JP6546013B2 - Mannose extraction method - Google Patents
Mannose extraction method Download PDFInfo
- Publication number
- JP6546013B2 JP6546013B2 JP2015120538A JP2015120538A JP6546013B2 JP 6546013 B2 JP6546013 B2 JP 6546013B2 JP 2015120538 A JP2015120538 A JP 2015120538A JP 2015120538 A JP2015120538 A JP 2015120538A JP 6546013 B2 JP6546013 B2 JP 6546013B2
- Authority
- JP
- Japan
- Prior art keywords
- mannose
- solid acid
- acid catalyst
- resin
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Saccharide Compounds (AREA)
Description
本発明は、マンノース抽出方法に関し、特に、固体酸触媒を用いて多糖類を分解することによって植物系食品残渣からマンノースを得る抽出方法に関する。 The present invention relates to a mannose extraction method, and more particularly to an extraction method for obtaining mannose from plant-based food residue by decomposing polysaccharides using a solid acid catalyst.
単糖の一種であるマンノースは、近年機能性糖類として注目されている。例えば、マクロファージの活性化との関連性、感染症抑制、有用腸内細菌の増殖等の分野である(特許文献1、2等参照)。さらには甘味料の添加成分としての利用である(特許文献3等参照)。このため、マンノースの活性効果を生かした製剤や食品分野への利用を満たすべく、マンノースの需要は急速に拡大している。 Mannose, which is a type of monosaccharide, has recently attracted attention as a functional saccharide. For example, it relates to fields such as association with macrophage activation, infection control, and growth of useful enteric bacteria (see Patent Documents 1 and 2, etc.). Furthermore, it is utilization as an additive component of a sweetener (refer patent document 3 grade | etc.,). For this reason, the demand for mannose is rapidly expanding in order to satisfy the application to the preparation and food fields that make use of the active effect of mannose.
現状、マンノース単体は、グルコマンナン等の多糖類から微生物等による酵素的分解により生産される。そのため、生産効率を向上させることは容易ではない。加えて、製造経費も問題となっていた。そのため、より効率の良いマンノースの抽出方法が模索されている。マンノースは多糖類の糖鎖を構成する糖の一種であり、主に植物の細胞壁等の表面に糖鎖状に現出していることが知られている。 At present, mannose alone is produced from polysaccharides such as glucomannan by enzymatic degradation by microorganisms and the like. Therefore, it is not easy to improve the production efficiency. In addition, manufacturing costs have also been a problem. Therefore, more efficient mannose extraction methods are being sought. Mannose is a type of sugar that constitutes polysaccharide chains of polysaccharides, and is known to appear in the form of sugar chains mainly on the surface of plant cell walls and the like.
しかしながら、グルコマンナン等の糖鎖はデンプンを構成するアミロースやアミロペクチン等と異なり、溶解が容易ではないことから十分に溶出することができなかった。そのため、存在は確認されてはいるものの残存成分として有効に活用されてはいなかった。この点に鑑み、植物の細胞壁、つまりは食品の残渣物に対して酸と熱処理によりマンノースのオリゴ糖を抽出する方法が提案されている(特許文献4、5等参照)。特許文献4ではコーヒー抽出物に硫酸が添加され、特許文献5では酢酸またはギ酸が添加され、加熱を経てマンノオリゴ糖(マンナンオリゴ糖)が抽出される。
However, sugar chains such as glucomannan and the like can not be sufficiently eluted because they are not easy to dissolve unlike amylose and amylopectin which constitute starch. Therefore, although its existence has been confirmed, it has not been effectively used as a residual component. In view of this point, methods have been proposed for extracting oligosaccharides of mannose by acid and heat treatment on the cell wall of a plant, that is, the residue of food (see
ただし、当該特許文献4,5では、オリゴ糖段階の抽出に留まっており、単糖のマンノースまでに分解して抽出することはできなかった。また、反応に用いた酸は液体であるため、オリゴ糖溶液からの除去は容易とは言えなかった。さらに、処理ごとに酸液を使い捨てにしなければならず、生産効率や経費上の問題も山積していた。ただし、一連の経緯から、グルコマンナン等のマンノースを含有する糖鎖の分解に、酸の使用が効果的であることまでは明らかとなった。そこで、新たな酸処理に際しての改良が望まれていた。
However, in the
発明者らは前述のマンノース成分の分解抽出とは別に、固体酸の設計に鋭意取り組んできた。固体酸とは、有機物の表面にスルホ基を導入して得た固形物である。そのため、触媒として作用する硫酸に近似した性質を備える。このような固体酸であれば、硫酸触媒としての作用が期待できる。 The inventors have been keenly working on the design of solid acid separately from the decomposition extraction of the mannose component described above. A solid acid is a solid obtained by introducing a sulfo group on the surface of an organic substance. Therefore, it has properties similar to sulfuric acid acting as a catalyst. Such a solid acid can be expected to act as a sulfuric acid catalyst.
本発明は、上記状況に鑑み提案されたものであり、既存の液体の酸触媒に代えて固体酸触媒を用いることにより、植物系食品残渣中から単糖まで分解してマンノースを抽出し、かつ、触媒の分離を容易にすることを可能とするマンノース抽出方法を提供する。 The present invention has been proposed in view of the above-mentioned situation, and by using a solid acid catalyst instead of the existing liquid acid catalyst, mannose can be extracted from plant-based food residue by decomposition into monosaccharides, and Provided is a mannose extraction method which makes it possible to facilitate the separation of the catalyst.
すなわち、請求項1の発明は、フェノール樹脂にスルホ基を導入してスルホ化することにより得た樹脂固体酸触媒と、植物系食品残渣物とを混合して加熱することによって、前記植物系食品残渣物中よりマンノースを抽出することを特徴とするマンノース抽出方法に係る。 That is, according to the invention of claim 1 , the plant-based food is prepared by mixing and heating a resin solid acid catalyst obtained by introducing a sulfo group into a phenol resin and performing sulfonation, and a plant-based food residue. The present invention relates to a mannose extraction method characterized in that mannose is extracted from the residue .
請求項2の発明は、前記樹脂固体酸触媒と前記植物系食品残渣物が水分存在下で加熱される請求項1に記載のマンノース抽出方法に係る。 The invention according to claim 2 relates to the mannose extraction method according to claim 1 , wherein the resin solid acid catalyst and the plant-based food residue are heated in the presence of water .
請求項3の発明は、前記植物系食品残渣物がコーヒー豆抽出残渣である請求項1または2に記載のマンノース抽出方法に係る。 The invention according to claim 3 relates to the mannose extraction method according to claim 1 or 2 , wherein the plant-based food residue is a coffee bean extraction residue .
請求項1の発明に係るマンノース抽出方法によると、フェノール樹脂にスルホ基を導入してスルホ化することにより得た樹脂固体酸触媒と、植物系食品残渣物とを混合して加熱することによって、前記植物系食品残渣物中よりマンノースを抽出するため、液体の酸触媒に代えて樹脂固体酸触媒を用いることにより、植物系食品残渣中から単糖まで分解してマンノースを抽出し、かつ、触媒の分離が容易となり、製造経費の圧縮が可能となる。 According to the method for extracting mannose according to the invention of claim 1 , by mixing and heating a resin solid acid catalyst obtained by introducing a sulfo group into a phenol resin for sulfonation, and a plant-based food residue, In order to extract mannose from the plant-based food residue, by using a resin solid acid catalyst instead of a liquid acid catalyst, the plant-based food residue is decomposed into monosaccharides to extract mannose, and the catalyst Can be easily separated, and the manufacturing cost can be reduced.
請求項2の発明に係るマンノース抽出方法によると、請求項1の発明において、前記樹脂固体酸触媒と前記植物系食品残渣物が水分の存在下で加熱されるため、植物系食品残渣物から触媒反応を通じて円滑にマンノースを抽出することができる。 According to the method for extracting mannose according to the invention of claim 2, in the invention of claim 1 , the resin solid acid catalyst and the plant-based food residue are heated in the presence of water, so the plant-based food residue is a catalyst Mannose can be extracted smoothly through the reaction.
請求項3の発明に係るマンノース抽出方法によると、請求項1または2の発明において、前記植物系食品残渣物がコーヒー豆抽出残渣であるため、産業廃棄物の有効利用が可能となり、原料調達も容易、かつ、均質性も高い。
According to the method of extracting mannose according to the invention of claim 3, in the invention of claim 1 or 2 , since the plant-based food residue is a coffee bean extraction residue, the industrial waste can be effectively used, and sourcing of raw materials is also possible. Easy and high homogeneity.
本発明に規定するマンノース抽出方法とは、従前の硫酸、ギ酸、酢酸等の液体の酸触媒の使用ではなく、固体酸を使用して反応対象である植物系食品残渣中に含まれている糖鎖の分解反応を進め、これよりマンノースを得る方法である。それゆえ、反応後、触媒として機能した固体酸の反応系からの分離、回収は容易となる。 The mannose extraction method defined in the present invention is not the conventional use of a liquid acid catalyst such as sulfuric acid, formic acid or acetic acid, but the sugar contained in the plant-based food residue to be reacted using a solid acid. This is a method of advancing chain decomposition reaction to obtain mannose from this. Therefore, after the reaction, separation and recovery of the solid acid functioning as a catalyst from the reaction system become easy.
図1の概略工程図を用い、第1実施形態による固体酸の調製と、これを使用したマンノース抽出方法を説明する。第1実施形態においては、木質固体酸触媒が用意される。木質固体酸触媒の原料となる木質系原料M1は、木材の製材、加工時に生じるオガコ(または大鋸屑や鉋屑等)、廃材や間伐材、廃竹や伐採竹、ヤシ殻、コーヒーの抽出時に生じるコーヒー豆等のセルロース分に富む原料である。加えて、前述の原料から抽出されるセルロース分も原料に含めることができる。木質系原料は炭化に先立ち、あるいは、炭化後に必要に応じて予め適度な大きさに粉砕(破砕)される。さらには、粉砕は炭化の前後両方としても良い。併せて、石や金属片等の異物が混入していないことも事前に検査され、それらは除去される。木質系原料は一般に燃料として用いられる他、焼却処理されていた廃棄物であり、これまで特段有効活用されてこなかった。そこで、木質系原料に由来する材料が固体酸の基材に加工されることによって、原価は抑えられ資源の有効活用が可能となる。 The preparation of the solid acid according to the first embodiment and the mannose extraction method using the same will be described using the schematic flow chart of FIG. In the first embodiment, a woody solid acid catalyst is provided. Wood-based raw material M1 which is a raw material of wood solid acid catalyst is lumber of lumber, sawfish (or large sawdust and chips) generated during processing, waste wood and thinning material, waste bamboo and harvested bamboo, coconut shell, coffee of coffee extraction It is a raw material rich in cellulose such as beans. In addition, the cellulose content extracted from the above-mentioned raw material can also be included in the raw material. Prior to carbonization, or after carbonization, the wood-based raw material is crushed (crushed) to an appropriate size in advance as needed. Furthermore, grinding may be performed both before and after carbonization. At the same time, it is also inspected in advance that foreign substances such as stones and metal fragments are not mixed, and they are removed. Woody raw materials are generally used as fuel and are wastes that have been incinerated, and have not been used effectively until now. Therefore, cost is reduced and materials can be effectively used by processing the material derived from the wood-based material into a solid acid substrate.
木質系原料は焼失しない程度の温度条件下にて炭化されて炭化物となる(S10)。「炭化」は窒素ガス等の不活性ガスを充満した雰囲気下、300ないし450℃の加熱処理条件において加熱される。当該温度域は木質系原料の炭化促進に十分であり、かつ木質系原料の過剰な熱分解を回避可能な温度である。炭化中の加熱温度が300℃未満の加熱処理条件では炭化が不十分となり、未炭化の木質系原料が残存するおそれがある。加熱温度が450℃を超過すると炭化物の表面に露出する官能基も喪失すると考えられ、事後の触媒化に適さない構造となる。後記の実施例においては、木質系原料の炭化は約1時間の加熱とした。炭化時間は処理装置、処理量、木質系原料の粒径等を勘案して規定される。加えて、木質系原料に対する加熱処理温度は、原料の種類に応じても適宜調整される。 The wood-based material is carbonized to a carbide under a temperature condition that does not burn off (S10). The "carbonization" is heated under heat treatment conditions of 300 to 450 ° C. in an atmosphere filled with an inert gas such as nitrogen gas. The temperature range is a temperature sufficient to promote carbonization of the wood-based material and capable of avoiding excessive thermal decomposition of the wood-based material. Under the heat treatment condition where the heating temperature during carbonization is less than 300 ° C., the carbonization is insufficient and there is a possibility that the uncarbonized wood-based raw material may remain. When the heating temperature exceeds 450 ° C., it is considered that the functional group exposed on the surface of the carbide is also lost, and the structure becomes unsuitable for subsequent catalysis. In the examples described below, the carbonization of the wood-based raw material was about one hour of heating. The carbonization time is defined in consideration of the treatment equipment, the amount of treatment, the particle size of the wood-based material, and the like. In addition, the heat treatment temperature for the wood-based material is appropriately adjusted depending on the type of the material.
炭化(S10)の後、所定の粒径に粉砕してもよい。炭化物の粉砕には、公知のミル、グラインダー等が適宜使用される。粉砕及び篩別に際し、炭化物は必要に応じて1mm以下、好ましくは0.5mm以下、さらには0.1mm以下の適宜の粒径とされる。 After carbonization (S10), it may be crushed to a predetermined particle size. A well-known mill, grinder, etc. are suitably used for grinding of a carbide. At the time of grinding and sieving, the carbide has an appropriate particle size of 1 mm or less, preferably 0.5 mm or less, and further 0.1 mm or less, as necessary.
炭化物を作製するに際し、予め木質系原料に対して、または炭化物とした後に、賦活処理を加えることもできる。賦活処理が加わることにより細孔が発達しやすくなる。このため、表面積が大きくなって接触効率の高い炭化物を得ることができる。賦活処理の方法は適宜であり、水蒸気賦活、塩化亜鉛賦活、リン酸賦活、硫酸賦活、空気賦活、炭酸ガス賦活等が例示される。特に、賦活温度による触媒の失活や、薬品によるスルホ基量への影響を検証すると、塩化亜鉛賦活による賦活処理が好ましい。 When producing a carbide, activation treatment can be added to the wood-based material in advance or after being made into a carbide. The addition of the activation treatment facilitates the development of pores. For this reason, the surface area is increased, and carbides with high contact efficiency can be obtained. The method of activation treatment is appropriate, and examples thereof include water vapor activation, zinc chloride activation, phosphoric acid activation, sulfuric acid activation, air activation, carbon dioxide gas activation and the like. In particular, when verifying the deactivation of the catalyst by the activation temperature and the influence of chemicals on the amount of sulfo groups, activation treatment by zinc chloride activation is preferable.
出来上がった炭化物に対し、スルホ基(またはスルホン酸基とも称される)を導入するスルホ化が行われる。この処理が「スルホ化」である(S20)。スルホ化は室温ないし200℃の温度条件下で行われる。スルホ基(スルホン酸基)は「−SO3Hまたは−SO2(OH)」として表される酸性の官能基である。スルホ化を経て、炭化物は「木質固体酸触媒SA1」になる。スルホ基の導入は、濃硫酸、発煙硫酸、またはクロロスルホン酸等のスルホ化剤と炭化物との反応により行われる。当該スルホ化工程に用いるスルホ化剤の種類は通常のスルホ化反応に使用できる薬品の中から選択される。 The resulting carbide is subjected to a sulfonation to introduce a sulfo group (also referred to as a sulfonic acid group). This process is "sulfation" (S20). The sulfonation is carried out at a temperature of room temperature to 200 ° C. A sulfo group (sulfonic acid group) is an acidic functional group, represented as "-SO 3 H or -SO 2 (OH)". Through the sulfonation, the carbides become "woody solid acid catalyst SA1". The introduction of the sulfo group is carried out by the reaction of a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid or chlorosulfonic acid with carbides. The type of sulfonating agent used in the sulfonation step is selected from chemicals which can be used for ordinary sulfonation reaction.
木質固体酸触媒SA1は熱水等による洗浄を経ることによって、余分なスルホ化剤は洗い流される。ここで、篩別により所定の大きさに揃えられた製品とすることができる。また、製造途中に砕けて生じた粉状物も取り除かれる。当該作製に基づく固体酸としては、例えば、特許第5528036号等に開示の固体酸が示される。 The wood solid acid catalyst SA1 is washed away with hot water or the like to wash away excess sulfonating agent. Here, the product can be made to have a predetermined size by sieving. In addition, the powdery substances generated during the production are also removed. As a solid acid based on the preparation, for example, a solid acid disclosed in Patent No. 5528036 and the like is shown.
前述のように、粉末状の固体酸(木質固体酸触媒SA1)を得る他、さらに所定の形状物に保形(加工)することもできる。保形により粉末状よりも粒が大きくなり、反応液中からの分離、回収が容易となる。具体的には、木質系原料と保形目的のバインダは所定量ずつ計量され、双方とも十分に混練される。木質系原料とバインダとの混練は、公知のニーダーやブレンダ等の混練機により行われる。 As described above, in addition to obtaining the powdery solid acid (wood solid acid catalyst SA1), it is also possible to hold (process) it into a predetermined shape. The shape retention causes the particles to be larger than the powdery form, which facilitates separation and recovery from the reaction solution. Specifically, the wood-based material and the binder for shape retention are measured in predetermined amounts, and both are sufficiently kneaded. Kneading of the wood-based raw material and the binder is performed by a kneader such as a known kneader or blender.
