JP5013531B2 - Method for producing glucose and method for producing sulfonated activated carbon - Google Patents

Method for producing glucose and method for producing sulfonated activated carbon Download PDF

Info

Publication number
JP5013531B2
JP5013531B2 JP2008046736A JP2008046736A JP5013531B2 JP 5013531 B2 JP5013531 B2 JP 5013531B2 JP 2008046736 A JP2008046736 A JP 2008046736A JP 2008046736 A JP2008046736 A JP 2008046736A JP 5013531 B2 JP5013531 B2 JP 5013531B2
Authority
JP
Japan
Prior art keywords
activated carbon
glucose
sulfonated
polyglucose
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008046736A
Other languages
Japanese (ja)
Other versions
JP2009201405A (en
Inventor
歩武 恩田
貴史 越智
和道 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University NUC
Original Assignee
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University NUC filed Critical Kochi University NUC
Priority to JP2008046736A priority Critical patent/JP5013531B2/en
Publication of JP2009201405A publication Critical patent/JP2009201405A/en
Application granted granted Critical
Publication of JP5013531B2 publication Critical patent/JP5013531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、グルコースを製造するための方法と、当該方法で使用するスルホン化活性炭の製造方法に関するものである。   The present invention relates to a method for producing glucose and a method for producing a sulfonated activated carbon used in the method.

近年、石油資源を基礎とするシステムからの脱却を目的とする技術の開発が盛んであり、いわゆるバイオマスを原料とする技術が注目されている。   In recent years, technology for the purpose of moving away from systems based on petroleum resources has been actively developed, and technology using so-called biomass as a raw material has attracted attention.

このバイオマスという語は、一般的には生物起源の物質からなる食料、資材、燃料など広い概念を意味する語として用いられているが、産業廃棄物として扱われているものも含まれている。例えば、稲藁、ヤシガラ、籾殻、間伐材、木材チップダスト、剪定枝などである。これらバイオマスの主成分はセルロースであり、その消化酵素を有しないヒトの食料としては適さない。また、石油成分ほど燃焼効率に優れるものではないことから燃料としても用い難い。よって、これらバイオマスは現在のところ廃棄や焼却せざるを得ないので、これらの有効利用を促進することは、産業廃棄物を低減することからも非常に意義がある。   The term “biomass” is generally used to mean a broad concept such as foods, materials, and fuels composed of biological materials, but also includes those treated as industrial waste. For example, rice straw, coconut husk, rice husk, thinned wood, wood chip dust, pruned branches. The main component of these biomass is cellulose, which is not suitable for human food that does not have the digestive enzyme. Moreover, it is difficult to use as a fuel because it is not as excellent in combustion efficiency as petroleum components. Therefore, since these biomass must be discarded or incinerated at present, it is very significant to promote the effective use of these from the viewpoint of reducing industrial waste.

上記バイオマスの有効利用としては、例えば、セルロースはグルコースがβ1,4結合したものであることから、セルロースを加水分解することによりグルコースを製造することが考えられる。例えば特許文献1には、分子内に酸性官能基または塩基性官能基を有する固体触媒によりセルロースを加水分解する方法が記載されている。当該固体触媒としては、活性炭が例示されている。   As an effective utilization of the biomass, for example, since cellulose has β1,4-bonded glucose, it can be considered to produce glucose by hydrolyzing cellulose. For example, Patent Document 1 describes a method of hydrolyzing cellulose with a solid catalyst having an acidic functional group or a basic functional group in the molecule. As the solid catalyst, activated carbon is exemplified.

また、非特許文献1には、水和反応やエステル化反応の触媒として、グルコース粉末を300〜600℃で加熱することにより炭化してから濃硫酸か発煙硝酸で処理した触媒が開示されている。特許文献2には、同様の触媒を用いてセルロースやセロビオースなどを加水分解する技術が記載されている。
特開2006−129735号公報 Mai Okamuraら,ケミストリー・オブ・マテリアルズ(Chemistry of Materials),第18巻,第3039〜3045頁(2006年) 国際公開第2008/001696号パンフレット
Non-Patent Document 1 discloses a catalyst in which glucose powder is carbonized by heating at 300 to 600 ° C. and then treated with concentrated sulfuric acid or fuming nitric acid as a hydration reaction or esterification reaction catalyst. . Patent Document 2 describes a technique for hydrolyzing cellulose, cellobiose and the like using a similar catalyst.
JP 2006-129735 A Mai Okamura et al., Chemistry of Materials, Vol. 18, pp. 3039-3045 (2006) International Publication No. 2008/001696 Pamphlet

上述した様に、セルロースなどを固体触媒により加水分解する技術は知られていた。しかしグルコースの製造技術としては、従来技術の製造効率は十分なものではなかった。   As described above, a technique for hydrolyzing cellulose or the like with a solid catalyst has been known. However, as the glucose production technology, the production efficiency of the conventional technology has not been sufficient.

例えば、セルロースは水に対して不溶性であるところ、加水分解が進行するにつれ可溶性の成分が増加しても、単糖であるグルコースまで十分に分解できない場合があった。実際、特許文献1に記載の実施例では、セルロース残存率のデータは開示されているが、グルコースの収率などは記載されていない。また、特許文献2の実施例では、グルコース二量体であるセロビオースなどを原料とした場合のグルコース生成量は高いものの、セルロースを用いた場合、可溶化率は高い一方でグルコース生成量は低い。   For example, cellulose is insoluble in water, and even if the soluble component increases as hydrolysis proceeds, there is a case where glucose, which is a monosaccharide, cannot be sufficiently decomposed. Actually, in the example described in Patent Document 1, data on the residual ratio of cellulose is disclosed, but the yield of glucose and the like are not described. Moreover, in the Example of patent document 2, although the glucose production amount when using cellobiose which is a glucose dimer as a raw material is high, when using cellulose, the solubilization rate is high, but the glucose production amount is low.

そこで、本発明が解決すべき課題は、セルロースなどのポリグルコースからグルコースを効率的に製造する方法を提供することにある。また本発明では、当該方法で使用する固体触媒の製造方法を提供することも目的とする。   Therefore, a problem to be solved by the present invention is to provide a method for efficiently producing glucose from polyglucose such as cellulose. Another object of the present invention is to provide a method for producing a solid catalyst used in the method.

本発明者らは、上記課題を解決すべく、特に加水分解触媒につき検討を行った。その結果、確かにその表面にはカルボキシ基などの酸性官能基は存在するものの、活性炭はセルロースからグルコースを製造するための触媒としては満足できるものではないことが分かった。それに対して、比表面積の大きな活性炭にスルホン酸基を導入した触媒は、セルロースの加水分解反応を極めて良好に促進し、グルコースの製造効率を向上させることを見出した。   In order to solve the above-mentioned problems, the present inventors have particularly studied a hydrolysis catalyst. As a result, it was found that activated carbon is not satisfactory as a catalyst for producing glucose from cellulose, although there are certainly acidic functional groups such as carboxy groups on the surface. On the other hand, the catalyst which introduce | transduced the sulfonic acid group into the activated carbon with a large specific surface area discovered that the hydrolysis reaction of a cellulose was accelerated | stimulated very favorable and the manufacturing efficiency of glucose was improved.

