達は、バイオマーカーの分析様式において固有且つ有利な特徴を有する可能性がある。
[00140]より具体的にいえば、本明細書で説明されるバイオマーカーのバイオマーカー
値は、公知の分析方法を用いて検出することもでき、このような分析方法としては、シングルプレックスSOMAmer分析、マルチプレックスSOMAmer分析、シングルプレックスまたはマルチプレックスイムノアッセイ、mRNA発現プロファイリング、miRNA発現プロファイリング、質量分光分析、組織学的/細胞学的な方法などが挙げられ、以下で詳述される。
SOMAmerベースの分析を用いたバイオマーカー値の決定
[00141]生体サンプルおよびその他のサンプル中の生理学的に重要な分子の検出および定
量化を目的とした分析は、科学的な調査および健康管理分野において重要なツールである。このような分析のクラスの一つは、固体支持体に固定された1種またはそれより多くのアプタマーを有するマイクロアレイの使用に関するものである。アプタマーはそれぞれ、
高度に特異的な様式で、かつ極めて高親和性で標的分子に結合することができる。例えば「Nucleic Acid Ligands」という表題の米国特許第5,475,096号を参照されたい。さらに、例えばそれぞれ「Nucleic Acid Ligand Diagnostic Biochip」という表題の米国特許第6,242,246号、米国特許第6,458,543号、および米国特許第6,503,715号も参照されたい。マイクロアレイがサンプルと接触すると、アプタマーはサンプル中に存在するそれぞれの標的分子に結合し、それにより、バイオマーカーに対応するバイオマーカー値を決定することができる。
[00142]「アプタマー」は、本明細書で用いられる場合、標的分子に対して特異的な結
合親和性を有する核酸を意味する。親和性の相互作用は程度の問題であることが認識されている;しかしながら、この文脈において、アプタマーの標的に対する「特異的な結合親和性」は、アプタマーとその標的との結合親和性が、一般的には試験サンプル中のその他の構成要素に結合する場合の結合親和性よりもかなり高い程度であることを意味する。「アプタマー」は、特定のヌクレオチド配列を有する1つのタイプまたは種の核酸分子のコピー群である。アプタマーは、あらゆる適切な数のヌクレオチドを含んでいてもよく、化学修飾されたヌクレオチドがいくつ含まれていてもよい。「アプタマー」は、1個より多くのこのような分子群を意味する。アプタマーは、同一または異なる多数のヌクレオチドを有する様々なアプタマーであってもよい。アプタマーは、DNAまたはRNAでもよく、あるいは化学修飾された核酸でもよく、さらに一本鎖、二本鎖でもよく、あるいは二本鎖の領域を含んでいてもよく、さらにより高次の構造を含んでいてもよい。またアプタマーは、光アプタマーであってもよく、その場合、アプタマーは光反応性または化学反応性を有する官能基を含み、その対応する標的に共有結合で結合することが可能になる。本明細書において開示されたアプタマーの方法はいずれも、同じ標的分子に特異的に結合する2種またはそれより多くのアプタマーの使用を含んでいてもよい。以下でさらに説明されるように、アプタマーは、タグを含んでいてもよい。アプタマーがタグを含む場合、必ずしもアプタマーのコピー全てが同じタグを有していなくてもよい。その上、異なるアプタマーそれぞれがタグを含む場合、これらの異なるアプタマーは、同じタグまたは異なるタグのどちらを有していてもよい。
[00143]アプタマーは、SELEX法などの公知のあらゆる方法を用いて同定すること
もできる。アプタマーが同定されたら、化学合成法および酵素的な合成方法などの公知のあらゆる方法に従ってアプタマーを製造してもよいし、または合成してもよい。
[00144]「SOMAmer」または遅い解離速度の改変アプタマー(Slow Off-Rate Modified Aptamer)は、本明細書で用いられる場合、改善された解離速度特徴を有するアプ
タマーを意味する。SOMAmerは、「Method for Generating Aptamers with Improved Off-Rates」という表題の米国公報第2009/0004667号で説明されている改良SELEX法を用いて作製することができる。
[00145]用語「SELEX」および「SELEX法」は、本明細書では同じ意味で用い
られ、一般的には(1)望ましい方式(例えばタンパク質との高親和性の結合)で標的分子と相互作用するアプタマーの選択と、(2)その選択された核酸の増幅との組み合わせを意味する。SELEX法を用いて、特異的な標的またはバイオマーカーに対して高親和性を有するアプタマーを同定することができる。
[00146]SELEXは、一般的に、候補の核酸混合物を製造すること、候補混合物を望
ましい標的分子に結合させて親和性複合体を形成すること、親和性複合体を未結合の候補核酸から分離すること、親和性複合体から核酸を分離して単離すること、核酸を精製すること、および特異的なアプタマー配列を同定することを含む。選択されたアプタマーの親和性をさらに洗練するために、この方法を複数回行ってもよい。この方法は、過程の1ま
たはそれより多くのポイントで増幅工程を含んでいてもよい。例えば「Nucleic Acid Ligands」という表題の米国特許第5,475,096号を参照されたい。SELEX法は、標的と共有結合するアプタマーだけでなく、標的と非共有結合によって結合するアプタマーを生成するのにも使用することができる。例えば「Systematic Evolution of Nucleic Acid Ligands by Exponential Enrichment:Chemi-SELEX」という表題の米国特許第5,
705,337号を参照されたい。
[00147]SELEX法を用いて、アプタマーに例えば改善されたインビボでの安定性ま
たは改善された送達特徴など改善された特徴を付与する修飾ヌクレオチドを含む高親和性のアプタマーを同定することができる。このような修飾の例としては、リボースおよび/またはリン酸および/または塩基の位置での化学的置換が挙げられる。SELEX法によって同定された修飾ヌクレオチドを含むアプタマーは、「High Affinity Nucleic Acid Ligands Containing Modified Nucleotides」という表題の米国特許第5,660,985号で説明されており、そこでは、ピリミジンの5’および2’位で化学修飾されたヌクレオチド誘導体を含むオリゴヌクレオチドが説明されている。米国特許第5,580,737号(上記参照)は、2’−アミノ(2’−NH2)、2’−フルオロ(2’−F)、および/または2’−O−メチル(2’−OMe)で修飾されたヌクレオチドを1つまたはそれより多く含む高度に特異的なアプタマーを説明している。またSELEXおよびフォトSELEX(photoSELEX)における拡張された物理的および化学特性を有する核酸ライブラリーおよびその使用を説明している「SELEX and PHOTOSELEX」という表題の米国特許出願公開公報第20090098549号も参照されたい。
[00148]またSELEXを用いて、望ましい解離速度の特徴を有するアプタマーを同定
することもできる。標的分子に結合することができるアプタマーを作製するための改良SELEX法を説明している「Method for Generating Aptamers with Improved Off-Rates」という表題の米国特許出願公開公報第20090004667号を参照されたい。上述したように、これらの遅い解離速度のアプタマーは「SOMAmer」として知られている。それぞれの標的分子からの解離速度が比較的遅いアプタマーまたはSOMAmerおよびフォトアプタマーまたはSOMAmerを生産する方法を説明する。この方法は、候補混合物と標的分子とを接触させること、核酸−標的複合体の形成が起こるようにすること、および遅い解離速度を強化した過程を行うことを含み、ここで速い解離速度を有する核酸−標的複合体は解離して再形成されないが、遅い解離速度を有する複合体は無傷のまま残ると予想される。加えてこの方法は、解離速度性能が改善されたアプタマーまたはSOMAmerを作製するための候補核酸混合物の生産に修飾ヌクレオチドを使用することを含む。
[00149]この分析の改変法として、アプタマーが標的分子と共有結合したりまたは「光
架橋」したりすることを可能にする光反応性を有する官能基を含むアプタマーを用いる分析がある。例えば「Nucleic Acid Ligand Diagnostic Biochip」という表題の米国特許第6,544,776号を参照されたい。これらの光反応性アプタマーはフォトアプタマーとも称される。例えばそれぞれ「Systematic Evolution of Nucleic Acid Ligands by Exponential Enrichment:Photoselection of Nucleic Acid Ligands and Solution SELEX
」という表題の米国特許第5,763,177号、米国特許第6,001,577号、および米国特許第6,291,184号を参照されたい。また、例えば「Photoselection of Nucleic Acid Ligands」という表題の米国特許第6,458,539号も参照されたい。マイクロアレイをサンプルと接触させて、フォトアプタマーが標的分子に結合する機会を与えた後、フォトアプタマーを光活性化し、固体支持体を洗浄して、全ての非特異的に結合した分子を除去する。フォトアプタマー上で光活性化した官能基(複数可)により形成された共有結合のためにフォトアプタマーに結合する標的分子は通常除去されないため、厳しい洗浄条件を使用することができる。このようにして、上記分析は、試験サンプル
中のバイオマーカーに対応するバイオマーカー値の検出を可能にする。
[00150]これら両方の分析様式において、アプタマーまたはSOMAmerは、サンプ
ルと接触させる前に固体支持体に固定される。しかしながら所定の環境下では、サンプルと接触させる前にアプタマーまたはSOMAmerを固定すると、最適な分析にならない可能性がある。例えば、アプタマーまたはSOMAmerを前もって固定することは、固体支持体の表面上で非効率的なアプタマーまたはSOMAmerと標的分子との混合が起こり、反応時間が長期化する可能性があることから、インキュベート期間を延長すれば、アプタマーまたはSOMAmerとその標的分子との効率的な結合が可能になる。さらに、このような分析で、固体支持体として利用される材料に応じてフォトアプタマーまたはフォトSOMAmerが用いられる場合、固体支持体は、用いられる光を散乱させたりまたは吸収したりして、フォトアプタマーまたはフォトSOMAmerとその標的分子との間で共有結合を形成させる性質があるものでもよい。さらに用いられる方法に応じて、それらのアプタマーまたはフォトSOMAmerに結合した標的分子の検出は不正確になりやすいが、これは、固体支持体の表面も、用いられるあらゆる標識物質に晒されたりその影響を受けたりする可能性があるためである。最終的に、固体支持体上へのアプタマーまたはSOMAmerの固定は、一般的に、アプタマーまたはSOMAmerをサンプルに曝露する前のアプタマーまたはSOMAmerの調製工程(すなわち固定)を含み、この調製工程は、アプタマーまたはSOMAmerの活性または官能性に影響を与える可能性がある。
[00151]溶液中でSOMAmerにその標的を捕獲させた後、検出前にSOMAmer
−標的混合物の特定の構成要素を除去するように設計された分離工程を用いるSOMAmer分析も説明されている(「Multiplexed Analyses of Test Samples」という表題の米国特許出願公開公報第20090042206号を参照)。説明されているSOMAmer分析方法は、核酸(すなわちSOMAmer)を検出して定量することによって、試験サンプル中の非核酸標的(例えばタンパク質標的)の検出および定量化を可能にする。説明されている方法では、非核酸標的を検出して定量するための核酸サロゲート(すなわちSOMAmer)が作製されることから、増幅などの多種多様の核酸技術をタンパク質標的などのより広範囲の望ましい標的に応用することが可能になる。
[00152]SOMAmerバイオマーカー複合体(またはフォトSOMAmerバイオマ
ーカーの共有結合による複合体)からの分析の構成要素の分離が容易であり、検出および/または定量化のためにSOMAmerの単離が可能なSOMAmerを構築することもできる。一実施態様において、これらのコンストラクトは、SOMAmer配列内に切断可能なまたは取り外し可能な要素を含んでいてもよい。その他の実施態様において、SOMAmerに追加の官能性を導入してもよく、例えば、標識されたまたは検出可能な構成要素、スペーサー構成要素、または特異的な結合タグまたは固定要素を導入してもよい。例えば、SOMAmerは、切断可能な部分を介してSOMAmerに連結されたタグ、標識、標識と切断可能な部分とを分離するスペーサー構成要素を含んでいてもよい。一実施態様において、切断可能な要素は、光切分解性リンカーである。光切分解性リンカーをビオチン部分とスペーサーのセクションとに結合させて、アミンの誘導体化のためのNHS基を入れることにより、ビオチン基をSOMAmerに導入して、分析方法の後半でSOMAmerを放出させるのに利用することができる。
[00153]ホモジニアスアッセイは、溶液中で全ての分析の構成要素を用いてなされ、シ
グナル検出の前にサンプルと試薬との分離を必要としない。この方法は迅速であり、取り扱いが簡単である。この方法では、その特異的な標的と反応する分子の捕獲または結合試薬に基づいてシグナルが生成される。CVイベントを予測するためには、分子の捕獲試薬は、SOMAmerもしくは抗体または同種のものであり、特異的な標的は、表1第7列
に記載のCVイベントのバイオマーカーと予想される。
[00154]一実施態様において、シグナル生成方法は、フルオロフォアで標識された捕獲
試薬とその特異的なバイオマーカー標的との相互作用による異方性シグナルの変化を利用するものである。標識された捕獲試薬がその標的と反応すると、分子量の増加により複合体に結合したフルオロフォアの回転運動が起こり、異方性値の変化がかなり遅くなる。異方性変化をモニターすることによって、溶液中のバイオマーカーを結合事象を用いて定量的に測定することができる。その他の方法としては、蛍光偏光分析、分子ビーコン法、時間分解蛍光消光、化学発光、蛍光共鳴エネルギー転移などが挙げられる。
[00155]生体サンプル中のバイオマーカーに対応するバイオマーカー値を検出するのに
用いることができる典型的な溶液ベースのSOMAmer分析は、以下:(a)生体サンプルと、第一のタグを含み、バイオマーカーに対して特異的な親和性を有するSOMAmerとを接触させることにより混合物を製造すること(ここで、バイオマーカーがサンプル中に存在する場合、SOMAmerの親和性複合体が形成される);(b)混合物を第一の捕獲要素を含む第一の固体支持体に晒して、第一のタグを第一の捕獲要素に連結させること;(c)第一の固体支持体と連結しない混合物のあらゆる構成要素を除去すること;(d)第二のタグをSOMAmer親和性複合体のバイオマーカー構成要素に結合させること;(e)第一の固体支持体からSOMAmer親和性複合体を放出させること;(f)放出されたSOMAmer親和性複合体を第二の捕獲要素を含む第二の固体支持体に晒して、第二のタグを第二の捕獲要素に連結させること;(g)錯体化していないSOMAmerをSOMAmer親和性複合体から分けることにより、混合物からあらゆる錯体化していないSOMAmerを除去すること;(h)固体支持体からSOMAmerを溶出させること;および(i)SOMAmer親和性複合体のSOMAmer構成要素を検出することによりバイオマーカーを検出すること、を含む。
[00156]SOMAmer親和性複合体のSOMAmer構成要素を検出することによっ
てバイオマーカー値を検出するために、当業界公知のあらゆる手段を用いることができる。親和性複合体のSOMAmer構成要素を検出するのに用いることができる多種多様の検出方法としては、例えばハイブリダイゼーション分析、マススペクトロスコピー、またはQPCRが挙げられる。いくつかの実施態様において、SOMAmer親和性複合体のSOMAmer構成要素を検出して、バイオマーカー値を検出するために、核酸の配列決定法を用いることができる。簡単に言えば、試験サンプルをあらゆる種類の核酸配列決定法で処理して、試験サンプル中に存在する1種またはそれより多くのSOMAmerの配列または配列(複数)を同定して定量することができる。いくつかの実施態様において、このような配列は、分子を特異的に同定するのに利用できるSOMAmer分子の全体または分子のいずれかの部分を含む。その他の実施態様において、確認する配列は、SOMAmerに付加された特異的な配列である;このような配列は、「タグ」、「バーコード」または「ジップコード」と称されることが多い。いくつかの実施態様において、配列決定法は、酵素を用いた工程を含み、このような工程は、SOMAmer配列を増幅したり、あるいはいずれかの位置に化学修飾を含むRNAおよびDNAなどのあらゆる種類の核酸を配列解析に適したその他のあらゆる種類の核酸に変換したりするためになされる。
[00157]いくつかの実施態様において、配列決定法は、1またはそれより多くのクロー
ニング工程を含む。その他の実施態様において、配列決定法は、クローニングを用いない直接配列決定法を含む。
[00158]いくつかの実施態様において、配列決定法は、試験サンプル中の1種またはそ
れより多くのSOMAmerを標的とする特異的なプライマーを用いた定方向性アプローチを含む。その他の実施態様において、配列決定法は、試験サンプル中の全てのSOMA
merを標的とするショットガンアプローチを含む。
[00159]いくつかの実施態様において、配列決定法は、配列解析を目的とした分子を増