バインダには、次の合成樹脂バインダが例示される。熱可塑性樹脂の合成樹脂バインダとしては、ポリエチレン樹脂、高密度ポリエチレン樹脂(HDPE)、高分子量ポリエチレン(UHMPE)、ポリプロピレン樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、ポリイミド樹脂、またはポリウレタン樹脂等が例示される。熱硬化性樹脂の合成樹脂バインダとしては、フェノール樹脂(レゾール型)、ジアリルフタレート樹脂、ユリア(尿素)樹脂、メラミン樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、またはポリウレタン樹脂等が例示される。なお、同種類の樹脂であっても、組成や生成法等の相違から熱可塑性樹脂と熱硬化性樹脂の両方に該当する樹脂も存在する。 The following synthetic resin binders are illustrated as a binder. As a synthetic resin binder of thermoplastic resin, polyethylene resin, high density polyethylene resin (HDPE), high molecular weight polyethylene (UHMPE), polypropylene resin, polyethylene terephthalate (PET) resin, polycarbonate resin, polyvinyl chloride resin, acrylonitrile butadiene styrene resin (ABS resin), a polyimide resin, a polyurethane resin, etc. are illustrated. Examples of synthetic resin binders of thermosetting resins include phenol resin (resol type), diallyl phthalate resin, urea (urea) resin, melamine resin, epoxy resin, silicone resin, polyimide resin, polyurethane resin and the like. Even with the same type of resin, there are resins that correspond to both a thermoplastic resin and a thermosetting resin due to differences in composition, generation method, and the like.
また、バインダには、メチルセルロース、カルボキシメチルセルロース、さらにはビスコース等のセルロース系バインダも含められる。ビスコース(セルロースキサントゲン酸ナトリウム)は、パルプに水酸化ナトリウム、二硫化炭素を添加して調製される。 The binder may also include a cellulose-based binder such as methyl cellulose, carboxymethyl cellulose, and viscose. Viscose (cellulose xanthogenate sodium) is prepared by adding sodium hydroxide and carbon disulfide to pulp.
木質系原料とバインダ(各種の合成樹脂バインダ)との混練物は、球状(丸薬状)、錠剤状(円盤状)、ペレット状(円筒状)等の適宜形状の保形物(成形物)に成形される。球状では造粒機を用いた球形化であり、錠剤状では打錠機が用いられ、ペレット状ではペレタイザ等が使用される。このように所定の保形後、保形物は前述のとおりスルホ化剤によりスルホ化される。結果、成形物表面にスルホ基が導入される。そして、水洗を経て、保形物となった「木質固体酸触媒SA2」を得ることができる。なお、ペレット状にすることにより、触媒の分離性をさらに高めることができる。用途例としては、カラム等への使用が考えられる。木質固体酸触媒SA2の大きさには特段制限はない。前述のバインダの種類、配合割合、用途、反応設備、取り扱いやすさ等が考慮され、粉末以上の大きさに作製される。 Kneaded products of wood-based materials and binders (various synthetic resin binders) can be formed into shape-retaining products (molded products) of appropriate shapes such as spheres (pills), tablets (discs), pellets (cylinders), etc. It is molded. The spherical shape is a spheroidization using a granulator, the tablet shape is a tableting machine, and the pellet shape is a pelletizer or the like. Thus, after the predetermined shape retention, the shape retention is sulfonated by the sulfonating agent as described above. As a result, a sulfo group is introduced to the surface of the molded product. Then, after being washed with water, it is possible to obtain “woody solid acid catalyst SA2” which has become a shaped product. In addition, the separability of a catalyst can be further improved by pelletizing it. As an application example, the use to a column etc. can be considered. There is no particular limitation on the size of the woody solid acid catalyst SA2. In consideration of the type, blending ratio, use, reaction equipment, ease of handling, and the like of the binder described above, the binder is manufactured to be larger than the powder.
続いて、一連の工程を経て得られた木質固体酸触媒SA1またはSA2と、処理対象となる植物系食品残渣物PRとが混合される。そして混合状態で加熱される(S30)。植物系食品残渣物PRは、おから、酒粕、茶類抽出残渣、コーヒー豆抽出残渣等の食品加工時に生じる残渣成分である。コーヒー豆抽出残渣は、コーヒー豆を焙煎してこれに水または熱湯を加えてコーヒーを抽出した際に生じる残渣である。コーヒー飲料は生産量も多いため、これまで多くは産業廃棄物として処理されていた。従って、産業廃棄物の有効利用となり、原料調達も容易であり、また、残渣自体の均質性も高い。なお、食品には含まれないものの、稲藁、間伐材、廃竹、コプラミール等の植物原料も残渣物に加えられる。 Subsequently, the woody solid acid catalyst SA1 or SA2 obtained through a series of steps and the plant-based food residue PR to be treated are mixed. Then, the mixed state is heated (S30). The plant-based food residue PR is a residue component produced during food processing such as okara, sake lees, teas extraction residue, coffee bean extraction residue and the like. The coffee bean extraction residue is a residue generated when coffee beans are roasted and water or hot water is added thereto to extract coffee. Because coffee drinks are also produced in large quantities, many have been treated as industrial waste. Therefore, the industrial waste is effectively used, the raw materials can be easily procured, and the homogeneity of the residue itself is also high. Although not included in food, plant raw materials such as rice straw, thinned wood, used bamboo and copra meal are also added to the residue.
植物系食品残渣物の利用が好適な理由は、単なる廃棄物処理以上に下記の利点があるからである。植物細胞の細胞壁表面には、セルロース以外の各種の糖鎖が存在している。これらの糖鎖は植物細胞同士の細胞接着や植物体の形状維持に作用していると考えられている。しかしながら、人体はこれらの糖鎖成分を消化して栄養とすることはできないことが多い。そのため、未利用成分として存在は明らかではあるものの有効活用に至っていなかった。例えば、グルコマンナン等の糖鎖が単糖に分解されると、マンノースが得られる。そこで、簡便かつ有力なマンノース供給源としての付加価値がコーヒー豆抽出残渣に創出される。 The reason why the use of plant-based food residue is preferable is because there are the following advantages over mere waste disposal. Various sugar chains other than cellulose are present on the cell wall surface of plant cells. These sugar chains are considered to act on cell adhesion between plant cells and shape maintenance of plant bodies. However, the human body often can not digest these sugar chain components for nutrition. Therefore, although the existence as an unused component is obvious, it has not been effectively used. For example, when a sugar chain such as glucomannan is decomposed into monosaccharides, mannose is obtained. Therefore, added value as a simple and powerful mannose source is created in the coffee bean extraction residue.
木質固体酸触媒SA1またはSA2と植物系食品残渣物PRとの混合、加熱の際、水分が適宜調整される。植物系食品残渣物から触媒反応を通じて円滑にマンノースを抽出するべく、水分存在下であることが望ましい。ただし、水分過剰である場合には、植物系食品残渣物から分解されて生じる抽出成分が希釈される。この点も考慮して、水分量は適当に調整される。 At the time of mixing of the wood solid acid catalyst SA1 or SA2 with the plant-based food residue PR and heating, the water content is appropriately adjusted. In order to smoothly extract mannose from plant-based food residues through catalytic reaction, it is desirable to be in the presence of water. However, in the case of an excess of water, the extractable components produced by being decomposed from plant-based food residues are diluted. The water content is appropriately adjusted in consideration of this point.
木質固体酸触媒SA1またはSA2と、植物系食品残渣物PRが混合され適宜の水分存在条件下の触媒反応により、植物系食品残渣物PR中に含まれるグルコマンナン等の糖鎖の分解は生じる。しかしながら、効率的な速度反応を勘案すると、高温条件下の反応が好ましい。そこで、木質固体酸触媒SA1またはSA2と、植物系食品残渣物PRとの混合加熱の際には、80℃ないし150℃の範囲、好ましくは90℃ないし140℃の範囲で加熱される。 The decomposition of sugar chains such as glucomannan contained in the plant-based food residue PR is caused by the catalytic reaction under appropriate water presence conditions by mixing the wood-based solid acid catalyst SA1 or SA2 with the plant-based food residue PR. However, considering efficient rate reactions, reactions under high temperature conditions are preferred. Therefore, when mixing and heating the wood solid acid catalyst SA1 or SA2 and the plant-based food residue PR, heating is performed in the range of 80 ° C. to 150 ° C., preferably in the range of 90 ° C. to 140 ° C.
木質固体酸触媒の利点は、100℃以上の高温度域でも使用可能である。既存の樹脂系の固体酸触媒では、後記の実施例に開示の140℃の温度条件下では分解することが知られている。既存の樹脂系の固体酸触媒は触媒として機能しなくなる。しかしながら、第1実施形態の木質固体酸触媒は、極めて温度耐性が高く速度反応を促進する温度域への対応が可能となる。 The advantage of the woody solid acid catalyst is that it can be used even at high temperatures of 100 ° C. and higher. It is known that existing resin-based solid acid catalysts decompose under the temperature conditions of 140 ° C. disclosed in the following examples. Existing resin-based solid acid catalysts do not function as catalysts. However, the wood solid acid catalyst according to the first embodiment can cope with a temperature range that is extremely temperature resistant and promotes a rate reaction.
後述の実施例から明らかであるように、高温度条件下で触媒を作用させると、より短時間でマンノースの抽出が進む。ただし、150℃を上回る(超過する)高温度域で反応させてしまうと、目的の反応生成物であるマンノースも酸化、分解により変質するおそれがある。そこで、効率良い反応促進と反応生成物の安定性の両立を図る観点から、80℃ないし150℃の加熱温度域が規定される。 As apparent from the following examples, when the catalyst is operated under high temperature conditions, the extraction of mannose proceeds in a shorter time. However, if the reaction is carried out in a high temperature range (exceeds) above 150 ° C., mannose, which is the desired reaction product, may also be denatured by oxidation and decomposition. Therefore, from the viewpoint of achieving both the efficient reaction promotion and the stability of the reaction product, a heating temperature range of 80 ° C. to 150 ° C. is specified.
木質固体酸触媒SA1またはSA2と植物系食品残渣物PRとの混合加熱(S30)の後、糖鎖の分解により生じたマンノースが存在水分中に溶出する。そこで、木質固体酸触媒、植物系食品残渣物、水分の混合物より、水分のみが分離される(S40)。分離の手法は、濾過、遠心分離等の適宜である。特に、触媒自体も固形分であることから、植物系食品残渣物とともに、極めて簡便に糖分を含有する水分のみが分離可能となる。こうして、マンノース抽出液MEを得ることができる。この反応形態から理解されるように、酢酸や硫酸等の液体の酸が反応生成物の溶解する液体と混合し合うことはない。そのため、触媒反応後の分離に要する負担は大きく軽減される。製造経費の圧縮が可能となる。 After mixed heating (S30) of the wood solid acid catalyst SA1 or SA2 and the plant-based food residue PR, mannose produced by the decomposition of sugar chains is eluted in the existing water. Therefore, only water is separated from the mixture of woody solid acid catalyst, plant-based food residue and water (S40). The separation method is appropriate such as filtration and centrifugation. In particular, since the catalyst itself is also a solid content, only water containing sugar can be separated very easily together with the plant-based food residue. Thus, mannose extract ME can be obtained. As understood from this reaction form, a liquid acid such as acetic acid or sulfuric acid does not mix with the liquid in which the reaction product dissolves. Therefore, the burden required for separation after catalytic reaction is greatly reduced. It is possible to reduce manufacturing costs.
これより図2の概略工程図を用い、第2実施形態による固体酸の調製と、これを使用したマンノース抽出方法を説明する。第2実施形態においては、樹脂固体酸が用意される。樹脂固体酸の原料はフェノール樹脂M2である。このフェノール樹脂には、レゾール樹脂とノボラック樹脂が含まれる。スルホ基の導入に際し、粉末状または粒状のフェノール樹脂に、濃硫酸、発煙硫酸、またはクロロスルホン酸等のスルホ化剤が添加される。スルホ化剤の添加後、室温ないし200℃の温度条件下でスルホ化は行われる(S20)。スルホ化剤は第1実施形態にて説明と同種である。スルホ化を経て、フェノール樹脂は「樹脂固体酸触媒SA3」になる。樹脂固体酸触媒SA3は熱水等による洗浄を経ることによって、余分なスルホ化剤は洗い流される。 From this, preparation of the solid acid according to the second embodiment and a mannose extraction method using the same will be described using the schematic flowchart of FIG. In the second embodiment, a resin solid acid is prepared. The raw material of the resin solid acid is phenol resin M2. The phenolic resins include resole resins and novolac resins. In introducing the sulfo group, a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid or chlorosulfonic acid is added to the powdered or granular phenolic resin. After addition of the sulfonating agent, sulfonation is carried out at a temperature of room temperature to 200 ° C. (S20). The sulfonation agent is the same as that described in the first embodiment. After the sulfonation, the phenol resin becomes “resin solid acid catalyst SA3”. The resin solid acid catalyst SA3 is washed away with hot water or the like to wash away excess sulfonating agent.
続いて、一連の工程を経て得られた樹脂固体酸触媒SA3と、処理対象となる植物系食品残渣物PRとが混合される。そして混合状態で加熱される(S30)。この過程も第1実施形態と同様である。植物系食品残渣物PRは、おから、酒粕、茶類抽出残渣、コーヒー豆抽出残渣等の食品加工時に生じる残渣成分である。第2実施形態においても同様にコーヒー豆抽出残渣が好ましく使用される。 Subsequently, the resin solid acid catalyst SA3 obtained through a series of steps and the plant-based food residue PR to be treated are mixed. Then, the mixed state is heated (S30). This process is also similar to that of the first embodiment. The plant-based food residue PR is a residue component produced during food processing such as okara, sake lees, teas extraction residue, coffee bean extraction residue and the like. Similarly in the second embodiment, coffee bean extraction residue is preferably used.
樹脂固体酸触媒SA3と植物系食品残渣物PRとの混合、加熱の際にも、水分が適宜調整される。植物系食品残渣物から触媒反応を通じた抽出の便宜から、水分存在下であることが望ましい。ただし、水分過剰である場合には、植物系食品残渣物から分解されて生じる抽出成分が希釈される。この点も考慮して、水分量は適当に調整される。樹脂固体酸触媒SA3と、植物系食品残渣物PRを混合し、これに水分量を適宜調整した条件においても触媒反応により、植物系食品残渣物PR中に含まれるグルコマンナン等の糖鎖の分解は生じる。樹脂固体酸触媒SA3と、植物系食品残渣物PRとの混合加熱では、樹脂固体酸触媒の耐熱強度等を勘案しておおむね90℃までの温度域である。 The moisture is appropriately adjusted also in the mixing of the resin solid acid catalyst SA3 and the plant-based food residue PR and heating. It is desirable to be in the presence of water for the convenience of extraction through catalytic reaction from plant-based food residue. However, in the case of an excess of water, the extractable components produced by being decomposed from plant-based food residues are diluted. The water content is appropriately adjusted in consideration of this point. Degradation of sugar chains such as glucomannan contained in plant-based food residue PR by catalytic reaction even under conditions in which resin solid acid catalyst SA3 and plant-based food residue PR are mixed and the water content is adjusted accordingly. Will occur. In the mixed heating of the resin solid acid catalyst SA3 and the plant-based food residue PR, the temperature is up to about 90 ° C. in consideration of the heat resistance of the resin solid acid catalyst and the like.
樹脂固体酸触媒SA3と植物系食品残渣物PRとの混合加熱(S30)の後、糖鎖の分解により生じたマンノースが存在水分中に溶出する。そこで、樹脂固体酸触媒、植物系食品残渣物、水分の混合物より、水分のみが分離される(S40)。触媒自体も固形分であることから、植物系食品残渣物とともに、極めて簡便に糖分を含有する水分のみが分離可能となる。こうして、マンノース抽出液MEを得ることができる。第2実施形態の反応形態においても第1実施形態と同様に、酢酸や硫酸等の液体の酸が反応生成物の溶解する液体と混合し合うことはない。そのため、触媒反応後の分離に要する負担は大きく軽減され、製造経費の軽減が可能となる。 After mixed heating (S30) of the resin solid acid catalyst SA3 and the plant-based food residue PR, mannose produced by the decomposition of the sugar chain is eluted in the existing water. Therefore, only water is separated from the mixture of resin solid acid catalyst, plant-based food residue and water (S40). Since the catalyst itself is also a solid, only water containing sugar can be separated very easily together with the plant-based food residue. Thus, mannose extract ME can be obtained. Also in the reaction form of the second embodiment, as in the first embodiment, a liquid acid such as acetic acid or sulfuric acid does not mix with the liquid in which the reaction product dissolves. Therefore, the burden required for the separation after the catalytic reaction is greatly reduced, and the manufacturing cost can be reduced.
第1実施形態の木質固体酸触媒SA1またはSA2、第2実施形態の樹脂固体酸触媒SA3に存在する単位重量当たりのスルホ基量は、おおよその触媒活性の指標と考えられる。反応に供する固体酸の性能評価の上で考慮される。発明者らのこれまでに蓄積した知見によると、形状毎の表面積の相違に依存するものの、固体酸に存在するスルホ基量は、少なくとも0.5mmol/g以上、好ましくは0.7mmol/g以上、より好ましくは1.5mmol/g以上が望ましいと考えられる。このスルホ基量は元素分析により硫黄の量から算出される。 The amount of sulfo groups per unit weight present in the woody solid acid catalyst SA1 or SA2 of the first embodiment and the resin solid acid catalyst SA3 of the second embodiment is considered to be an indicator of the approximate catalyst activity. It is considered on the performance evaluation of the solid acid to be subjected to the reaction. According to the knowledge accumulated by the present inventors so far, the amount of sulfo groups present in the solid acid is at least 0.5 mmol / g or more, preferably 0.7 mmol / g or more, although it depends on the difference in surface area between shapes. More preferably, 1.5 mmol / g or more is considered to be desirable. The amount of sulfo groups is calculated from the amount of sulfur by elemental analysis.
発明者は、各表中に開示の固体酸触媒を作製し、植物系食品残渣物よりマンノースの抽出を試行した。これと併せて、液体酸触媒及び市販の触媒も使用して植物系食品残渣物よりマンノースの抽出を試行した。はじめに、木質固体酸触媒(C1)ないし(C6)及び樹脂固体酸触媒(C7)ないし(C10)の作製から説明する。 The inventor produced the solid acid catalyst disclosed in each table, and tried to extract mannose from plant-based food residue. In conjunction with this, extraction of mannose from plant-based food residue was tried using a liquid acid catalyst and a commercially available catalyst. First, preparation of woody solid acid catalysts (C1) to (C6) and resin solid acid catalysts (C7) to (C10) will be described.
[木質固体酸触媒(C1)の作製]
ベイマツ(米松)のオガコを105±5℃に保温した乾燥機内で一晩乾燥した。乾燥済みのオガコを金属製トレイに入れてマッフル炉内に載置した。炉内に窒素ガスを供給して不活性雰囲気とし、所定の昇温速度により350℃まで昇温し当該温度を60分間維持しオガコを焼成した。冷却後、マッフル炉から焼成されたオガコを取り出して粉砕機によりおよそ0.18mm以下に粉砕し粉砕炭化物とした。
[Preparation of woody solid acid catalyst (C1)]
The beech pine (rice pine) sawdust was dried overnight in a dryer kept at 105 ± 5 ° C. The dried swords were placed in a metal tray and placed in a muffle furnace. Nitrogen gas was supplied into the furnace to make an inert atmosphere, the temperature was raised to 350 ° C. at a predetermined temperature rising rate, the temperature was maintained for 60 minutes, and the saw was fired. After cooling, the fired sawdust is taken out of the muffle furnace and crushed to about 0.18 mm or less by a grinder to obtain crushed carbide.
粉砕炭化物10gに11%発煙硫酸100mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して木質固体酸触媒(C1)を得た。 100 g of 11% fuming sulfuric acid was added to 10 g of the ground carbide, the mixture was stirred, and sulfonation was performed for 10 hours while maintaining the liquid temperature at 80.degree. After sulfonation, the reaction solution was cooled and washed with distilled water at 100 ° C. Washing was repeated until the sulfate ion in distilled water after washing became below the detection limit to obtain a woody solid acid catalyst (C1).
[木質固体酸触媒(C2)の作製]
ベイマツ(米松)由来の塩化亜鉛賦活活性炭(フタムラ化学株式会社製,比表面積1700,平均粒径39μm)の10gに、11%発煙硫酸100mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して木質固体酸触媒(C2)を得た。
[Preparation of woody solid acid catalyst (C2)]
100 mL of 11% fuming sulfuric acid is added to 10 g of zinc chloride activated activated carbon (Futamura Chemical Co., Ltd., specific surface area 1700, average particle diameter 39 μm) derived from Bei pine (Rice pine) and stirred to maintain a liquid temperature of 80 ° C. Sulfated for 10 hours. After sulfonation, the reaction solution was cooled and washed with distilled water at 100 ° C. Washing was repeated until the sulfate ion in the distilled water after washing became equal to or less than the detection limit to obtain a woody solid acid catalyst (C2).
[木質固体酸触媒(C3)の作製]
前出の木質固体酸触媒(C2)に蒸留水を添加してスラリー濃度を重量5%とした。当該スラリーをオートクレーブにより150℃、10時間加熱した。冷却してスラリーを濾過し濾液を除去した。最終的に、スラリー濃度1重量%としたときの濾液中の硫酸イオンが検出限界以下になるまで当該操作を繰り返して木質固体酸触媒(C3)を得た。
[Preparation of woody solid acid catalyst (C3)]
Distilled water was added to the above-mentioned woody solid acid catalyst (C2) to make the
[木質固体酸触媒(C4)の作製]
ベイマツ(米松)由来の塩化亜鉛賦活活性炭(フタムラ化学株式会社製,比表面積1600,平均粒径1.11mm)の10gに、11%発煙硫酸100mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して粒状(顆粒状)の木質固体酸触媒(C4)を得た。
[Preparation of woody solid acid catalyst (C4)]
100 mL of 11% fuming sulfuric acid is added to 10 g of zinc chloride activated activated carbon (Futamura Chemical Co., Ltd., specific surface area 1600, average particle diameter 1.11 mm) derived from Bei pine (rice pine) and stirred to maintain a liquid temperature of 80 ° C. While being sulfonated for 10 hours. After sulfonation, it was cooled and washed with distilled water at 100 ° C. Washing was repeated until the sulfate ion in distilled water after washing became below the detection limit to obtain a granular (granular) wood solid acid catalyst (C4) .
[木質固体酸触媒(C5)の作製]
前出の木質固体酸触媒(C4)に蒸留水を添加してスラリー濃度を重量5%とした。当該スラリーをオートクレーブにより150℃、10時間加熱した。冷却してスラリーを濾過し濾液を除去した。最終的に、スラリー濃度1重量%としたときの濾液中の硫酸イオンが検出限界以下になるまで当該操作を繰り返して粒状(顆粒状)の木質固体酸触媒(C5)を得た。
[Preparation of woody solid acid catalyst (C5)]
Distilled water was added to the above-mentioned woody solid acid catalyst (C4) to make the
[木質固体酸触媒(C6)の作製]
ベイマツ(米松)のオガコを105±5℃に保温した乾燥機内で一晩乾燥し、オガコを粉砕機により0.075mm以下に粉砕した。粉砕後のオガコ300gに、DIC株式会社製,フェノール樹脂バインダ(品名「フェノライト J−325」)120gと適量の蒸留水を添加し、これらを混練し木質混練物を得た。この混練物をペレタイザにより直径2mm×長さ10mmの円筒ペレット状に成形して保形物を得た。
[Preparation of woody solid acid catalyst (C6)]
It dried overnight in a dryer kept warm at 105 ± 5 ° C., and was crushed to a size of 0.075 mm or less by a grinder. 120 g of a phenolic resin binder (trade name "Phenolite J-325") manufactured by DIC Corporation and an appropriate amount of distilled water were added to 300 g of the crushed seaweed, and these were kneaded to obtain a wood-kneaded product. The kneaded product was formed into cylindrical pellets of 2 mm in diameter and 10 mm in length by a pelletizer to obtain a shaped product.
前記の保形物を金属製トレイに入れてマッフル炉内に載置した。炉内に窒素ガスを供給して不活性雰囲気とし、所定の昇温速度により350℃まで昇温し当該温度を60分間維持し保形物を焼成して焼成保形物を得た。焼成保形物10gに11%発煙硫酸100mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して保形物(ペレット状)の木質固体酸触媒(C6)を得た。 The above-mentioned shape retaining material was placed in a metal tray and placed in a muffle furnace. Nitrogen gas was supplied into the furnace to make an inert atmosphere, and the temperature was raised to 350 ° C. at a predetermined temperature rising rate, the temperature was maintained for 60 minutes, and the shaped material was fired to obtain a fired shaped material. 100 mL of 11% fuming sulfuric acid was added to 10 g of the calcined shaped product, the mixture was stirred, and sulfonation was performed for 10 hours while maintaining the liquid temperature at 80 ° C. After sulfonation, cool, wash with distilled water at 100 ° C, repeat washing until the sulfate ion in distilled water after washing falls below the detection limit, and use as the solid wood acid catalyst (C6) with shape retention (pellet form) Obtained.
[樹脂固体酸触媒(C7)の作製]
レゾール型フェノール樹脂(リグナイト株式会社製,LPS(登録商標)シリーズ)100gに11%発煙硫酸1000mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返した。洗浄後、湿式にて粒径0.3mm以上に篩別して粒状の樹脂固体酸触媒(C7)を得た。
[Preparation of Resin Solid Acid Catalyst (C7)]
1000 mL of 11% fuming sulfuric acid was added to 100 g of resol-type phenol resin (manufactured by Lignite Co., Ltd., LPS (registered trademark) series), the mixture was stirred, and sulfonation was performed for 10 hours while maintaining the liquid temperature 80 ° C. After sulfonation, the reaction solution was cooled, washed with distilled water at 100 ° C., and the washing was repeated until the sulfate ion in the distilled water after washing was below the detection limit. After washing, the resultant was wet-screened to a particle size of 0.3 mm or more to obtain a particulate resin solid acid catalyst (C7).
[樹脂固体酸触媒(C8)の作製]
レゾール型フェノール樹脂(リグナイト株式会社製,LPS(登録商標)シリーズ)100gに11%発煙硫酸1000mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して樹脂固体酸触媒(C8)を得た。
[Preparation of resin solid acid catalyst (C8)]
1000 mL of 11% fuming sulfuric acid was added to 100 g of resol-type phenol resin (manufactured by Lignite Co., Ltd., LPS (registered trademark) series), the mixture was stirred, and sulfonation was performed for 10 hours while maintaining the liquid temperature 80 ° C. After the sulfonation, the resin was cooled and washed with distilled water at 100 ° C. Washing was repeated until the sulfate ion in the distilled water after washing became below the detection limit to obtain a resin solid acid catalyst (C8).
[樹脂固体酸触媒(C9)の作製]
レゾール型フェノール樹脂(リグナイト株式会社製,LPS(登録商標)シリーズ)100gに98%濃硫酸1000mLを添加して攪拌し、液温80℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返して樹脂固体酸触媒(C9)を得た。
[Preparation of Resin Solid Acid Catalyst (C9)]
1000 mL of 98% concentrated sulfuric acid was added to 100 g of resol-type phenol resin (manufactured by Lignite Co., Ltd., LPS (registered trademark) series) and stirred, and sulfonation was performed for 10 hours while maintaining the liquid temperature 80 ° C. After the sulfonation, the resin was cooled and washed with distilled water at 100 ° C. Washing was repeated until the sulfate ion in the distilled water after washing became below the detection limit to obtain a resin solid acid catalyst (C9).
[樹脂固体酸触媒(C10)の作製]
ノボラック型フェノール樹脂(群栄化学株式会社製,商品名「カイノール」)3gに11%発煙硫酸300mLを添加して固定床にて攪拌し、液温160℃を維持しながら10時間かけてスルホ化した。スルホ化後冷却して100℃の蒸留水により洗浄し、洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返した。洗浄後、当該スルホ化物を粉砕するとともに0.18mm以下に篩別した。こうして、樹脂固体酸触媒(C10)を得た。
[Preparation of Resin Solid Acid Catalyst (C10)]
300 mL of 11% fuming sulfuric acid is added to 3 g of novolac-type phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name “Kynol”), and stirring is performed in a fixed bed to conduct sulfonation over 10 hours while maintaining the liquid temperature 160 ° C. did. After sulfonation, the reaction solution was cooled, washed with distilled water at 100 ° C., and the washing was repeated until the sulfate ion in the distilled water after washing was below the detection limit. After washing, the sulfonate was crushed and sieved to 0.18 mm or less. Thus, a resin solid acid catalyst (C10) was obtained.
[マンノース抽出操作(1)]
市販の粉末状(ミル粉砕)のコーヒー豆にイオン交換水を添加してスラリー濃度を5重量%とし、これを30分間煮沸した。煮沸後濾過を3回以上繰り返してコーヒー豆抽出残渣を分離した。コーヒー豆抽出残渣を105±5℃に保温した乾燥機内で一晩乾燥し、粉砕機により0.075mm以下に粉砕した。こうして植物系食品残渣物の試料となるコーヒー豆抽出残渣を得た。
[Mannose extraction operation (1)]
Ion-exchanged water was added to commercially available powdered (milled) coffee beans to make the
4mLサンプル管に、コーヒー豆抽出残渣0.1g、木質固体酸触媒0.1gまたは樹脂固体酸触媒0.1g(ともに乾燥重量)、及びイオン交換水を添加して全水分重量を1.4gに設定し、90℃を維持しながら後出の表中の時間反応させた。反応終了後氷温に冷却するとともにサンプル管内にイオン交換水1.6gを添加して希釈した。そして、シリンジフィルター(孔径:0.2μm)を用いて反応液を濾過し抽出濾液を得た。 Add 0.1g of coffee bean extraction residue, 0.1g of wood solid acid catalyst or 0.1g of resin solid acid catalyst (both dry weight) and ion-exchanged water to a 4mL sample tube to make the total water weight 1.4g The reaction was carried out for the time shown in the following table while setting and maintaining 90 ° C. After completion of the reaction, the reaction solution was cooled to ice temperature and diluted with 1.6 g of ion exchanged water in a sample tube. Then, the reaction solution was filtered using a syringe filter (pore diameter: 0.2 μm) to obtain an extraction filtrate.
[マンノース抽出操作(2)]
15mLサンプル管に、前出のマンノース抽出操作(1)にて使用のコーヒー豆抽出残渣0.2gと木質固体酸触媒0.2g(ともに乾燥重量)、及びイオン交換水を添加して全水分重量を2.8gに設定し、140℃を維持しながら後出の表中の時間反応させた。反応終了後氷温に冷却するとともにサンプル管内にイオン交換水3.2gを添加して希釈した。そして、シリンジフィルター(前記同様)を用いて反応液を濾過し抽出濾液を得た。
[Mannose extraction operation (2)]
To a 15 mL sample tube, add 0.2 g of coffee bean extraction residue used in the above mannose extraction operation (1), 0.2 g of wood solid acid catalyst (both dry weight), and ion-exchanged water to obtain a total water weight Was set to 2.8 g, and reacted for the time shown in the table below while maintaining 140.degree. After completion of the reaction, the reaction solution was cooled to ice temperature and diluted with 3.2 g of ion exchanged water in a sample tube. Then, the reaction solution was filtered using a syringe filter (as described above) to obtain an extraction filtrate.
[マンノース抽出操作(3)]
4mLサンプル管に、前出のマンノース抽出操作(1)にて使用のコーヒー豆抽出残渣0.1g(乾燥重要)と10%(v/v)の希硫酸0.1g、及びイオン交換水1.4gを添加し、90℃を維持しながら後出の表中の時間反応させた。反応終了後氷温に冷却するとともにサンプル管内にイオン交換水1.6gを添加して希釈した。そして、シリンジフィルター(前記同様)を用いて反応液を濾過し抽出濾液を得た。
[Mannose extraction operation (3)]
In a 4 mL sample tube, 0.1 g (important for drying) and 10% (v / v) diluted sulfuric acid of 0.1 g of coffee bean extraction residue used in the above-mentioned mannose extraction operation (1), and ion exchanged water 1. 4 g was added and reacted for the time shown in the table below while maintaining 90 ° C. After completion of the reaction, the reaction solution was cooled to ice temperature and diluted with 1.6 g of ion exchanged water in a sample tube. Then, the reaction solution was filtered using a syringe filter (as described above) to obtain an extraction filtrate.
[マンノース抽出操作(4)]
15mLサンプル管に、前出のマンノース抽出操作(1)にて使用のコーヒー豆抽出残渣0.2g(乾燥重要)と10%(v/v)の希硫酸0.2g、及びイオン交換水2.8gを添加し、140℃を維持しながら後出の表中の時間反応させた。反応終了後氷温に冷却するとともにサンプル管内にイオン交換水3.2gを添加して希釈した。そして、シリンジフィルター(前記同様)を用いて反応液を濾過し抽出濾液を得た。
[Mannose extraction operation (4)]
In a 15 mL sample tube, 0.2 g (important for drying) and 10% (v / v) diluted sulfuric acid of 0.2 g of coffee bean extraction residue used in the above-mentioned mannose extraction operation (1) and 0.2 g of ion-exchanged water. 8 g was added and reacted for the time shown in the table below while maintaining 140 ° C. After completion of the reaction, the reaction solution was cooled to ice temperature and diluted with 3.2 g of ion exchanged water in a sample tube. Then, the reaction solution was filtered using a syringe filter (as described above) to obtain an extraction filtrate.
[マンノース抽出操作(5)]
当該操作の反応触媒(比較例)として、イオン交換樹脂(オルガノ株式会社製,アンバーリスト(登録商標),15JWET)と合成ゼオライト(和光純薬株式会社製,合成ゼオライト,HS−320,粉末,ヒドロゲンY)の2種類を用意した。4mLサンプル管に、前出のマンノース抽出操作(1)にて使用のコーヒー豆抽出残渣0.1gと比較例の反応触媒0.1g(ともに乾燥重量)、及びイオン交換水を添加して全水分重量を1.4gに設定し、90℃を維持しながら後出の表中の時間反応させた。反応終了後氷温に冷却するとともにサンプル管内にイオン交換水1.6gを添加して希釈した。そして、シリンジフィルター(前記同様)を用いて反応液を濾過し抽出濾液を得た。
[Mannose extraction operation (5)]
As a reaction catalyst (comparative example) of the operation, ion exchange resin (manufactured by Organo Corporation, Amberlyst (registered trademark), 15JWET) and synthetic zeolite (manufactured by Wako Pure Chemical Industries, Ltd., synthetic zeolite, HS-320, powder, hydrogen) Two types of Y) were prepared. 0.1 g of coffee bean extraction residue used in the above-mentioned mannose extraction operation (1) and 0.1 g of a reaction catalyst of a comparative example (both in dry weight) and ion-exchanged water were added to a 4 mL sample tube The weight was set to 1.4 g, and the reaction was carried out for the time in the following table while maintaining 90 ° C. After completion of the reaction, the reaction solution was cooled to ice temperature and diluted with 1.6 g of ion exchanged water in a sample tube. Then, the reaction solution was filtered using a syringe filter (as described above) to obtain an extraction filtrate.