本発明に係るグルコースの製造方法は、活性炭を濃硫酸または発煙硫酸中で加熱することによりスルホン化活性炭を得る工程;および、スルホン化活性炭および水の存在下で加熱することによりポリグルコースを加水分解する工程;を含むことを特徴とする。   The method for producing glucose according to the present invention includes a step of obtaining a sulfonated activated carbon by heating activated carbon in concentrated sulfuric acid or fuming sulfuric acid; and hydrolyzing polyglucose by heating in the presence of the sulfonated activated carbon and water. Comprising the steps of:

本発明方法においては、ポリグルコースの加水分解工程前に、スルホン化活性炭を水熱処理することが好適である。過剰なスルホン酸基を除去することによって、加水分解反応中に副反応を促進するおそれのあるスルホン酸基の遊離を抑制できる。   In the method of the present invention, it is preferable that the sulfonated activated carbon is hydrothermally treated before the polyglucose hydrolysis step. By removing excess sulfonic acid groups, release of sulfonic acid groups that may promote side reactions during the hydrolysis reaction can be suppressed.

さらに、ポリグルコースの加水分解工程前に、ポリグルコースを粉砕することが好ましい。結晶性を示さなくなるまでポリグルコースを粉砕することによって、加水分解効率がより一層向上する。   Furthermore, it is preferable to crush polyglucose before the polyglucose hydrolysis step. By crushing polyglucose until it does not show crystallinity, the hydrolysis efficiency is further improved.

活性炭としては、貴金属触媒が担持されているものも好適である。グルコースが得られるのみならず、食品成分や医薬品自体としても用いられるグルコン酸が得られるからである。   As the activated carbon, those on which a noble metal catalyst is supported are also suitable. This is because not only glucose can be obtained, but also gluconic acid which is used as a food ingredient or pharmaceutical itself can be obtained.

ポリグルコースの加水分解工程における反応温度としては、140℃以上、230℃以下が好適である。固体触媒を用いる反応においては、温度が高いほど効率は良くなるが、230℃を超えるとグルコースの脱水反応やセルロースの炭化などが起こってグルコースの収率が低下するおそれがあり得る。   The reaction temperature in the polyglucose hydrolysis step is preferably 140 ° C. or higher and 230 ° C. or lower. In a reaction using a solid catalyst, the higher the temperature, the better the efficiency. However, when the temperature exceeds 230 ° C., glucose dehydration or carbonization of cellulose may occur, which may reduce the yield of glucose.

本発明に係るスルホン化活性炭の製造方法は、活性炭を濃硫酸または発煙硫酸中で加熱する工程を含むことを特徴とする。   The method for producing a sulfonated activated carbon according to the present invention includes a step of heating the activated carbon in concentrated sulfuric acid or fuming sulfuric acid.

上記方法においては、さらに、濃硫酸または発煙硫酸中で加熱した活性炭を水熱処理することが好ましい。過剰なスルホン酸基が除去され、加水分解反応中に副反応を促進するおそれのあるスルホン酸基の遊離を抑制することができる。   In the above method, it is preferable that the activated carbon heated in concentrated sulfuric acid or fuming sulfuric acid is hydrothermally treated. Excess sulfonic acid groups are removed, and release of sulfonic acid groups that may promote side reactions during the hydrolysis reaction can be suppressed.

本発明方法によれば、セルロースなどのポリグルコースからグルコースを効率的に製造することができる。よって、ポリグルコースを主成分とするバイオマスの有効利用を促進でき、産業廃棄物の問題を解決し得る。また、グルコースが得られることから、食糧問題の解決に寄与し得、さらに当該グルコースからエタノールなどを製造することが可能になることから、エネルギー問題の解決にも寄与し得る。従って本発明は、産業廃棄物や食料問題などを解決し得るものとして、産業上極めて有用である。   According to the method of the present invention, glucose can be efficiently produced from polyglucose such as cellulose. Therefore, effective utilization of biomass mainly composed of polyglucose can be promoted, and the problem of industrial waste can be solved. Moreover, since glucose is obtained, it can contribute to the solution of a food problem, and since ethanol etc. can be manufactured from the glucose, it can also contribute to the solution of an energy problem. Therefore, the present invention is extremely useful industrially as a solution for industrial waste and food problems.

本発明に係るグルコースの製造方法は、活性炭を濃硫酸または発煙硫酸中で加熱することによりスルホン化活性炭を得る工程;および、スルホン化活性炭および水の存在下で加熱することによりポリグルコースを加水分解する工程;を含むことを特徴とする。以下、実施の順番に従って本発明につき説明する。   The method for producing glucose according to the present invention includes a step of obtaining a sulfonated activated carbon by heating activated carbon in concentrated sulfuric acid or fuming sulfuric acid; and hydrolyzing polyglucose by heating in the presence of the sulfonated activated carbon and water. Comprising the steps of: Hereinafter, the present invention will be described in the order of implementation.

(1) 活性炭の製造
本発明で用いる活性炭の原料は特に制限されず、例えば、稲藁、大鋸屑、椰子殻、サトウキビバガス、伐採材などの植物残渣;オイルカーボン、石油ピッチなどの石油系原料;石炭、石炭ピッチなどの石炭系原料;フェノール樹脂などの高分子原料などを用いることができる。但し、その比表面積が200m2/g以上のものを用いることが好ましい。使用する触媒の比表面積が大きいほど、本発明方法の効率は高まり得る。なお、かかる比表面積は、BET法により測定することができる。
(1) Production of activated carbon The raw material of activated carbon used in the present invention is not particularly limited. For example, plant residues such as rice straw, large sawdust, coconut husk, sugarcane bagasse, and felled wood; petroleum-based raw materials such as oil carbon and petroleum pitch; Coal-based raw materials such as coal and coal pitch; polymer raw materials such as phenol resins can be used. However, it is preferable to use one having a specific surface area of 200 m 2 / g or more. The greater the specific surface area of the catalyst used, the greater the efficiency of the process of the invention. The specific surface area can be measured by the BET method.

活性炭は市販のものを使用可能であるが、別途製造してもよい。例えば、活性炭は、上記原料を500〜700℃程度で炭化した後、さらに900〜1000℃程度で賦活することにより細孔を形成することにより製造できる。かかる高温での賦活工程がなければ細孔は発達せず、比表面積の大きい活性炭は得られない。   Activated carbon can be commercially available, but may be manufactured separately. For example, activated carbon can be produced by forming pores by carbonizing the raw material at about 500 to 700 ° C. and then activating at about 900 to 1000 ° C. Without such an activation process at a high temperature, pores do not develop and activated carbon having a large specific surface area cannot be obtained.

(2) 活性炭のスルホン化
本発明では、活性炭を濃硫酸または発煙硫酸中で加熱することによりスルホン化活性炭とする。スルホン酸基を表面に有する活性炭は、ポリグルコースをグルコースまで加水分解する反応を顕著に触媒することができる。
(2) Sulfonation of activated carbon In the present invention, activated carbon is heated in concentrated sulfuric acid or fuming sulfuric acid to obtain sulfonated activated carbon. Activated carbon having sulfonic acid groups on the surface can remarkably catalyze the reaction of hydrolyzing polyglucose to glucose.

使用する濃硫酸の濃度は、活性炭を十分にスルホン化できるように90質量%以上が好ましく、95質量%以上がより好ましい。また、発煙硫酸における三酸化硫黄の濃度は特に制限されないが、例えば、三酸化硫黄含有率が30%や60%といった市販品を用いることができる。   The concentration of concentrated sulfuric acid used is preferably 90% by mass or more, and more preferably 95% by mass or more so that the activated carbon can be sufficiently sulfonated. Moreover, although the density | concentration of sulfur trioxide in fuming sulfuric acid is not restrict | limited in particular, For example, a commercial item whose sulfur trioxide content rate is 30% or 60% can be used.

具体的なスルホン化は、以下の手順により行う。先ず、活性炭を濃硫酸または発煙硫酸に加え、よく分散させる。濃硫酸または発煙硫酸は、活性炭1gに対して10〜30mL程度用いる。   Specific sulfonation is performed according to the following procedure. First, activated carbon is added to concentrated sulfuric acid or fuming sulfuric acid and well dispersed. Concentrated sulfuric acid or fuming sulfuric acid is used in an amount of about 10 to 30 mL with respect to 1 g of activated carbon.

次に、上記反応混合液を加熱しつつ攪拌する。加熱温度は、100℃以上、250℃以下程度とする。また、反応時間は、活性炭のスルホン化度をチェックしつつ適宜決定すればよいが、通常は5時間以上、24時間以下程度とする。   Next, the reaction mixture is stirred while heating. The heating temperature is about 100 ° C. or higher and 250 ° C. or lower. The reaction time may be appropriately determined while checking the degree of sulfonation of the activated carbon, but is usually about 5 hours or more and 24 hours or less.

活性炭のスルホン化度は、0.1mmol/g以上とすることが好ましい。スルホン化度が高いほど、スルホン化活性炭の触媒活性は高くなり、0.4mmol/g以上であれば十分な活性が期待できる。一方、スルホン化度の上限は特に制限されないが、高度にスルホン化すると、活性炭が微細化して反応後に濾別し難くなったり、ポリグルコースの吸着に必要な疎水性が失われて触媒機能が低下するおそれがあるので、通常は5mmol/g以下程度とする。かかるスルホン化度は、濃硫酸の温度、加熱温度や加熱時間などにより調節することができる。   The degree of sulfonation of the activated carbon is preferably 0.1 mmol / g or more. The higher the degree of sulfonation, the higher the catalytic activity of the sulfonated activated carbon, and a sufficient activity can be expected at 0.4 mmol / g or more. On the other hand, the upper limit of the degree of sulfonation is not particularly limited, but if it is highly sulfonated, the activated carbon becomes finer and it becomes difficult to filter after the reaction, or the hydrophobicity necessary for adsorption of polyglucose is lost and the catalytic function is lowered. Therefore, it is usually set to about 5 mmol / g or less. The degree of sulfonation can be adjusted by the temperature of concentrated sulfuric acid, the heating temperature, the heating time, and the like.

加熱後においては、表面に付着した硫酸等を除去するために、大量の水で洗浄することが好ましい。かかる洗浄は、例えば、60℃以上の温水または熱水にスルホン化活性炭を加え攪拌した後、濾過すればよい。この操作は数回繰り返してもよい。   After heating, it is preferable to wash with a large amount of water in order to remove sulfuric acid or the like adhering to the surface. Such washing may be performed, for example, by adding sulfonated activated carbon to warm water or hot water of 60 ° C. or higher and stirring, followed by filtration. This operation may be repeated several times.

スルホン化活性炭は、さらに水熱処理することが好ましい。スルホン化活性炭においては、全てのスルホン酸基が活性炭へ強固に結合しているわけではない。よって、加水分解反応中にスルホン酸基が脱離して、生成したグルコースを脱水したり、炭素数1〜2の低分子量有機酸を生成させるなどグルコースの収率を低下させるおそれがある。一方、水熱処理しておけば、加水分解反応中におけるスルホン酸基の脱離も抑制でき、上述したような副反応を抑制できる。また、かかる副反応を抑制しつつ、効率を高めるために反応温度を高めることも可能になる。   The sulfonated activated carbon is preferably further hydrothermally treated. In sulfonated activated carbon, not all sulfonic acid groups are firmly bonded to the activated carbon. Therefore, the sulfonic acid group is eliminated during the hydrolysis reaction, and the produced glucose may be dehydrated or the yield of glucose may be reduced, such as the production of a low molecular weight organic acid having 1 to 2 carbon atoms. On the other hand, if hydrothermal treatment is performed, elimination of the sulfonic acid group during the hydrolysis reaction can be suppressed, and the side reaction as described above can be suppressed. It is also possible to increase the reaction temperature in order to increase efficiency while suppressing such side reactions.

水熱処理とは、高温高圧での水処理をいう。その条件としては、一般的なものを用いることができる。例えば、活性炭を水に加え、150℃以上、250℃以下程度の温度で且つ0.1MPa以上、5MPa以下程度の圧力で処理する。この際に使用する水は、スルホン化活性炭1gに対して10〜30mL程度用いることが好ましい。また、水熱処理時間は1時間以上、5時間以内程度とする。必要であれば、水熱処理は複数回行ってもよい。水熱反応処理後は、スルホン化活性炭を濾別して洗浄した後、乾燥する。   Hydrothermal treatment refers to water treatment at high temperature and pressure. As the conditions, general ones can be used. For example, activated carbon is added to water and treated at a temperature of about 150 ° C. to 250 ° C. and a pressure of about 0.1 MPa to 5 MPa. It is preferable to use about 10-30 mL of water used in this case with respect to 1 g of sulfonated activated carbon. The hydrothermal treatment time is about 1 hour or more and 5 hours or less. If necessary, the hydrothermal treatment may be performed a plurality of times. After the hydrothermal reaction treatment, the sulfonated activated carbon is separated by filtration and washed, and then dried.

上記工程(1)〜(2)においては、活性炭として白金、金、パラジウムなどの貴金属を担持しているものを用いることによって、後述する加水分解反応により生じたグルコースの一部をさらに酸化してグルコン酸としてもよい。グルコン酸は、食品成分や医薬品自体、環境負荷の低いコンクリート混和剤などとして有用である。   In the above steps (1) to (2), a part of glucose generated by the hydrolysis reaction described later is further oxidized by using activated carbon carrying a noble metal such as platinum, gold or palladium. Gluconic acid may be used. Gluconic acid is useful as a food ingredient, medicine itself, concrete admixture with a low environmental load, and the like.

(3) ポリグルコースの粉砕
本発明では、上記で得られたスルホン化活性炭および水の存在下で加熱することによりポリグルコースを加水分解する。しかしこの工程の前に、ポリグルコースを粉砕しておくことが好ましい。本発明者らによる知見によれば、事前にその結晶性が消失するまでポリグルコースを粉砕することによって、グルコースの収率が向上するからである。
(3) Grinding of polyglucose In the present invention, polyglucose is hydrolyzed by heating in the presence of the sulfonated activated carbon obtained above and water. However, it is preferable to crush polyglucose before this step. According to the knowledge of the present inventors, the yield of glucose is improved by grinding polyglucose until the crystallinity disappears in advance.

ポリグルコースとしては、αポリグルコース、即ちでんぷんと、βポリグルコース、即ちセルロースのいずれも用いることができる。しかし、セルロースには産業廃棄物として処理が問題となっているものがあるので、好適にはセルロースを用いる。   As polyglucose, both α-polyglucose, ie starch, and β-polyglucose, ie cellulose can be used. However, since some cellulose has a problem in processing as an industrial waste, cellulose is preferably used.

ポリグルコースの粉砕手段は特に制限されず、例えば少量であれば乳鉢を使ってすり潰してもよい。しかし、大量のポリグルコースを粉砕するには、ボールミルなどの工業的手段を使うことが好ましい。   The means for pulverizing polyglucose is not particularly limited. For example, if it is a small amount, it may be ground using a mortar. However, in order to grind a large amount of polyglucose, it is preferable to use industrial means such as a ball mill.

粉砕の程度は特に制限されないが、例えば、CuKα線を用いたX線回折測定を行い、結晶性に由来する15°、16°、23°、35°付近の明確なピークが観察されなくなるまで粉砕することが好ましい。   The degree of pulverization is not particularly limited. For example, X-ray diffraction measurement using CuKα rays is performed, and pulverization is performed until clear peaks around 15 °, 16 °, 23 °, and 35 ° derived from crystallinity are not observed. It is preferable to do.

(4) 加水分解反応
本発明では、上記で得られたスルホン化活性炭および水の存在下で加熱することによりポリグルコースを加水分解する。
(4) Hydrolysis reaction In the present invention, polyglucose is hydrolyzed by heating in the presence of the sulfonated activated carbon obtained above and water.

使用する水の量は、ポリグルコース1gに対して5mL以上、200mL以下程度とすることができる。また、使用するスルホン化活性炭の量は、セルロース1gに対して0.1g以上、5g以下程度とすればよい。   The amount of water to be used can be about 5 mL or more and 200 mL or less with respect to 1 g of polyglucose. The amount of the sulfonated activated carbon to be used may be about 0.1 g to 5 g with respect to 1 g of cellulose.

水にポリグルコースとスルホン化活性炭を加えた反応混合液は、100℃以上、230℃以下程度に加熱しつつ攪拌する。この際、水量を保つために加熱還流するか圧力をかける。反応時間は、予備実験により決定するか、反応混合液中に残留しているセルロース量やグルコース以外の水溶性成分を確認しつつ決定すればよく、また、温度にも依存するが、通常は1時間以上、50時間以下程度とする。   The reaction mixture obtained by adding polyglucose and sulfonated activated carbon to water is stirred while being heated to about 100 ° C. or more and 230 ° C. or less. At this time, in order to maintain the amount of water, heating under reflux or pressure is applied. The reaction time may be determined by a preliminary experiment, or may be determined while confirming the amount of cellulose remaining in the reaction mixture and water-soluble components other than glucose. It is set to about 50 hours or more.

なお、温度が高いほど反応効率は高くなる。よって、反応温度としては140℃以上がより好ましく、150℃以上がより好ましく、160℃以上が最も好ましい。一方、反応温度が高過ぎるとグルコースの脱水反応などの二次的な反応やセルロースの炭化など副反応が生じるおそれがあり得るので、200℃以下がより好ましく、190℃以下が最も好ましい。   In addition, reaction efficiency becomes high, so that temperature is high. Therefore, the reaction temperature is more preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and most preferably 160 ° C. or higher. On the other hand, if the reaction temperature is too high, a secondary reaction such as a dehydration reaction of glucose or a side reaction such as carbonization of cellulose may occur, so 200 ° C. or lower is more preferable, and 190 ° C. or lower is most preferable.

反応後は、スルホン化活性炭などの不溶成分を濾別した後、必要な成分を単離精製すればよい。ここで、本発明によればポリグルコースをグルコースまで効率よく加水分解することができ、従来方法に比してギ酸などのカルボン酸やフラン類、オリゴ糖などグルコース以外の水溶性成分を低減できるので、精製も効率よく進めることができる。具体的な精製方法は特に制限されないが、例えば、溶媒を減圧留去した後に、再結晶などを行えばよい。   After the reaction, insoluble components such as sulfonated activated carbon are filtered off, and then necessary components may be isolated and purified. Here, according to the present invention, polyglucose can be efficiently hydrolyzed to glucose, and water-soluble components other than glucose, such as carboxylic acids such as formic acid, furans, and oligosaccharides can be reduced as compared with conventional methods. Purification can also be carried out efficiently. The specific purification method is not particularly limited. For example, after the solvent is distilled off under reduced pressure, recrystallization or the like may be performed.

因みに、スルホン化活性炭は、繰返し、少なくとも3回使用しても触媒活性は低下しないことが実験的に確認されている。   Incidentally, it has been experimentally confirmed that sulfonated activated carbon does not decrease its catalytic activity even if it is used repeatedly at least three times.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例1
(1) 活性炭のスルホン化
市販の活性炭粉末(和光純薬工業社製,1.0g)を95%濃硫酸(20mL)に加えた。当該反応混合液を50mL容の試験管型ガラス容器に入れ、40mL/分の流量でアルゴンガスを流しつつ、5℃/分の速度で150℃まで昇温した。当該反応混合液を攪拌しつつ150℃で16時間反応させた。反応混合液を常温まで放冷した後、スルホン化された活性炭を濾別した。得られた活性炭を80℃の蒸留水(3L)で洗浄した。得られたスルホン化活性炭を濾別し、恒温乾燥機により乾燥した。
Example 1
(1) Sulfonation of activated carbon Commercial activated carbon powder (Wako Pure Chemical Industries, 1.0 g) was added to 95% concentrated sulfuric acid (20 mL). The reaction mixture was placed in a 50 mL test tube glass container and heated to 150 ° C. at a rate of 5 ° C./min while flowing argon gas at a flow rate of 40 mL / min. The reaction mixture was reacted at 150 ° C. for 16 hours with stirring. After the reaction mixture was allowed to cool to room temperature, the sulfonated activated carbon was filtered off. The obtained activated carbon was washed with distilled water (3 L) at 80 ° C. The obtained sulfonated activated carbon was separated by filtration and dried by a constant temperature dryer.

上記スルホン化活性炭の比表面積を、比表面積細孔分布測定装置(ユアサアイオニクス社製,製品名「NOVA1200」)を使ってBET法で測定した。また、活性炭に導入されたスルホン酸基の量を、CHNS元素分析装置(サーモフィニガン社製,製品名「Flash EA1112」)を使って蛍光X線分析で測定した。さらに、上記スルホン化活性炭(20mg)を0.01M酢酸ナトリウム水溶液(10mL)に加えた後に、0.005M塩酸水溶液を使って中和滴定することによって、上記スルホン化活性炭表面の全酸基量を求めた。これらの測定結果を表1に示す。   The specific surface area of the sulfonated activated carbon was measured by a BET method using a specific surface area pore distribution measuring device (manufactured by Yuasa Ionics, product name “NOVA1200”). The amount of sulfonic acid groups introduced into the activated carbon was measured by fluorescent X-ray analysis using a CHNS elemental analyzer (manufactured by Thermofinigan, product name “Flash EA1112”). Further, after adding the sulfonated activated carbon (20 mg) to a 0.01 M aqueous sodium acetate solution (10 mL), neutralization titration with a 0.005 M aqueous hydrochloric acid solution was performed to reduce the total amount of acid groups on the surface of the sulfonated activated carbon. Asked. These measurement results are shown in Table 1.

(2) セルロースの粉砕
市販のセルロース(Fulka社製,20g)を、ジルコニア製ボール(直径:20mm,総重量:1.8kg)と共にジルコニア製ポットミル(2000mL容)に入れ、回転数60rpmで48時間粉砕を行った。
(2) Grinding of cellulose Commercially available cellulose (Fulka, 20 g) was placed in a zirconia pot mill (2000 mL) together with zirconia balls (diameter: 20 mm, total weight: 1.8 kg), and at a rotational speed of 60 rpm for 48 hours. Grinding was performed.

(3) 加水分解反応
テフロン(登録商標)ライニング製の25mL容オートクレーブ装置の中へ、粉砕した上記セルロース(Fulka社製,45mg)、上記スルホン化活性炭(50mg)および蒸留水(5mL)を加え、攪拌しつつ150℃で24時間反応させた。反応混合液を常温まで冷却した後、スルホン化活性炭などの不溶成分を除去した。
(3) Hydrolysis reaction Into a 25 mL autoclave device manufactured by Teflon (registered trademark) lining, the pulverized cellulose (manufactured by Fulka, 45 mg), the sulfonated activated carbon (50 mg) and distilled water (5 mL) were added. The mixture was reacted at 150 ° C. for 24 hours with stirring. After cooling the reaction mixture to room temperature, insoluble components such as sulfonated activated carbon were removed.

得られた反応液について、HPLCにより有機酸とグルコースの収率(%)を測定し、全有機体炭素計(島津製作所社製,製品名「TOC5000A」)によりグルコースを含む全ての可溶化物の収率(%)を測定し、また、イオンクロマトグラフィにより溶出スルホン酸の濃度を測定した。結果を表1に示す。なお、グルコースの収率(%)は、セルロースが全てグルコースまで分解された場合に対する割合を示し、全可溶化物の収率は反応後に水中に存在する水溶性有機化合物の総量に対する割合を示し、低分子酸の収率は反応後に水中に存在する水溶性有機化合物の総量に対するギ酸、グリコール酸、酢酸の割合を示す。   About the obtained reaction liquid, the yield (%) of organic acid and glucose was measured by HPLC, and all the solubilized products containing glucose were measured with a total organic carbon meter (manufactured by Shimadzu Corporation, product name “TOC5000A”). The yield (%) was measured, and the concentration of eluted sulfonic acid was measured by ion chromatography. The results are shown in Table 1. In addition, the yield (%) of glucose shows the ratio with respect to the case where all the cellulose is decomposed to glucose, and the yield of all solubilizates shows the ratio to the total amount of water-soluble organic compounds present in water after the reaction, The yield of low molecular acid indicates the ratio of formic acid, glycolic acid and acetic acid to the total amount of water-soluble organic compounds present in water after the reaction.

実施例2
上記実施例1において、洗浄後のスルホン化活性炭を水(20mL)に加え、200℃、1.6MPaで3時間水熱処理した後に濾過と洗浄を行った以外は同様にして実験を行った。結果を表1に示す。
Example 2
In Example 1 above, the experiment was conducted in the same manner except that the washed sulfonated activated carbon was added to water (20 mL), subjected to hydrothermal treatment at 200 ° C. and 1.6 MPa for 3 hours, and then filtered and washed. The results are shown in Table 1.

比較例1
上記実施例1において、スルホン化活性炭の代わりに未処理の市販活性炭(和光純薬工業社製)を用いた以外は同様にして実験を行った。結果を表1に示す。
Comparative Example 1
In Example 1 above, an experiment was performed in the same manner except that untreated commercial activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of sulfonated activated carbon. The results are shown in Table 1.

比較例2
上記実施例1において、スルホン化活性炭の代わりに0.01M希硫酸を用いた以外は同様にして実験を行った。結果を表1に示す。
Comparative Example 2
In Example 1, the same experiment was performed except that 0.01 M dilute sulfuric acid was used instead of the sulfonated activated carbon. The results are shown in Table 1.

比較例3
上記実施例1において、スルホン化活性炭の代わりに陽イオン交換樹脂(オルガノ社製,アンバーリスト(登録商標)15)を用いた以外は同様にして実験を行った。結果を表1に示す。
Comparative Example 3
The experiment was performed in the same manner as in Example 1 except that a cation exchange resin (manufactured by Organo Corporation, Amberlyst (registered trademark) 15) was used instead of the sulfonated activated carbon. The results are shown in Table 1.

上記結果のとおり、スルホン化していない活性炭を用いた比較例1と陽イオン交換樹脂を用いた比較例3では、グルコースの生成量が十分ではない。特に陽イオン交換樹脂を用いた場合では、グルコース以外の可溶成分が多く生成している。また、希硫酸を用いた比較例2では、グルコースの生成量は比較的多いものの、グルコース以外の可溶成分も多く生成している。これは、反応混合液中に存在する硫酸イオンによって、副反応が起こった結果であると考えられる。   As shown in the above results, the amount of glucose produced is not sufficient in Comparative Example 1 using activated carbon that is not sulfonated and Comparative Example 3 using cation exchange resin. In particular, when a cation exchange resin is used, many soluble components other than glucose are generated. In Comparative Example 2 using dilute sulfuric acid, although the amount of glucose produced is relatively large, many soluble components other than glucose are also produced. This is considered to be a result of a side reaction caused by sulfate ions present in the reaction mixture.

一方、スルホン化活性炭を用いた実施例1〜2では、グルコース生成量も高い上に、グルコース以外の可溶成分も比較例に比べて明らかに少ない。特に、水熱処理を施したスルホン化活性炭を用いた実施例2では、グルコース以外の可溶成分が顕著に少ない。これは、加水分解反応中に遊離するスルホン酸基が少ないことから、副反応が顕著に抑制されている結果であると考えられる。   On the other hand, in Examples 1 and 2 using the sulfonated activated carbon, the amount of glucose produced is high, and the soluble components other than glucose are clearly less than in the comparative example. In particular, in Example 2 using sulfonated activated carbon subjected to hydrothermal treatment, there are significantly less soluble components other than glucose. This is considered to be the result that side reactions are remarkably suppressed because there are few sulfonic acid groups released during the hydrolysis reaction.

実施例3 反応温度の検討
上記実施例2において、温度を130〜180℃に変更した以外は同様にして加水分解反応を行い、生成したグルコースの収率と全可溶化物の収率を測定した。但し、反応温度を180℃にした場合の反応時間は3時間とした。また、触媒を用いなかった場合と0.01M希硫酸を用いた場合についても同様に実験を行った。スルホン化活性炭を用いた結果を図1(1)に、触媒を用いなかった結果を図1(2)に、希硫酸を用いた結果を図1(3)に示す。
Example 3 Examination of reaction temperature In Example 2 above, the hydrolysis reaction was carried out in the same manner except that the temperature was changed to 130 to 180 ° C., and the yield of produced glucose and the yield of all solubilizates were measured. . However, the reaction time when the reaction temperature was 180 ° C. was 3 hours. Further, the same experiment was conducted when no catalyst was used and when 0.01 M dilute sulfuric acid was used. FIG. 1 (1) shows the results using sulfonated activated carbon, FIG. 1 (2) shows the results using no catalyst, and FIG. 1 (3) shows the results using dilute sulfuric acid.

図1のとおり、反応温度が高いほど収率は向上するといえる。しかし、触媒を用いない場合は収率が低い上に、グルコース以外の可溶化物も生成している。また、希硫酸を用いた場合には、グルコース生成量は多いが、グルコース以外の可溶化物の生成量も多い。それに対してスルホン化活性炭を用いた本発明例では、グルコース生成量が多い一方で、グルコース以外の可溶化物の生成量が少ない。これは、加水分解反応中におけるスルホン酸基の脱離が少ないことから、副反応が抑制されていることによると考えられる。   As shown in FIG. 1, it can be said that the higher the reaction temperature, the higher the yield. However, when a catalyst is not used, the yield is low and solubilized products other than glucose are also produced. Further, when dilute sulfuric acid is used, the amount of glucose produced is large, but the amount of solubilized product other than glucose is also large. On the other hand, in the example of the present invention using sulfonated activated carbon, the amount of glucose produced is large, while the amount of lysate other than glucose is small. This is considered to be due to the fact that side reactions are suppressed because there is little elimination of sulfonic acid groups during the hydrolysis reaction.

実施例4 ポリグルコースの事前処理
市販のセルロース(Fulka社製,20g)を、ジルコニア製ボール(直径:20mm,総重量:1.8kg)と共にジルコニア製ポットミル(2000mL容)に入れ、回転数60rpmで48時間粉砕を行った。ボールミル処理は室温で行った。粉砕前と、粉砕開始から24時間後、48時間後、144時間後にセルロースを取り出し、CuKα線を用いたX線回折分析を行った。また、各セルロースを用いて、上記実施例1と同様に加水分解反応を行い、生成したグルコースの収率を求めた。X線回折パターンを図2(1)に、グルコースの収率を図2(2)に示す。
Example 4 Pretreatment of polyglucose Commercial cellulose (Fulka, 20 g) was placed in a zirconia pot mill (2000 mL) together with a zirconia ball (diameter: 20 mm, total weight: 1.8 kg) at a rotation speed of 60 rpm. Milling was performed for 48 hours. Ball milling was performed at room temperature. Cellulose was taken out before pulverization, and after 24 hours, 48 hours and 144 hours from the start of pulverization, and X-ray diffraction analysis using CuKα rays was performed. In addition, each cellulose was subjected to a hydrolysis reaction in the same manner as in Example 1, and the yield of the produced glucose was determined. FIG. 2 (1) shows the X-ray diffraction pattern, and FIG. 2 (2) shows the yield of glucose.

また、ジルコニア製ボールの代わりにステンレス製ボール(直径:10mm,総重量:1.0kg)とステンレス製ポットミル(1000mL容)を用いて6〜288時間の粉砕を行い、同様の実験を行った。X線回折パターンを図3(1)に、グルコースの収率を図3(2)に示す。   Further, a similar experiment was conducted by grinding for 6 to 288 hours using a stainless steel ball (diameter: 10 mm, total weight: 1.0 kg) and a stainless steel pot mill (1000 mL capacity) instead of the zirconia balls. The X-ray diffraction pattern is shown in FIG. 3 (1), and the yield of glucose is shown in FIG. 3 (2).

図2〜3のとおり、ポリグルコースを事前に粉砕しておくほど、加水分解反応により得られるグルコースの収率は高くなる。また、ポリグルコースのX線回折パターンとグルコース収率とを比較すると、結晶性に由来する15°、16°、23°、35°付近のピークが明確に観察されなくなったポリグルコースを用いると、グルコースの収率は向上することが分かる。よって、本発明において、結晶性が無くなる程度までポリグルコースを事前に粉砕しておけば、より効率的にグルコースが得られることが明らかになった。   As FIG. 2 and FIG. 3 show, the yield of glucose obtained by the hydrolysis reaction increases as the polyglucose is pulverized in advance. Further, when comparing the X-ray diffraction pattern of polyglucose and the glucose yield, using polyglucose in which peaks near 15 °, 16 °, 23 °, and 35 ° derived from crystallinity are not clearly observed, It can be seen that the yield of glucose is improved. Therefore, in the present invention, it has been clarified that if polyglucose is pulverized in advance to such an extent that the crystallinity is lost, glucose can be obtained more efficiently.

実施例5 白金担持スルホン化活性炭による反応
白金は市販の活性炭に含浸法により担持した。具体的には、H2PtCl6・6H2O(70mg)を含む水溶液(10mL)に市販の活性炭粉末(和光純薬工業社製,5g)を加え、よく攪拌した後に、攪拌しながら湯浴を用いて水分を蒸発させた。次いで、恒温乾燥機により一晩乾燥した後、水素気流中で昇温時間2℃/分で300℃に加熱して6時間保持することにより、白金が5wt%担持された活性炭を得た。この活性炭を、上記実施例1(1)と同様の方法でスルホン化し、さらに上記実施例2と同様の方法で水熱処理した。
Example 5 Reaction with platinum-supported sulfonated activated carbon Platinum was supported on commercially available activated carbon by an impregnation method. Specifically, a commercially available activated carbon powder (Wako Pure Chemical Industries, 5 g) was added to an aqueous solution (10 mL) containing H 2 PtCl 6 .6H 2 O (70 mg), and after stirring well, a hot water bath was stirred. To evaporate the water. Next, after drying overnight with a thermostatic dryer, the mixture was heated to 300 ° C. at a temperature rising time of 2 ° C./min in a hydrogen stream and held for 6 hours to obtain activated carbon carrying 5 wt% platinum. This activated carbon was sulfonated by the same method as in Example 1 (1) and further hydrothermally treated by the same method as in Example 2.

上記白金担持スルホン化活性炭と、セルロースの代わりにでんぷん(和光純薬社製,溶性デンプン)を使い、反応温度を120℃とした以外は上記実施例1(3)と同様にして、加水分解反応を行った。当該加水分解反応前と、所定時間後におけるそれぞれの反応混合液について、HPLCによりでんぷん分解物の量を分析した。また、比較のために、白金を担持していないスルホン化活性炭を用い、同様に実験を行った。結果を図4に示す。   Hydrolysis reaction in the same manner as in Example 1 (3) except that the platinum-supported sulfonated activated carbon and starch (manufactured by Wako Pure Chemical Industries, Ltd., soluble starch) were used instead of cellulose and the reaction temperature was 120 ° C. Went. For each reaction mixture before and after the hydrolysis reaction, the amount of starch degradation product was analyzed by HPLC. For comparison, a similar experiment was performed using sulfonated activated carbon not supporting platinum. The results are shown in FIG.

図4のとおり、白金担持スルホン化活性炭を使った場合では、グルコースに加えてグルコン酸も収率良く得られた。これは、触媒が二元機能を有し、加水分解反応と選択的酸化反応の両方を促進したことによると考えられる。   As shown in FIG. 4, when platinum-supported sulfonated activated carbon was used, gluconic acid was also obtained in good yield in addition to glucose. This is considered to be due to the fact that the catalyst has a dual function and promotes both the hydrolysis reaction and the selective oxidation reaction.

ポリグルコースの加水分解反応における反応温度の影響を試験した結果を示す図である。図1(1)はスルホン化活性炭を用いた結果、図1(2)は触媒を用いなかった結果、図1(3)は希硫酸を用いた結果を示す。It is a figure which shows the result of having tested the influence of the reaction temperature in the hydrolysis reaction of polyglucose. FIG. 1 (1) shows the result using sulfonated activated carbon, FIG. 1 (2) shows the result using no catalyst, and FIG. 1 (3) shows the result using diluted sulfuric acid. (1)粉砕処理したポリグルコースのX線回折パターンと、(2)粉砕したポリグルコースを、スルホン化活性炭を用いて加水分解反応を行った場合におけるグルコース収率を示す図である。(1) It is a figure which shows the glucose yield in the case of performing a hydrolysis reaction using the sulfonated activated carbon for the X-ray-diffraction pattern of the pulverized polyglucose, and (2) the pulverized polyglucose. (1)粉砕処理したポリグルコースのX線回折パターンと、(2)粉砕したポリグルコースを、スルホン化活性炭を用いて加水分解反応を行った場合におけるグルコース収率を示す図である。(1) It is a figure which shows the glucose yield in the case of performing a hydrolysis reaction using the sulfonated activated carbon for the X-ray-diffraction pattern of the pulverized polyglucose, and (2) the pulverized polyglucose. スルホン化活性炭と白金担持スルホン化活性炭を用いてでんぷんを加水分解した場合における分解物の収率を示す図である。(1)はスルホン化活性炭を用いた結果を示し、(2)は白金担持スルホン化活性炭を用いた結果を示す。各図において、◆はグルコースの収率を示し、△はオリゴ糖(主にマルトース)の収率を示し、■はグルコン酸の収率を示す。It is a figure which shows the yield of the decomposition product when a starch is hydrolyzed using sulfonated activated carbon and platinum carrying | support sulfonated activated carbon. (1) shows the results using sulfonated activated carbon, and (2) shows the results using platinum-supported sulfonated activated carbon. In each figure, ♦ indicates the yield of glucose, Δ indicates the yield of oligosaccharide (mainly maltose), and ■ indicates the yield of gluconic acid.

Claims (7)

グルコースを製造するための方法であって、
活性炭を濃硫酸または発煙硫酸中で加熱することによりスルホン化活性炭を得る工程;
スルホン化活性炭を水熱処理する工程;および
水熱処理したスルホン化活性炭および水の存在下で加熱することによりポリグルコースを加水分解する工程;
を含むことを特徴とするグルコースの製造方法。
A method for producing glucose comprising the steps of:
Obtaining sulfonated activated carbon by heating the activated carbon in concentrated sulfuric acid or fuming sulfuric acid;
Hydrothermally treating the sulfonated activated carbon; and
Hydrolyzing a polyglucose by heating in the presence of water heat-treated sulfonated activated carbon and water;
A method for producing glucose, comprising:
水熱処理工程において、スルホン化活性炭に水を加えて150℃以上、250℃以下で且つ0.1MPa以上、5MPa以下で処理する請求項1に記載の製造方法。The method according to claim 1, wherein in the hydrothermal treatment step, water is added to the sulfonated activated carbon and the treatment is performed at 150 ° C or higher and 250 ° C or lower and 0.1 MPa or higher and 5MPa or lower. ポリグルコースの加水分解工程前に、ポリグルコースを粉砕する工程を含む請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 including the process of grind | pulverizing polyglucose before the hydrolysis process of polyglucose. 活性炭として、貴金属触媒が担持されているものを用いる請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the activated carbon uses a noble metal catalyst supported thereon. ポリグルコースの加水分解工程における反応温度を140℃以上、230℃以下にする請求項1〜4のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-4 which make reaction temperature in the hydrolysis process of polyglucose 140 degreeC or more and 230 degrees C or less. 活性炭を濃硫酸または発煙硫酸中で加熱する工程;および
濃硫酸または発煙硫酸中で加熱した活性炭を水熱処理する工程
を含むことを特徴とするスルホン化活性炭の製造方法。
Heating the activated carbon in concentrated sulfuric acid or fuming sulfuric acid ; and
A method for producing a sulfonated activated carbon, comprising a step of hydrothermally treating activated carbon heated in concentrated sulfuric acid or fuming sulfuric acid .
水熱処理工程において、スルホン化活性炭に水を加えて150℃以上、250℃以下で且つ0.1MPa以上、5MPa以下で処理する請求項6に記載の製造方法。 The method according to claim 6, wherein in the hydrothermal treatment step, water is added to the sulfonated activated carbon and treated at 150 ° C. or more and 250 ° C. or less and 0.1 MPa or more and 5 MPa or less .
JP2008046736A 2008-02-27 2008-02-27 Method for producing glucose and method for producing sulfonated activated carbon Active JP5013531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046736A JP5013531B2 (en) 2008-02-27 2008-02-27 Method for producing glucose and method for producing sulfonated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046736A JP5013531B2 (en) 2008-02-27 2008-02-27 Method for producing glucose and method for producing sulfonated activated carbon

Publications (2)

Publication Number Publication Date
JP2009201405A JP2009201405A (en) 2009-09-10
JP5013531B2 true JP5013531B2 (en) 2012-08-29

Family

ID=41144291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046736A Active JP5013531B2 (en) 2008-02-27 2008-02-27 Method for producing glucose and method for producing sulfonated activated carbon

Country Status (1)

Country Link
JP (1) JP5013531B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2481479B1 (en) 2009-09-25 2018-09-26 National University Corporation Hokkaido University Catalyst for hydrolysis of cellulose or hemicellulose, and process for production of sugar-containing solution using the catalyst
EP2495233B1 (en) 2009-10-29 2019-05-08 Kabushiki Kaisha Sangi Method for synthesizing unsaturated carboxylic acid and/or derivative of same
JP2011132112A (en) * 2009-11-30 2011-07-07 Equos Research Co Ltd Sulfonated porous carbon
JP5788905B2 (en) * 2010-01-15 2015-10-07 カリフォルニア インスティチュート オブ テクノロジー Sugar isomerization
JP4894055B2 (en) * 2010-01-18 2012-03-07 英季 柴田 Catalyst for cracking and carbonizing organic matter
JP5655337B2 (en) * 2010-03-26 2015-01-21 株式会社エクォス・リサーチ Method for controlling Hammett acidity function of sulfonated carbon
JP2011212567A (en) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst
CN101837969B (en) * 2010-05-10 2011-09-21 北京科技大学 Method for preparing nitrogenous porous carbon material for electrode material of super-capacitor
JP5544282B2 (en) * 2010-11-29 2014-07-09 田中貴金属工業株式会社 Biomass raw material saccharification catalyst
WO2012117567A1 (en) * 2011-02-28 2012-09-07 Shibata Hideki Catalyst for decomposition and carbonization of organic substances
EP2689862B1 (en) * 2011-03-22 2018-07-04 Showa Denko K.K. Pre-treatment method for plant biomass hydrolysis reaction raw materials and plant biomass saccharification method
JP6140529B2 (en) * 2012-05-28 2017-05-31 日本食品化工株式会社 Catalyst composition for sugar condensation reaction
JPWO2014007295A1 (en) 2012-07-03 2016-06-02 昭和電工株式会社 Method for decomposing plant biomass and method for producing glucose
WO2014097801A1 (en) * 2012-12-18 2014-06-26 昭和電工株式会社 Plant-biomass hydrolysis method
WO2014097799A1 (en) * 2012-12-18 2014-06-26 昭和電工株式会社 Plant-biomass hydrolysis method
WO2014125672A1 (en) * 2013-02-13 2014-08-21 独立行政法人国立高等専門学校機構 Carbon-based material and method for producing same
WO2014168697A1 (en) 2013-04-11 2014-10-16 California Institute Of Technology Conversion of glucose to sorbose
JP2014195803A (en) * 2014-03-27 2014-10-16 国立大学法人大阪大学 Composite catalyst for microwave reaction field, method for producing the same, and method for producing ester using the catalyst
CN107045946A (en) * 2017-04-01 2017-08-15 苏州海凌达电子科技有限公司 A kind of preparation method and applications of modified calcite complex carbon material
CN107093524B (en) * 2017-04-05 2019-08-06 苏州海凌达电子科技有限公司 A kind of preparation method and applications of electrode material
CN106847532A (en) * 2017-04-07 2017-06-13 苏州海凌达电子科技有限公司 A kind of preparation method of the high performance material for ultracapacitor
CN106981372A (en) * 2017-04-14 2017-07-25 苏州海凌达电子科技有限公司 A kind of carbon electrode material preparation method applied to ultracapacitor
JP7038991B2 (en) * 2017-07-31 2022-03-22 学校法人 芝浦工業大学 Method for manufacturing acid group-containing amorphous carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749307B1 (en) * 1996-05-29 1998-09-04 Roquette Freres PROCESS FOR THE PREPARATION OF D-ARABITOL
JP4604194B2 (en) * 2004-11-02 2010-12-22 国立大学法人広島大学 Method for hydrolysis of cellulose using catalyst and method for producing glucose using catalyst
JP5126728B2 (en) * 2004-11-12 2013-01-23 独立行政法人産業技術総合研究所 Lignocellulosic biomass processing method
JP5263738B2 (en) * 2006-06-26 2013-08-14 国立大学法人東京工業大学 Process for producing other polysaccharides and / or monosaccharides by hydrolysis of polysaccharides

Also Published As

Publication number Publication date
JP2009201405A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5013531B2 (en) Method for producing glucose and method for producing sulfonated activated carbon
Moralı et al. Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance
Jollet et al. Non-catalyzed and Pt/γ-Al 2 O 3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose
JP4604194B2 (en) Method for hydrolysis of cellulose using catalyst and method for producing glucose using catalyst
Rajak et al. An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production
JP5633878B2 (en) Catalyst for hydrolysis of cellulose or hemicellulose, and method for producing sugar-containing liquid using the catalyst
JP5528036B2 (en) Carbon-based solid acid and method for producing the same
JP2010279255A (en) Method for saccharifying biomass
Ribeiro et al. A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob xylan)
CN111511682B (en) Activated carbon, metal-supported activated carbon using same, and hydrogenation catalyst
Rehman et al. Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw
Romero et al. Supercritical water hydrolysis of cellulosic biomass as effective pretreatment to catalytic production of hexitols and ethylene glycol over Ru/MCM-48
Xu et al. Hydrolysis of corncob using a modified carbon-based solid acid catalyst
Wang et al. Effective saccharification of holocellulose over multifunctional sulfonated char with fused ring structures under microwave irradiation
JP2019515969A (en) Ionizable polymers and their use in the treatment of biomass
JP5933578B2 (en) Method for acid-catalyzed depolymerization of cellulose
Sangib et al. Study on cellulose (96% crystalline) hydrolysis performance of sulfonated carbon catalyst in microwave-heated reactor at elevated temperatures
JP6212564B2 (en) Process for obtaining sugar alcohols having 5 to 6 carbon atoms
Tinh et al. Sustainable synthesis of cellulose-derived magnetic iron oxide/sulfonated graphene oxide-like material from corncob for conversion of hemicellulose to furfural
Rahmati et al. A hemicellulose-first approach: one-step conversion of sugarcane bagasse to xylooligosaccharides over activated carbon modified with tandem plasma and acid treatments
JP2009296919A (en) Method for liquefying cellulose-based biomass
Yan et al. Synthesis and characterization of carbon nanospheres obtained by hydrothermal carbonization of wood-derived and other saccharides
JP2013111530A (en) Catalyst for hydrolyzing plant-based material and method for producing sugar using the catalyst
Zhang et al. The effect of physical morphology and the chemical state of Ru on the catalytic properties of Ru–carbon for cellulose hydrolytic hydrogenation
Mohammed Hello et al. Modification of silica with sulfuric acid and phosphoric acid for cellulose hydrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250