幅する酵素を用いた工程を含む。その他の実施態様において、配列決定法は、単一の分子を直接配列決定する。生体サンプル中のバイオマーカーに対応するバイオマーカー値を検出するのに用いることができる典型的な核酸配列解析ベースの方法は、以下:(a)酵素を用いた工程で化学修飾されたヌクレオチドを含むSOMAmerの混合物を、未修飾の核酸に変換すること;(b)例えば454シーケンシングシステム(454ライフ・サイエンシズ(454 Life Sciences)/ロシュ(Roche))、イルミナ・シーケンシングシステム(イルミナ(Illumina))、ABI SOLiDシーケンシングシステム(アプライド・バイオシステムズ(Applied Biosystems))、ヘリフコープ(HeliScope)シングルモ
レキュラーシーケンサー(ヘリコス・バイオサイエンシズ(Helicos Biosciences))、
またはパシフィック・バイオサイエンシズのリアルタイムシングルモレキュラーシーケンシングシステム(パシフィック・バイオサイエンシズ(Pacific BioSciences))もしく
はポロネーターG(Polonator G)シーケンシングシステム(ドーバー・システムズ(Dover Systems))などの大規模並列配列決定プラットフォームを用いて得られた未修飾の核酸をショットガン配列決定すること;および(c)特異的な配列および配列数により混合物中に存在するSOMAmerを同定して定量すること、を含む。
イムノアッセイを用いたバイオマーカー値の決定
[00160]イムノアッセイ法は、抗体のその対応する標的または分析物に対するの反応に基
づいており、特異的分析の様式に応じてサンプル中の分析物を検出することができる。免疫反応性に基づく分析方法の特異度および感度を改善するために、モノクローナル抗体が用いられることが多いが、これはモノクローナル抗体は特異的なエピトープ認識を示すことによる。ポリクローナル抗体も様々なイムノアッセイでうまく用いられており、これは、ポリクローナル抗体は、モノクローナル抗体と比較して標的に対する親和性が高いことによる。イムノアッセイは、多様な生体サンプルマトリックスと共に使用するように設計されている。イムノアッセイの様式は、定性的、半定量的、および定量的な結果が得られるように設計されている。
[00161]定量結果は、検出される特異的分析物を既知の濃度で用いて作製された標準曲
線を使用して得られる。未知サンプルからの応答またはシグナルを標準曲線にプロットすることにより、未知サンプル中の標的に対応する量または値を確認する。
[00162]多数のイムノアッセイの様式が設計されている。ELISAまたはEIAは、
分析物の検出に関して定量的であってもよい。この方法は、分析物または抗体のいずれかへの標識の結合に基づく方法であり、標識の構成要素は、直接的または間接的に酵素を含む。ELISA試験は、分析物の直接的、間接的、競合、またはサンドイッチ検出に適するようにフォーマットすることができる。その他の方法は、例えば放射性同位体(I125)または蛍光などの標識に基づく方法である。追加の技術としては、例えば、凝集、ネフェロメトリー、比濁法、ウェスタンブロット、免疫沈降、免疫細胞化学、免疫組織化学、フローサイトメトリー、ルミネックス(Luminex)分析などが挙げられる(ImmunoAssay:A Practical Guide、Brian Law編、Taylor & Francis, Ltd.出版、2005年版を
参照)。
[00163]典型的な分析様式としては、酵素結合免疫吸着検査法(ELISA)、ラジオ
イムノアッセイ、蛍光、化学発光、および蛍光共鳴エネルギー転移(FRET)または時間分解FRET(TR−FRET)イムノアッセイが挙げられる。バイオマーカーを検出する手法の例としては、バイオマーカー免疫沈降、それに続いてサイズおよびペプチドレベルの識別を可能にする定量方法、例えばゲル電気泳動、キャピラリー電気泳動、平面エ
レクトロクロマトグラフィーなどが挙げられる。
[00164]検出可能な標識またはシグナルを生成する材料を検出および/または定量する
方法は、標識の性質に依存する。適切な酵素によって触媒された反応の生成物(この場合、検出可能な標識は酵素である;上記参照)は、これらに限定されないが、蛍光、発光、または放射性を示してもよく、あるいはこれらは、可視光または紫外光を吸収するものでもよい。このような検出可能な標識の検出に適した検出器の例としては、これらに限定されないが、X線フィルム、放射活性カウンター、シンチレーションカウンター、分光光度計、測色計、蛍光測定器、ルミノメーター、および濃度計が挙げられる。
[00165]検出方法はいずれも、あらゆる適切な調製、プロセシング、および反応の解析
を可能にするあらゆる様式で行うことができる。このような検出方法は、例えば、マルチウェルの分析プレート(例えば96ウェルまたは384ウェル)で、またはあらゆる適切なアレイまたはマイクロアレイを用いて行うことができる。様々な物質のストック溶液を手動またはロボットで製造することができ、それに続くピペッティング、希釈、混合、分配、洗浄、インキュベーション、サンプル読み出し、データ回収、および解析はいずれも、検出可能な標識を検出することができる市販の解析ソフトウェア、ロボット工学、および検出機器を用いてロボット利用によりなされてもよい。
遺伝子発現プロファイリングを用いたバイオマーカー値の決定
[00166]生体サンプル中のmRNA測定は、生体サンプル中のそれに対応するタンパク質
のレベルを検出するためのサロゲートとして利用することができる。従って、本明細書で説明されるバイオマーカーまたはバイオマーカーパネルはいずれも、適切なRNAを検出することによって検出が可能である。
[00167]mRNA発現レベルは、逆転写定量的ポリメラーゼ連鎖反応(RT−PCR、
続いてqPCR)によって測定される。RT−PCRを用いて、mRNAからcDNAを作製する。このcDNAをqPCR分析で用いることにより、DNA増幅プロセスが進行するにつれて蛍光を発生させることができる。qPCRでは、標準曲線と比較することによって、細胞あたりのmRNAのコピー数などの絶対測定値を得ることができる。ノーザンブロット、マイクロアレイ、インベーダー分析、およびRT−PCRと、キャピラリー電気泳動との併用はいずれも、サンプル中のmRNA発現レベルを測定するのに使用されてきた。Gene Expression Profiling:Methods and Protocols、Richard A.Shimkets編
、Humana Press、2004を参照されたい。
[00168]miRNA分子は、小さい非コードRNAであるが、遺伝子発現を調節する可
能性がある。mRNA発現レベルの測定に適した方法はいずれも、それに対応するmiRNAにも使用することができる。近年多くの研究所が、疾患のバイオマーカーとしてのmiRNAの使用を調査している。多くの疾患は広範な転写制御を伴うため、miRNAのバイオマーカーとしての役割が見出されることは驚くことではない。miRNA濃度と疾患との関連は、タンパク質レベルと疾患との関係ほど明確になっていないことが多いが、miRNAバイオマーカー値は価値を有する可能性がある。当然ながら、疾患の経過中に差次的に発現される何らかのRNAに関してインビトロでの診断製品開発が直面する問題としては、罹患した細胞中にmiRNAが存在し続け、かつ解析のために容易に抽出できること、またはmiRNAが血液またはその他のマトリックスに放出され、その際、miRNAが測定できる程度に長く存在し続けなければならないことが求められることが挙げられる。タンパク質バイオマーカーも同様の必要条件があるが、多くの見込みのあるタンパク質バイオマーカーは、疾患の経過中にパラクリン様式で病変部位および機能性部位に意図的に分泌される。多くの見込みのあるタンパク質バイオマーカーは、そのようなタンパク質が合成される細胞の外側で機能するように設計される。
インビボでの分子イメージング技術を用いたバイオマーカーの検出
[00169]また説明されるバイオマーカーはいずれも(表1第7列を参照)、分子イメージ
ング試験で用いることができる。例えば、造影剤を説明されるバイオマーカーのいずれかにカップリングしてもよく、これを利用して、その他の用途のなかでも特に、5年以内の心血管イベントリスクの予測を補助したり、治療的介入への応答をモニターしたり、臨床試験において集団を選択したりすることができる。
[00170]インビボでのイメージング技術により、個体の体内の特定の疾患の状態または
状態を決定するための非侵襲的方法が提供される。例えば体の全体、または全身をも3次元画像として調査することができ、それによって体内での形態および構造に関する有用な情報を提供することができる。このような技術と本明細書で説明されるバイオマーカーの検出とを組み合わせて、個体の心血管の状態に関する情報を提供することができる。
[00171]インビボでの分子イメージング技術の使用は、様々な技術進歩のために発展し
つつある。これらの進歩としては、体内で強いシグナルを発生させることができる放射標識および/または蛍光標識などの新しいコントラスト剤または標識の開発;および体の外部からこれらのシグナルを十分な感度および精度で検出して解析し、有用な情報を提供することができる強力で新しいイメージング技術の開発がある。コントラスト剤は、適切なイメージングシステムで可視化することができ、それによって体のコントラスト剤が存在する部分または部分(複数)の画像を得ることができる。コントラスト剤は、例えばSOMAmerまたは抗体などの捕獲試薬、および/またはペプチドもしくはタンパク質、またはオリゴヌクレオチド(例えば遺伝子発現を検出するため)、またはこれらのいずれかと1種またはそれより多くの高分子および/またはその他の粒子とを含む複合体と結合または連結していてもよい。
[00172]またコントラスト剤は、イメージングにおいて有用な放射性原子を特徴とする
ものであってもよい。適切な放射性原子としては、シンチグラフ検査のためのテクネチウム−99mまたはヨウ素−123が挙げられる。その他の容易に検出可能な部分としては、例えば、磁気共鳴像(MRI)用のスピン標識であり、一例としてここでもヨウ素−123が挙げられ、加えてヨウ素−131、インジウム−111、フッ素−19、炭素−13、窒素−15、酸素−17、ガドリニウム、マンガンまたは鉄が挙げられる。このような標識は当業界公知であり、当業者であれば容易に選択することができる。
[00173]標準的なイメージング技術としては、これらに限定されないが、磁気共鳴像、
コンピューター断層撮影スキャン(冠動脈カルシウムスコア)、陽電子射出断層撮影法(PET)、単光子放射型コンピュータ断層撮影法(SPECT)、コンピュータ断層血管撮影などが挙げられる。インビボでの診断イメージングのためには、所定のコントラスト剤、例えば所定の放射性核種とそれを用いて標的化する具体的なバイオマーカー(タンパク質、mRNAなど)とを選択することにあたり、利用可能な検出機器のタイプが重要な要因である。通常選択される放射性核種は、所定のタイプの機器で検出可能なある種の減衰を示す。またインビボでの診断のために放射性核種を選択する場合、その半減期は、標的組織によって最大限取り込まれた時間に検出が可能な程度に長く、宿主への有害な放射線が最小化される程度に短いものであるべきである。
[00174]典型的なイメージング技術としては、これらに限定されないが、PETおよび
SPECTが挙げられ、これらは、個体に放射性核種が合成的または局所的に照射されるイメージング技術である。それに続く放射性トレーサーの取り込みが長期にわたり測定され、標的化された組織およびバイオマーカーに関する情報を得るのに用いられる。用いられる特定の同位体からの高エネルギー(ガンマ線)放射と、それを検出するために用いら
れる機器の感度と精巧さのために、体の外部から放射活性の二次元分布を推定することができる。
[00175]PETで一般的に使用される陽電子放出核種としては、例えば、炭素−11、
窒素−13、酸素−15、およびフッ素−18が挙げられる。SPECTでは電子捕獲および/またはガンマ放射によって減衰する同位体が用いられ、このようなものとしては、例えば、ヨウ素−123、およびテクネチウム−99mが挙げられる。アミノ酸をテクネチウム−99mで標識する典型的な方法は、キレート前駆体の存在下で過テクネチウム酸イオンを還元し、不安定なテクネチウム−99m前駆体複合体を形成し、続いてこれを二官能性修飾した走化性ペプチドの金属結合基と反応させて、テクネチウム−99m−走化性ペプチド結合体を形成する方法である。
[00176]このようなインビボでのイメージング診断方法において、抗体が頻繁に用いら
れる。インビボでの診断用の抗体の調製および使用は当業界公知である。疾患の状態または個体の状態を診断または評価する目的で、表1第7列に記載のバイオマーカーのいずれかと特異的に結合する標識された抗体を、用いられた特定のバイオマーカーにより検出可能な高いCVイベントリスクを有する疑いのある個体に注射してもよい。用いられる標識は、これまでに述べられたような使用されるイメージング様式に従って選択されると予想される。標識の局在化により、組織の損傷またはCVイベントリスクに関するその他の指標の確認が可能になる。また臓器または組織内の標識の量によっても、その臓器または組織におけるCVイベントリスクに基づきCVイベントのバイオマーカーの関与の確認が可能になる。
[00177]同様に、このようなインビボでのイメージング診断方法にSOMAmerも用
いることができる。例えば、組織の損傷、アテローム斑、炎症性反応の構成要素、および個体におけるCVイベントリスクに関連するその他の因子のレベルを診断または評価する目的で、表1第7列に記載の特定のバイオマーカーを同定するのに使用した(従ってその特定のバイオマーカーに特異的に結合する)SOMAmerを適切に標識して、その特定のバイオマーカーにより検出可能なCVイベントを示す疑いのある個体に注射することもできる。用いられる標識は、これまでに述べられたような使用されるイメージング様式に従って選択されると予想される。標識の局在化により、高いリスクを引き起こす過程が存在する部位の確認が可能になる。また臓器または組織内の標識の量によっても、その臓器または組織における病理学的過程の浸透の確認が可能になる。SOMAmerを対象とした造影剤が、組織透過性、組織分布、速度論、除去、効力、および選択性に関してその他の造影剤と比較してユニークかつ有利な特徴を有する可能性もある。
[00178]またこのような技術は、任意選択で、アンチセンスオリゴヌクレオチドでのイ
メージングにより遺伝子発現を検出するために、例えば標識されたオリゴヌクレオチドを用いて行うこともできる。これらの方法は、例えば標識として蛍光分子または放射性核種を用いたインサイチュハイブリダイゼーションで用いられる。その他の遺伝子発現の検出方法としては、例えば、レポーター遺伝子活性の検出が挙げられる。
[00179]その他の一般的なタイプのイメージング技術は、光学イメージングであり、こ
の場合、被験者内の蛍光シグナルは、被験者の外部にある光学装置によって検出される。これらのシグナルは、実際の蛍光および/または生物発光に起因する可能性がある。光学的な検出デバイスの感度が改善されたことから、インビボでの診断分析のための光学イメージングの有用性は高まっている。
[00180]インビボでの分子バイオマーカーイメージングの使用は、例えば臨床試験など
において益々増えており、それにより新しい疾患または状態の療法の治験において臨床効
果をより迅速に測定したり、および/またはプラセボを用いた長期の治療が倫理的に問題があるとみなされる可能性がある多発性硬化症などの疾患にとってこのような長期の治療を回避するしたりすることができる。
[00181]その他の技術の総論に関しては、N.Blow、Nature Methods、6、465〜469、2009を参照されたい。
質量分析法を用いたバイオマーカー値の決定
[00182]バイオマーカー値を検出するために、様々な立体構造のマススペクトロメーター
を用いることができる。数々のタイプのマススペクトロメーターが利用可能であり、あるいは様々な立体構造を有するものを作製してもよい。一般的に、マススペクトロメーターは、以下の主な構成要素:サンプル注入口、イオン源、質量分析器、検出器、真空システム、および機器制御システム、ならびにデータシステムを有する。一般的に、サンプル注入口、イオン源、および質量分析器の違いにより、機器のタイプおよびその性能が決まる。例えば、注入口は、キャピラリー−カラム液体クロマトグラフィーの源であってもよいし、あるいは例えばマトリックス支援レーザー脱離で用いられるような直接プローブまたはステージであってもよい。一般的なイオン源は、例えば、ナノスプレーおよびマイクロスプレーなどなどのエレクトロスプレー、またはマトリックス支援レーザー脱離である。一般的な質量分析器としては、四重極質量フィルター、イオントラップ質量分析器、および飛行時間型質量分析器が挙げられる。さらなる質量分析法は当業界公知である(Burlingame等.Anal.Chem.70:647R〜716R (1998); KinterおよびSherman、ニューヨーク(2000)を参照)。
[00183]タンパク質バイオマーカーおよびバイオマーカー値は、以下のうちいずれか:
エレクトロスプレーイオン化質量分析法(ESI−MS)、ESI−MS/MS、ESI−MS/(MS)n、マトリックス支援レーザー脱離イオン化飛行時間型質量分析法(MALDI−TOF−MS)、表面増強レーザー脱離/イオン化飛行時間型質量分析法(SELDI−TOF−MS)、シリコン上での脱離/イオン化(DIOS)、二次イオン質量分析法(SIMS)、四重極飛行時間型(Q−TOF)、ウルトラフレックスIIITOF/TOFと呼ばれるタンデム飛行時間型(TOF/TOF)技術、大気圧化学イオン化質量分析法(APCI−MS)、APCI−MS/MS、APCI−(MS)N、大気圧光イオン化質量分析法(APPI−MS)、APPI−MS/MS、およびAPPI−(MS)N、四重極質量分析法、フーリエ変換質量分析法(FTMS)、定量的質量分析法、ならびにイオントラップ質量分析法によって検出および測定することができる。
[00184]質量分析法によるタンパク質バイオマーカーの特徴づけおよびバイオマーカー
値の決定の前に、戦略的なサンプル調製を用いてサンプルを標識して濃縮する。標識付けの方法としては、これらに限定されないが、相対的および絶対的定量用アイソバリックタグ(iTRAQ)、および細胞培養にアミノ酸を用いる安定同位体標識法(SILAC)が挙げられる。質量分光分析の前に選択的にサンプル中の候補バイオマーカータンパク質を濃縮するのに用いられる捕獲試薬としては、これらに限定されないが、SOMAmer、抗体、核酸プローブ、キメラ、低分子物質、F(ab’)フラグメント、単鎖抗体フラグメント、Fvフラグメント、単鎖Fvフラグメント、核酸、レクチン、リガンド結合受容体、アフィボディ、ナノボディ、アンキリン、ドメイン抗体、代替抗体の足場(例えば二重特異性抗体など)、インプリントポリマー、アビマー、ペプチドミメティクス、ペプトイド、ペプチド核酸、トレオース核酸、ホルモン受容体、サイトカイン受容体、および合成受容体、ならびにこれらの改変体およびフラグメントが挙げられる。
近接ライゲーションアッセイを用いたバイオマーカー値の決定
[00185]バイオマーカー値を決定するのに近接ライゲーションアッセイを用いることがで
きる。簡単に言えば、試験サンプルを、対のそれぞれの要素をオリゴヌクレオチドで拡張した一対の親和性プローブ、例えば一対の抗体または一対のSOMAmerと接触させる。その一対の親和性プローブの標的は、1種のタンパク質に対する2種の別個の決定因子であってもよいし、あるいは2種の異なるタンパク質それぞれに対する1種の決定因子であってもよく、これらは、ホモまたはヘテロ多量体の複合体として存在していてもよい。プローブが標的の決定因子に結合すると、拡張されたオリゴヌクレオチドの遊離の端部が十分に近接し、共にハイブリダイズすることができる。拡張されたオリゴヌクレオチドのハイブリダイゼーションは、拡張されたオリゴヌクレオチドがそれぞれ十分に近接して存在する場合にそれらを共に架橋するのに役立つ一般的なコネクターオリゴヌクレオチドによって促進される。プローブの拡張されたオリゴヌクレオチドがハイブリダイズしたら、拡張部分の端部が酵素によるDNAライゲーションによって共に連結される。
[00186]拡張されたオリゴヌクレオチドはそれぞれ、PCR増幅用のプライマー部位を
含む。拡張されたオリゴヌクレオチドが共にライゲーションしたら、オリゴヌクレオチドは連続するDNA配列を形成するが、この配列から、標的タンパク質の同一性および量に関する情報、加えて標的の決定因子が2種の異なるタンパク質に対するものである場合、タンパク質−タンパク質相互作用に関する情報がPCR増幅により明らかになる。近接ライゲーションは、リアルタイムPCRの使用によりリアルタイムのタンパク質濃度および相互作用情報に関する高感度かつ特異的な分析を得ることができる。対象の決定因子と結合しないプローブは、それに対応する拡張されたオリゴヌクレオチドを近接させることはなく、従ってライゲーションまたはPCR増幅が進行せず、結果としてシグナルは生じない。
[00187]前述の分析は、CVイベントリスクを予測する方法において有用なバイオマー
カー値の検出を可能にし、このような方法は、個体からの生体サンプルで、それぞれ表1第7列に示されるバイオマーカーからなる群より選択されるバイオマーカーに相当する少なくともN種のバイオマーカー値を検出することを含み、ここで、以下で詳細に説明されるように、バイオマーカー値を用いた分類は、個体が、5年の期間中に発生するCVイベントの高リスクを有するかどうかを示す。記載されたCVイベントのバイオマーカーのいくつかは単独でもCVイベントリスクの予測に有用であるが、本明細書では3種またはそれより多くのバイオマーカーのパネルとしてそれぞれ有用なCVイベントのバイオマーカーの複合サブセットのグループ分け法が説明される。従って、本出願の様々な実施態様は、N種のバイオマーカーを含む組み合わせを提供し、ここでN種のバイオマーカーは、少なくとも3種のバイオマーカーである。その他の実施態様において、Nは、2〜155種のバイオマーカーのいずれかになるように選択される。当然のことながら、Nは、上記で説明した範囲のいずれかに含まれるあらゆる数値から選択してもよいし、同様に類似の、ただしそれより高次の範囲から選択してもよい。本明細書で説明される方法のいずれかによれば、バイオマーカー値は、個々に検出および分類してもよいし、あるいは例えばマルチプレックス分析様式で行われるように集合的に検出して分類してもよい。
[00188]所定の診断または予測試験のためのバイオマーカーの「署名(signature)」は、マーカーのセットを含み、各マーカーは、対象の集団中で異なるレベルを示す。この文脈において、異なるレベルとは、2またはそれより多くのグループにおける個体のマーカーレベルの異なる平均を指す場合もあり、あるいは2またはそれより多くのグループにおける異なる分散を指す場合もあり、またはその両方の組み合わせである場合もある。診断テストの最も簡単な形態では、これらのマーカーを用いて、個体からの未知サンプルを、2つのグループのうち一方、すなわち高いCVイベントリスクを有するグループかまたはそうではないグループのうち一方に割り当てることができる。サンプルを2またはそれより多くのグループのうち1つのグループに割り当てることは、分類として知られており、この割り当てを達成するのに用いられる手順は、分類器または分類方法として知られてい
る。また分類方法は、スコア付け法という場合もある。バイオマーカー値のセットから診断分類器を構築するのに用いることができる多くの分類方法がある。一般的には、教師あり学習技術を用いた分類方法が最も容易に行われ、この場合、区別しようとする2つ(または複合分類状態の場合はそれより多く)の別個のグループの個体から得られたサンプルを用いてデータ群を回収する。各サンプルが属するクラス(グループまたは集団)がそれぞれ予め各サンプルごとにわかっているため、分類方法を訓練して、望ましい分類応答を得ることもできる。また、教師なし学習技術を使用して診断分類器を作製することも可能である。
[00189]診断分類器を開発するための一般的なアプローチは、決定木;バギング、ブー
スティング、フォレスト、およびランダムフォレスト;推論ルールに基づく学習;パルザン窓;線形モデル;記号論理学;ニューラルネットワーク法;教師なしクラスタリング;K平均法;階層上昇/下降(hierarchical ascending/descending);半教師あり学習;
プロトタイプ法;最近傍法;カーネル密度推定;サポーティブベクターマシーン;隠れマルコフモデル;ボルツマン学習を含み、さらに分類器は、単純に組み合わせてもよいし、あるいは特定の目的関数を最小化する方法で組み合わせてもよい。総論に関して、例えば、Pattern Classification、R.O.Duda等編、John Wiley & Sons、第2版、2001を参照さ
れたい。また、The Elements of Statistical Learning-Data Mining, Inference, and Prediction、T.Hastie等編、Springer Science+Business Media, LLC、第2版、2009も参
照されたい。これらはいずれもその全体が参照により開示に組み入れられる。
[00190]教師あり学習技術を用いて分類器を作製するために、訓練データと呼ばれるサ
ンプルのセットを入手する。診断テストの文脈において、訓練データは、後に未知サンプルが割り当てられる別個のグループ(クラス)からのサンプルを含む。例えば、コントロール集団の個体から回収されたサンプルと、特定の疾患、状態またはイベントを有する集団の個体から回収されたサンプルとは、未知サンプル(またより具体的にはサンプルを得た個体)を、疾患、状態または高いイベントリスクを有するか、または疾患、状態または高いイベントリスクがないかのいずれかに分類することができる分類器を開発するための訓練データを構成することができる。訓練データからの分類器の開発は、分類器の訓練として知られている。分類器の訓練に関する具体的な詳細は、教師あり学習技術の性質によって決まる(例えば、Pattern Classification、R.O.Duda等編、John Wiley & Sons、第2版、2001を参照;またThe Elements of Statistical Learning-Data Mining, Inference, and Prediction、T.Hastie等編、Springer Science+Business Media, LLC、第2版、2009も参照)。
[00191]典型的には、訓練セットのサンプルよりも見込みのある多くのバイオマーカー
値があるため、過剰適合を回避するように配慮する必要がある。過剰適合は、統計モデルが、基本の関係の代わりにランダムエラーまたはノイズを表する場合に起こる。過剰適合は、様々な方法で回避することができ、このような方法としては、例えば、分類器開発に用いられるマーカーの数を制限すること、マーカーの応答が互いに独立していると仮定すること、用いられる基本の統計モデルの複雑さを制限すること、および基本の統計モデルが確実にデータに一致するようにすることが挙げられる。
[00192]イベントの発生に関連するバイオマーカー群を同定するために、コントロール
と初期イベントサンプルとの組み合せセットを主成分分析(PCA)を用いて解析した。PCAは、ケースまたはコントロールの結果とは関係なく全てのサンプル間の最も強い変動によって定義される軸に対してサンプルを提示しているため、ケースとコントロールとの区別を過剰適合するリスクを軽減するものである。重篤な血栓形成イベントの出現は、強力な偶然性の要素と関連しており、生体の血管中で破裂する不安定プラークを報告する必要があるために、コントロールサンプル群とイベントサンプル群との明確な分離を期待
するものはいないであろう。観察されたケースとコントロールとの分離は大きくないことから、このサンプル群において全体の変動の約10%に相当する第二の主成分で分離が起こり、これは、基礎となる生物学的な変動を定量することは比較的簡単であることを示す(図2A)。
[00193]次の解析セットで、バイオマーカーは、コントロールサンプルと初期イベント
サンプルとの分離に特有なサンプル間の差の成分について解析することもできる。用いられる可能性がある方法の一つは、DSGAの使用であり(Bair,E.およびTibshirani,R.(2004) Semi-supervised methods to predict patient survival from gene expression data.PLOS Biol.、2、511〜522)、これは、コントロールセット中のサンプル間の変動
における上位3つの主成分方向を除去(デフレート)することができる。発見しようとするコントロールセットの次元数を低くしても、コントロール中のサンプルおよび初期イベントサンプルからのサンプルはいずれもPCAで処理される。初期イベントからのケースの分離は横軸で観察することができる(図2B)。
心血管系リスクに関連するタンパク質のクロス確認された選択
[00194]選択された特定のサンプルの特異体質の特徴に対するタンパク質の予測力の過剰
適合を回避するために、クロス確認と次元縮小アプローチが採用された。クロス確認は、未選択サンプルの使用と併用してタンパク質によるリスクの関連を決定するためのサンプルセットの複合的な選択を含み、それによりその方法がリスクモデル作製に用いられなかったサンプルに適用できるかどうかをモニターすることができる(The Elements of Statistical Learning-Data Mining, Inference, and Prediction、T.Hastie等編、Springer
Science+Business Media, LLC、第2版、2009)。本発明者等は、イベントリスクのモデ
リングにおいて高次元データセットに適用可能なTibshirani等の教師ありPCA法を応用した(Bair, E.およびTibshirani, R.(2004) Semi-supervised methods to predict patient survival from gene expression data.PLOS Biol.、2、511〜522)。教師ありPC
A(SPCA)法は、データ中の観察されたイベントハザードと統計学的に関連するタンパク質セットの単変量選択、およびこれらのタンパク質全てからの情報と組み合わせる相関する成分の決定を含む。この相関する成分の決定は、次元数を低くする工程であって、この工程は、タンパク質に関する情報を組み合わせるだけでなく、1000種を超えるタンパク質の全タンパク質のメニューから数個の主成分に、独立した変数の数を減少させることによって過剰適合が起こる可能性も減らすものである(この作業において、本発明者等は第一の主成分のみを試験した)。Tibshirani等のSPCA法は、保留されたクロス確認試験セットにおいて本当に予測能のあるタンパク質の数を決定するために、タンパク質の選択にクロス確認を応用したものである。これらのタンパク質を用いて、イベントリスクに関連するタンパク質の変動の相関する成分を作製する。SPCAを用いて、本発明者等は、このクロス確認された次元縮小技術を用いて統計学的にイベントリスクと関連する155種のタンパク質のリストを見出した。この出願SPCAの応用において、本発明者等はさらに、ランダムSOMAmer配列に相当するタンパク質シグナル、加えてサンプル中に存在しない非ヒトタンパク質に相当するシグナルを試験した。SPCAでは、これら10〜20種の既知の非生物学的シグナルはどれも155種のタンパク質に選択されなかった(表1)。このようなクロス確認されたSPCAアプローチを用いた工程は、偽陽性タンパク質マーカーの関連に対してスクリーニングするのに重要である。Tibshirani等のアプローチは特に、クロス確認の予備的な確認とPCAに固有の次元縮小の使用による誤った発見を防ぐ。SPCAからの155種のタンパク質のリストを使用して、それに続く異なる技術を用いた解析をチェックし、SPCAからの155種のタンパク質のリストに含まれないタンパク質マーカーの誤った発見を検出した。
個々のタンパク質とイベントまでの時間との関係の単変量解析および多変量解析
[00195]コックス比例ハザードモデル(Cox, David R (1972).「Regression Models an
d Life-Tables」.Journal of the Royal Statistical Society.シリーズB(方法論) 34 (2):187〜220.))は、医学統計で広く用いられている。コックス回帰分析は、特定の累積的な生存時間関数を適合させることを回避し、その代わりに、基準ハザード関数という相対リスク度のモデルを用いる(これは時間に応じて変化する)。基準ハザード関数は、全ての個体に共通する生存時間分布の形状を示すものであり、相対リスク度は、共変量値(例えば単一の個体またはグループ)のセットのハザードのレベルを複数の基準ハザードとして示すものである。コックスモデルでは、相対リスク度は、時間によらず一定である。
[00196]本発明者等は、全てのシグナルに1092種の簡単な単変量コックスモデルを
適合させた。46種のタンパク質(表2)は、10〜14よりも優れたP値を有する(ワルド検定(Wald, Abraham.(1943).A Method of Estimating Plane Vulnerability Based on Damage of Survivors.Statistical Research Group、Columbia University)。これら46種のタンパク質はいずれも、SPCAを用いて選択された155種のタンパク質のリストに含まれていた(上記の表1)。最初は多数の極めて有意なタンパク質に驚くが、心血管疾患における腎臓の関与は必然的にGFR(糸球体ろ過率)の変化伴う。GFRの減少は全てのタンパク質を増加させると予想され、腎クリアランスはゼロ以外になり、血中タンパク質濃度は、タンパク質が腎臓(クリアランス)を介して尿に排出されるために減少し、従ってGFRで測定される腎臓ろ過の減少は、腎臓で一部がろ過されるタンパク質の血中濃度の増加に関連する。
[00197]有用なモデルは、46種のタンパク質の完全リストよりも簡潔であると予想さ
れる。PCAでも観察されるように、多くのタンパク質は、高度な相関を示す可能性が高く、有効なモデルはこれを考慮に入れると予想される。本発明者等は、46種の極めて有意なタンパク質のリストを二段階で選別して10種のタンパク質にした。まず本発明者等はリストを、0.37より大きい規模の係数(タンパク質シグナルを2倍した場合の30%のハザード変化に等しい)を生じる20種のタンパク質に制限し、この工程を、46種のタンパク質全てを用いた単一の多変量のコックスモデルに採用した。(コックスモデルに適合させる前にタンパク質測定値の自然対数をとっており、それゆえにコックス係数の指数関数は、タンパク質測定値のe倍の(2.71)変化のハザード比に相当する)。
[00198]次の工程で、0.01よりも有意に高いp値を求めることにより20種のタン
パク質を選別して10種にした。この工程では、共変関係のタンパク質を除去し、独立したタンパク質を寄与させる。バイオマーカーの選択への最終調整が行われ、それにおいて、補体系の最終的な共通経路における膜侵襲複合体の一種のC9を、そのシグナル伝達で非特異的すぎ、この研究単独からは決定できないものと判断したが、これは、この研究は心血管リスクを正確に実証するように構成されているためである。C9を除去し、残り全てのタンパク質をその場で評価した。代替のタンパク質をワルド検定スコアの改善について順位付けしたところ、KLK3.SerpinA3はC9とほぼ同程度に有効であった。
[00199]図3A〜3Eに、この10種の心血管系リスクのマーカーモデルに関するカプ
ラン・マイヤー生存曲線を示す。
[00200]表1に、個体における将来的なCVイベントのリスクを評価するのに有用な1
55種のバイオマーカーを示す。これは、バイオマーカーを発見しようと努力する際に一般的に見出される数と比較して予想される数よりも驚くほど多い数であり、その理由は、記載された研究の規模が、何百人分の個別サンプルで、場合によってはフェムトモルレベルもの低い濃度範囲の濃度で測定された1000種を超えるタンパク質を包含的に含むためである可能性がある。おそらく発見された多数のバイオマーカーは、心血管イベントに
至る生物学に関与する多様な生化学的経路とCVイベントに対する体の応答を反映しており、つまりそれぞれの経路および過程には多くのタンパク質が関与している。この結果から、そのような複雑な過程に関する情報を一意的に提供する単一のタンパク質もタンパク質の小グループもなく、むしろ、例えばGFR、アテローム性動脈硬化症、炎症、およびホルモンによるCV調節などの関連のある過程に複数のタンパク質が関与していることが示される。
[00201]実施例2の結果から、所定の考えられる結論が示唆される。第一に、多数のバ
イオマーカーを同定することにより、それらを集合させて同様に高い性能を提供する多数の分類器にすることができる。第二に、基本の疾患、状態またはイベントの過程の複雑さ全てに共通することが明らかな冗長性を反映させて特定のバイオマーカーを他のバイオマーカーで置き換えられるように分類器を構築することができる。言い換えれば、表1で同定されたあらゆる個々のバイオマーカーによって提供された疾患、状態またはイベントに関する情報と、その他のバイオマーカーによって提供された情報とをオーバーラップさせることにより、表1に記載の特定のバイオマーカーまたはバイオマーカーの小グループがどの分類器にも含まれなくなるようになる可能性がある。
キット
[00202]例えば本明細書において開示された方法の実行で使用するために、適切なキット
を用いて表1第7列に記載のバイオマーカーのあらゆる組み合わせを検出することができる。さらにいずれのキットも、本明細書において説明されているような1種またはそれより多くの検出可能な標識、例えば蛍光成分などを含んでいてもよい。
[00203]一実施態様において、キットは、(a)生体サンプル中の1種またはそれより
多くのバイオマーカーを検出するための1種またはそれより多くの捕獲試薬(例えば少なくとも1種のSOMAmerまたは抗体)(ここでバイオマーカーは、表1第7列に記載のバイオマーカーのいずれかを含む)と、任意選択で(b)本明細書でさらに説明されるように、生体サンプルを得た個体を、高いCVイベントリスクを有するまたは有さないのいずれかに分類するための、あるいは個体が高いCVイベントリスクを有する尤度を決定するための、1つまたはそれより多くのソフトウェアまたはコンピュータープログラム製品とを含む。あるいは、1つまたはそれより多くのコンピュータープログラム製品ではなく、上記の工程をヒトが手動で行うための1つまたはそれより多くの説明書が提供されていてもよい。
[00204]固体支持体とそれに対応するシグナルを生成する材料を有する捕獲試薬との組
み合わせは、本明細書では、「検出デバイス」または「キット」と称される。本キットはさらに、装置と試薬の使用、サンプルの取り扱い、およびデータの解析についての説明書も含んでいてもよい。さらに本キットは、生体サンプルの分析結果を解析して報告するためのコンピューターシステムまたはソフトウェアと共に用いてもよい。
[00205]本キットはさらに、生体サンプルを処理するための1またはそれより多くの試
薬(例えば可溶化緩衝液、洗浄剤、洗浄液、または緩衝液)を含んでいてもよい。本明細書で説明されるキットはいずれも、例えば緩衝液、ブロッキング剤、質量分析のためのマトリックス材料、抗体を捕獲する物質、陽性コントロールサンプル、陰性コントロールサンプル、プロトコール、指針、および参照データなどのソフトウェアおよび情報を含んでいてもよい。
[00206]一形態において、本発明は、CVイベントリスクの状態を解析するためのキッ
トを提供する。本キットは、表1第7列から選択されるバイオマーカーに特異的な1種またはそれより多くのSOMAmer用のPCRプライマーを含む。本キットはさらに、使
用に関する説明書に加えて、バイオマーカーとCVイベントリスクの予測との相関に関する説明書を含んでいてもよい。本キットはまた、表1第7列から選択されるバイオマーカーに特異的な1種またはそれより多くのSOMAmerの補体を含むDNAアレイ、試薬、および/またはサンプルDNAを増幅または単離するための酵素を含んでいてもよい。本キットは、リアルタイムPCRのための試薬、例えばTaqManプローブ、および/またはプライマー、および酵素を含んでいてもよい。
[00207]例えば、キットは、(a)試験サンプル中の1種またはそれより多くのバイオ
マーカーを定量するための捕獲試薬を少なくとも含む試薬(ここで前記バイオマーカーは、表1第7列に記載のバイオマーカー、または本明細書で説明されるその他のあらゆるバイオマーカーもしくはバイオマーカーパネルを含む)と、任意選択で(b)試験サンプル中で定量された各バイオマーカーの量を1またはそれより多くの所定のカットオフと比較して、前記比較に基づいて定量された各バイオマーカーのスコアを割り当てる工程、定量された各バイオマーカーごとの割り当てられたスコアを足し合わせて総スコアを得る工程、総スコアと所定のスコアとを比較する工程、および前記比較を用いて、個体が高いCVイベントリスクを有するかどうかを決定する工程を実行するための1つまたはそれより多くのアルゴリズムまたはコンピュータープログラムとを含んでいてもよい。あるいは、1つまたはそれより多くのアルゴリズムまたはコンピュータープログラムではなく、上記の工程をヒトが手動で行うための1つまたはそれより多くの説明書が提供されていてもよい。
コンピューターの方法およびソフトウェア
[00208]バイオマーカーまたはバイオマーカーパネルが選択されたら、個体を診断する方
法は、以下:1)生体サンプルを回収するかまたは別の方法で生体サンプルを得ること;2)分析方法を実行して、生体サンプルでパネル中のバイオマーカーまたはバイオマーカー(複数)を検出して測定すること;3)バイオマーカー値を回収するのに用いられる方法に必要なあらゆるデータの正規化または標準化を実行すること;4)マーカーのスコアを計算すること;5)マーカーのスコアを足し合わせてトータルの診断または予測スコアを得ること;および6)個体の診断または予測スコアを報告することを含んでいてもよい。このアプローチにおいて、診断または予測スコアは、全てのマーカーの計算の合計から決定される単一の数であってもよく、これを疾患の存在または非存在の指標である予め設定された閾値と比較する。あるいは診断または予測スコアは、それぞれバイオマーカー値を示す一連のバーであってもよく、応答パターンは、疾患、状態またはイベントの高い(または低い)リスクの存在または非存在の決定について予め設定されたパターンと比較してもよい。
[00209]本明細書で説明される方法の少なくともいくつかの実施態様は、コンピュータ
ーの使用で実施することができる。図4にコンピューターシステム100の例を示す。図4を参照すると、システム100は、プロセッサー101、インプット装置102、アウトプット装置103、記憶装置104、コンピューターで読取り可能な記憶媒体リーダー105a、通信システム106、加速処理装置(例えばDSPまたは特殊用途のプロセッサー)107、およびメモリー109を含む、バス108を介して電気的にカップリングされたハードウェア要素で構成されることが示される。コンピューターで読取り可能な記憶媒体リーダー105aはさらにコンピューターで読取り可能な記憶媒体105bにカップリングされ、この組み合わせは、包括的に、コンピューターで読取り可能な情報を一時的および/またはそれよりも長期にわたり内包させるための、遠隔、局所、固定、および/または取り外し可能な記憶装置と記憶媒体、メモリーなどに相当し、この組み合わせは、記憶装置104、メモリー109、および/またはそのようなその他のあらゆるアクセス可能なシステム100リソースを含む。またシステム100は、オペレーティングシステム192、およびその他のコード193、例えばプログラム、データなどを含むソフト
ウェア要素(現行では作業メモリ191内に配置されているものとして示される)も含む。
[00210]図4を参照すれば、システム100は、広いフレキシビリティーとコンフィギ
ュアビリティーを有する。従って、例えば、単一のアーキテクチャーを利用して1またはそれより多くのサーバーを実施してもよく、このようなサーバーはさらに、現在のところ望ましいプロトコール、プロトコール変更、拡張などに従って設計することもできる。しかしながら、当業者には明らかであると予想されるが、より特定のアプリケーション要求に従って実施態様を利用できるであろう。例えば、1またはそれより多くのシステム要素が、システム100の構成要素内の(例えば通信システム106内の)下位要素として実施されてもよい。またカスタマイズされたハードウェアを利用することもでき、および/またはハードウェア、ソフトウェアまたはその両方において特定の要素を実施してもよい。さらに、ネットワークインプット/アウトプット装置(示さず)などのその他の計算装置への接続が用いられる可能性があるが、当然のことながら、その他の計算装置への有線、無線、モデム、および/またはその他の接続または接続(複数)が利用されていてもよい。
[00211]一形態において、システムは、CVイベントリスクの予測に特徴的なバイオマ
ーカーの特徴を含むデータベースを含んでいてもよい。バイオマーカーデータ(またはバイオマーカー情報)は、コンピューターにより実施される方法の一部として使用するためにコンピューターへのインプットとして利用することができる。バイオマーカーデータは、本明細書において説明されているようなデータを含んでいてもよい。
[00212]一形態において、システムは、1またはそれより多くのプロセッサーへのイン
プットデータを提供するための1またはそれより多くの装置をさらに含む。
[00213]システムは、順位付けされたデータ要素のデータセットを保存するためのメモ
リーをさらに含む。
[00214]その他の形態において、インプットデータを提供するための装置は、例えばマ
ススペクトロメーターまたは遺伝子チップリーダーなどのデータ要素の特徴を検出するための検出器を含む。
[00215]システムは加えて、データベース管理システムを含んでもよい。ユーザーの要
求または質問は、質問を処理して訓練セットのデータベースからの関連情報を抽出するデータベース管理システムによって理解される適切な言語でフォーマットされてもよい。
[00216]システムは、ネットワークサーバーと1またはそれより多くのクライエントと
が接続されるネットワークに接続可能であってもよい。ネットワークは、当業界公知のようにローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)であってもよい。好ましくは、サーバーは、コンピュータープログラム製品(例えばソフトウェア)を作動させてユーザーの要求を処理するためのデータベースのデータにアクセスするのに必要なハードウェアを含む。
[00217]システムは、データベース管理システムからの命令を実行するためのオペレー
ティングシステム(例えばUNIX(登録商標)またはLinux(登録商標))を含んでいてもよい。一形態において、オペレーティングシステムは、インターネットなどのグローバルコミュニケーションネットワークで作動し、このようなネットワークに接続するのにグローバルコミュニケーションネットワークサーバーを利用することができる。
[00218]システムは、当業界公知のグラフィカルユーザーインターフェースで慣例的に
見出されるようなボタン、プルダウンメニュー、スクロールバー、テキスト入力用フィールドなどインターフェース要素を含むグラフィカルディスプレイインターフェースを含む1またはそれより多くの装置を含んでいてもよい。ユーザーインターフェースで入力される要求は、1またはそれより多くのシステムデータベースで関連情報が検索されるようにフォーマットするためのシステム中のアプリケーションプログラム伝送することができる。ユーザーによって入力された要求または質問は、あらゆる適切なデータベース言語で構築することができる。
[00219]グラフィカルユーザーインターフェースは、オペレーティングシステムの一部
としてグラフィカルユーザーインターフェースコードによって作製してもよく、データをインプットしたり、および/またはインプットされたデータを表示したりするのに用いることができる。処理されたデータの結果は、インターフェースで表示したり、システムと連通した印刷機で印刷したり、メモリデバイスに保存したり、および/またはネットワークに伝送したりしてもよく、あるいはコンピューターで読取り可能な媒体の形態で提供してもよい。
[00220]システムは、システムにデータ要素に関するデータ(例えば発現値)を提供す
るためのインプット装置と連通していてもよい。一形態において、インプット装置は、例えばマススペクトロメーター、遺伝子チップまたはアレイリーダーなどの遺伝子発現プロファイリングシステムを含んでいてもよい。
[00221]様々な実施態様に従ってCVイベントリスク予測のバイオマーカー情報を解析
するための方法および装置は、あらゆる適切な方式で、例えばコンピューターシステムで作動するコンピュータープログラムを用いて実施することができる。リモートアクセス可能なアプリケーションサーバー、ネットワークサーバー、パーソナルコンピューターまたはワークステーションなどのプロセッサーおよびランダムアクセスメモリを含む従来のコンピューターシステムが用いられる可能性がある。追加のコンピューターシステム要素は、例えば大規模記憶システムおよびユーザーインターフェース、例えば一般的なモニター、キーボード、およびトラッキング装置のような、メモリデバイスまたは情報保存システムを含んでいてもよい。コンピューターシステムは、独立型のシステムであってもよいし、あるいはサーバーと1またはそれより多くのデータベースとを含むコンピューターのネットワークの一部であってもよい。
[00222]CVイベントリスク予測のバイオマーカー解析システムは、データ収集、処理
、解析、報告、および/または診断などのデータ解析を完了するための機能および操作を提供することができる。例えば、一実施態様において、コンピューターシステムは、CVイベントリスク予測のバイオマーカーに関する情報を受け取る、保存する、検索する、解析する、および報告することができるコンピュータープログラムを実行することができる。コンピュータープログラムは、様々な機能または操作を実行する複数のモジュールを含んでもよく、このようなモジュールとしては、例えば生データを処理して補充データを作製するための処理モジュール、および生データと補充データを解析して、CVイベントリスクの予測、状態、および/もしくは診断またはリスク計算を作製するための解析モジュールがある。CVイベントリスクの状態の計算は、任意選択で、疾患、状態またはイベントに関連した個体の状態に関する追加の生物医学的情報などのその他のあらゆる情報を作製または回収すること、さらなる試験が望ましい場合があるかどうかを確認すること、または別の方法で個体の健康状態を評価することを含んでいてもよい。
[00223]ここで図5を参照すると、開示された実施態様の原理に従ってコンピューター
を利用する方法の例を見ることができる。図5に、フローチャート3000を示す。ブロ
ック3004では、個体のためにバイオマーカー情報を検索することができる。バイオマーカー情報は、例えば個体の生体サンプルの試験が行われた後に、コンピューターデータベースから検索することができる。バイオマーカー情報は、それぞれ表1第7列に示されるバイオマーカーからなる群より選択される少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値(ここでN=2〜155である)を含んでいてもよい。ブロック3008では、コンピューターを利用して、それぞれのバイオマーカー値を分類することができる。さらにブロック3012では、個体が高いCVイベントリスクを有する尤度について、複数の分類に基づき決定をなすことができる。その表示は、人が見ることができるように、ディスプレイまたはその他の表示装置に出力することができる。従って、その表示は、例えばコンピューターのディスプレイスクリーンまたはその他のアウトプット装置に表示することができる。
[00224]ここで図6を参照すると、その他の実施態様に従ってコンピューターを利用す
る代わりの方法をフローチャート3200により図説することができる。ブロック3204では、コンピューターを利用して、個体に関するバイオマーカー情報を検索することができる。バイオマーカー情報は、表1第7列に示されるバイオマーカーの群から選択されるバイオマーカーに対応するバイオマーカー値を含む。ブロック3208では、バイオマーカー値の分類は、コンピューターを用いて行うことができる。さらにブロック3212では、個体が高いCVイベントリスクを有する尤度について、分類に基づき表示を作製することができる。その表示は、人が見ることができるように、ディスプレイまたはその他の表示装置への出力であってもよい。従って、その表示は、例えばコンピューターのディスプレイスクリーンまたはその他のアウトプット装置に表示することができる。
[00225]本明細書で説明されるいくつかの実施態様は、コンピュータープログラム製品
が含まれるように実施することができる。コンピュータープログラム製品は、コンピューターで読取り可能なプログラムコードを有するコンピューターで読取り可能な媒体を含んでいてもよく、このようなプログラムコードは、アプリケーションプログラムをデータベースを有するコンピューターで実行させるためにその媒体で具体化される。
[00226]「コンピュータープログラム製品」は、本明細書で用いられる場合、あらゆる
性質の(例えば書記、電子、磁気、光学または別の様式の)物理媒体に包含され、コンピューターまたはその他の自動データ処理システムで用いることができる自然またはプログラミング言語のステートメントの形態で組織化された命令のセットを意味する。このようなプログラミング言語のステートメントは、コンピューターまたはデータ処理システムで実行されると、コンピューターまたはデータ処理システムをステートメントの特定の内容に従って作動させる。コンピュータープログラム製品としては、これらに限定されないが、ソースおよびオブジェクトコードのプログラム、および/またはコンピューターで読取り可能な媒体に組み込まれたテストまたはデータライブラリーが挙げられる。さらに、コンピューターシステムまたはデータ加工装置デバイスを予め選択された方式で作動させることができるコンピュータープログラム製品が、これらに限定されないがソースコード、アセンブリコード、オブジェクトコード、機械言語、前述のもの暗号化または圧縮されたバージョン、およびありとあらゆる等価体などの多数の形態で提供することができる。
[00227]一形態において、CVイベントリスクを評価するためのコンピュータープログ
ラム製品が提供される。本コンピュータープログラム製品は、計算装置またはシステムのプロセッサーによって実行可能なプログラムコードを具体化するコンピューターで読取り可能な媒体を含み、該プログラムコードは:個体からの生体サンプルに起因するデータを検索するコード(ここで該データは、それぞれ表1第7列に示されるバイオマーカーの群から選択される生体サンプル中の少なくともN種のバイオマーカーのうち1種に相当するバイオマーカー値を含み、N=2〜155である);およびバイオマーカー値に応じて個
体のCVイベントリスクの状態を示す分類方法を実行するコード、を含む。
[00228]さらにその他の形態において、CVイベントリスクの尤度を示すためのコンピ
ュータープログラム製品が提供される。本コンピュータープログラム製品は、計算装置またはシステムのプロセッサーによって実行可能なプログラムコードを具体化するコンピューターで読取り可能な媒体を含み、該プログラムコードは:個体からの生体サンプルに起因するデータを検索するコード(ここで該データは、表1第7列に示されるバイオマーカーの群から選択される生体サンプル中のバイオマーカーに相当するバイオマーカー値を含む);およびバイオマーカー値に応じて個体のCVイベントリスクの状態を示す分類方法を実行するコード、を含む。
[00229]様々な実施態様をが方法または器具として説明したが、当然のことながら、コ
ンピューターと連結されたコード、例えばコンピューターに内在するまたはコンピューターによってアクセス可能なコードを介して実施することができる実施態様であってもよい。例えば、ソフトウェアおよびデータベースを利用して、上記で考察された本方法の多くを実施することができる。従って、ハードウェアによって達成される実施態様に加えて、これらの実施態様は、この説明で開示された機能の実行可能性をもたらす、コンピューターで読取り可能なプログラムコードを具体化させるコンピューターが使える媒体で構成される製造品の使用により達成することができることにも留意する。それゆえに、望ましくは、それらのプログラムコード手段においても諸実施態様が本特許によって同様に保護されたものとみなされる。さらに、このような実施態様は、これらに限定されないが、RAM、ROM、磁気媒体、光学媒体、または磁気光学媒体などの実質的にあらゆる種類のコンピューターで読取り可能なメモリー内に保存されたコードとして具体化することができる。より一般的に言えば、このような実施態様は、ソフトウェアにおいて、またはハードウェアにおいて、あるいはそれらのあらゆる組み合わせで、例えば、これらに限定されないが、汎用プロセッサーで作動するソフトウェア、マイクロコード、PLA、またはASICなどにおいて実施することができる。
[00230]さらに、搬送波で具体化されるコンピューターシグナル、加えて伝送媒体を介
して伝播するシグナル(例えば電気および光学)として達成することができる実施態様も想定される。従って、上記で考察された様々な種類の情報をデータ構造などの構造でフォーマットし、伝送媒体を介して電気信号として伝送するかまたはコンピューターで読取り可能な媒体に保存することができる。
[00231]また、本明細書で列挙された構造、材料、および行為の多くが、ある機能を実
行するための手段またはある機能を実行するための工程として列挙される場合があることにも留意する。それゆえに、当然のことながら、このような言語は、参照により本明細書に組み入れられる事柄を含み、本明細書で開示されたこのような全ての構造、材料、または行為、およびそれらの等価体を包含するものとする。
[00232]本明細書において開示されたバイオマーカーの同定法、バイオマーカーの利用
、およびバイオマーカー値を決定するための様々な方法は、CVイベントリスクの評価に関して上記で詳細に説明される。しかしながら、本方法の適用、同定されたバイオマーカーの使用、およびバイオマーカー値を決定するための方法は、その他の特定のタイプの心血管に関する状態、その他のあらゆる疾患または病状、あるいは補助的な薬物療法による利益がある可能性があるまたはその可能性がない個体の同定にも十分適用可能である。
[00233]以下の実施例は、単に図説の目的のために提供されたものであり、添付の特許
請求の範囲で定義されるような本出願の範囲を限定することは目的としない。本明細書で
説明される全ての実施例は、当業者公知の慣例的な標準的な技術を用いて行われた。以下の実施例において説明される慣例的な分子生物学技術は、Sambrook等、Molecular Cloning:A Laboratory Manual、第3版、Cold Spring Harbor Laboratory Press、ニューヨーク州コールドスプリングハーバー(2001)などの標準的な実験マニュアルで説明されているようにして行ってもよい。
実施例1.サンプルの多重化アプタマー解析
[00234]この実施例は、表1に記載のバイオマーカーの同定のためにサンプルおよびコン
トロールを解析するのに用いられるマルチプレックスアプタマー分析を説明する。図1Aおよび1Bに、一般的なサンプル解析プロトコールを図示する。生存データの医学的な研究ではよくあることであるが、コックス比例ハザードモデルを用いて、病的状態の複数の共変量からリスクのスコアを作製した。この作業において、本発明者等はこの簡単でよく知られているアプローチ用いて、例えば、このフレキシブルで汎用のコックス比例ハザードの形式に従って個別サンプルに適用するのに適した、ハート・アンド・ソウル・スタディの集団データからモデルを作り出した。図1Bで示されるように、バイオマーカー値を、バイオマーカーの測定値と正常レベルとの対数比をとることにより連結させた。コックスモデルは、これらの対数比の加重和の指数関数を使用して、正常な集団に対するハザード比の推測を得た。
[00235]この方法では、溶液の添加ごとにピペットチップを交換した。
[00236]また特に他の指定がない限り、ほとんどの溶液の移動と洗浄液の追加には、ベ
ックマン・バイオメックFxP(Beckman Biomek FxP)の96ウェルのヘッドが用いられた。手動でピペット操作された方法の工程には、特に他の指定がない限り12チャンネルのP200ピペットマン(レイニン・インスツルメンツ社(Rainin Instruments, LLC)
、カリフォルニア州オークランド)が用いられた。40mMのHEPES、100mMのNaCl、5mMのKCl、5mMのMgCl、1mMのEDTAをpH7.5で含むSB17と称される特注の緩衝液を社内で調製した。全ての工程は特に他の指定がない限り室温で行われた。
1.アプタマーストック溶液の調製
[00237]5%、0.316%、および0.01%の血清用の特注のストックアプタマー溶
液を、1×SB17、0.05%トゥイーン−20で2倍濃度で調製した。これらの溶液を使用するまで−20℃で保存した。分析の日に、各アプタマーミックスを37℃10分で融解させ、沸騰する水浴中に10分置き、加熱工程と加熱工程との間に力強く混合しながら20分で25℃に冷却させた。加熱と冷却の後に、55μlの各2×アプタマーミックスを手動で96ウェルのハイバイド(Hybaid)プレートにピペット注入し、プレートホイルを密封した。最終的に、5%、0.316%または0.01%のアプタマーミックスを含む3つの96ウェルのホイルで密封したハイバイドプレートを得た。個々のアプタマー濃度は最終濃度の2倍かまたは1nMであった。
2.分析サンプルの調製
[00238]−80℃で保存された100%血清の凍結させたアリコートを25℃の水浴に1
0分置いた。融解させたサンプルを氷上に置き、穏やかにボルテックス(4に設定)で8秒混合し、再度に氷上に置いた。
[00239]8μLのサンプルを50μLの8チャンネルのスパニングピペッターを用いて
96ウェルのハイバイドプレートに移すことにより10%サンプル溶液(2×最終)を調製し、ここで各ウェルは、4℃で72μLの適切なサンプル希釈剤(血清の場合、1×SB17、0.06%トゥイーン−20、11.1μMのZ−ブロック_2、0.44mM
のMgCl、2.2mMのAEBSF、1.1mMのEGTA、55.6μMのEDTA)を含んでいた。このプレートを、次のサンプル希釈工程をバイオメックFxP(Biomek FxP)ロボットで開始するまで氷上で保存した。
[00240]サンプルおよびアプタマーの平衡化を開始するために、10%サンプルプレー
トを短時間で遠心分離し、バイオメックFxPに置き、そこで96ウェルのピペッターで上下にピペッティングすることによってそれを混合した。次に6μLの10%サンプルプレートを2mMのAEBSFを含む89μLの1×SB17、0.05%トゥイーン−20に移すことにより0.632%サンプルプレート(2×最終)を調製した。続いて6μLの得られた0.632%サンプルを184μLの1×SB17、0.05%トゥイーン−20に希釈することによって0.02%サンプルプレート(2×最終)を作製した。希釈は、ベックマン(Beckman)のバイオメックFxPで行われた。それぞれ移動させた後
、溶液を上下にピペッティングすることによって混合した。続いて55μLのサンプルを55μLの適切な2×アプタマーミックスに添加することによって、3つのサンプル希釈プレートをそれぞれのアプタマー溶液に移した。サンプルおよびアプタマー溶液をロボットで上下にピペッティングすることによって混合した。
3.サンプルの平衡結合
[00241]サンプル/アプタマープレートをシリコンキャップのマットで密封し、37℃の
インキュベーターに3.5時間置いた後、キャッチ(Catch)1工程に進めた。
4.キャッチ2ビーズプレートの調製
[00242]マイワン(MyOne)(インビトロジェン社、カリフォルニア州カールスバッド)ストレプトアビジンC1ビーズの11mLのアリコートを等量の20mMのNaOH(洗浄ごとに5分インキュベート)で2回、等量の1×SB17、0.05%トゥイーン−20で3回洗浄し、11mLの1×SB17、0.05%トゥイーン−20に再懸濁した。12チャンネルのピペッターを用いて、手動でピペットにより50μLのこの溶液を96ウェルのハイバイドプレートの各ウェルに入れた。次にプレートをホイルで覆い、分析で使用するために4℃で保存した。
5.キャッチ1ビーズプレートの調製
[00243]3つの0.45μmのミリポア(Millipore)HVプレート(デュラポア(Durapore)メンブレン、カタログ番号MAHVN4550)を100μLの1×SB17、0.05%トゥイーン−20で少なくとも10分平衡化した。次に平衡緩衝液をプレートに通してろ過し、各ウェルに133.3μLの7.5%ストレプトアビジン−アガロースビーズスラリー(1×SB17、0.05%トゥイーン−20中)を添加した。ストレプトアビジン−アガロースビーズを懸濁した状態に保ちつつそれらをフィルタープレートに移すために、ピペッティング作業間に、200μLの12チャンネルのピペッターで少なくとも6回ビーズ溶液を手動で混合した。3つのフィルタープレート全体にビーズを分配した後、真空を適用してビーズ上清を除去した。最後に、フィルタープレート中で200μLの1×SB17、0.05%トゥイーン−20でビーズを洗浄し、200μLの1×SB17、0.05%トゥイーン−20に再懸濁した。フィルタープレートの底を吸い取り、分析で使用するためにプレートを保存した。
6.サイトマット(Cytomat)のローディング
[00244]サイトマットに、全てのチップ、プレート、槽中の全ての試薬(プレート添加の
直前に新しく調製されるNHS−ビオチン試薬を除く)、3つの調製済みキャッチ1フィルタープレートおよび1つの調製済みマイワンプレートをローディングした。
7.キャッチ1
[00245]3.5時間の平衡時間の後、インキュベーターからサンプル/アプタマープレー
トを取り出し、約1分遠心分離し、キャップのマットカバーを除去し、ベックマンのバイオメックFxPのデッキに置いた。ベックマンのバイオメックFxPプログラムを開始させた。キャッチ1におけるそれに続く全ての工程は、特に他の規定がない限りベックマンのバイオメックFxPロボットによって行われた。プログラム内で、キャッチ1フィルタープレートに真空を適用し、ビーズ上清を除去した。100マイクロリットルの5%、0.316%、および0.01%の平衡結合反応液それぞれをそれぞれのキャッチ1ろ過プレートに添加し、デッキ上のオービタルシェーカーを800rpmで10分で用いて各プレートを混合した。
[00246]真空ろ過により未結合の溶液を除去した。この溶液を分配し、即座に真空をひ
いてこの溶液をプレートに通してろ過することにより、キャッチ1ビーズを、190μLの1×SB17、0.05%トゥイーン−20中の100μMのビオチン、それに続いて5×190μLの1×SB17、0.05%トゥイーン−20で洗浄した。
8.タグ付け
[00247]無水DMSO中の100mMのNHS−PEO4−ビオチンのアリコート(−2
0℃で保存)を37℃で6分融解させ、続いてこれを、デッキ上の槽に手動で添加する直前にタグ付け用緩衝液(SB17、pH=7.25、0.05%トゥイーン−20)で1:100に希釈し、100μLのNHS−PEO4−ビオチンを各キャッチ1フィルタープレートの各ウェルにロボットで分配した。この溶液を、オービタルシェーカーで800rpmで5分振盪することによりキャッチ1ビーズと共にインキュベートした。
9.動的な攻撃および光切断
[00248]真空ろ過によりタグ付け反応液を除去し、キャッチ1プレートに1×SB17、
0.05%トゥイーン−20中の150μLの20mMのグリシンを添加することによって反応を止めた。真空ろ過によりグリシン溶液を除去し、各プレートに別の1500μLの20mMのグリシン(1×SB17、0.05%トゥイーン−20中)を添加し、オービタルシェーカーで800rpmで1分インキュベートし、その後、真空ろ過により除去した。
[00249]その後キャッチ1プレートのウェルを、190μLの1×SB17、0.05
%トゥイーン−20を添加し、直後に真空ろ過し、続いて800rpmで1分振盪しながら190μLの1×SB17、0.05%トゥイーン−20を添加し、その後、真空ろ過することによって洗浄した。これらの2種の洗浄工程をさらに2回繰り返したが、最後の洗浄では真空ろ過による除去を行わなかった。最後の洗浄の後、プレートを、1mLのディープウェルプレートの上部に置き、デッキから取り外して、1000rpmで1分遠心分離し、溶出前のアガロースビーズからできる限り多くの余剰分を除去した。
[00250]プレートをベックマンのバイオメックFxP上に戻し、フィルタープレートの
各ウェルに85μLの1×SB17、0.05%トゥイーン−20中の10mMのDxSO4を添加した。
[00251]フィルタープレートをデッキから取り外し、ブラックレイ(BlackRay)(テッ
ド・ペラ社(Ted Pella, Inc.)、カリフォルニア州レディング)光源下でバリオマグ(Variomag)サーモシェーカー(サーモ・フィッシャー・サイエンティフィック社(Thermo Fisher Scientific, Inc.)、マサチューセッツ州ウォルサム)上に置き、800rpm
で振盪しながら5分、放射線照射した。5分インキュベートした後、プレートを180度回転させ、さらに振盪しながら5分、放射線照射した。
[00252]まず1mLのディープウェルプレートの上部に5%キャッチ1フィルタープレ
ートを置いて、1000rpmで1分遠心分離することにより、光切断された溶液を各キャッチ1プレートから汎用のディープウェルプレートに連続的に溶出させた。続いて0.316%および0.01%のキャッチ1プレートを連続的に遠心分離して同じディープウェルプレートに入れた。
10.キャッチ2ビーズの捕獲
[00253]キャッチ1の合わせた溶出物を含む1mLのディープウェルブロックを、キャッ
チ2用のベックマンのバイオメックFxPのデッキに置いた。
[00254]ロボットにより、1mLのディープウェルプレートからの全ての光切断された
溶出液を、(磁気分離によりマイワン緩衝液を除去した後)予め調製したキャッチ2マイワン磁気ビーズを含むハイバイドプレート上に移した。
[00255]この溶液を、バリオマグ・サーモシェーカー(サーモ・フィッシャー・サイエ
ンティフィック社、マサチューセッツ州ウォルサム)で25℃で1350rpmで振盪しながら5分インキュベートした。
[00256]ロボットにより、プレートをデッキ上の磁気セパレーターステーションに移し
た。プレートを磁石上で90秒インキュベートし、その後上清を取り除き捨てた。
11.37℃での30%グリセロール洗浄
[00257]キャッチ2プレートをデッキ上のサーマルシェーカーに移し、各ウェルに75μ
Lの1×SB17、0.05%トゥイーン−20を移した。プレートを37℃で1350rpmで1分混合し、ビーズを再懸濁して温めた。キャッチ2プレートの各ウェルに、37℃で75μLの60%グリセロールを移し、プレートを1350rpmおよび3℃でさらに1分混合し続けた。ロボットにより、プレートを37℃の磁気セパレーターに移し、そこでプレートを磁石上で2分インキュベートし、続いてロボットにより上清を取り除き捨てた。これらの洗浄をさらに2回繰り返した。
[00258]キャッチ2ビーズから3回目の30%グリセロール洗浄液を除去した後、各ウ
ェルに150μLの1×SB17、0.05%トゥイーン−20を添加し、1350rpmで振盪しながら37℃で1分インキュベートし、その後、37℃の磁石上で磁気分離することによって除去した。
[00259]最後に、150μLの1×SB19、0.05%トゥイーン−20を用いて、
1350rpmで振盪しながら1分インキュベートすることによってキャッチ2ビーズを洗浄し、その後磁気分離した。
12.キャッチ2ビーズの溶出および中和
[00260]各ウェルに105μLの1MのNaCl、0.05%トゥイーン−20を含む1
00mMのCAPSOを添加することによってアプタマーをキャッチ2ビーズから溶出させた。この溶液と共に1300rpmで5分振盪しながらビーズをインキュベートした。
[00261]次にキャッチ2プレートを磁気セパレーター上に90秒置き、その後、63μ
Lの溶出液を、各ウェル中に7μLの500mMのHCl、500mMのHEPES、0.05%トゥイーン−20を含む新しい96ウェルのプレートに移した。移した後、ロボットにより、この溶液の60μLを上下に5回ピペッティングすることによって混合した。
13.ハイブリダイゼーション
[00262]ベックマンのバイオメックFxPにより20μLの中和したキャッチ2溶出液を
新しいハイバイドプレートに移し、各ウェルに、ハイブリダイゼーションコントロールの10×スパイクを含む10×アジレント・ブロック(Agilent Block)6μLを添加した
。次に30μLの2×アジレント・ハイブリダイゼーション緩衝液を、中和したサンプルとブロッキング緩衝液とを含むプレートの各ウェルに手動でピペット注入し、この溶液の25μLを上下に15回ゆっくり手動でピペッティングすることによって混合し、広範にわたる気泡の形成を回避した。プレートを1000rpmで1分回転させた。
[00263]特注のアジレントのマイクロアレイスライド(アジレント・テクノロジーズ社
(Agilent Technologies, Inc.)、カリフォルニア州サンタクララ)を、アプタマーのランダム領域といくつかのプライマー領域とに相補的なプローブを含むように設計した。大部分のアプタマーについて、相補配列の最適な長さは経験的に決定し、40〜50個のヌクレオチドの範囲とした。残りのアプタマーについて、デフォルトで46−merの相補領域を選択した。総プローブ長さが60個のヌクレオチドになるようにプローブをポリ−Tリンカーでスライド表面に連結させた。
[00266]各スライド/バッキングスライドのサンドイッチを目視で検査して、溶液の気
泡がサンプル内で自由に移動できることを確認した。気泡が自由に移動しない場合、ハイブリダイゼーションチャンバー組立体を穏やかに叩いて、ガスケット付近に詰まった気泡を追い出した。
[00264]ハイブリダイゼーションチャンバーにガスケットスライドを置き、各ガスケッ
トにハイブリダイゼーションおよびブロッキング溶液を含むそれぞれのサンプル40μLを手動でピペット注入した。8チャンネルの可変式スパニングピペッターを気泡形成が最小になるようにして使用した。続いて特注のアジレントスライドを、バーコードを上に向けて、ガスケットスライド上にゆっくり降ろした(詳細な説明についてはアジレントのマニュアルを参照)。
[00265]ハイブリダイゼーションチャンバーの上部を、スライド/バッキングのサンド
イッチ上に置き、クランプブラケットを組立体全体にスライドさせた。これらの組立体をねじをしっかりと回すことによりきつく締付けた。
[00267]組み立てられたハイブリダイゼーションチャンバーをアジレントのハイブリダ
イゼーションオーブンで20rpmで回転させながら60℃で19時間インキュベートした。
14.ハイブリダイゼーション後の洗浄
[00268]およそ400mLのアジレント洗浄緩衝液1を2つの別々のガラス染色皿それぞ
れに入れた。染色皿の一方を磁気撹拌プレート上に置き、スライドラックと撹拌子を緩衝液中に入れた。
[00269]空のガラス染色皿に撹拌子を入れることによりアジレント洗浄液2用の染色皿
を調製した。
[00270]第四のガラス染色皿を最後のアセトニトリル洗浄のために取り置いた。
[00271]6つのハイブリダイゼーションチャンバーのそれぞれを分解した。スライド/
バッキングのサンドイッチを一つずつそのハイブリダイゼーションチャンバーから取り外し、洗浄液1を含む染色皿に浸した。マイクロアレイスライドを浸したままで、スライド
/バッキングのサンドイッチをピンセット1本を用いて取り外した。スライドを、磁気撹拌プレート上の洗浄液1染色皿中のスライドラックに迅速に移した。
[00272]スライドラックを5回穏やかに上げ下げした。磁気スターラーを低い設定で作
動させ、スライドを5分インキュベートした。
[00273]洗浄1が残り1分の時点で、第二の調製済み染色皿にインキュベーター中で3
7℃に予め温めた洗浄緩衝液2を添加した。スライドラックを洗浄緩衝液2に迅速に移し、染色皿の上部でラックを解体することによりラックの底部の過量の緩衝液を全て除去した。スライドラックを5回穏やかに上げ下げした。磁気スターラーを低い設定で作動させ、スライドを5分インキュベートした。スライドラックをゆっくり洗浄液2から引き出し、およそ15秒かけて溶液からスライドを取り出した。
[00274]洗浄液2が残り1分の時点で、第四の染色皿にアセトニトリル(ACN)を添
加した。スライドラックをアセトニトリル染色皿に移した。スライドラックを5回穏やかに上げ下げした。磁気スターラーを低い設定で作動させ、スライドを5分インキュベートした。
[00275]スライドラックをゆっくりACN染色皿から引き出し、吸収タオル上に置いた
。スライドの下端を迅速に乾燥させ、スライドをきれいなスライドボックスに入れた。
15.マイクロアレイの画像化
[00276]製造元の説明書に従って、マイクロアレイスライドをアジレントのスキャナース
ライドホルダーに置き、アジレントのマイクロアレイスキャナーに入れた。
[00277]Cy3−チャンネルで、5μmの解像度で、100%のPMT設定、および0
.05で可能になるXRDオプションでスライドを画像化した。得られたtiff画像をアジレントの特徴抽出ソフトウェア・バージョン10.5を用いて加工した。
実施例2.バイオマーカーの同定
[00278]サンフランシスコ・ベイエリアに住む個体の集団におけるCVイベントリスクを
予測するために、可能性のあるCVイベントのバイオマーカーの同定を行った。この研究について、参加者は、以下の登録基準のいずれか1つ、すなわち心筋梗塞の既往、血管造影で1本またはそれより多くの冠血管で50%を超える狭窄が確認された証拠、トレッドミルまたは心臓核試験による運動誘発性虚血、または冠血行再建の既往のいずれか1つを満たす必要があった。除外基準は、近年の心筋梗塞、約1ブロック歩けないこと、および引越しの予定を含む。空腹時の血液サンプルを回収し、血清のアリコートと血漿のアリコートを−70℃で保存した。実施例1で説明されているようなマルチプレックスSOMAmerの親和性分析を使用して、これらの987サンプルそれぞれの1034の分析物についてRFU値を測定し報告した。
[00279]イベントの発生に関連するバイオマーカー群を同定するために、コントロール
と初期イベントサンプルとの組み合せセットをPCAを用いて解析した。PCAは、ケースまたはコントロールの結果とは関係なく全てのサンプル間の最も強い変動によって定義される軸に対してサンプルを提示しているため、ケースとコントロールとの区別を過剰適合するリスクを軽減するものである。(「コントロール」は、組み入れ基準少なくとも1つを満たすが研究の経過中にCVイベントを起こさなかった個体を意味する;「ケース」は、組み入れ基準の少なくとも1つを満たすが研究の経過中にCVイベントを起こした個体を意味する)。観察されたケースとコントロールとの分離は大きくないことから、このサンプル群において全体の変動の約10%に相当する第二の主成分で分離が起こり、これ
は、基礎となる生物学的な変動を定量することは比較的簡単であることを示す(図2A)。
[00280]次の解析セットで、バイオマーカーは、コントロールサンプルと初期イベント
サンプルとの分離に特有なサンプル間の差の成分について解析することもできる。コントロールサンプル間の差にわたる変動の多変量の多次元空間を決定するためにコントロールセットの次元数を単独で低くしても、コントロール中のサンプルセットと初期イベントサンプルのセットはいずれも、コントロールサンプル間で決定された変動の空間に関してデフレートされ、そのような成分をコントロールから分離するケースにおいて、残りの変動は濃縮される。これは、DSGA法として知られている。初期イベントからのケースの分離は横軸で観察することができる(図2B)(Nicolau M、Tibshirani R、Borresen-Dale
AL、Jeffrey SS.Disease-specific genomic analysis:Identifying the signature of
pathologic biology.Bioinformatics.2007;23:957〜965)。
[00281]選択された特定のサンプルの特異体質の特徴に対するタンパク質の予測力の過
剰適合を回避するために、クロス確認と次元縮小アプローチが採用された。この相関する成分の決定は、次元数を低くする工程であって、この工程は、タンパク質に関する情報を組み合わせるだけでなく、1000種を超えるタンパク質の全タンパク質のメニューから数個の主成分に、独立した変数の数を減少させることによって過剰適合が起こる可能性も減らすものである(この作業において、本発明者等は第一の主成分のみを試験した)。これらのタンパク質を用いて、イベントリスクに関連するタンパク質の変動の相関する成分を作製する。SPCA(教師あり主成分分析)を用いて、本発明者等は、このクロス確認された次元縮小技術を用いて統計学的にイベントリスクと関連する155種のタンパク質のリストを見出した。この出願SPCAの応用において、本発明者等はさらに、ランダムSOMAmer配列に相当するタンパク質シグナル、加えてサンプル中に存在しない非ヒトタンパク質に相当するシグナルを試験した。SPCAでは、これら10〜20種の既知の非生物学的シグナルはどれも155種のタンパク質に選択されなかった(表1)。このようなクロス確認されたSPCAアプローチを用いた工程は、偽陽性タンパク質マーカーの関連に対してスクリーニングするのに重要である。Tibshirani等のアプローチ(Bair, E.およびTibshirani, R.(2004) Semi-supervised methods to predict patient survival from gene expression data.PLOS Biol., 2, 511〜522)は特に、クロス確認の予備的な確認とPCAに固有の次元縮小の使用による誤った発見を防ぐ。SPCAからの155種のタンパク質のリストを使用して、それに続く異なる技術を用いた解析をチェックし、SPCAからの155種のタンパク質のリストに含まれないタンパク質マーカーの誤った発見を検出した。
実施例3.個々のタンパク質とCVイベントまでの時間との関係の単変量解析
[00282]コックス比例ハザードモデル(Cox, David R (1972).「Regression Models and Life-Tables」.Journal of the Royal Statistical Society.シリーズB(方法論) 34 (2):187〜220))は、医学統計で広く用いられている。コックス回帰分析は、特定の累
積的な生存時間関数を適合させることを回避し、その代わりに、基準ハザード関数という相対リスク度のモデルを用いる(これは時間に応じて変化する)。基準ハザード関数は、全ての個体に共通する生存時間分布の形状を示すものであり、相対リスク度は、共変量値(例えば単一の個体またはグループ)のセットのハザードのレベルを複数の基準ハザードとして示すものである。コックスモデルでは、相対リスク度は、時間によらず一定である。
[00283]本方法は、全てのシグナルに1092種の簡単な単変量コックスモデルを適合
させることを含む。46種のタンパク質は、10〜14よりも優れたP値を有する(Wald, Abraham.(1943). A Method of Estimating Plane Vulnerability Based on Damage
of Survivors.Statistical Research Group, Columbia University))。最初は多数の極めて有意なタンパク質に驚くが、心血管疾患における腎臓の関与は必然的に糸球体ろ過率(GFR)の変化伴う。GFRの減少は全てのタンパク質を増加させると予想され、腎クリアランスはゼロ以外になる。
[00284]有用なモデル(実験室での技術的な複雑さやコストに関して)は、表2に示さ
れる46種のタンパク質の完全リストよりも簡潔であると予想される。PCAでも観察されるように、多くのタンパク質は、高度な相関を示す可能性が高い;有効なモデルはこれを考慮に入れると予想される。46種の極めて有意なタンパク質のリストを二段階で選別して表3で示されるような10種のタンパク質にした。まずリストを、0.37より大きい規模の係数(タンパク質シグナルを2倍した場合の30%のハザード変化に等しい)を生じる20種のタンパク質に制限した。この工程を、46種のタンパク質全てを用いた単一の多変量のコックスモデルに採用した。(コックスモデルに適合させる前にタンパク質測定値の自然対数をとった。従って、コックス係数の指数関数は、タンパク質測定値のe倍の(2.71)変化のハザード比に相当する)。
[00285]次の工程で、0.01よりも有意に高いp値を求めることにより20種のタン
パク質を選別した9種にした。この工程では、共変関係のタンパク質を除去し、独立したタンパク質を寄与させる。バイオマーカーの選択への最終調整が行われ、それにおいて、補体系の最終的な共通経路における膜侵襲複合体の一種のC9を、そのシグナル伝達で非特異的すぎ、この研究単独からは決定できないものと判断したが、これは、この研究はCVイベントリスクを正確に実証するように構成されているためである。C9を除去し、残り全てのタンパク質をその場で評価した。代替のタンパク質をワルド検定スコアの改善について順位付けしたところ、KLK3.SerpinA3はC9とほぼ同程度に有効であった。
[00286]図3A〜4Fに、この10種の心血管系リスクのマーカーモデル(表3)に関
するカプラン・マイヤー生存曲線を示す。
実施例4.個々のタンパク質と特定のタイプのCVイベントとの関係の単変量解析
[00287]心血管イベントの大部分は2つのクラス、すなわち血栓形成およびCHFに分類
される。血栓形成リスクとCHFリスクとを区別することは、例えば治療方針を決めること、抗血栓薬療法か利尿薬療法かを選択することにおいて医学的有用性を有する。血栓形成イベントのクラスとCHFイベントのクラスとで生物学の大部分が共通であるが、血栓形成イベントは特に、血液凝固の生物学を含む(これは、血栓形成という名称からも示される)。コックス比例ハザードモデル(実施例3)で同定された表3に記載の10種のタンパク質を用いることにより、凝固に関連するシグナルと組織のリモデリングに関連するシグナルを見つけ出すことができた。CHFイベントと血栓形成イベントとの間のあらゆる差次的なシグナルを決定するために、関連するカプラン・マイヤー曲線をCHFイベントと血栓形成イベントとで別々にプロットした。
[00288]血小板または栓球は、凝固の生物学における中心的存在である。GPVIは、
血小板膜糖タンパク質であり、このタンパク質について、図8におけるCHFイベントと血栓形成イベントの両方についてイベントフリー生存率との関連の解析を行った。図8Aは、血栓形成イベントフリー生存率と集団分布の四分位数としてプロットされたGPVIのレベルとの強い関連を示す。図8Bは、GPVIの四分位数は、CHFイベントのイベントフリー生存率に関連しないことを示す。
[00289]GPVIに対して、MATN2(マトリリン2)は、細胞外マトリックス関連
タンパク質である。図9Aは、MATN2の四分位数は血栓形成イベントのリスクに関連
しないが、図9Bは、MATN2イベントとCHFイベントとの間に強い関連を示すことを示す。集団の第4の四分位数におけるMATN2を有する個体のイベントフリー生存率は、上位3つの四分位数よりも著しく劣っている。
[00290]総合すると、この実施例の結果から、本発明者等の10種のタンパク質マーカ
ーは、血液サンプリング後数年にわたるリスクに関して血栓形成イベントとCHFイベントとを区別することができることが示される。
実施例5.スタチンで治療された個体におけるアンジオポエチン2およびCHRDL1の有用性
[00291]既知の心血管疾患がある個体と、高LDLコレステロールを伴う状態などの特定
の心血管に関する状態がない多くの個体との両方で構成される多くの個体をスタチン処理した。これらの強力な薬物は、多くのバイオマーカーにおいてリスクを有するものとリスクを有さないものとを区別するその能力を変更する。スタチンは、この集団でバイオマーカーが機能するかどうかを判断するのに役に立つ。
[00292]図10は、スタチン処理された被験者において、アンジオポエチン2は、それ
でもなお高リスク個体におけるCVイベントの予測に極めて有用であることを示す。図10は、スタチン薬物処置を受けた被験者538人全員のカプラン・マイヤープロットを示しており、これから、アンジオポエチン−2に関する集団分布の第4の四分位数に含まれる個体は、アンジオポエチン−2に関する第4の四分位数に含まれない個体と比較して高い割合で心血管イベントを経験していることが示される。従って、スタチン処理の作用に関係なく、アンジオポエチン−2は、心血管イベントリスクの有用なバイオマーカーである。
[00293]図11は、スタチン処理された被験者において、CHRDL1も、この高リス
ク集団において心血管イベントリスクに関連することを示す。図11は、スタチン投与を受けた被験者538人全員のカプラン・マイヤープロットを示す。これは、CHRDL1は、スタチン薬物処置された個体において心血管イベントフリー生存率と関連することを図示している。従って、スタチン処理の作用に関係なく、CHRDL1は、心血管イベントリスクの有用なバイオマーカーである。
100 コンピューターシステム
101 プロセッサー
102 インプット装置
103 アウトプット装置
104 記憶装置
105a コンピューターで読取り可能な記憶媒体リーダー
105b コンピューターで読取り可能な記憶媒体
106 通信システム
107 加速処理装置
109 メモリー
108 バス
193 その他のコード

Claims (15)

  1. 個体が増大した心血管系(CV)イベントリスクを有する可能性の判定を補助するための方法であって、該方法は:
    該個体からの生体サンプルで、表1から選択されるN種のバイオマーカーのうち1種にそれぞれ相当するバイオマーカー値を検出することを含み、
    前記バイオマーカー値は個体が増大したCVイベントのリスクを有する可能性について示し、ここでN=3〜155であり、バイオマーカーの2〜10種は表3から選択され、表3から選択されるバイオマーカーがアンジオポエチン2を含む、上記方法。
  2. 表3から選択されるバイオマーカーが、さらに補体C7を含む、請求項1に記載の方法。
  3. バイオマーカーの3〜10種は表3から選択され、表3から選択されるバイオマーカーがさらにPSA−ACTを含む、請求項2に記載の方法。
  4. N=4〜155であり、表1から選択される前記N種のバイオマーカーが、MMP-12、CCL18、GDF-11、およびα-2-抗プラスミンからなる群から選択される1以上のバイオ―マーカーを含む、請求項3に記載の方法。
  5. バイオマーカーが表3の10種のバイオマーカーを含む、請求項1に記載の方法。
  6. 前記バイオマーカー値の検出が、インビトロでの分析を行うことを含む、請求項1〜5のいずれかに記載の方法。
  7. 前記インビトロでの分析が、前記バイオマーカーのそれぞれに対応する少なくとも1種の捕獲試薬を含み、前記少なくとも1種の捕獲試薬を、アプタマー、抗体、および核酸プローブからなる群から選択することをさらに含む、請求項6に記載の方法。
  8. 前記生体サンプルが、全血、乾燥血液スポット、血漿、血清、および尿からなる群より選択される、請求項1〜5のいずれかに記載の方法。
  9. さらに、前記個体に相当する追加の生物医学的情報のうち少なくとも1つの項目を得ることを含み、ここで前記追加の生物医学的情報のうち少なくとも1つの項目は、独立して、
    (a)心筋梗塞の既往、血管造影で1本またはそれより多くの冠血管で50%を超える狭窄が確認された証拠、トレッドミルまたは心臓核試験による運動誘発性虚血、または冠血行再建の既往からなる群より選択される、心血管系リスク因子の存在に相当する情報、
    (b)前記個体の身体的な記述子に相当する情報、
    (c)前記個体の体重変化に相当する情報、
    (d)前記個体の民族性に相当する情報、
    (e)前記個体の性別に相当する情報、
    (f)前記個体の喫煙歴に相当する情報、
    (g)前記個体のアルコール摂取歴に相当する情報、
    (h)前記個体の職業歴に相当する情報、
    (i)前記個体の心血管疾患またはその他の循環系状態の家族歴に相当する情報、
    (j)前記個体または前記個体の家族におけるより高い心血管疾患リスクと相関する少なくとも1種の遺伝子マーカーの前記個体における存在または非存在に相当する情報、
    (k)前記個体の臨床症状に相当する情報、
    (l)その他の実験室試験に相当する情報、
    (m)前記個体の遺伝子発現値に相当する情報、および
    (n)飽和脂肪が多く、高塩濃度、高コレステロールの食事などの公知の心血管系リスク因子の前記個体における消費に相当する情報、
    (o)心電図、心エコー検査、頚動脈内膜中膜厚の超音波診断、血流依存性血管拡張反応検査、脈波伝播速度、足関節上腕血圧比、ストレス心エコー検査、心筋血流イメージング、冠CTによる冠動脈カルシウム検査、高分解能CT血管撮影法、MRIイメージング、およびその他のイメージング様式からなる群より選択される技術により得られた個体のイメージング結果に相当する情報、および
    (p)個体の薬物療法に関する情報
    からなる群より選択され、
    前記バイオマーカー値、および前記追加の生物医学的情報のうち少なくとも1つの項目が、CVイベントリスクについて示し得る、請求項1〜5のいずれかに記載の方法。
  10. 5年の期間内の将来的な心血管系(CV)イベントリスクを評価するためのバイオマーカーのパネルであって、前記パネルは、表1に記載のバイオマーカーからなる群より選択されるN種のバイオマーカーを含み、N=4〜155であり、バイオマーカーの3〜10種は表3から選択され、表3から選択されるバイオマーカーがアンジオポエチン2、補体C7、およびPSA−ACTを含み、表1から選択されるバイオマーカーが、MMP-12、CCL18、GDF-11、およびα-2-抗プラスミンからなる群から選択される1以上のバイオ―マーカーを含む、上記パネル。
  11. 集団における5年の期間の将来的な心血管系(CV)イベントリスクを評価するための方法であって、該方法は:
    集団の個体からの生体サンプルで、表1から選択されるN種のバイオマーカーのうち1種にそれぞれ相当するバイオマーカー値を検出することを含み、
    ここで前記バイオマーカー値は前記個体のCVイベントリスクに関して示し、N=4〜155であり、バイオマーカーの3〜10種は表3から選択され、表3から選択されるバイオマーカーがアンジオポエチン2、補体C7、およびPSA−ACTを含み、表1から選択されるバイオマーカーが、MMP-12、CCL18、GDF-11、およびα-2-抗プラスミンからなる群から選択される1以上のバイオ―マーカーを含む、上記方法。
  12. a)心血管疾患の既往歴を有するまたは有さない集団;および
    b)突然変異、単一ヌクレオチド多型、および/または挿入/欠失を含む遺伝学的リスク因子を有するまたは有さない集団
    からなる群より選択される特徴に基づき集団を選択すること
    をさらに含む、請求項11に記載の方法。
  13. CVイベントについて示された個体のリスクによって、個体を:
    a)疾患管理プログラムの増加または減少に関する異なるカテゴリー;
    b)生命保険の補償範囲に関する異なるリスクカテゴリー;
    c)健康保険の補償範囲に関する異なるリスクカテゴリー;
    d)パートナーシップ候補の異なるカテゴリー;
    e)CV治療の臨床試験参加資格に関する異なるカテゴリー;
    f)CV治療またはあらゆる治療の心血管安全性に関する異なるリスクカテゴリー
    からなる群より選択されるカテゴリーに層別化することができる、請求項11に記載の方法。
  14. コンピューターにより実施される心血管系(CV)イベントのリスクを評価するための方法であって、該方法は:
    コンピューターで個体のバイオマーカー情報を検索すること(ここでバイオマーカー情報は、表1から選択されるN種のバイオマーカーのうち1種にそれぞれ相当するバイオマーカー値を含む);
    コンピューターを用いて前記バイオマーカー値のそれぞれの分類を行うこと;
    複数の分類に基づいて前記個体のCVイベントリスクの評価の結果を示すこと
    を含み、ここでN=4〜155であり、バイオマーカーの3〜10種は表3から選択され、表3から選択されるバイオマーカーがアンジオポエチン2、補体C7、およびPSA−ACTを含み、表1から選択されるバイオマーカーが、MMP-12、CCL18、GDF-11、およびα-2-抗プラスミンからなる群から選択される1以上のバイオ―マーカーを含む、上記方法。
  15. 心血管系(CV)イベントリスクを評価するためのコンピュータープログラム製品であって、該コンピュータープログラム製品は:
    計算装置またはシステムのプロセッサーによって実行可能なプログラムコードを具体化するコンピューターで読取り可能な媒体
    を含み、ここで該プログラムコードは:
    個体からの生体サンプルに起因するデータを検索するコード(ここで該データは、表1から選択されるN種のバイオマーカーのうち1種にそれぞれ相当するバイオマーカー値を含み、前記バイオマーカーは、生体サンプル中で検出されたものである);および前記バイオマーカー値に応じて個体のCVイベントリスクの評価の結果を示す分類方法を実行するコード
    を含み、ここでN=4〜155であり、バイオマーカーの3〜10種は表3から選択され、表3から選択されるバイオマーカーがアンジオポエチン2、補体C7、およびPSA−ACTを含み、表1から選択されるバイオマーカーが、MMP-12、CCL18、GDF-11、およびα-2-抗プラスミンからなる群から選択される1以上のバイオ―マーカーを含む、上記製品。
JP2018103211A 2011-09-30 2018-05-30 心血管系リスクイベントの予測およびその使用 Active JP6546318B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161541828P 2011-09-30 2011-09-30
US61/541,828 2011-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014533428A Division JP6652781B2 (ja) 2011-09-30 2012-09-28 心血管系リスクイベントの予測およびその使用

Publications (2)

Publication Number Publication Date
JP2018159713A JP2018159713A (ja) 2018-10-11
JP6546318B2 true JP6546318B2 (ja) 2019-07-17

Family

ID=47993164

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014533428A Active JP6652781B2 (ja) 2011-09-30 2012-09-28 心血管系リスクイベントの予測およびその使用
JP2018103211A Active JP6546318B2 (ja) 2011-09-30 2018-05-30 心血管系リスクイベントの予測およびその使用
JP2019193933A Active JP6917432B2 (ja) 2011-09-30 2019-10-25 心血管系リスクイベントの予測およびその使用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014533428A Active JP6652781B2 (ja) 2011-09-30 2012-09-28 心血管系リスクイベントの予測およびその使用

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019193933A Active JP6917432B2 (ja) 2011-09-30 2019-10-25 心血管系リスクイベントの予測およびその使用

Country Status (17)

Country Link
US (3) US20130085079A1 (ja)
EP (1) EP2761289B1 (ja)
JP (3) JP6652781B2 (ja)
KR (2) KR102111624B1 (ja)
CN (4) CN107422126B (ja)
AU (1) AU2013202112B9 (ja)
BR (2) BR122019023720B1 (ja)
CA (2) CA3074279C (ja)
ES (1) ES2777002T3 (ja)
HK (1) HK1247666A1 (ja)
IL (1) IL231387A (ja)
IN (1) IN2014CN01970A (ja)
MX (2) MX2014003153A (ja)
RU (1) RU2651708C2 (ja)
SG (3) SG10201607331WA (ja)
WO (1) WO2013049674A1 (ja)
ZA (1) ZA201401778B (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359425B2 (en) 2008-09-09 2019-07-23 Somalogic, Inc. Lung cancer biomarkers and uses thereof
US20130171649A1 (en) * 2010-06-07 2013-07-04 Manuel Mayr Methods and means for predicting or diagnosing diabetes or cardiovascular disorders based on micro rna
MX355020B (es) 2010-07-09 2018-04-02 Somalogic Inc Biomarcadores de cancer de pulmon y usos de los mismos.
BR112013003391B8 (pt) 2010-08-13 2022-10-25 Somalogic Inc Método para diagnosticar câncer pancreático em um indivíduo
KR20140015455A (ko) 2011-03-10 2014-02-06 소마로직, 인크. 클로스트리디움 디피실 진단을 위한 압타머
EP2761289B1 (en) * 2011-09-30 2020-02-12 Somalogic, Inc. Cardiovascular risk event prediction and uses thereof
JP6198047B2 (ja) * 2013-08-02 2017-09-20 国立大学法人岐阜大学 冠動脈疾患の検査キット
EP3049523B1 (en) 2013-09-24 2019-08-07 Somalogic, Inc. Multiaptamer target detection
WO2015140317A1 (en) * 2014-03-21 2015-09-24 Sanofi New markers for the assessment of the risk for development of a cardiovascular disorder
EP3152580B1 (en) * 2014-06-05 2019-10-16 Sanofi-Aventis Deutschland GmbH New markers for the assessment of an increased risk for mortality
ES2792227T3 (es) 2014-09-26 2020-11-10 Somalogic Inc Predicción de evento de riesgo cardiovascular y usos de la misma
CA3012985A1 (en) 2015-01-27 2016-08-04 Kardiatonos, Inc. Biomarkers of vascular disease
WO2017011329A1 (en) * 2015-07-10 2017-01-19 West Virginia University Markers of stroke and stroke severity
RU2602451C1 (ru) * 2015-08-28 2016-11-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого" Министерства здравоохранения Российской Федерации Способ диагностики генетической предрасположенности к развитию ишемического инсульта у больных с фибрилляцией предсердий
BR112018014842A8 (pt) * 2016-02-08 2022-10-18 Somalogic Inc Métodos para determinar se um indivíduo tem doença hepática gordurosa não alcoólica (nafld) inflamação lobular, fibrose e hepatócitos balonizados referência cruzada aos pedidos relacionados
EP3426826A4 (en) * 2016-03-09 2019-09-04 Molecular Stethoscope, Inc. METHODS AND SYSTEMS FOR DETECTION OF TISSUE STATES
US20190154708A1 (en) * 2016-04-06 2019-05-23 Nestec S.A. Biomarkers for predicting degree of weight loss
WO2017179694A1 (ja) 2016-04-15 2017-10-19 オムロン株式会社 生体情報分析装置、システム、プログラム、及び、生体情報分析方法
CN105907857A (zh) * 2016-04-29 2016-08-31 天津脉络生物科技有限公司 一种用于动脉血栓的分子标记物和试剂及其应用
WO2017214684A1 (en) * 2016-06-17 2017-12-21 Adelaide Research & Innovation Pty Ltd Methods and products for identifying conditions associated with cardiac fibrotic remodelling
ES2817087T3 (es) * 2016-08-04 2021-04-06 Hoffmann La Roche ESM-1 (endocan) circulante en la evaluación de la fibrilación auricular
US11079394B2 (en) * 2017-07-25 2021-08-03 Vanderbilt University Detection of angiopoietin-2 and thrombospondin-2 in connection with diagnosing acute heart failure
WO2019115620A1 (en) 2017-12-13 2019-06-20 Roche Diagnostics Gmbh Circulating angiopoietin-2 (ang-2) and insulin-like growth factor-binding protein 7 (igfbp7) for the prediction of stroke
RU2685859C1 (ru) * 2018-07-04 2019-04-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ прогнозирования риска развития ишемического инсульта
CN109192250B (zh) * 2018-08-01 2021-12-07 华东理工大学 一种多相催化中克服表面物种快速迁移的加速模拟方法
CN112888948A (zh) * 2018-08-10 2021-06-01 豪夫迈·罗氏有限公司 用于评定Afib相关性脑卒中的CES-2(羧酸酯酶-2)
WO2020037244A1 (en) * 2018-08-17 2020-02-20 Henry M. Jackson Foundation For The Advancement Of Military Medicine Use of machine learning models for prediction of clinical outcomes
WO2020039001A1 (en) * 2018-08-22 2020-02-27 Roche Diagnostics Gmbh Circulating spon-1 (spondin-1) in the assessment of atrial fibrillation
JP2022512949A (ja) * 2018-10-31 2022-02-07 セントロ ナショナル デ インベスティガシオネス カルディオバスキュラレス カルロス テルセーロ (エフェ.エセ.ペ.) 無症候性アテローム性動脈硬化症のバイオマーカー
KR102125053B1 (ko) * 2018-12-14 2020-06-19 가톨릭대학교 산학협력단 심혈관계 질환의 검출용 조성물 및 이를 포함하는 키트
CA3126990A1 (en) 2019-02-14 2020-08-20 Maneesh Jain Methods and systems for determining a pregnancy-related state of a subject
US11030743B2 (en) * 2019-05-16 2021-06-08 Tencent America LLC System and method for coronary calcium deposits detection and labeling
US10902955B1 (en) * 2020-05-01 2021-01-26 Georgetown University Detecting COVID-19 using surrogates
AU2021364805A1 (en) * 2020-10-20 2023-05-18 Somalogic Operating Co., Inc. Cardiovascular event risk prediction
RU2750716C1 (ru) * 2020-11-23 2021-07-01 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр кардиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ кардиологии" Минздрава России) Способ прогнозирования сердечно-сосудистых осложнений у больных низкого или умеренного сердечно-сосудистого риска путем оценки их психологического статуса
WO2022165393A1 (en) * 2021-02-01 2022-08-04 Medtronic, Inc. A method to identify lvad patients with elevated levels of blood activation using coupon tests
RU2757752C1 (ru) * 2021-04-26 2021-10-21 Общество с ограниченной ответственностью "Медицинская Технологическая Компания" (ООО МТК) Способ определения индивидуального профиля факторов суммарного сердечно-сосудистого риска у пациента трудоспособного возраста
WO2023023748A1 (en) * 2021-08-26 2023-03-02 3P Healthcare Pty Ltd System and method for cardiovascular health assessment and risk management
EP4230233A1 (en) * 2022-02-22 2023-08-23 mimiX Biotherapeutics Sàrl Method for producing tissue constructs
WO2023201054A1 (en) * 2022-04-15 2023-10-19 Memorial Sloan-Kettering Cancer Center Multi-modal machine learning to determine risk stratification

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660985A (en) * 1990-06-11 1997-08-26 Nexstar Pharmaceuticals, Inc. High affinity nucleic acid ligands containing modified nucleotides
WO2001066690A2 (en) * 2000-03-06 2001-09-13 Smithkline Beecham Corporation Novel compounds
US20030224501A1 (en) * 2000-03-17 2003-12-04 Young Paul E. Bone morphogenic protein polynucleotides, polypeptides, and antibodies
US6930085B2 (en) * 2002-04-05 2005-08-16 The Regents Of The University Of California G-type peptides to ameliorate atherosclerosis
EP3072978B1 (en) * 2002-05-09 2018-07-11 The Brigham and Women's Hospital, Inc. 1l1rl-1 as a cardiovascular disease marker
US20060019256A1 (en) * 2003-06-09 2006-01-26 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20050181451A1 (en) * 2004-02-12 2005-08-18 Bates Harold M. Detection of asymptomatic coronary artery disease using atherogenic proteins and acute phase reactants
JP2008523394A (ja) * 2004-12-10 2008-07-03 ユニヴァーシティー オブ メリーランド, バルティモア 炎症及び肥満症における血清アミロイドaタンパク質
CN2783324Y (zh) * 2005-04-28 2006-05-24 穆海东 心血管疾病诊断和预测多指标蛋白芯片检测试剂盒
US20070099209A1 (en) * 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20070099239A1 (en) * 2005-06-24 2007-05-03 Raymond Tabibiazar Methods and compositions for diagnosis and monitoring of atherosclerotic cardiovascular disease
CA2641189A1 (en) * 2006-01-31 2007-08-09 Mitsubishi Kagaku Iatron, Inc. Method for determination of condition of disseminated intravascular coagulation syndrome
US20080057590A1 (en) * 2006-06-07 2008-03-06 Mickey Urdea Markers associated with arteriovascular events and methods of use thereof
EP1887361A1 (en) * 2006-08-07 2008-02-13 Bio-Rad Pasteur Method for the prediction of vascular events
US7947447B2 (en) * 2007-01-16 2011-05-24 Somalogic, Inc. Method for generating aptamers with improved off-rates
RU2376372C2 (ru) * 2007-04-03 2009-12-20 Государственное учреждение Научно-исследовательский институт медицинской генетики Томского научного центра Сибирского отделения Российской академии медицинских наук Способ генетической диагностики подверженности к сердечно-сосудистым заболеваниям
EP2019318A1 (en) * 2007-07-27 2009-01-28 Erasmus University Medical Center Rotterdam Protein markers for cardiovascular events
SI2185198T1 (sl) * 2007-08-02 2015-04-30 Gilead Biologics, Inc. Inhibitorji LOX in LOXL2 ter njihova uporaba
GB0717637D0 (en) * 2007-09-10 2007-10-17 Univ Leiden Future cardiac event biomarkers
WO2009075566A1 (en) * 2007-12-12 2009-06-18 Erasmus University Medical Center Rotterdam Biomarkers for cardiovascular disease
EP2238455A4 (en) * 2008-01-18 2011-03-02 Vatrix Medical Inc DIAGNOSTIC BIOMARKERS FOR VASCULAR ANEVISM
US8030097B2 (en) * 2008-04-30 2011-10-04 Versitech Limited and R & C Biogenius Limited Lipocalin-2 as a prognostic and diagnostic marker for heart and stroke risks
JP2012500199A (ja) * 2008-08-11 2012-01-05 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム 血管統合性を促進するマイクロ−rnaおよびその使用
JP5711131B2 (ja) * 2008-10-07 2015-04-30 ベー.エル.アー.ハー.エム.エス ゲゼルシャフト ミット ベシュレンクテル ハフツング 最初の有害事象の予測のためのバイオマーカー
WO2010144358A1 (en) * 2009-06-08 2010-12-16 Singulex, Inc. Highly sensitive biomarker panels
EP2264183B1 (en) * 2009-06-09 2016-12-07 Gendiag.exe, S.L. Risk markers for cardiovascular disease
DK2443449T3 (en) * 2009-06-15 2017-05-15 Cardiodx Inc DETERMINATION OF RISK OF CORONARY ARTERY DISEASE
WO2011059721A1 (en) * 2009-10-29 2011-05-19 Tethys Bioscience, Inc. Protein and lipid biomarkers providing consistent improvement to the prediction of type 2 diabetes
AU2010328019A1 (en) * 2009-12-09 2012-06-28 Aviir, Inc. Biomarker assay for diagnosis and classification of cardiovascular disease
EP2542266A4 (en) * 2010-03-03 2013-10-23 Somalogic Inc 4-1BB-BINDING APTAMERS AND USE THEREOF IN THE TREATMENT OF DISEASES AND DISORDERS
EP2761289B1 (en) * 2011-09-30 2020-02-12 Somalogic, Inc. Cardiovascular risk event prediction and uses thereof
CA2901394A1 (en) * 2012-03-19 2013-09-26 The Brigham And Women's Hosptial, Inc. Growth differentiation factor (gdf) for treatment of diastolic heart failure

Also Published As

Publication number Publication date
KR102248900B1 (ko) 2021-05-07
CN107102151A (zh) 2017-08-29
JP2014528576A (ja) 2014-10-27
BR112014007214B1 (pt) 2022-08-16
CN103959060B (zh) 2017-05-17
BR112014007214A2 (pt) 2017-04-04
ZA201401778B (en) 2018-08-25
HK1247666A1 (zh) 2018-09-28
EP2761289B1 (en) 2020-02-12
KR20200055804A (ko) 2020-05-21
JP6917432B2 (ja) 2021-08-11
US20150168423A1 (en) 2015-06-18
KR20140084106A (ko) 2014-07-04
MX2020004617A (es) 2020-08-06
CN103959060A (zh) 2014-07-30
WO2013049674A1 (en) 2013-04-04
US20130085079A1 (en) 2013-04-04
BR122019023720A8 (pt) 2022-07-26
NZ622118A (en) 2016-01-29
JP6652781B2 (ja) 2020-02-26
EP2761289A4 (en) 2015-08-12
JP2018159713A (ja) 2018-10-11
CA3074279A1 (en) 2013-04-04
SG10201906900QA (en) 2019-09-27
CA2847903A1 (en) 2013-04-04
AU2013202112A1 (en) 2013-05-02
CN107422126B (zh) 2020-03-27
IL231387A (en) 2017-12-31
CN107422126A (zh) 2017-12-01
BR112014007214A8 (pt) 2022-07-26
BR122019023720A2 (ja) 2017-04-04
EP2761289A1 (en) 2014-08-06
SG11201400904SA (en) 2014-04-28
ES2777002T3 (es) 2020-08-03
IN2014CN01970A (ja) 2015-05-29
AU2013202112B9 (en) 2015-10-22
US20200166523A1 (en) 2020-05-28
IL231387A0 (en) 2014-04-30
RU2651708C2 (ru) 2018-04-23
CA3074279C (en) 2021-10-19
RU2014110508A (ru) 2015-11-10
KR102111624B1 (ko) 2020-05-18
AU2013202112B2 (en) 2015-09-24
MX2014003153A (es) 2014-04-30
JP2020024216A (ja) 2020-02-13
SG10201607331WA (en) 2016-11-29
CA2847903C (en) 2020-10-27
CN114518458A (zh) 2022-05-20
BR122019023720B1 (pt) 2023-01-24

Similar Documents

Publication Publication Date Title
JP6546318B2 (ja) 心血管系リスクイベントの予測およびその使用
JP7270696B2 (ja) 心血管系のリスクイベントの予測及びその使用
AU2015249162B2 (en) Cardiovascular risk event prediction and uses thereof
US20220349904A1 (en) Cardiovascular Risk Event Prediction and Uses Thereof
AU2021364805A9 (en) Cardiovascular event risk prediction
NZ622118B2 (en) Cardiovascular risk event prediction and uses thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190620

R150 Certificate of patent or registration of utility model

Ref document number: 6546318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250