[マンノース生成量の測定]
マンノース抽出操作(1)ないし(5)を経て得た抽出濾液中のマンノース量について、高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製,RID−10A)、カラム(BIO−RAD社製,品名:AminexHPX−87Hカラム)、オーブン(株式会社島津製作所製,CTO−20AC)、デガッサ(株式会社島津製作所製,DGU−20A3)を使用して測定した。はじめに内部基準物質として、所定濃度のキシリトール溶液を調製してHPLCに装填した。そして、HPLCの対応するリテンションタイムに出現したピーク面積比から、測定対象のマンノースの生成量及び抽出濾液中の可溶糖中に占めるマンノースの生成割合(%)を求めた。マンノースの生成量は残渣物0.1gから生成したマンノース重量(mg)として換算した(mg/0.1g)。
[Measurement of mannose production amount]
About the amount of mannose in the extraction filtrate obtained through mannose extraction operation (1) to (5), high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation, RID-10A), column (manufactured by BIO-RAD, product name) Aminex HPX-87H column), oven (manufactured by Shimadzu Corporation, CTO-20AC), and degasser (manufactured by Shimadzu Corporation, DGU-20A3). First, as an internal standard substance, a xylitol solution of a predetermined concentration was prepared and loaded to HPLC. Then, from the peak area ratio that appeared in the corresponding retention time of HPLC, the generation amount of mannose to be measured and the generation ratio (%) of mannose occupied in soluble sugars in the extraction filtrate were determined. The amount of mannose produced was converted as the weight (mg) of mannose produced from 0.1 g of the residue (mg / 0.1 g).
[スルホ基量の測定]
各触媒における反応中心はスルホ基と考えられる。そこで、触媒毎にスルホ基量を分析して求めた。実施例の木質固体酸触媒及び樹脂固体酸触媒、比較例の反応触媒を100℃に加熱して乾燥した。それぞれに含まれる元素組成について、自動燃焼イオンクロマトグラフ:DIONEX製ICS−1000、燃焼装置:株式会社三菱化学アナリテック製AQF−100、吸収装置:株式会社三菱化学アナリテック製GA−100、送水ユニット:株式会社三菱化学アナリテック製WS−100、燃焼温度1000℃)により分析した。得られた硫黄分(mmol/g)は、スルホ基と等価であるとして、単位重量当たりのスルホ基(スルホン酸基)量(mmol/g)とした。
[Measurement of sulfo group amount]
The reaction center in each catalyst is considered to be a sulfo group. Therefore, the amount of sulfo group was analyzed and determined for each catalyst. The wood solid acid catalyst and the resin solid acid catalyst of the example and the reaction catalyst of the comparative example were heated to 100 ° C. and dried. Regarding the elemental composition contained in each, automatic combustion ion chromatograph: ICS-1000 made by DIONEX, combustion device: AQF-100 made by Mitsubishi Chemical Analytech Co., Ltd. Absorber: GA-100 made by Mitsubishi Chemical Analytech Co., Ltd., water supply unit : It analyzed by Mitsubishi Chemical Analytech Co., Ltd. WS-100, the combustion temperature of 1000 degreeC. The obtained sulfur content (mmol / g) was regarded as the amount of sulfo group (sulfonic acid group) per unit weight (mmol / g) as being equivalent to the sulfo group.
植物系食品残渣物であるコーヒー豆抽出残渣に対し、固体酸触媒等を添加してマンノース抽出操作を行った結果(実施例及び比較例)を表1ないし表5として示す。表1ないし表3では、触媒物性{触媒の種類、形態、粒径等、精製温度(℃)、スルホ基量(mmol/g)}、反応条件{反応温度(℃)、反応時間(hr)}、反応結果{マンノース生成量(mg/0.1g)、マンノース生成割合(%)}、そして、触媒分離性(良または不良)である。ここで、触媒分離性は、前掲のマンノース抽出操作(1)ないし(5)を経て得た抽出濾液への触媒成分の混入の有無の目視による確認とした。 The solid acid catalyst etc. were added to the coffee bean extraction residue which is a plant-based food residue, and the mannose extraction operation was performed (Example and comparative example) are shown as Tables 1 to 5. In Tables 1 to 3, catalyst physical properties {type of catalyst, form, particle size, etc., purification temperature (° C.), sulfo group weight (mmol / g)}, reaction conditions {reaction temperature (° C.), reaction time (hr) }, Reaction results {mannose production amount (mg / 0.1 g), mannose production ratio (%)}, and catalyst separability (good or bad). Here, the catalyst separability was visually confirmed as to the presence or absence of the mixture of the catalyst component in the extraction filtrate obtained through the mannose extraction operations (1) to (5) described above.
[結果,考察]
〈形態、種類について〉
全実施例と比較例1ないし10との決定的な相違は触媒の形態である。実施例は固体酸であり比較例は液体の硫酸である。自明ながら実施例は固体酸触媒であるため、糖鎖の分解により生成したマンノース抽出液と固体酸触媒は、濾過を通じて容易に分離可能である。しかも濾過分離後、回収して再度触媒として反応系に加えることもできる。このような利点は、硫酸等の液体の酸触媒からは得ることができない。
[Result, consideration]
<About form and type>
The crucial difference between all the examples and comparative examples 1 to 10 is the form of the catalyst. The example is a solid acid and the comparative example is liquid sulfuric acid. Obviously, since the example is a solid acid catalyst, the mannose extract and the solid acid catalyst produced by the degradation of sugar chains can be easily separated through filtration. Moreover, after filtration and separation, it can be recovered and added again as a catalyst to the reaction system. Such advantages can not be obtained from liquid acid catalysts such as sulfuric acid.
また、実施例の固体酸触媒(実施例1ないし5の木質固体酸触媒)は、粉末状からペレット状まで形成可能であり、形状設計の自由度も高い。従って、生産規模に応じた濾過設備にも柔軟に対応できる。なお、固体酸触媒が大きくなるとその表面積は低下する。表面に露出する触媒部位のスルホ基量は減少する。このため、マンノース生成量の差異になったと考える。 In addition, the solid acid catalysts of the examples (wood solid acid catalysts of Examples 1 to 5) can be formed from powder to pellets and have a high degree of freedom in shape design. Therefore, it is possible to flexibly cope with filtration equipment according to the scale of production. The surface area decreases as the solid acid catalyst increases. The amount of sulfo groups at the catalyst site exposed to the surface decreases. For this reason, I think that it became a difference of the mannose production amount.
さらに、実施例1ないし9の木質固体酸触媒及び樹脂固体酸触媒のとおり、触媒の材質(種類)を拡張しても、いずれからも概ね良好な結果を得た。従って、多用な原料を基に木質固体酸触媒及び樹脂固体酸触媒を作製することができる。このことから、資源確保の観点上好ましい。 Furthermore, as with the solid wood acid catalysts and solid resin acid catalysts of Examples 1 to 9, even when the material (type) of the catalyst was expanded, almost good results were obtained from all. Therefore, a wood solid acid catalyst and a resin solid acid catalyst can be produced based on various raw materials. From this point of view, it is preferable from the viewpoint of securing resources.
比較例11は分子中にスルホ基を備えた樹脂である。スルホ基が触媒を担うと予想して実験した。ところが、性能的には劣ることが分かった。比較例11では、スルホ基量自体は樹脂分子と結合しているため、スルホ基の測定値は大きくなったことが原因と考える。比較例12は触媒として知られているゼオライトの結果である。ゼオライトは植物系食品残渣物からマンノースを抽出する反応には役立たないことがわかった。 Comparative Example 11 is a resin having a sulfo group in the molecule. It experimented expecting that a sulfo group bears a catalyst. However, it turned out that it is inferior in performance. In Comparative Example 11, since the sulfo group amount itself is bonded to the resin molecule, it is considered that the measured value of the sulfo group is increased. Comparative Example 12 is the result of a zeolite known as a catalyst. It has been found that zeolite is not useful for the reaction for extracting mannose from plant-based food residue.
〈反応温度と反応時間について〉
実施例1及び2の比較から、90℃の反応温度の場合、より長時間反応させると生成量は増す傾向にある。なお、90℃の反応温度で短時間の場合、反応が緩慢であり十分な生成量を得ることはできなかった。そこで、当該温度を採用する場合には、固体酸触媒の量いかんによるものの、時間を要することが判明した。同様の知見は、希硫酸を使用した比較例1ないし5からも裏付けられる。反応時間の増加に伴ってマンノース生成量も増加した。
<Reaction temperature and reaction time>
From the comparison of Examples 1 and 2, in the case of the reaction temperature of 90 ° C., the production amount tends to increase as the reaction time is longer. In addition, in the case of a short time at a reaction temperature of 90 ° C., the reaction was slow and a sufficient amount of production could not be obtained. Therefore, it has been found that when the temperature is adopted, although it depends on the amount of solid acid catalyst, it takes time. Similar findings are supported by Comparative Examples 1 to 5 using dilute sulfuric acid. As the reaction time increased, mannose production also increased.
実施例10ないし14は同形態の固体酸触媒(木質固体酸触媒)を使用した際の140℃の反応温度の場合の傾向である。この反応温度では、90℃の場合と異なり反応時間が長くなるほどマンノース生成量は減少した。おそらく、反応時の加熱を通じていったん生じたマンノースの分解や別の分子への変化が生じたと考える。こちらについても同様に、希硫酸を使用した比較例6ないし10からも裏付けられる。反応時間の増加に伴ってマンノース生成量は減少した。 Examples 10 to 14 show the tendency at a reaction temperature of 140 ° C. when using the solid acid catalyst of the same form (wood solid acid catalyst). At this reaction temperature, unlike the case of 90 ° C., the mannose production decreased as the reaction time became longer. Presumably, it is thought that the decomposition of mannose once generated and the change to another molecule have occurred through heating during the reaction. This is also supported by Comparative Examples 6 to 10 using diluted sulfuric acid. As the reaction time increased, mannose production decreased.
これらの結果を勘案すると、固体酸触媒のうち木質固体酸触媒について好適な反応温度は、マンノース抽出操作にて試行した90ないし140℃の範囲を含めて80ないし150℃の温度範囲が好適といえる。反応装置の規模、形状、熱伝導等を含めて適宜拡張される。 Considering these results, the reaction temperature suitable for wood solid acid catalyst among solid acid catalysts is preferably the temperature range of 80 to 150 ° C including the range of 90 to 140 ° C tried in the mannose extraction operation. . The scale, shape, heat conduction, etc. of the reactor are appropriately expanded.
〈触媒性能差について〉
植物系食品残渣物からマンノースを抽出する反応に使用する触媒としての性能差をさらに詳細に検討した。事前に、和光純薬工業株式会社製,D(+)−マンノース試薬を用いて、同様の条件下でHPLCによる測定を実施した。結果、リテンションタイム9.5分付近にピークの検出を確認した。図3のHPLC分析チャート図において、上方のチャートは実施例14であり、下方のチャートは比較例10である。実施例14では、マンノースのピークを示すリテンションタイム9.5分付近に大きなピークが検出され、その他のピークは相対的に小さい。つまり、効率良くマンノースへの分解が進んだといえる。対照となる硫酸使用の比較例10では、ピークが複数存在することから、糖鎖のランダムな分解、さらにはマンノース自体の分解も生じたと類推できる。従って、固体酸触媒は従前の硫酸よりも高いマンノース濃度を簡便に得ることができる。
<About the catalyst performance difference>
The performance difference as a catalyst used in the reaction for extracting mannose from plant-based food residue was examined in more detail. In advance, measurement by HPLC was performed under the same conditions using Wako Pure Chemical Industries, Ltd., D (+)-mannose reagent. As a result, peak detection was confirmed around a retention time of 9.5 minutes. In the HPLC analysis chart of FIG. 3, the upper chart is Example 14 and the lower chart is Comparative Example 10. In Example 14, a large peak is detected around a retention time of 9.5 minutes, which indicates a mannose peak, and the other peaks are relatively small. In other words, it can be said that the decomposition to mannose proceeds efficiently. In Comparative Example 10 using sulfuric acid as a control, since there are a plurality of peaks, it can be inferred that random degradation of the sugar chain and also degradation of mannose itself occurred. Thus, solid acid catalysts can conveniently obtain higher mannose concentrations than conventional sulfuric acid.
次に固体酸触媒同士も比較した。図4のHPLC分析チャート図において、下方から順に実施例10,11,12,13,及び14に対応するチャートである。固体酸触媒を反応させた時間の相違はあるものの、いずれもリテンションタイム9.5分付近に大きなピークが出現した。その他のピークは相対的に小さい。従って、固体酸触媒を使用すると、効率良く植物系食品残渣物からマンノースを抽出することが裏付けられた。 Next, solid acid catalysts were also compared with each other. It is a chart corresponding to Examples 10, 11, 12, 13, and 14 in an order from the lower side in the HPLC analysis chart of FIG. Although there was a difference in the time of reaction of the solid acid catalyst, in each case a large peak appeared around the retention time of 9.5 minutes. Other peaks are relatively small. Therefore, the use of a solid acid catalyst supports efficient extraction of mannose from plant-based food residue.
〈まとめ〉
固体酸触媒(木質固体酸触媒及び樹脂固体酸触媒)によると、単に反応液中からマンノース抽出液と固体酸触媒を分離しやすいばかりではない。特に、植物系食品残渣物から他の分解産物等の生成を抑えつつ、マンノースを比較的高い濃度で得ることができる。このような付加価値は、従前の液体の酸触媒からは到底得ることができない効果である。従って、本発明のマンノース抽出方法は極めて効率よく植物系食品残渣物からマンノースを生成することができる。
<Summary>
According to the solid acid catalyst (wood solid acid catalyst and resin solid acid catalyst), it is not only easy to separate the mannose extract and the solid acid catalyst from the reaction liquid. In particular, mannose can be obtained at a relatively high concentration while suppressing the formation of other degradation products from plant-based food residues. Such added value is an effect that can not be obtained at all from conventional liquid acid catalysts. Therefore, the mannose extraction method of the present invention can produce mannose from plant-based food residue very efficiently.
本発明のマンノース抽出方法は極めて効率よく、しかもより高い濃度で植物系食品残渣物からマンノースを生成することができる。特に、濾過分離が可能であることから、反応後の抽出液を処理する設備等の設計が容易となり、経費負担が軽減する。このため、従前のマンノース抽出方法と比較しても価格競争力に富み、代替として非常に有望である。 The mannose extraction method of the present invention is very efficient and can produce mannose from plant-based food residues at higher concentrations. In particular, since filtration separation is possible, the design of equipment for processing the extract after reaction becomes easy, and the cost burden is reduced. For this reason, compared with the conventional mannose extraction method, it is rich in price competitiveness, and is very promising as an alternative.
M1 木質系原料
M2 フェノール樹脂
PR 植物系食品残渣物
SA1,SA2 木質固体酸触媒
SA3 樹脂固体酸触媒
M1 Wood-based raw material M2 Phenolic resin PR Plant-based food residue SA1, SA2 Wood solid acid catalyst SA3 Resin solid acid catalyst
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120538A JP6546013B2 (en) | 2015-06-15 | 2015-06-15 | Mannose extraction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120538A JP6546013B2 (en) | 2015-06-15 | 2015-06-15 | Mannose extraction method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019066256A Division JP6738453B2 (en) | 2019-03-29 | 2019-03-29 | Mannose extraction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017000120A JP2017000120A (en) | 2017-01-05 |
JP6546013B2 true JP6546013B2 (en) | 2019-07-17 |
Family
ID=57750774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015120538A Expired - Fee Related JP6546013B2 (en) | 2015-06-15 | 2015-06-15 | Mannose extraction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6546013B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6902758B2 (en) | 2018-05-14 | 2021-07-14 | 国立大学法人東京工業大学 | Mannose extraction method |
WO2019220937A1 (en) | 2018-05-14 | 2019-11-21 | フタムラ化学株式会社 | Mannose extraction method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010344335B2 (en) * | 2010-01-27 | 2014-10-23 | Council Of Scientific & Industrial Research | A one pot and single step hydrolytic process for the conversion of lignocellulose into value added chemicals |
JP6430184B2 (en) * | 2013-09-18 | 2018-11-28 | フタムラ化学株式会社 | Synthetic resin binder molded solid acid and method for producing the same |
-
2015
- 2015-06-15 JP JP2015120538A patent/JP6546013B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017000120A (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Neme et al. | Activated carbon from biomass precursors using phosphoric acid: A review | |
Ahmedna et al. | Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties | |
CN100497170C (en) | Granule decoloration active carbon and preparation method thereof | |
RU2741550C2 (en) | Method of producing low-ash activated charcoal | |
JP5013531B2 (en) | Method for producing glucose and method for producing sulfonated activated carbon | |
CN102361963B (en) | Process for producing high quality bio-oil in high yield | |
Braghiroli et al. | Influence of pyro-gasification and activation conditions on the porosity of activated biochars: a literature review | |
Rizhikovs et al. | Preparation of granular activated carbon from hydrothermally treated and pelletized deciduous wood | |
CN102247802A (en) | Method for preparing activated carbon | |
CN110064367A (en) | A kind of biomass-based activated carbon microballon and its preparation method and application | |
CN103088692B (en) | Selective Separation lignin and cellulosic method from lignocellulose-like biomass | |
Jin et al. | Combining biological and chemical methods to disassemble of cellulose from corn straw for the preparation of porous carbons with enhanced adsorption performance | |
CN102092712A (en) | Method for directionally preparing high specific surface area wood-pellets activated carbon at low temperature | |
JP6546013B2 (en) | Mannose extraction method | |
CN109415332B (en) | Method for producing 5-hydroxymethyl-2-furfural | |
RU2391290C1 (en) | Method of obtaining active coal | |
JP6110607B2 (en) | Cellulose-based binder molded solid acid production method | |
JPWO2009004951A1 (en) | Method for producing monosaccharides by hydrolysis and enzymatic saccharification of materials containing cellulose | |
JP2007331986A (en) | Activated carbon | |
JP2016506993A (en) | Method for producing fuel pellets and other lignocellulose products with reduced hemicellulose, alkali metal and chlorine content | |
JP2019122404A (en) | Mannose extraction method | |
JPWO2009004950A1 (en) | Method for producing monosaccharides and / or water-soluble polysaccharides by hydrolysis of materials containing cellulose | |
JP6886833B2 (en) | Method for producing solid acid derived from wood | |
JP6466214B2 (en) | Method for producing carbide formed solid acid | |
JP5263859B2 (en) | Biomass saccharification / recovery method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6546013 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |