JP6110607B2 - Cellulose-based binder molded solid acid production method - Google Patents

Cellulose-based binder molded solid acid production method Download PDF

Info

Publication number
JP6110607B2
JP6110607B2 JP2012143391A JP2012143391A JP6110607B2 JP 6110607 B2 JP6110607 B2 JP 6110607B2 JP 2012143391 A JP2012143391 A JP 2012143391A JP 2012143391 A JP2012143391 A JP 2012143391A JP 6110607 B2 JP6110607 B2 JP 6110607B2
Authority
JP
Japan
Prior art keywords
raw material
solid acid
cellulose
binder
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012143391A
Other languages
Japanese (ja)
Other versions
JP2014004561A (en
Inventor
淳史 児玉
淳史 児玉
洋平 松岡
洋平 松岡
浩史 山田
浩史 山田
高阪 務
務 高阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2012143391A priority Critical patent/JP6110607B2/en
Publication of JP2014004561A publication Critical patent/JP2014004561A/en
Application granted granted Critical
Publication of JP6110607B2 publication Critical patent/JP6110607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セルロース系バインダー成形固体酸製造方法に関し、特に、バインダーにより所定形状に成形可能な炭化物の表面にスルホ基(スルホン酸基)を導入して得た粒状固体酸製造方法に関する。 The present invention relates to a method for producing a cellulose-based binder forming a solid acid, in particular, the production method of the moldable carbide particulate solid acid obtained by introducing a sulfo group (sulfonic acid group) on the surface of about a predetermined shape by a binder.

硫酸は高い活性を有し、炭化水素化合物を反応させる際の触媒としても広く利用される。例えば、遊離高級脂肪酸とアルコールとを反応させて、高級脂肪酸エステルを得るエステル化反応の促進、セルロース等の糖鎖から単糖への加水分解反応の促進、その他、炭化水素燃料を合成するアルキル化反応の促進等の用途である。   Sulfuric acid has high activity and is widely used as a catalyst for reacting hydrocarbon compounds. For example, promotion of esterification reaction to obtain higher fatty acid ester by reacting free higher fatty acid with alcohol, promotion of hydrolysis reaction from sugar chain such as cellulose to monosaccharide, and other alkylation to synthesize hydrocarbon fuel It is used for promoting the reaction.

硫酸は触媒として各種の反応促進に寄与した後、中和、洗浄され、その都度消費されていた。硫酸は液体であるため回収が容易ではない。回収処理と新規投入との経費差から、現状は使い捨てが主流である。しかし、使用済みの硫酸の中和、洗浄に加え、環境基準に準拠した排水処理までを考慮すると、この負担は大きい。このことから、触媒として連続使用に耐えうるとともに、反応後の分離、回収に容易なより利便性の高い触媒が求められるようになってきた。   Sulfuric acid contributed to the promotion of various reactions as a catalyst, and was neutralized, washed and consumed each time. Since sulfuric acid is a liquid, it is not easy to recover. Disposal is the mainstream at present due to the cost difference between the collection process and new input. However, considering the neutralization and washing of the used sulfuric acid and the wastewater treatment that complies with environmental standards, this burden is large. This has led to a demand for a more convenient catalyst that can withstand continuous use as a catalyst and that is easy to separate and recover after the reaction.

そのような触媒として固体酸が挙げられる。例えば、硫酸処理を施したジルコニア、PTFEにスルホ基(スルホン酸基)を導入したフッ素樹脂である。前記のジルコニアの場合、単位重量あたりのスルホ基濃度が低いため、触媒活性が低い欠点がある。また、前記のフッ素樹脂に関しては、熱に弱く、適用できる反応種が限られている問題がある。   Such catalysts include solid acids. For example, it is a fluororesin in which a sulfo group (sulfonic acid group) is introduced into sulfuric acid-treated zirconia or PTFE. In the case of the zirconia, since the sulfo group concentration per unit weight is low, there is a drawback that the catalytic activity is low. Further, the fluororesin has a problem that it is weak against heat and applicable reactive species are limited.

そこで、十分な触媒活性と耐熱性も併せ持つ固体酸として、炭素系の固体酸が提案された(特許文献1、特許文献2等参照)。例えば、特許文献1の固体酸は、多環式芳香族炭化水素を濃硫酸中で加熱処理して得ることができる。   Therefore, carbon-based solid acids have been proposed as solid acids having both sufficient catalytic activity and heat resistance (see Patent Document 1, Patent Document 2, etc.). For example, the solid acid of Patent Document 1 can be obtained by heat-treating a polycyclic aromatic hydrocarbon in concentrated sulfuric acid.

さらに、固体酸がその内部に細孔構造による適度な表面積(比表面積)を有していればより吸着が増す。このため、吸着界面における濃度がバルク相における濃度よりも高くなる。このことから、固体酸内部の吸着界面では溶媒中の溶質濃度が固体酸表面と比較して高くなり、細孔構造を有する固体酸の方が反応を加速することができる。   Furthermore, if the solid acid has an appropriate surface area (specific surface area) due to the pore structure therein, the adsorption is further increased. For this reason, the density | concentration in an adsorption interface becomes higher than the density | concentration in a bulk phase. From this, the solute concentration in the solvent is higher at the adsorption interface inside the solid acid than on the surface of the solid acid, and the solid acid having a pore structure can accelerate the reaction.

その後、安価に調達可能なオガ屑(オガコ)等の木質を炭素系原料として使用し、固体酸を製造する方法が提案されている(特許文献3参照)。特許文献3に開示の原料を用いた固体酸は高い触媒活性を有し、量産化に優れた方法であり原価面でも有望視されている。ただし、加工の途中、主にスルホ基を導入するスルホ化の段階で粉末化しやすくなる場合がある。   Thereafter, a method for producing a solid acid by using a woody material such as sawdust that can be procured at low cost as a carbon-based raw material has been proposed (see Patent Document 3). The solid acid using the raw material disclosed in Patent Document 3 has high catalytic activity, is an excellent method for mass production, and is promising in terms of cost. However, in the middle of processing, the powder may be easily pulverized mainly at the sulfonation stage where a sulfo group is introduced.

粉化しやすい固体酸の利便性を高めるため、粒状物化等の成形が試みられている。例えば、樹脂系バインダーにより粉末固体酸を固めてペレット状にする手法がある。しかし、バインダー自体に触媒活性はないため、バインダーが固体酸表面を被覆することによって本来備わっていた触媒活性が大幅に低下してしまう。さらに、バインダーの材質上、耐薬品性に乏しく工業的な連続使用を想定した場合の耐久性に乏しい。   In order to improve the convenience of solid acids that are easily pulverized, molding such as granulation has been attempted. For example, there is a method of solidifying a powdered solid acid with a resin binder to form a pellet. However, since the binder itself has no catalytic activity, the inherent catalytic activity is greatly reduced when the binder coats the solid acid surface. Furthermore, due to the material of the binder, the chemical resistance is poor and the durability when assuming continuous industrial use is poor.

そこで、バインダーを用いて成形した固体酸を得るに際し、バインダーを使用した際の触媒活性の低下、バインダー自体の劣化等の問題点に対処するべく、新たなバインダー材料の模索、製造方法の改良が求められていた。   Therefore, when obtaining a solid acid molded using a binder, the search for a new binder material and an improvement in the manufacturing method have been made in order to cope with problems such as a decrease in catalytic activity when the binder is used and deterioration of the binder itself. It was sought after.

特許第4041409号公報Japanese Patent No. 4041409 WO2005/029508WO2005 / 029508 特開2011−11201号公報JP 2011-11201 A

このような経緯を踏まえ、発明者らは、木質原料を用いて製造原価を安価に抑えるとともに、バインダーの選択、加工法の改善について鋭意検討を重ねた。そして、バインダーを用いた成形であっても触媒活性を低下させずに安価かつ簡便に成形体の固体酸を得る製法に至った。   Based on such circumstances, the inventors have made extensive studies on the selection of the binder and the improvement of the processing method while keeping the manufacturing cost low by using the wooden raw material. And even if it was shaping | molding using a binder, it came to the manufacturing method which obtains the solid acid of a molded object cheaply and simply, without reducing a catalyst activity.

本発明は、上記状況に鑑み提案されたものであり、木質原料を用いて原価を抑えるとともに、バインダー自体もセルロース系とすることにより炭化可能となりバインダー自体が影響する触媒性能の劣化を回避し、形状設計の自由度の高い成形固体酸製造方法を提供する。 The present invention has been proposed in view of the above situation, while reducing the cost by using a wood raw material, avoiding deterioration of catalyst performance that can be carbonized by making the binder itself cellulose-based, and the binder itself affects, to provide a method of manufacturing a high molding solid acid freedom of shape design.

すなわち、請求項1の発明は、木質原料粉末とセルロース系バインダーを混練して木質原料混練物を得る原料混練工程と、前記木質原料混練物を所定形状に成形し原料成形体を得る成形工程と、前記原料成形体を不活性雰囲気下において300ないし450℃で焼成して成形炭化物を得る炭化工程と、前記成形炭化物にスルホ基を導入し成形固体酸を得るスルホ化工程とを有することを特徴とするセルロース系バインダー成形固体酸の製造方法に係る。
That is, the invention of claim 1 includes a raw material kneading step of kneading a wooden raw material powder and a cellulose-based binder to obtain a wooden raw material kneaded product, and a molding step of forming the wooden raw material kneaded product into a predetermined shape to obtain a raw material compact. And a carbonization step of firing the raw material molded body at 300 to 450 ° C. in an inert atmosphere to obtain a molded carbide, and a sulfonation step of introducing a sulfo group into the molded carbide to obtain a molded solid acid. It relates to a method for producing a cellulose-based binder-formed solid acid.

請求項2の発明は、前記セルロース系バインダーが、メチルセルロース、カルボキシメチルセルロース、またはビスコースから選択される請求項1に記載のセルロース系バインダー成形固体酸の製造方法に係る。   The invention of claim 2 relates to the method for producing a cellulose binder-shaped solid acid according to claim 1, wherein the cellulose binder is selected from methyl cellulose, carboxymethyl cellulose, or viscose.

請求項3の発明は、前記木質原料混練物に占める木質原料粉末の重量割合が、最大99重量%である請求項1または2に記載のセルロース系バインダー成形固体酸の製造方法に係る。   The invention of claim 3 relates to the method for producing a cellulose-based binder-formed solid acid according to claim 1 or 2, wherein the weight ratio of the wood raw material powder in the wood raw material kneaded product is 99% by weight at the maximum.

請求項4の発明は、前記成形固体酸における前記スルホ基量が0.5〜2.4mmol/gである請求項1ないし3のいずれか1項に記載のセルロース系バインダー成形固体酸の製造方法に係る。   The invention according to claim 4 is the method for producing a cellulose binder-shaped solid acid according to any one of claims 1 to 3, wherein the amount of the sulfo group in the molded solid acid is 0.5 to 2.4 mmol / g. Concerning.

請求項5の発明は、前記スルホ化工程が発煙硫酸中で進行する請求項1ないし4のいずれか1項に記載のセルロース系バインダー成形固体酸の製造方法に係る。   Invention of Claim 5 concerns on the manufacturing method of the cellulose type binder shaping | molding solid acid of any one of Claim 1 thru | or 4 in which the said sulfonation process advances in fuming sulfuric acid.

請求項1の発明に係るセルロース系バインダー成形固体酸の製造方法によると、木質原料粉末とセルロース系バインダーを混練して木質原料混練物を得る原料混練工程と、前記木質原料混練物を所定形状に成形し原料成形体を得る成形工程と、前記原料成形体を不活性雰囲気下において300ないし450℃で焼成して成形炭化物を得る炭化工程と、前記成形炭化物にスルホ基を導入し成形固体酸を得るスルホ化工程とを有するため、木質原料を用いて原価を抑えるとともに、バインダー自体もセルロース系とすることにより炭化可能となりバインダー自体が影響する触媒性能の劣化を回避し、形状設計の自由度の高い成形固体酸の製造方法を確立することができる。
According to the method for producing a cellulose-based binder-shaped solid acid according to the invention of claim 1, a raw material kneading step of kneading a wooden raw material powder and a cellulose binder to obtain a wooden raw material kneaded product, and the wooden raw material kneaded product into a predetermined shape A molding step of forming a raw material molded body, a carbonization step of firing the raw material molded body at 300 to 450 ° C. in an inert atmosphere to obtain a molded carbide, and introducing a sulfo group into the molded carbide to form a molded solid acid. Since it has a sulfonation step to obtain, it can reduce the cost by using a wood raw material, and by making the binder itself cellulose-based, it can be carbonized, avoiding the deterioration of the catalyst performance affected by the binder itself, and the freedom of shape design A method for producing a highly shaped solid acid can be established.

請求項2の発明に係るセルロース系バインダー成形固体酸の製造方法によると、請求項1の発明において、前記セルロース系バインダーが、メチルセルロース、カルボキシメチルセルロース、またはビスコースから選択されるため、量的に調達容易かつ安価とすることができる。   According to the method for producing a cellulose-based binder-shaped solid acid according to the invention of claim 2, in the invention of claim 1, since the cellulose-based binder is selected from methylcellulose, carboxymethylcellulose, or viscose, it is procured quantitatively. Easy and inexpensive.

請求項3の発明に係るセルロース系バインダー成形固体酸の製造方法によると、請求項1または2の発明において、前記木質原料混練物に占める木質原料粉末の重量割合が、最大99重量%であるため、最終的に出来上がる成形固体酸の形状を維持しながら最大限木質原料粉末を取り入れて作成することができる。   According to the method for producing a cellulosic binder-shaped solid acid according to the invention of claim 3, in the invention of claim 1 or 2, the weight percentage of the wood raw material powder in the wood raw material kneaded product is 99% by weight at maximum. It can be made by taking in as much wood raw material powder as possible while maintaining the shape of the final molded solid acid.

請求項4の発明に係るセルロース系バインダー成形固体酸の製造方法によると、請求項1ないし3のいずれかの発明において、前記成形固体酸における前記スルホ基量が0.5〜2.4mmol/gであるため、単位重量当たり実用的な触媒反応に必要であり、かつ導入可能な最大量なスルホ基量を確保することができる。   According to the method for producing a cellulosic binder-shaped solid acid according to the invention of claim 4, in the invention according to any one of claims 1 to 3, the amount of the sulfo group in the molded solid acid is 0.5 to 2.4 mmol / g. Therefore, it is necessary for a practical catalytic reaction per unit weight, and the maximum amount of sulfo group that can be introduced can be secured.

請求項5の発明に係るセルロース系バインダー成形固体酸の製造方法によると、請求項1ないし4のいずれかの発明において、前記スルホ化工程が発煙硫酸中で進行するため、単位炭化物重量当たりのスルホ基の導入量を多くすることができる。   According to the method for producing a cellulosic binder-shaped solid acid according to the invention of claim 5, in the invention of any one of claims 1 to 4, the sulfonation step proceeds in fuming sulfuric acid. The amount of introduced groups can be increased.

本発明のセルロース系バインダー成形固体酸の第1製法例に係る概略工程図である。It is a schematic process drawing which concerns on the 1st manufacturing method example of the cellulose type binder shaping | molding solid acid of this invention. 本発明のセルロース系バインダー成形固体酸の第2製法例に係る概略工程図である。It is a schematic process drawing which concerns on the 2nd example of a manufacturing method of the cellulose type binder shaping | molding solid acid of this invention.

本発明に規定するセルロース系バインダー成形固体酸の製造方法について、はじめに図1の概略工程図(第1製法例)とともに順に説明する。本発明のセルロース系バインダー成形固体酸は、炭素系固体酸の本体を成す木質原料粉末とともにこれを賦形するバインダー自体も炭素化合物である。両原料とも炭素源であることから、双方の化学的性質は近く全体として炭素系固体酸となる。   The method for producing a cellulose-based binder-shaped solid acid defined in the present invention will be described in order with the schematic process diagram (first production example) in FIG. In the cellulose-based binder-molded solid acid of the present invention, the binder itself that shapes the wood-based raw material powder forming the main body of the carbon-based solid acid is also a carbon compound. Since both raw materials are carbon sources, the chemical properties of both are close to a carbon-based solid acid as a whole.

木質原料粉末Mは、木材の製材、加工時に生じるオガコ(または大鋸屑や鉋屑等)、廃材や間伐材、廃竹、伐採竹、ヤシ殻等のセルロース分に富む木質の植物原料の粉砕物であり、1mm以下、好ましくは0.5mm以下、さらには0.1mm以下に粉砕した粉砕物である。木質原料粉末は一般に燃料として用いられる他、焼却処理されていた廃棄物であり、これまで特段有効活用されてこなかった。そこで、木質原料粉末を固体酸の基材に加工することによって、原価を抑えて有効活用が可能となる。   Woody raw material powder M is a pulverized product of woody plant raw materials rich in cellulose, such as lumber lumber, sawdust (or large sawdust and sawdust, etc.), waste wood, thinned wood, waste bamboo, felled bamboo, and coconut shells. The pulverized product is pulverized to 1 mm or less, preferably 0.5 mm or less, and further 0.1 mm or less. Woody raw material powder is generally used as a fuel and is a waste that has been incinerated, so far it has not been particularly effectively utilized. Therefore, by processing the wood raw material powder into a solid acid base material, it is possible to effectively use it at a reduced cost.

原料となる木質原料粉末は混練や出来上がりの品質の安定性の面から、粉砕粒子の大きさは篩別等により揃えられる。また、配合の重量割合の誤差を低減するため、木質原料粉末は予め乾燥される。また、石や金属片等の異物が混入していないことも事前に検査される。   From the standpoint of stability of kneading and finished quality, the size of the pulverized particles of the wood raw material powder as the raw material is adjusted by sieving. Further, the wood raw material powder is dried in advance in order to reduce the error in the blending weight ratio. Also, it is inspected in advance that there are no foreign objects such as stones or metal pieces.

図1は、請求項2の発明に規定するように、セルロース系バインダーBとしてビスコースBvを使用する例である。ビスコース(viscose)は、現在セロハンや不織布の製造原料として広汎に利用されている。また、製法自体はビスコース法として確立されており、製法も簡便であり量的に調達容易かつ安価とすることができる。   FIG. 1 shows an example in which viscose Bv is used as the cellulosic binder B as defined in the invention of claim 2. Viscose is now widely used as a raw material for cellophane and nonwoven fabrics. Moreover, the manufacturing method itself has been established as the viscose method, and the manufacturing method is also simple, and can be easily procured quantitatively and inexpensively.

ビスコース法においては、一般に木材、草、綿花、麻等から得たパルプが水酸化ナトリウム等のアルカリ溶液に浸漬されてアルカリセルロースとなる。続いて二硫化炭素の添加により硫化されてセルロースキサンテート(セルロースキサントゲン酸ナトリウム)の粘性液体が調製される。当該粘性液体が、いわゆるビスコースである。そして、ビスコースは希硫酸等の凝固浴中に浸漬されることにより脱硫が進み純粋なセルロースに転化する(後記のS30参照)。こうしてビスコースを経て生じたセルロースは再生セルロースと称される。   In the viscose method, pulp obtained from wood, grass, cotton, hemp or the like is generally immersed in an alkali solution such as sodium hydroxide to become alkali cellulose. Subsequently, it is sulfurized by adding carbon disulfide to prepare a viscous liquid of cellulose xanthate (sodium cellulose xanthate). The viscous liquid is so-called viscose. Then, the viscose is immersed in a coagulation bath such as dilute sulfuric acid, whereby desulfurization proceeds and the viscose is converted into pure cellulose (see S30 described later). The cellulose thus produced through viscose is called regenerated cellulose.

木質原料粉末Mとセルロース系バインダーBは所定量ずつ計量され、双方とも十分に混練され、木質原料混練物11が得られる(S10)。木質原料粉末Mとセルロース系バインダーBであるビスコースBvとの混練は、公知のニーダーやブレンダー等の混練機により行われる。ビスコースの粘性はアルカリ溶液の希釈により調整が可能である。そこで、木質原料混練物11全体に占める木質原料粉末Mの量、ビスコース自体の濃度、混練機の性能、さらにはその後の加工性を勘案してビスコースの希釈は行われる。S10の木質原料混練物11を得る工程が「原料混練工程」に相当する。   The wood raw material powder M and the cellulose binder B are weighed in predetermined amounts, and both are sufficiently kneaded to obtain the wood raw material kneaded material 11 (S10). The kneading of the wood raw material powder M and the viscose Bv which is the cellulose binder B is performed by a kneader such as a known kneader or blender. The viscosity of viscose can be adjusted by diluting the alkaline solution. Therefore, the viscose is diluted in consideration of the amount of the wood raw material powder M in the whole wood raw material kneaded material 11, the concentration of the viscose itself, the performance of the kneader, and the subsequent workability. The step of obtaining the wood material kneaded material 11 of S10 corresponds to the “raw material kneading step”.

木質原料粉末Mとセルロース系バインダーのビスコースBvとの混練により生じる木質原料混練物11において、木質原料混練物11の全重量に占める木質原料粉末Mの重量割合は、最大で93重量%にまで高めることができる。木質原料粉末Mの重量割合の下限は75重量%まで可能と考えられる。ビスコースは粘性液体として調製されていることから、これ木質原料粉末の重量割合が少なくなりすぎると流動性が高くなりすぎて成形体を得ることが難しくなる。そこで、木質原料粉末Mの重量割合の下限は75重量%、好ましくは80重量%となる。次に、木質原料粉末Mの重量割合が93重量%を上回る場合、相対的にバインダー量が少なくなりすぎて木質原料粉末同士を十分に結着させることができず成形性が失われる。そこで、成形性を勘案して95重量%、さらには92重量%が望ましい。ただし、後記の実施例を勘案すると、木質原料粉末を90重量%まで抑えた方が最終的な形状維持性が向上する。   In the wood material kneaded material 11 produced by kneading the wood material powder M and the viscose Bv of the cellulose binder, the weight ratio of the wood material powder M in the total weight of the wood material kneaded material 11 is up to 93% by weight. Can be increased. The lower limit of the weight ratio of the wood raw material powder M is considered to be possible up to 75% by weight. Since viscose is prepared as a viscous liquid, if the weight ratio of the wood raw material powder becomes too small, the fluidity becomes too high and it becomes difficult to obtain a molded body. Therefore, the lower limit of the weight ratio of the wood raw material powder M is 75% by weight, preferably 80% by weight. Next, when the weight ratio of the wood raw material powder M exceeds 93% by weight, the amount of the binder becomes relatively small, and the wood raw material powders cannot be sufficiently bound to each other, so that the moldability is lost. Therefore, 95% by weight, further 92% by weight is desirable in consideration of moldability. However, when considering the examples described later, the final shape maintainability is improved when the wood raw material powder is suppressed to 90% by weight.

木質原料混練物11において、木質原料粉末Mの重量割合を基準とする理由は、原料の配合割合を容易に把握するためである。バインダー側では希釈により濃度等が変化するため、実質的な配合割合を規定することが容易ではない。これに対し、木質原料粉末自体の量は当初から変化しない。そこで、木質原料混練物における組成を規定するため基準として都合よい。また、実質的な木質原料粉末の重量割合を直接把握することができる。   In the wooden material kneaded material 11, the reason why the weight ratio of the wooden raw material powder M is used as a reference is to easily grasp the mixing ratio of the raw materials. Since the concentration and the like change due to dilution on the binder side, it is not easy to define a substantial blending ratio. In contrast, the amount of the wood raw material powder itself does not change from the beginning. Therefore, it is convenient as a standard for prescribing the composition of the wood raw material kneaded product. Further, it is possible to directly grasp the weight ratio of the substantial wood raw material powder.

木質原料混練物11は所定形状に成形され、原料成形体12が得られる(S20)。成形における形状は、球状、錠剤状、ペレット状(円筒状)等形状であり、特段形状に制約はない。図示の原料成形体12は球状、錠剤状、ペレット状の例を示す。木質原料混練物11からの成形方法も形状に応じて適宜である。球状では造粒機を用いた球形化であり、錠剤状では打錠機が用いられ、ペレット状ではペレタイザー等の使用となる。S20の原料成形体12を得る工程が「成形工程」に相当する。   The wood material kneaded material 11 is molded into a predetermined shape, and a material molded body 12 is obtained (S20). The shape in molding is a spherical shape, a tablet shape, a pellet shape (cylindrical shape) or the like, and there is no restriction on the special shape. The illustrated raw material molded body 12 shows examples of a spherical shape, a tablet shape, and a pellet shape. The molding method from the wooden material kneaded material 11 is also appropriate depending on the shape. The spherical shape is spheroidization using a granulator, the tablet shape is a tableting machine, and the pellet shape is a pelletizer. The process of obtaining the raw material molded body 12 of S20 corresponds to the “molding process”.

原料成形体12は以降に焼成、スルホ化を控えているため、大きすぎる場合には形状維持が容易ではない。そのため、取り扱い易さを加味して粉末以上の大きさが妥当であり、10mm程度までが好適である。具体的に1mmないし10mm程度となる。後記実施例では、直径2mmまたは4mmのペレット状(長さ約10mm)とした。この大きさの粒状体とすることにより、粉末状の固体酸と比較して反応相からの分離、回収等の利便性が高まる。   Since the raw material molded body 12 refrains from firing and sulfonation thereafter, it is not easy to maintain the shape if it is too large. Therefore, considering the ease of handling, the size larger than the powder is reasonable, and is preferably up to about 10 mm. Specifically, it is about 1 mm to 10 mm. In the examples described later, pellets having a diameter of 2 mm or 4 mm (length of about 10 mm) were used. By using a granule of this size, convenience such as separation and recovery from the reaction phase is enhanced as compared with a powdered solid acid.

セルロース系バインダーにビスコースを用いた際の特有の工程として、凝固・再生(S30)と洗浄・乾燥(S40)が含められる。原料成形体12に含まれるビスコースは、希硫酸等の酸性液との接触により凝固する。凝固を通じて、ビスコースはセルロースに再生される。量産規模の製造を想定した場合、原料成形体12は希硫酸等の酸性液の凝固浴内に所定時間浸漬される。そこで、原料成形体12に含まれるビスコースBvは、希硫酸との接触により凝固する。この凝固反応を通じて、バインダーであったビスコースBvはセルロースに再生される。すなわち、木質原料粉末もバインダーもセルロースを共通して含有する成分であり、双方とも炭化可能となる。   As specific steps when viscose is used as the cellulose binder, solidification / regeneration (S30) and washing / drying (S40) are included. The viscose contained in the raw material molded body 12 is solidified by contact with an acidic liquid such as dilute sulfuric acid. Through coagulation, viscose is regenerated into cellulose. Assuming mass production, the raw material molded body 12 is immersed in a coagulation bath of an acidic liquid such as dilute sulfuric acid for a predetermined time. Therefore, the viscose Bv contained in the raw material molded body 12 is solidified by contact with dilute sulfuric acid. Through this coagulation reaction, viscose Bv, which was a binder, is regenerated into cellulose. That is, both the wood raw material powder and the binder are components containing cellulose in common, and both can be carbonized.

ビスコースの凝固、再生を終えた原料成形体12は、水等により余分な酸や副生成物等を取り除くべく洗浄される。そして、原料成形体12中に含まれる余分な水分は乾燥機等により乾燥により蒸発、除去される。木質原料粉末は含水し易いため十分な乾燥が行われる。次の焼成中において、原料成形体内に水分が残留している場合、水分の体積上昇に伴い原料成形体に亀裂等が生じ、成形時の形状が難しくなるおそれがある。   After the solidification and regeneration of the viscose, the raw material molded body 12 is washed with water or the like so as to remove excess acid, by-products and the like. Then, excess water contained in the raw material molded body 12 is evaporated and removed by drying with a dryer or the like. The wood raw material powder is easily dried because it easily contains water. If moisture remains in the raw material molded body during the next firing, cracks or the like may occur in the raw material molded body with an increase in the volume of moisture, and the shape during molding may be difficult.

ビスコースの凝固、再生を終えてバインダーが木質原料粉末と固着した原料成形体12は、不活性雰囲気下において焼成され、原料成形体12の炭化が進行する。この焼成により原料成形体は成形炭化物13となる(S50)。焼成温度は300ないし450℃が妥当な温度域と考えられる。焼成温度300℃を下回る場合では木質原料粉末Mの炭化が十分に進まず、品質の安定性を得ることができない。逆に焼成温度が450℃を超える場合、炭化時にグラフェンシート様の構造が多くなり、次述のスルホ基の導入に際し置換等の対象となる表面官能基数が少なくなる。つまり、スルホ基の導入が進みにくくなる。当該S50の成形炭化物13を得る工程が「炭化工程」に相当する。実施例では、350℃と400℃の温度条件による焼成とした。   After the solidification and regeneration of the viscose, the raw material molded body 12 in which the binder is fixed to the wood raw material powder is fired in an inert atmosphere, and the raw material molded body 12 is carbonized. By this firing, the raw material molded body becomes the molded carbide 13 (S50). A reasonable temperature range is 300 to 450 ° C. When the firing temperature is lower than 300 ° C., the carbonization of the wood raw material powder M does not proceed sufficiently and quality stability cannot be obtained. On the other hand, when the firing temperature exceeds 450 ° C., the graphene sheet-like structure increases during carbonization, and the number of surface functional groups to be substituted or the like decreases when the sulfo group described below is introduced. That is, introduction of the sulfo group is difficult to proceed. The step of obtaining the shaped carbide 13 of S50 corresponds to the “carbonization step”. In the examples, the firing was performed at 350 ° C. and 400 ° C.

続いて成形炭化物13に対し、スルホ基またはスルホン酸基(−SO2(OH))と称される酸性の官能基を導入するスルホ化が行われる(S60)。スルホ化により成形炭化物13は成形固体酸14になる。スルホ基の導入は、濃硫酸や発煙硫酸と成形炭化物13との反応により行われる。とりわけ、請求項5の発明に規定するように、スルホ化工程を発煙硫酸中で行うことが望ましい。発煙硫酸では三酸化硫黄が濃硫酸に溶けているためよりスルホ化に適し、単位炭化物重量当たりの導入量が多くなる傾向にある。スルホ化のための他の方法は存在するものの、発煙硫酸を使用する方法と比較して専用設備や反応後の成分分離等が容易ではない。このことから、効率、経費面を勘案して発煙硫酸の使用が最も優れている。当該S60の成形固体酸14を得る工程が「スルホ化工程」に相当する。 Subsequently, sulfonation is performed on the shaped carbide 13 by introducing an acidic functional group called a sulfo group or a sulfonic acid group (—SO 2 (OH)) (S60). The formed carbide 13 becomes a formed solid acid 14 by sulfonation. The introduction of the sulfo group is carried out by the reaction of concentrated sulfuric acid or fuming sulfuric acid with the shaped carbide 13. In particular, as defined in the invention of claim 5, it is desirable to carry out the sulfonation step in fuming sulfuric acid. Fuming sulfuric acid is more suitable for sulfonation because sulfur trioxide is dissolved in concentrated sulfuric acid, and the amount introduced per unit carbide weight tends to increase. Although there are other methods for sulfonation, dedicated equipment and component separation after the reaction are not easy compared to methods using fuming sulfuric acid. For this reason, use of fuming sulfuric acid is most excellent in consideration of efficiency and cost. The step of obtaining the molded solid acid 14 of S60 corresponds to the “sulfation step”.

成形固体酸14は、水洗浄(S70)を経ることにより、余分な硫酸等の成分が洗い流される。そして、洗浄時の水分は適宜乾燥される。ここで、篩別により所定の大きさに揃えられた製品とすることができる。また、製造途中に砕けて生じた粉状物が取り除かれる。以上一連の工程を経てセルロース系バインダーによる成形固体酸SAを得ることができる。   The molded solid acid 14 is washed with water (S70), so that excess components such as sulfuric acid are washed away. And the water | moisture content at the time of washing | cleaning is dried suitably. Here, it can be set as the product arranged in the predetermined magnitude | size by sieving. In addition, the powdery material generated by crushing during the production is removed. Through the above series of steps, the molded solid acid SA can be obtained from the cellulose binder.

次に示す図2の概略工程図(第2製法例)は、請求項2の発明に規定したセルロース系バインダーとしてメチルセルロースまたはカルボキシメチルセルロースを用いた場合の工程となる。   The following schematic process diagram of FIG. 2 (second production example) is a process when methylcellulose or carboxymethylcellulose is used as the cellulose-based binder defined in the invention of claim 2.

木質原料粉末Mは図1と共通である。セルロース系バインダーBのメチルセルロースMCまたはカルボキシメチルセルロースCMCは、通常粉末であるため、いったん水に懸濁、分散され(S1)、ゲル状物Bcとなる。この際の濃度は取り扱いを考慮した配合量となる。メチルセルロースMCやカルボキシメチルセルロースCMCは水と混合した際に粘性あるゲル状物となり、糊のような結着剤の機能を有することから、木質原料粉末Mに対するバインダーとして使用することができる。また、組成から明らかであるように、当該バインダーはセルロースもしくはその誘導体でありセルロース系となる。カルボキシメチルセルロースCMCにはカルボキシメチルセルロースナトリウムCMC−Naも含まれる。CMC−NaはCMCよりも水溶性が高い。   The wood raw material powder M is the same as in FIG. Since the cellulose binder B methyl cellulose MC or carboxymethyl cellulose CMC is usually a powder, it is once suspended and dispersed in water (S1) to form a gel Bc. The concentration at this time is a blending amount considering handling. Methyl cellulose MC or carboxymethyl cellulose CMC becomes a viscous gel when mixed with water and has a function of a binder such as glue, so that it can be used as a binder for the wood raw material powder M. Further, as is clear from the composition, the binder is cellulose or a derivative thereof and becomes a cellulose type. Carboxymethylcellulose CMC also includes sodium carboxymethylcellulose CMC-Na. CMC-Na is more water soluble than CMC.

木質原料粉末MとメチルセルロースMCやカルボキシメチルセルロースCMCを含むゲル状物Bcのバインダーとの混練(S10)は、図1の説明と同様であり、木質原料混練物11が得られる。以降の成形(S20)による原料成形体12の生成、焼成・炭化(S50)による成形炭化物13の生成、及びスルホ化(S60)による成形固体酸14の生成も既述の処理と同様である。そして、洗浄、水洗浄(S70)を経て適宜乾燥される。以上一連の工程により、バインダーの種類を変えたセルロース系バインダーによる成形固体酸SAを得ることができる。   The kneading (S10) of the wood raw material powder M with the binder of the gel-like material Bc containing methylcellulose MC or carboxymethylcellulose CMC is the same as the description of FIG. 1, and the woody raw material kneaded material 11 is obtained. The production | generation of the raw material molded object 12 by subsequent shaping | molding (S20), the production | generation of the shaping | molding carbide 13 by baking and carbonization (S50), and the production | generation of the shaping | molding solid acid 14 by sulfonation (S60) are the same as the above-mentioned process. And it dries suitably through washing | cleaning and water washing | cleaning (S70). Through the series of steps described above, it is possible to obtain a molded solid acid SA using a cellulose-based binder with a different binder type.

第2製法例における混練や成形等の条件は、セルロース系バインダーB(ゲル状物Bc)の濃度や粘度、木質原料粉末の配合量等を勘案して、好適な機器、成形形状から選択される。メチルセルロースMCやカルボキシメチルセルロースCMCをバインダーとする場合、ビスコースBvの例と異なり、セルロースへ再生するための凝固の工程並びにその後の洗浄の工程は必要ないため省略される。   The conditions such as kneading and molding in the second production method example are selected from suitable equipment and molded shape in consideration of the concentration and viscosity of the cellulose binder B (gel-like product Bc), the blending amount of the wood raw material powder, and the like. . When methylcellulose MC or carboxymethylcellulose CMC is used as a binder, unlike the example of viscose Bv, a coagulation step for regenerating to cellulose and a subsequent washing step are not necessary and are omitted.

木質原料粉末Mとセルロース系バインダーB(ゲル状物Bc)との混練により生じる木質原料混練物11において、木質原料混練物11の全重量に占める木質原料粉末Mの重量割合は、最大で99重量%にまで高めることができ、木質原料粉末Mの重量割合の下限は50重量%(半分量)まで可能である。木質原料粉末Mの重量割合が99重量%を上回る場合、相対的にバインダー量が少なくなりすぎて木質原料粉末同士を十分に結着させることができず成形性が失われる。そこで、成形性を勘案して99重量%が上限である。ただし、後記の実施例を勘案すると、木質原料粉末を95重量%まで抑えた方が最終的な形状維持性が向上する。   In the wood material kneaded material 11 produced by kneading the wood material powder M and the cellulose binder B (gel-like material Bc), the weight ratio of the wood material powder M in the total weight of the wood material kneaded material 11 is 99 wt. The lower limit of the weight ratio of the wood raw material powder M can be up to 50% by weight (half amount). When the weight ratio of the wooden raw material powder M exceeds 99% by weight, the amount of the binder becomes relatively small, and the wooden raw material powders cannot be sufficiently bound to each other, so that the moldability is lost. Therefore, 99% by weight is the upper limit in consideration of moldability. However, when considering the examples described later, the final shape maintainability is improved when the wood raw material powder is suppressed to 95% by weight.

どのバインダーを採用するのかは、原価や製造経費、製造設備、量産規模による。例えば、メチルセルロースMCやカルボキシメチルセルロースCMCの使用とする場合(第2製法例)、ビスコースBvと比較して、途中の工程を省略することができる。一方、ビスコースBvの場合(第1製法例)、凝固、再生等の工程を必要とするものの、既存のセロハン等の製造設備をそのまま利用でき、実質的にバインダーの調製等の手間を要さない。また、大規模化が容易であり量産性に好適である。   Which binder is used depends on the cost, manufacturing cost, manufacturing equipment, and mass production scale. For example, when using methylcellulose MC or carboxymethylcellulose CMC (second manufacturing method example), intermediate steps can be omitted as compared with viscose Bv. On the other hand, in the case of viscose Bv (first manufacturing method example), although steps such as coagulation and regeneration are required, existing manufacturing equipment such as cellophane can be used as it is, and it is substantially necessary to prepare a binder. Absent. In addition, it can be easily scaled up and is suitable for mass production.

第1製法例もしくは第2製法例により得た成形固体酸14に存在するスルホ基量は、成形固体酸14の形状や大きさによる表面積の変動からある程度の幅がある。しかし、単位活性炭重量当たりのスルホ基量の多少は触媒活性の高低の指標となり得る。このため、成形固体酸14の性能を評価する上で重視される。そこで、請求項4の発明のとおり、成形固体酸14に存在するスルホ基量は、0.5ないし2.4mmol/gの範囲と考えられる。スルホ基量は元素分析により算出される。   The amount of sulfo groups present in the molded solid acid 14 obtained by the first manufacturing method example or the second manufacturing method example has a certain range due to the variation in surface area depending on the shape and size of the molded solid acid 14. However, the amount of sulfo groups per unit activated carbon weight can be an indicator of the catalyst activity. For this reason, it is important in evaluating the performance of the molded solid acid 14. Therefore, as in the invention of claim 4, the amount of sulfo groups present in the molded solid acid 14 is considered to be in the range of 0.5 to 2.4 mmol / g. The amount of sulfo group is calculated by elemental analysis.

後記の実施例から明らかであるように、成形固体酸のスルホ基量0.5mmol/g未満では触媒反応性が乏しく実用に向かない。スルホ基量2.4mmol/gは事実上成形炭化物に導入できる最大量であり、この量以上のスルホ基導入は現状の方法では困難である。よって、前記のとおり単位重量当たりのスルホ基量範囲が導き出される。   As will be apparent from the examples described later, when the amount of the sulfo group of the molded solid acid is less than 0.5 mmol / g, the catalytic reactivity is poor and it is not practical. The amount of sulfo group 2.4 mmol / g is the maximum amount that can be introduced into the shaped carbide, and it is difficult to introduce a sulfo group in excess of this amount by the current method. Therefore, as described above, the sulfo group amount range per unit weight is derived.

れまでに図示し詳述してきた製造方法により製造した成形固体酸は、木質原料粉末の配合割合や形状の設計において比較的自由度を有する。そこで、所望の用途、目的に応じて作り分けることが可能である。特に、固体酸が成形物となったことにより、触媒反応に使用した後の分離、回収が容易となり使用時の利便性は大きく向上する。 This is molded solid acid produced by the manufacturing method have been described in detail and illustrated so far, it has a relatively degree of freedom in the blending ratio and the design of the shape of the wood raw material powder. Therefore, it is possible to make them according to the desired use and purpose. In particular, since the solid acid becomes a molded product, separation and recovery after use in the catalytic reaction are facilitated, and convenience during use is greatly improved.

本発明の特徴は、成形固体酸に含まれるバインダーの成分自体もセルロース(セルロース誘導体を含む)としたことである。最終的に木質原料粉末と一緒にバインダーも焼成により炭化され、木質原料粉末のみならずバインダー自体もスルホ基が付着する基材となる。また、本発明の成形固体酸に用いたバインダーは、粉末の固体酸同士を結着させて一体化する性質ではないことから、バインダーの被覆による触媒活性低下の問題は生じない。   A feature of the present invention is that the binder component itself contained in the molded solid acid is also made of cellulose (including a cellulose derivative). Finally, the binder is carbonized by firing together with the wood raw material powder, and not only the wood raw material powder but also the binder itself becomes a base material to which the sulfo group adheres. In addition, since the binder used in the molded solid acid of the present invention does not have the property of binding and integrating powder solid acids, there is no problem of a decrease in catalytic activity due to the coating of the binder.

従って、触媒活性を維持しつつ木質原料粉末のみを原料としてスルホ化した固体酸が粉末状となっていた難点を改善して成形化することができる。しかも、成形固体酸の重量の過半数以上を木質原料粉末としているため、原材料コスト等を大幅に圧縮することができる。   Therefore, it is possible to improve and mold the difficulty that the solid acid obtained by sulfonation using only the wood raw material powder as a raw material is in the form of powder while maintaining the catalytic activity. Moreover, since more than half of the weight of the molded solid acid is made of the wood raw material powder, the raw material cost and the like can be greatly reduced.

このため、本発明の粒状固体酸は、従前の粉末固体酸の取り扱い難さを改善するとともに、より安価に製造でき、十分な触媒活性を発揮することができる。   For this reason, the granular solid acid of the present invention improves the difficulty of handling the conventional powdered solid acid, can be produced at a lower cost, and can exhibit sufficient catalytic activity.

〔使用原料〕
パルプを原料に水酸化ナトリウム、二硫化炭素を添加し常法により調製したビスコース(セルロースキサントゲン酸ナトリウム)の水溶液を用意した。このビスコース水溶液は、セルロース分:8.3ないし9.3重量%、総アルカリ分:5.6ないし6.6重量%、水分:84.1ないし86.1重量%の組成であった。濃度調整には6%水酸化ナトリウム水溶液を用いた。
[Raw materials]
An aqueous solution of viscose (sodium cellulose xanthate) prepared by a conventional method by adding sodium hydroxide and carbon disulfide to pulp as a raw material was prepared. This aqueous viscose solution had a composition of cellulose: 8.3 to 9.3% by weight, total alkali: 5.6 to 6.6% by weight, and moisture: 84.1 to 86.1% by weight. A 6% aqueous sodium hydroxide solution was used for concentration adjustment.

メチルセルロースは、信越化学工業株式会社製,品名:メトローズSM−4000を使用した。
カルボキシメチルセルロースは、日本製紙ケミカル株式会社製,カルボキシメチルセルロースナトリウム(品名:サンローズF10MC)を使用した。
木質原料粉末は、ベイマツ(米松)のオガコ(大鋸粉)を使用した。当該オガコは、粉砕機により粉砕し、篩別により粒径約0.075mm以下の粉末状のみを分取した。
The methyl cellulose used was Shin-Etsu Chemical Co., Ltd., product name: Metrolz SM-4000.
As carboxymethyl cellulose, Nippon Paper Chemicals, Inc., sodium carboxymethyl cellulose (product name: Sunrose F10MC) was used.
The woody raw material powder was bay pine (Yonematsu) sawdust (large saw powder). The sawdust was pulverized by a pulverizer, and only a powder having a particle size of about 0.075 mm or less was collected by sieving.

〔成形固体酸の作成〕
後出の表1ないし表3の重量配合割合に基づき、直径や炭化温度を変えながら実施例1ないし9の円筒形ペレット状の成形固体酸を作成した。そして、それぞれについて、木質原料粉末とセルロース系バインダーとの重量比(%)、炭化物の嵩比重(g/mL)、硬度(N)、精製した固体酸触媒の硫黄分量(重量%)、スルホ基量(mmol/g)、2種類の触媒性能を測定、評価した。
(Creation of molded solid acid)
Based on the weight blending ratios in Tables 1 to 3 below, the cylindrical pellet-shaped molded solid acids of Examples 1 to 9 were prepared while changing the diameter and carbonization temperature. And about each, the weight ratio (%) of wood raw material powder and a cellulose-type binder, the bulk specific gravity (g / mL) of carbide, hardness (N), the sulfur content (weight%) of the refined solid acid catalyst, sulfo group The amount (mmol / g) of two kinds of catalyst performance was measured and evaluated.

〈原料混練〉
ビスコース(実施例1ないし4)、メチルセルロース(実施例5ないし12)、カルボキシメチルセルロース(実施例13ないし20)のバインダーについては、粉砕済みのオガコ300gに対し各々のバインダーの重量配合割合を各実施例のとおり3gから300gまで増やして混練し、木質原料混練物とした。
<Material kneading>
For the binders of viscose (Examples 1 to 4), methylcellulose (Examples 5 to 12), and carboxymethylcellulose (Examples 13 to 20), the weight blending ratio of each binder was set to 300 g of ground sawdust. As in the examples, the mixture was increased from 3 g to 300 g and kneaded to obtain a wood raw material kneaded product.

〈成形〉
各実施例に対応する木質原料混練物は、造粒機(株式会社チヨダマシナリー製,FMP−180N)を用い直径2mm×長さ10mmの円筒ペレット状、もしくは直径4mm×長さ10mmの円筒ペレット状の原料成形体に成形加工した。
<Molding>
The wood raw material kneaded material corresponding to each Example is a cylindrical pellet shape having a diameter of 2 mm × 10 mm length, or a cylindrical pellet shape having a diameter of 4 mm × length of 10 mm using a granulator (manufactured by Chiyoda Machinery Co., Ltd., FMP-180N). The raw material molded body was molded.

ビスコースを再生セルロースに転化するための凝固液は、2Nの硫酸10L中に硫酸ナトリウム800gを溶解した希酸液とした。セルロース系バインダーにビスコースを使用した実施例1ないし4については、前記の凝固液中に投入してビスコースを凝固させてセルロースへ転化し、オガコとの結着性を高めた。その後、原料成形体を凝固液から回収した。次に4.5重量%硫化ナトリウムと1重量%水酸化ナトリウムの混合水溶液からなる脱硫液に前記の原料成形体を浸して攪拌、回収して水洗を繰り返した。最終的な水洗後、100℃に調温した恒温槽に移し温度変化がなくなるまで乾燥した。メチルセルロース(実施例5ないし12)、カルボキシメチルセルロース(実施例13ないし20)のバインダーを使用した原料成形体については凝固、洗浄は必要ないため、省略した。   The coagulation liquid for converting viscose into regenerated cellulose was a dilute acid liquid in which 800 g of sodium sulfate was dissolved in 10 L of 2N sulfuric acid. In Examples 1 to 4 in which viscose was used as the cellulose binder, the viscose was put into the coagulating liquid to be coagulated and converted into cellulose, thereby improving the binding property with sawdust. Thereafter, the raw material compact was recovered from the coagulation liquid. Next, the raw material molded body was immersed in a desulfurization solution composed of a mixed aqueous solution of 4.5 wt% sodium sulfide and 1 wt% sodium hydroxide, stirred, recovered, and washed with water repeatedly. After the final water washing, it was transferred to a thermostatic chamber adjusted to 100 ° C. and dried until there was no temperature change. A raw material molded body using a binder of methylcellulose (Examples 5 to 12) and carboxymethylcellulose (Examples 13 to 20) is omitted because it does not require coagulation and washing.

〈焼成・炭化〉
原料成形体を金属板上に配しマッフル炉(光洋サーモシステム株式会社製,品名:INH−51N1)を用い、窒素ガスにより不活性雰囲気状態を維持し、表1ないし表3の加熱温度(350℃または400℃)まで昇温して当該温度を1時間維持した。加熱が終了して冷却後、マッフル炉から取り出して成形炭化物を得た。
<Firing and carbonization>
The raw material compact is placed on a metal plate, and a muffle furnace (manufactured by Koyo Thermo System Co., Ltd., product name: INH-51N1) is used to maintain an inert atmosphere with nitrogen gas. C. or 400 ° C.) and the temperature was maintained for 1 hour. After heating and cooling, the molded carbide was taken out from the muffle furnace.

〈スルホ化〉
各実施例の成形炭化物について、それぞれを10g秤量して500mLの三つ口フラスコ内に投入し、ここに11.3%の発煙硫酸100mLを添加した。80℃の反応温度を維持しながら10時間、攪拌した。その後、蒸留水で繰り返し洗浄した。洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返し、これを乾燥して成形固体酸を得た。
<Sulfoation>
About each shaping | molding carbide | carbonized_material of each Example, each 10g was weighed and thrown in in a 500 mL three necked flask, and 100 mL of 11.3% fuming sulfuric acid was added here. The mixture was stirred for 10 hours while maintaining a reaction temperature of 80 ° C. Thereafter, it was repeatedly washed with distilled water. Washing was repeated until the sulfate ion in the distilled water after washing was below the detection limit, and this was dried to obtain a molded solid acid.

〔比較例の作成〕
実施例を構成する原料について、それぞれを単独で炭化しスルホ化して固体酸を調製した。木質原料粉末のみの固体酸(比較例1,2)、再生セルロース(ビスコース)のみの固体酸(比較例3,4)、メチルセルロースのみの固体酸(比較例5,6)、カルボキシメチルセルロースのみの固体酸(比較例7,8)である。下記の調製のとおり、比較例の固体酸は粉末状物である。
(Create comparative example)
About the raw material which comprises an Example, each was carbonized independently and sulfonated and the solid acid was prepared. Solid acid of wood raw material powder only (Comparative Examples 1 and 2), solid acid of regenerated cellulose (viscose) only (Comparative Examples 3 and 4), solid acid of methyl cellulose only (Comparative Examples 5 and 6), carboxymethylcellulose only It is a solid acid (Comparative Examples 7 and 8). As described below, the solid acid of the comparative example is a powder.

〈木質原料粉末のみの固体酸〉
木質原料粉末のみの固体酸(比較例1,2)は、前記のオガコを坩堝に入れ、マッフル炉を用い窒素ガスにより不活性雰囲気状態を維持し、表4の加熱温度まで昇温して当該温度を60分間維持して炭化物を得た。炭化物に対するスルホ化は実施例の成形固体酸と同様とした。
<Solid acid only from woody material powder>
The solid acid (Comparative Examples 1 and 2) containing only the woody raw material powder is placed in the crucible and maintained in an inert atmosphere with nitrogen gas using a muffle furnace. The temperature was maintained for 60 minutes to obtain a carbide. The sulfonation for the carbide was the same as the molded solid acid of the example.

〈再生セルロースのみの固体酸〉
実施例に使用したビスコース水溶液1kgに濃度6重量%の水酸化ナトリウム水溶液1kgを添加、混合してビスコース希釈液とした。凝固液は前記の実施例と同様とした。内径1mmのチューブを取り付けたチューブポンプ(Core−Parmer社製,品名:Masterflex C/L Tubing Pumps)を用いてビスコース希釈液を凝固液中に滴下した。ビスコース希釈液は凝固液中で粒状の液滴になるとともに凝固してセルロースに転化した。セルロースに転化した粒状物を凝固液から回収した。次に前記の実施例と同様の脱硫液に当該粒状物を浸して攪拌、回収して水洗を繰り返した。最終的な水洗後、100℃に調温した恒温槽に移し温度変化がなくなるまで乾燥して粒径0.9ないし1.4mm前後の粒状セルロース原料を得た。
<Solid acid only from regenerated cellulose>
1 kg of a 6 wt% sodium hydroxide aqueous solution was added to 1 kg of the viscose aqueous solution used in the examples and mixed to obtain a viscose diluted solution. The coagulation liquid was the same as in the previous example. The viscose diluted solution was dropped into the coagulation liquid using a tube pump (manufactured by Core-Parmer, product name: Masterflex C / L Tubing Pumps) equipped with a tube having an inner diameter of 1 mm. The viscose diluted solution became granular droplets in the coagulation solution and coagulated to convert to cellulose. Particulate matter converted to cellulose was recovered from the coagulation liquid. Next, the granular material was immersed in the same desulfurization liquid as in the above example, stirred, recovered, and washed repeatedly with water. After the final water washing, it was transferred to a constant temperature bath adjusted to 100 ° C. and dried until there was no temperature change to obtain a granular cellulose raw material having a particle size of about 0.9 to 1.4 mm.

粒状セルロース原料を坩堝に入れ、マッフル炉を用い窒素ガスにより不活性雰囲気状態を維持し、表4の加熱温度まで昇温して当該温度を60分間維持して炭化物を得た。炭化物に対するスルホ化は実施例の成形固体酸と同様とした。   The granular cellulose raw material was put into a crucible, an inert atmosphere state was maintained with nitrogen gas using a muffle furnace, the temperature was raised to the heating temperature shown in Table 4, and the temperature was maintained for 60 minutes to obtain a carbide. The sulfonation for the carbide was the same as the molded solid acid of the example.

〈MC,CMCのみの固体酸〉
メチルセルロース、もしくはカルボキシメチルセルロースの粉末を坩堝に入れてマッフル炉を用い窒素ガスにより不活性雰囲気状態を維持し、表5の加熱温度まで昇温して当該温度を60分間維持して炭化物を得た。その後のスルホ化は実施例の成形固体酸と同様とした。
<Solid acid of MC and CMC only>
Methyl cellulose or carboxymethyl cellulose powder was placed in a crucible and maintained in an inert atmosphere with nitrogen gas using a muffle furnace. The temperature was raised to the heating temperature shown in Table 5 and maintained for 60 minutes to obtain a carbide. Subsequent sulfonation was the same as the molded solid acid of the example.

〔物性測定〕
〈木質原料粉末の重量割合〉
木質原料混練物に占める木質原料粉末の重量割合R(重量%)については、木質原料粉末Mとセルロース系バインダーBの重量より、R(wt%)={M/(M+B)}×100として算出した。
(Physical property measurement)
<Weight ratio of woody material powder>
The weight ratio R (% by weight) of the wood raw material powder in the wood raw material kneaded material is calculated as R (wt%) = {M / (M + B)} × 100 from the weight of the wood raw material powder M and the cellulose binder B. did.

〈嵩比重〉
実施例の成形固体酸を100mLのメスシリンダーに投入し、適度に振動して100mLの標線に量を合わせた。この時の成形固体酸の重量(g)を測定した。そこで、嵩比重(L)(g/mL)と重量(S)(g)より、L(g/mL)=S(g)/100mLとして計算した。
<Bulk specific gravity>
The molded solid acid of the example was put into a 100 mL graduated cylinder, and the amount was adjusted to a 100 mL mark with proper vibration. The weight (g) of the molded solid acid at this time was measured. Therefore, L (g / mL) = S (g) / 100 mL was calculated from the bulk specific gravity (L) (g / mL) and the weight (S) (g).

〈硬度〉
実施例の成形固体酸について、木屋式硬度計(株式会社藤原製作所製)、加圧棒(直径5mm)を用い硬度を測定した。ひとつの実施例当たり20回測定し、その平均値を当該実施例の成形固体酸の硬度(N)とした。
<hardness>
About the shaping | molding solid acid of the Example, the hardness was measured using the Kiya-type hardness meter (made by Fujiwara Seisakusyo Co., Ltd.) and a pressure bar (diameter 5 mm). The measurement was made 20 times per example, and the average value was taken as the hardness (N) of the molded solid acid of the example.

〈硫黄含有量とスルホ基量の測定〉
試作例並びに比較例の成形固体酸を100℃に加熱して乾燥した。それぞれの固体酸に含まれる元素組成について、自動燃焼イオンクロマトイオンクロマトグラフ:DIONEX製ICS−1000、燃焼装置:株式会社三菱化学アナリテック製AQF−100、吸収装置:株式会社三菱化学アナリテック製GA−100、送水ユニット:株式会社三菱化学アナリテック製WS−100、燃焼温度1000℃)により分析した。得られた硫黄分(mmol/g)は、スルホン酸基と等価であるとして、単位重量当たりの固体酸におけるスルホン酸基量(mmol/g)を求めた。
<Measurement of sulfur content and sulfo group content>
The molded solid acids of the prototype and comparative examples were heated to 100 ° C. and dried. About the elemental composition contained in each solid acid, automatic combustion ion chromatography ion chromatograph: ICS-1000 manufactured by DIONEX, combustion device: AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd., absorber: GA manufactured by Mitsubishi Chemical Analytech Co., Ltd. -100, water feeding unit: Mitsubishi Chemical Analytech Co., Ltd. WS-100, combustion temperature 1000 ° C.). Assuming that the obtained sulfur content (mmol / g) is equivalent to the sulfonic acid group, the amount of sulfonic acid group (mmol / g) in the solid acid per unit weight was determined.

〔触媒活性の測定〕
〈加水分解反応の測定〉
実施例並びに比較例の成形固体酸を100℃に加熱して乾燥した。サンプル瓶に固体酸0.1gを分取し、セロビオース0.12g、水0.7mLを添加し、90℃の温度を維持しながら60分間反応させた。反応後冷却して水2.3mLを添加しシリンジフィルターにより濾過した。高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製,RID−10A)、カラム(BIO−RAD社製,品名:AminaxHPX−87Hカラム)を使用し、濾過液を当該HPLCに装填し、グルコース等の単糖類のピーク面積比よりセロビオースから分解されて生成した糖類量を求めた。そして、1g固体酸当たりの1時間の反応による分解量(μmol)に換算した(μmol・g-1・h-1)。
[Measurement of catalytic activity]
<Measurement of hydrolysis reaction>
The molded solid acids of Examples and Comparative Examples were heated to 100 ° C. and dried. 0.1 g of solid acid was collected in a sample bottle, 0.12 g of cellobiose and 0.7 mL of water were added, and the mixture was reacted for 60 minutes while maintaining a temperature of 90 ° C. After the reaction, the reaction mixture was cooled, 2.3 mL of water was added, and the mixture was filtered through a syringe filter. Using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation, RID-10A), column (manufactured by BIO-RAD, product name: Aminax HPX-87H column), the filtrate was loaded into the HPLC, and glucose and the like were used. The amount of saccharides produced by decomposition from cellobiose was determined from the peak area ratio of monosaccharides. Then, in terms of the amount of decomposition ([mu] mol) by reaction of 1 hour per 1g solid acid (μmol · g -1 · h -1 ).

〈エステル化反応の測定〉
実施例並びに比較例の成形固体酸を100℃に加熱して乾燥した。固体酸0.2gをフラスコに分取して150℃で1時間、真空乾燥(0.4Pa以下)した。真空乾燥を終えた固体酸にエタノール58.5mL(1.0mol)、酢酸5.742mL(0.1mol)を添加し、70℃の温度を維持しながら60分間反応させた。反応後冷却してシリンジフィルターにより濾過した。濾液中に含まれる酢酸エチルの生成量をガスクロマトグラフィー(GC)(株式会社島津製作所製,GC−2014 FID−ガスクロマトグラフィー)、カラム(アジレント・テクノロジー株式会社製,J&W GCカラム DB−WAXキャピラリーカラム)を使用して求めた。そして、1g固体酸当たりの1分間の反応による分解量(mmol)に換算した(mmol・g-1・min-1)。
<Measurement of esterification reaction>
The molded solid acids of Examples and Comparative Examples were heated to 100 ° C. and dried. The solid acid 0.2g was fractionated into the flask, and vacuum-dried (0.4 Pa or less) at 150 degreeC for 1 hour. After the vacuum drying, 58.5 mL (1.0 mol) of ethanol and 5.742 mL (0.1 mol) of acetic acid were added to the solid acid and reacted for 60 minutes while maintaining the temperature at 70 ° C. After the reaction, it was cooled and filtered through a syringe filter. The amount of ethyl acetate contained in the filtrate was measured by gas chromatography (GC) (manufactured by Shimadzu Corporation, GC-2014 FID-gas chromatography), column (manufactured by Agilent Technologies, J & W GC column DB-WAX capillary column). ). And it converted into the decomposition amount (mmol) by reaction for 1 minute per 1g solid acid (mmol * g < -1 > * min <-1> ).

Figure 0006110607
Figure 0006110607

Figure 0006110607
Figure 0006110607

Figure 0006110607
Figure 0006110607

Figure 0006110607
Figure 0006110607

Figure 0006110607
Figure 0006110607

Figure 0006110607
Figure 0006110607

〔結果,考察〕
いずれの実施例においても、加水分解反応やエステル化反応の触媒作用を発揮しており、スルホ基を有する固体酸としての機能を十分に備える。各比較例の単独原料の触媒反応と比較すると見かけ上の数値は低いようにも思われる。しかし、これは成形固体酸と粉末状物との表面積の差が影響している。成形体とすることにより全体としての表面積は減少するためである。しかし、従前の粉末固体酸の問題点であった分離、回収の利便性を改善可能とする点では、十分に代替し得る。また、木質原料粉末等の廃棄物を原料とすることから原料経費を圧縮可能である。加えて、バインダー自体も特殊な組成ではなく、一般的な材料であるため総じて原料経費負担は少ない。
[Results and discussion]
In any of the examples, the catalytic action of the hydrolysis reaction or esterification reaction is exhibited, and the function as a solid acid having a sulfo group is sufficiently provided. It seems that the apparent numerical value is low compared with the catalytic reaction of the single raw material of each comparative example. However, this is affected by the difference in surface area between the molded solid acid and the powdered material. This is because the surface area as a whole is reduced by forming the molded body. However, it can be adequately replaced in terms of improving the convenience of separation and recovery, which has been a problem with conventional powdered solid acids. In addition, raw material costs can be reduced because waste such as wood raw material powder is used as a raw material. In addition, since the binder itself is not a special composition but a general material, the cost of raw materials is generally low.

〈原料の選択、配合割合〉
セルロース系バインダーは、オガコ等の木質原料粉末を結着する成分として有効であるといえる。バインダーの種類毎では触媒反応の結果に極端な相違は少ないといえる。従って、セルロース成分もしくはセルロースに転化する成分をバインダーに用いることは極めて有効である。また、実施例5の木質原料粉末の配合量を99重量%まで増やしても形状維持特性を発揮できることから、極めて多量の木質原料粉末を包含することが可能である。具体的に、ビスコースのバインダーに関しては、木質原料粉末は最大で93重量%にまで高めることができる。また、実施例3の重量比は83重量%となっていることから、およそ下限は75重量%、好ましくは80重量%となる。メチルセルロースやカルボキシメチルセルロースのバインダー使用とする場合、実施例10,18のとおり木質原料粉末の重量比は50重量%であることから、当該量が現実的な下限と考えることができる。
<Selection of raw materials, blending ratio>
It can be said that the cellulose-based binder is effective as a component for binding woody raw material powder such as sawdust. It can be said that there is little extreme difference in the results of the catalytic reaction for each type of binder. Therefore, it is very effective to use a cellulose component or a component that converts to cellulose as a binder. Further, since the shape maintaining characteristics can be exhibited even if the blending amount of the wood raw material powder of Example 5 is increased to 99% by weight, it is possible to include a very large amount of the wood raw material powder. Specifically, regarding the viscose binder, the wood raw material powder can be increased up to 93% by weight. Further, since the weight ratio of Example 3 is 83% by weight, the lower limit is approximately 75% by weight, preferably 80% by weight. When using a binder of methylcellulose or carboxymethylcellulose, the weight ratio of the wood raw material powder is 50% by weight as in Examples 10 and 18, so that the amount can be considered as a practical lower limit.

実施例では、比較のため成形固体酸を大きさの異なる2種類のペレット状とした。この点についても、触媒反応の上では、明確な差異が生じたとはいえない。むしろ、次に述べる焼成温度の相違による影響が大きい。   In the examples, for comparison, the molded solid acid was formed into two types of pellets having different sizes. In this respect as well, it cannot be said that there is a clear difference in the catalytic reaction. Rather, the influence due to the difference in the firing temperature described below is large.

〈炭化条件〉
触媒反応と焼成温度350℃と400℃の比較から判断すると、低温度側ほど良好な結果である。おそらく、高温度側の場合、木質原料粉末のグラフェンシート様の構造が多くなり、スルホ基と置換される官能基量が減少したと考える。しかしながら、低温度側の場合、焼結が不十分となりやすく、最終的な成形固体酸を得るまでに粉状の欠損が生じやすくなる。従って、350ないし400℃の中間が理想の焼成温度となる。
<Carbonization conditions>
Judging from the comparison between the catalytic reaction and the firing temperature of 350 ° C. and 400 ° C., the lower the temperature, the better. Probably, the graphene sheet-like structure of the wood raw material powder increased on the high temperature side, and the amount of functional groups substituted with sulfo groups decreased. However, in the case of the low temperature side, sintering tends to be insufficient, and powdery defects are likely to occur before obtaining the final molded solid acid. Therefore, the middle of 350 to 400 ° C. is the ideal firing temperature.

〈スルホ基量の範囲〉
各実施例の触媒反応の結果から勘案すると、下限はおおよそ0.5mmol/gと想定する。また、上限は2.4mmol/gを想定する。成形炭化物の比表面積等の物性上の制約を超えてスルホ基を導入することは事実上不可能である。そこで、0.5ないし2.4mmol/g、好ましくは、0.9ないし2.4mmol/gの範囲をスルホ基量の範囲とした。
<Range of sulfo group content>
Considering the results of the catalytic reaction in each example, the lower limit is assumed to be approximately 0.5 mmol / g. The upper limit is assumed to be 2.4 mmol / g. It is practically impossible to introduce sulfo groups beyond physical properties such as the specific surface area of the shaped carbide. Therefore, the range of 0.5 to 2.4 mmol / g, preferably 0.9 to 2.4 mmol / g, was set as the range of the sulfo group amount.

本発明のセルロース系バインダー成形固体酸の製造方法は粉末状の炭素源とともにバインダー自体も炭化して全体で凝集した固体酸を製造することができる。特に、安価な原料を使用でき、しかも配合量を増やすことも容易である。従って、固体酸としての取り扱いやすさを向上できるとともに価格面も抑制できる。このため、従前の硫酸や粉末状固体酸の代替として非常に有望である。   The method for producing a cellulose binder-shaped solid acid according to the present invention can produce a solid acid aggregated by carbonizing the binder itself together with the powdery carbon source. In particular, inexpensive raw materials can be used, and the blending amount can be easily increased. Accordingly, the ease of handling as a solid acid can be improved and the price can be suppressed. For this reason, it is very promising as an alternative to conventional sulfuric acid and powdered solid acid.

M 木質原料粉末
MC メチルセルロース
CMC カルボキシメチルセルロース
B セルロース系バインダー
Bv ビスコース
Bc ゲル状物
11 木質原料混練物
12 原料成形体
13 成形炭化物
14 成形固体酸
SA 成形固体酸
M Wood material powder MC Methylcellulose CMC Carboxymethylcellulose B Cellulose binder Bv Viscose Bc Gel-like material 11 Wood material kneaded material 12 Material molded body 13 Molded carbide 14 Molded solid acid SA Molded solid acid

Claims (5)

木質原料粉末とセルロース系バインダーを混練して木質原料混練物を得る原料混練工程と、
前記木質原料混練物を所定形状に成形し原料成形体を得る成形工程と、
前記原料成形体を不活性雰囲気下において300ないし450℃で焼成して成形炭化物を得る炭化工程と、
前記成形炭化物にスルホ基を導入し成形固体酸を得るスルホ化工程とを有する
ことを特徴とするセルロース系バインダー成形固体酸の製造方法。
A raw material kneading step of kneading a wooden raw material powder and a cellulose binder to obtain a wooden raw material kneaded product;
A molding step of forming the raw material kneaded material into a predetermined shape to obtain a raw material molded body,
A carbonization step of firing the raw material molded body at 300 to 450 ° C. in an inert atmosphere to obtain a molded carbide;
A sulfonation step of introducing a sulfo group into the molded carbide to obtain a molded solid acid. A method for producing a cellulose-based binder molded solid acid.
前記セルロース系バインダーが、メチルセルロース、カルボキシメチルセルロース、またはビスコースから選択される請求項1に記載のセルロース系バインダー成形固体酸の製造方法。   The method for producing a cellulose-based binder-shaped solid acid according to claim 1, wherein the cellulose-based binder is selected from methylcellulose, carboxymethylcellulose, or viscose. 前記木質原料混練物に占める木質原料粉末の重量割合が、最大99重量%である請求項1または2に記載のセルロース系バインダー成形固体酸の製造方法。   The method for producing a cellulose-based binder-shaped solid acid according to claim 1 or 2, wherein the weight ratio of the wood raw material powder in the wood raw material kneaded product is 99% by weight at the maximum. 前記成形固体酸における前記スルホ基量が0.5〜2.4mmol/gである請求項1ないし3のいずれか1項に記載のセルロース系バインダー成形固体酸の製造方法。   The method for producing a cellulose-based binder-shaped solid acid according to any one of claims 1 to 3, wherein the amount of the sulfo group in the shaped solid acid is 0.5 to 2.4 mmol / g. 前記スルホ化工程が発煙硫酸中で進行する請求項1ないし4のいずれか1項に記載のセルロース系バインダー成形固体酸の製造方法。   The method for producing a cellulose-based binder-shaped solid acid according to any one of claims 1 to 4, wherein the sulfonation step proceeds in fuming sulfuric acid.
JP2012143391A 2012-06-26 2012-06-26 Cellulose-based binder molded solid acid production method Expired - Fee Related JP6110607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143391A JP6110607B2 (en) 2012-06-26 2012-06-26 Cellulose-based binder molded solid acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143391A JP6110607B2 (en) 2012-06-26 2012-06-26 Cellulose-based binder molded solid acid production method

Publications (2)

Publication Number Publication Date
JP2014004561A JP2014004561A (en) 2014-01-16
JP6110607B2 true JP6110607B2 (en) 2017-04-05

Family

ID=50102799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143391A Expired - Fee Related JP6110607B2 (en) 2012-06-26 2012-06-26 Cellulose-based binder molded solid acid production method

Country Status (1)

Country Link
JP (1) JP6110607B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430184B2 (en) * 2013-09-18 2018-11-28 フタムラ化学株式会社 Synthetic resin binder molded solid acid and method for producing the same
JP6466214B2 (en) * 2015-03-16 2019-02-06 フタムラ化学株式会社 Method for producing carbide formed solid acid
JP6601716B2 (en) * 2015-07-21 2019-11-06 独立行政法人国立高等専門学校機構 Carbonaceous composite and method for producing the same
JP6598239B2 (en) * 2015-07-21 2019-10-30 独立行政法人国立高等専門学校機構 Fluorine adsorbent and method for producing the same
KR101942633B1 (en) * 2017-01-02 2019-01-25 주식회사 동아지질 Deep cement mixing device for sea construction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983690A (en) * 1972-12-20 1974-08-12
JP4143150B2 (en) * 1997-11-25 2008-09-03 株式会社キャタラー Method for producing activated carbon
JP4290456B2 (en) * 2003-03-28 2009-07-08 クラレケミカル株式会社 Exhaust gas treatment method using fire-resistant activated carbon
EP1667167B1 (en) * 2003-09-16 2011-03-23 Tokyo Institute of Technology Sulfonated amorphous carbon, process for producing the same and use thereof
WO2008123530A1 (en) * 2007-03-27 2008-10-16 Nippon Oil Corporation Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst
JP5528036B2 (en) * 2008-09-12 2014-06-25 公益財団法人神奈川科学技術アカデミー Carbon-based solid acid and method for producing the same
JP2010120784A (en) * 2008-11-17 2010-06-03 Nippon Oil Corp Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
JP2010215473A (en) * 2009-03-18 2010-09-30 Jx Nippon Oil & Energy Corp Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
US20100312008A1 (en) * 2009-06-09 2010-12-09 Kastner James R Solid acid catalysts, methods of making, and methods of use

Also Published As

Publication number Publication date
JP2014004561A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6110607B2 (en) Cellulose-based binder molded solid acid production method
CN101780955B (en) Chitosan activated carbon and preparation method thereof
CN106622151B (en) Composite material and preparation method and application containing metal-organic framework materials
JP5528036B2 (en) Carbon-based solid acid and method for producing the same
CN102247802A (en) Method for preparing activated carbon
Malaika et al. Conversion of renewable feedstock to bio-carbons dedicated for the production of green fuel additives from glycerol
CN104084126A (en) Preparation method of biomass-based ferroaluminium complex spherical carbon
Jin et al. Combining biological and chemical methods to disassemble of cellulose from corn straw for the preparation of porous carbons with enhanced adsorption performance
CN110652971A (en) Modified nano lignin and preparation method and application thereof
CN104445188B (en) A kind of solution is utilized to embathe the method that deliming prepares rice husk matrix activated carbon
CN109012601A (en) A kind of method that fish scale prepares charcoal adsorbent material
CN103212385A (en) Furfural residue-based porous adsorption resin and preparation method thereof
CN109319782A (en) A kind of preparation method of sodium lignin sulfonate/polystyrene-based activated carbon microballon
CN110385114B (en) Metal organic framework material/self-polymerization microporous polymer composite derivative multifunctional carbon molecular sieve and preparation method and application thereof
JP2006225231A (en) Activated carbon from chitinous matter as raw material and its manufacturing method
JP6886833B2 (en) Method for producing solid acid derived from wood
JP6430184B2 (en) Synthetic resin binder molded solid acid and method for producing the same
CN106904591B (en) A kind of preparation method and application of step hole tobacco rod carbon
JP6018431B2 (en) Method for producing granular solid acid
JP6546013B2 (en) Mannose extraction method
JP6466214B2 (en) Method for producing carbide formed solid acid
KR19990070311A (en) Manufacture of high quality activated carbon recycled coffee waste
JP6607673B2 (en) Method for producing resin solid acid
CN102921391A (en) Preparation method of absorbent for effectively reducing phenol content in cigarette smoke
CN109749031B (en) Cross-linked sulfonated aldehyde ketone cation exchange resin and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6110607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees