JP5126728B2 - Lignocellulosic biomass processing method - Google Patents

Lignocellulosic biomass processing method Download PDF

Info

Publication number
JP5126728B2
JP5126728B2 JP2004329870A JP2004329870A JP5126728B2 JP 5126728 B2 JP5126728 B2 JP 5126728B2 JP 2004329870 A JP2004329870 A JP 2004329870A JP 2004329870 A JP2004329870 A JP 2004329870A JP 5126728 B2 JP5126728 B2 JP 5126728B2
Authority
JP
Japan
Prior art keywords
lignocellulosic biomass
cellulose
polymer compound
saccharification
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004329870A
Other languages
Japanese (ja)
Other versions
JP2006136263A (en
Inventor
剛 坂木
則行 山田
貴士 遠藤
宏之 井上
伸一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004329870A priority Critical patent/JP5126728B2/en
Publication of JP2006136263A publication Critical patent/JP2006136263A/en
Application granted granted Critical
Publication of JP5126728B2 publication Critical patent/JP5126728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、バイオマス、特にリグノセルロース系バイオマスを原料として効率よく糖類を製造するためのリグノセルロース系バイオマス処理方法に関するものである。   The present invention relates to a method for treating lignocellulosic biomass for efficiently producing saccharides from biomass, particularly lignocellulosic biomass.

バイオマスを原料とし、これに蒸煮処理、薬剤処理、粉砕処理又は爆砕処理を施したのち、加圧熱水により加水分解処理したり、酵素糖化により糖類を製造することは知られている。   It is known that biomass is used as a raw material and is subjected to steaming, chemical treatment, pulverization or explosion treatment, followed by hydrolysis with pressurized hot water or production of saccharides by enzymatic saccharification.

ところで、リグノセルロース系バイオマスは、主としてセルロース、ヘミセルロース及びリグニンから構成されており、糖類の原料として用いる場合には、通常セルロースやヘミセルロースと強固に結合しているリグニンを分離するために、糖化処理に先立って高温高圧での蒸煮処理や薬剤処理が行われており、これまでにそのための多くの方法が提案されている。   By the way, lignocellulosic biomass is mainly composed of cellulose, hemicellulose, and lignin. When used as a raw material for saccharides, lignocellulosic biomass is usually subjected to saccharification treatment in order to separate lignin that is strongly bonded to cellulose or hemicellulose. Prior to this, steaming treatment and chemical treatment at high temperature and high pressure have been performed, and many methods have been proposed so far.

例えば、バイオマスを高温高圧下で蒸煮処理したのち、瞬時に大気又はその付近の低温低圧条件下に放出して爆砕し、爆砕物を水及び有機溶剤で抽出し、水抽出分として単糖類を、有機抽出分としてリグニンを分離し、抽出残渣としてセルロースを得る方法(特許文献1参照)が提案されている。
しかしながら、この方法では、ヘミセルロースは、過度に熱分解してしまい、糖類として回収することができないという欠点がある。
For example, after biomass is steamed under high temperature and high pressure, it is instantaneously released under the low temperature and low pressure conditions in the atmosphere or in the vicinity to explode, the explosive is extracted with water and an organic solvent, and a monosaccharide is extracted as a water extract. A method of separating lignin as an organic extract and obtaining cellulose as an extraction residue has been proposed (see Patent Document 1).
However, this method has a drawback that hemicellulose is excessively thermally decomposed and cannot be recovered as a saccharide.

また、このような欠点を改良し、ヘミセルロースを有利に利用する目的で、リグノセルロース系バイオマスを穏やかな条件下で蒸煮し、水を加えて可溶分を抽出した後で抽出残渣を蒸煮処理し、爆砕処理に付す方法(特許文献2参照)も提案されている。
しかしながら、この方法においては、爆砕処理に加えて、再度の蒸煮処理を必要とするため操作が煩雑になるのを免れない。
In addition, in order to improve these disadvantages and to make better use of hemicellulose, lignocellulosic biomass is steamed under mild conditions, water is added to extract soluble components, and the extraction residue is steamed. In addition, a method (see Patent Document 2) that is subjected to a blasting treatment has also been proposed.
However, in this method, it is inevitable that the operation becomes complicated because a steaming process is required in addition to the explosion process.

その外、本発明者らも、セルロースを200〜300℃の加圧熱水により加水分解して水溶性オリゴ糖を製造する方法(特許文献3参照)、セルロースを240〜340℃の加圧熱水により加水分解して非水溶性多糖類を製造する方法(特許文献4参照)、セルロースを200〜300℃で加水分解して水溶性オリゴ糖を生成させ、次いでこれを酵素分解して単糖類を製造する方法(特許文献5参照)を提案しているが、これらはいずれもセルロースを原料とするものであって、リグノセルロース系バイオマスを原料としたものではない。   In addition, the present inventors also prepared a method for producing water-soluble oligosaccharides by hydrolyzing cellulose with pressurized hot water at 200 to 300 ° C. (see Patent Document 3), and pressurized heat at 240 to 340 ° C. for cellulose. A method of producing a water-insoluble polysaccharide by hydrolysis with water (see Patent Document 4), cellulose is hydrolyzed at 200 to 300 ° C. to produce a water-soluble oligosaccharide, and then this is enzymatically decomposed to produce a monosaccharide Have been proposed (see Patent Document 5), but these are all made from cellulose and not lignocellulosic biomass.

他方、リグニンとセルロースを含有するパルプスラッジのような有機分を水熱反応によりセルロース成分を水に可溶な糖類に加水分解し、その生成物を固液分離して得た液分から糖類を回収する方法(特許文献6参照)も提案されているが、この方法においてはリグニンは分解されずに固形分として残存し、加水分解は行われていないことが知られている。   On the other hand, organic components such as pulp sludge containing lignin and cellulose are hydrolyzed to hydrolyze the cellulose component into water-soluble saccharides, and the product is recovered from the liquid obtained by solid-liquid separation. However, in this method, it is known that lignin remains as a solid content without being decomposed and is not hydrolyzed.

特開昭59−204997号公報(特許請求の範囲その他)JP 59-204997 (Claims and others) 特公平7−121963号公報(特許請求の範囲その他)Japanese Patent Publication No. 7-121963 (Claims and others) 特開平10−327900号公報(特許請求の範囲その他)JP-A-10-327900 (Claims and others) 特開2000−186102号公報(特許請求の範囲その他)JP 2000-186102 A (Claims and others) 特開平10−327900号公報(特許請求の範囲その他)JP-A-10-327900 (Claims and others) 特開2001−79595号公報(特許請求の範囲その他)JP 2001-79595 A (Claims and others)

本発明は、リグノセルロース系バイオマスを原料として効率よく糖類を製造するための方法を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a method for efficiently producing saccharides using lignocellulosic biomass as a raw material.

本発明者らは、リグノセルロース系バイオマスを原料として効率よく糖類を製造する方法を開発するために、種々研究を重ねた結果、セルロースは、通常繊維状のものが集合して結晶しやすい構造を形成し、さらにこの結晶化した構造のものが集ってミクロフィブリルを形成しているため、酵素の作用を受けにくい構造になっているので、その酵素糖化反応を促進するには、セルロースの結晶化度を低下させることが必要であること、またセルロースにはリグニンが強固に結合している上に、それを構成するミクロフィブリルの周囲でヘミセルロースが細胞壁を形成しており、このヘミセルロースも酵素糖化反応を阻害する原因となるので、セルロースの酵素糖化反応に際しては、あらかじめこのヘミセルロースを取り除いておくのが望ましいこと、及び機械的な粉砕処理すなわちメカノケミカル処理によると、通常の乾式粉砕により得られるマイクロオーダーのセルロース微粒子がより微細化して粉砕時間とともにセルロースの結晶性が次第に低下し、最後は重合度220程度にまで微細化し得ること、この際揮発性有機溶剤、親和性高分子化合物の添加により再凝集を抑制し得ることを見出し、これらの知見に基づき本発明をなすに至った。   As a result of repeated researches to develop a method for efficiently producing saccharides using lignocellulosic biomass as a raw material, the present inventors have a structure in which cellulose is usually easily aggregated and fibrous. In order to accelerate the enzymatic saccharification reaction, cellulose crystals are formed because the structure of the crystallized structure is gathered to form microfibrils and form microfibrils. It is necessary to reduce the degree of conversion, and lignin is firmly bound to cellulose, and hemicellulose forms a cell wall around the microfibrils that make it, and this hemicellulose is also enzymatically saccharified. It is desirable to remove this hemicellulose in advance for the enzymatic saccharification reaction of cellulose, as this may cause a reaction inhibition. In addition, according to mechanical pulverization treatment, that is, mechanochemical treatment, cellulose fine particles of micro order obtained by ordinary dry pulverization become finer, and the crystallinity of cellulose gradually decreases with the pulverization time, and finally the degree of polymerization is about 220. It has been found that re-aggregation can be suppressed by adding a volatile organic solvent and an affinity polymer compound, and the present invention has been made based on these findings.

すなわち、本発明は、リグノセルロース系バイオマスから糖類を製造する方法であって、温度制御した加圧熱水により、リグノセルロース系バイオマスの構成成分のセルロースからそれ以外の構成成分を分離除去する工程である熱水処理工程、その熱水処理物を絶乾にした後、機械的粉砕処理することにより、セルロースを粉砕するとともにセルロースの結晶化度が10%以下に低下するまでメカノケミカル的に活性化させる機械的粉砕処理工程、及び、その機械的粉砕物を酵素で糖化処理する糖化処理工程を含むことを特徴とするリグノセルロース系バイオマス処理方法を提供するものである。   That is, the present invention is a method for producing saccharides from lignocellulosic biomass, in which the other constituent components are separated and removed from cellulose as a constituent component of lignocellulosic biomass by temperature-controlled pressurized hot water. A hydrothermal treatment process, after the hydrothermal treatment is completely dried, and mechanically pulverized to mechanically activate the cellulose until it is crushed and the crystallinity of the cellulose is reduced to 10% or less. And a saccharification treatment step of saccharifying the mechanically pulverized product with an enzyme.

そして、このリグノセルロース系バイオマス処理方法においては、前記熱水処理物を絶乾にした後、揮発性有機溶媒又は親和性高分子化合物の存在下で機械的粉砕処理することが好ましく、前記揮発性有機溶媒が揮発性有機ヒドロキシル化合物であることが好ましく、前記親和性高分子化合物が水溶性の天然高分子化合物又は合成高分子化合物であることが好ましい。   And in this lignocellulosic biomass treatment method, after the hydrothermally treated product is completely dried, it is preferably mechanically pulverized in the presence of a volatile organic solvent or an affinity polymer compound. The organic solvent is preferably a volatile organic hydroxyl compound, and the affinity polymer compound is preferably a water-soluble natural polymer compound or synthetic polymer compound.

次に、本発明を詳細に説明する。
本発明のリグノセルロース系バイオマスの処理方法は、熱水処理工程、機械的粉砕処理工程及び糖化処理工程の3工程を含んでいる。
Next, the present invention will be described in detail.
The method for treating lignocellulosic biomass of the present invention includes three steps of a hydrothermal treatment step, a mechanical pulverization treatment step, and a saccharification treatment step.

本発明方法においては、原料としてリグノセルロース系バイオマスを用いるが、このバイオマスとは本来化石燃料を除いた生物由来の有機資源を意味し、したがって、リグノセルロース系バイオマスとは、リグノセルロースを主成分とするバイオマスを意味する。
このリグノセルロース系バイオマスの代表的なものとしては、木質系材料例えば木材、イナワラ、ムギワラ、バガス、竹、パルプなどやこれらから生じる廃棄物例えば古紙などが挙げられる。
In the method of the present invention, lignocellulosic biomass is used as a raw material, and this biomass originally means a biological organic resource excluding fossil fuel, and therefore lignocellulosic biomass is mainly composed of lignocellulose. Means biomass.
Typical examples of this lignocellulosic biomass include woody materials such as wood, inawara, wheat straw, bagasse, bamboo, and pulp, and waste products such as waste paper.

本発明方法で用いるこれらのリグノセルロース系バイオマスは乾燥物でも、また湿潤物でもよいが、処理速度を高めるためにあらかじめ100〜1000μmのサイズに粗粉砕又は細断して用いるのが好ましい。この粗粉砕又は細断は、ボールミル、振動ミル、カッターミル、ハンマーミル、ウィレーミル、ジェットミルなど各種材料の粗粉砕や細断に慣用されている機械を用いて行うことができる。   These lignocellulosic biomass used in the method of the present invention may be a dried product or a wet product, but it is preferably used after coarsely pulverizing or chopping to a size of 100 to 1000 μm in order to increase the processing speed. The rough pulverization or chopping can be performed using a machine commonly used for coarse pulverization or chopping of various materials such as a ball mill, a vibration mill, a cutter mill, a hammer mill, a wheel mill, and a jet mill.

次に、上記の熱水処理工程は、原料として用いるリグノセルロース系バイオマスを加圧熱水で処理して、リグノセルロース系バイオマスの構成成分であるセルロース以外の成分である可溶化が容易な細胞内含有成分、ヘミセルロース及び一部のリグニンを分離回収するための工程であり、これには室温ないし140℃の範囲の温度と飽和蒸気圧の1.0〜3.0倍(約1〜3MPa)の圧力をもつ加圧熱水と接触させて、先ず細胞含有成分を抽出したのち、140〜220℃の範囲の温度と飽和蒸気圧の1.0〜3.0倍の圧力をもつ加圧熱水と接触させてヘミセルロース成分を別に分離回収する2段階方式と、140〜220℃の範囲の温度と約1〜3MPaの範囲の圧力をもつ加圧熱水と接触させて細胞内含有成分とヘミセルロースとを同時に分離回収する方式とがある。   Next, in the above hydrothermal treatment step, lignocellulosic biomass to be used as a raw material is treated with pressurized hot water, and intracellular components that are components other than cellulose that is a constituent component of lignocellulosic biomass can be easily solubilized. It is a process for separating and recovering the contained component, hemicellulose and some lignin, which includes a temperature in the range of room temperature to 140 ° C. and 1.0 to 3.0 times the saturated vapor pressure (about 1 to 3 MPa). First, cell-containing components are extracted by contacting with pressurized hot water having pressure, and then pressurized hot water having a temperature in the range of 140 to 220 ° C. and a pressure of 1.0 to 3.0 times the saturated vapor pressure. A two-stage system in which the hemicellulose component is separately separated and recovered by contact with the liquid, and contact with pressurized hot water having a temperature in the range of 140 to 220 ° C. and a pressure in the range of about 1 to 3 MPa. The There is a method in which at the time of separation and recovery.

この工程では、不安定なリグニンも分離回収することができる。そして、このような処理を行うことにより、セルロースに強固に結合して酵素反応を阻害するリグニンや、セルロースのミクロフィブリンの周りに細胞壁を形成して酵素反応を阻害するヘミセルロースを除去する。   In this step, unstable lignin can also be separated and recovered. And by performing such a process, the lignin which bind | bonds firmly with a cellulose and inhibits an enzyme reaction, and the hemicellulose which forms a cell wall around the microfibrin of a cellulose and inhibits an enzyme reaction are removed.

この熱水処理工程において、140℃未満で抽出される細胞含有成分は、有用な色素や生理活性成分を含むので、この画分からは各種の有用物質を分離回収することができる。一方、140〜220℃の温度範囲では、ヘミセルロースが加水分解して五単糖からなるオリゴ糖が抽出される。このオリゴ糖は、常法に従って単離することができ、機能性食品素材として利用することができる。   In this hydrothermal treatment step, the cell-containing component extracted at less than 140 ° C. contains useful pigments and physiologically active components, so various useful substances can be separated and recovered from this fraction. On the other hand, in the temperature range of 140 to 220 ° C., hemicellulose is hydrolyzed and oligosaccharides composed of pentasaccharides are extracted. This oligosaccharide can be isolated according to a conventional method and used as a functional food material.

このオリゴ糖はまた酵素分解させて、最近需要が増加している単糖類(キシロース)を製造することができる。このヘミセルロースの加水分解生成物は、そのまま水溶性オリゴ糖含有水溶液として用いることができるが、所望に応じ濃縮したり、蒸発乾燥した状態で用いることもできる。   This oligosaccharide can also be enzymatically degraded to produce a monosaccharide (xylose), which is in increasing demand recently. The hydrolyzed product of hemicellulose can be used as it is as an aqueous solution containing a water-soluble oligosaccharide, but can also be concentrated or evaporated and dried as desired.

上記の熱水処理工程では、セルロースを主成分とする処理生成物が得られるが、このものは次に機械的粉砕工程に付される。この機械的粉砕は、熱水処理により得られる生成物中のセルロースを微粉化して、その結晶化度や重合度を低下させるとともに、メカノケミカル的に活性化して、後続工程における酵素反応を容易に受けやすくする。   In the above hydrothermal treatment step, a treatment product containing cellulose as a main component is obtained, which is then subjected to a mechanical pulverization step. This mechanical pulverization pulverizes cellulose in the product obtained by hydrothermal treatment to reduce its crystallinity and polymerization degree, and it is mechanochemically activated to facilitate enzyme reaction in the subsequent process. Make it easier to receive.

この機械的粉砕は、無水処理により細胞内含有成分やヘミセルロース成分が除かれた処理物を、水が残存したままの状態で行うのが好ましい。この際の残存する水の量は、乾燥質量に基づき10〜100質量%、好ましくは20〜50質量%の範囲である。   This mechanical pulverization is preferably performed in a state where water remains in a treated product from which intracellular components and hemicellulose components have been removed by anhydrous treatment. The amount of water remaining at this time is in the range of 10 to 100% by mass, preferably 20 to 50% by mass, based on the dry mass.

この機械的粉砕は、例えば、振動ボールミル、回転ボールミル、遊星型ボールミル、ロールミル、デイスクミル、高速回転羽根型ミキサー、ホモミキサーなどを用いて行うことができる。   This mechanical pulverization can be performed using, for example, a vibration ball mill, a rotating ball mill, a planetary ball mill, a roll mill, a disk mill, a high-speed rotating blade mixer, a homomixer, or the like.

通常熱水処理物の平均粒径が10μm以下、好ましくは5μm以下になるまで行われる。粉砕処理により、熱水処理物中のセルロースの結晶化度が10%以下、好ましくは0〜5%、あるいは重合度が250以下、好ましくは220以下に低下する。これには、通常2時間以上、好ましくは4時間以上の処理時間が必要である。   Usually, it is performed until the average particle diameter of the hot water treated product is 10 μm or less, preferably 5 μm or less. By the pulverization treatment, the crystallinity of cellulose in the hydrothermally treated product is reduced to 10% or less, preferably 0 to 5%, or the polymerization degree is reduced to 250 or less, preferably 220 or less. This usually requires a processing time of 2 hours or more, preferably 4 hours or more.

乾式で長時間機械的粉砕を行うと、いったん生成した微粉末が再凝集を起すので、本発明方法においては、水、揮発性有機溶剤又は親和性高分子化合物の存在下で行うのが好ましい。この揮発性有機溶剤としては、特にヒドロキシル化合物、例えばメタノール、エタノール、プロパノール、エチレングリコールなどが用いられる。また親和性高分子化合物は、例えばデンプンやアミロースのような天然高分子化合物でもよいし、また例えばポリエチレングリコールやポリビニルアルコールのような合成高分子化合物でもよい。これらの添加量としては、熱水処理生成物の質量に基づき1〜100質量%、好ましくは20〜50質量%の範囲が選ばれる。
このような機械的粉砕処理を行うことにより、熱水処理生成物の酵素による糖化反応は、未処理のものに比べ2倍又はそれ以上促進される。
When the mechanical pulverization is performed for a long time in a dry process, the fine powder once generated causes reagglomeration. Therefore, in the method of the present invention, it is preferable to carry out in the presence of water, a volatile organic solvent or an affinity polymer compound. As this volatile organic solvent, hydroxyl compounds such as methanol, ethanol, propanol, ethylene glycol and the like are particularly used. The affinity polymer compound may be a natural polymer compound such as starch or amylose, or a synthetic polymer compound such as polyethylene glycol or polyvinyl alcohol. These addition amounts are selected in the range of 1 to 100% by mass, preferably 20 to 50% by mass, based on the mass of the hydrothermal treatment product.
By performing such mechanical pulverization treatment, the enzymatic saccharification reaction of the hydrothermal treatment product is promoted twice or more as compared with the untreated one.

次に、本発明方法における糖化処理工程は、上記の機械的粉砕処理の処理物に、加水分解酵素例えばセルラーゼを作用させることによって行われる。この反応は、通常のセルロースをグルコースに分解する方法において用いられている条件下で行うことができる。このセルラーゼの性質は、それを生産する微生物の種類によって若干異なるが、至適pH範囲は3.5〜5.5、至適温度範囲は45〜55℃であるので、pH3.3〜5.5の緩衝液に溶解した機械的粉砕処理物にセルラーゼを加え、45〜55℃に10〜30時間維持することによって糖化処理を行う。この糖化処理は、回分式で行ってもよいし、また固定化酵素を含むバイオリアクターを用いる連続式で行ってもよい。   Next, the saccharification treatment step in the method of the present invention is performed by allowing a hydrolase, such as cellulase, to act on the processed product of the mechanical pulverization treatment. This reaction can be carried out under the conditions used in a method for decomposing ordinary cellulose into glucose. The nature of this cellulase varies slightly depending on the type of microorganism producing it, but the optimum pH range is 3.5 to 5.5 and the optimum temperature range is 45 to 55 ° C., so the pH is 3.3 to 5. Cellulase is added to the mechanically pulverized product dissolved in the buffer solution 5 and the saccharification treatment is performed by maintaining at 45 to 55 ° C. for 10 to 30 hours. This saccharification treatment may be performed batchwise or continuously using a bioreactor containing an immobilized enzyme.

この際、糖化反応液に超音波を照射して行うと、セルロースに吸着している酵素が引きはがされるので、糖化反応が促進される。また、異なった微生物由来のセルラーゼを添加すると相乗効果を起し、酵素反応を促進させることができる。さらに、糖化と同時に発酵を行わせる併行糖化発酵方式を用いると、セルロースを分解して生じるセロビオースやグルコースをそのまま蓄積して発酵させるので、生成物阻害を起すことがなく、全体の糖化率を上げることができる。   At this time, if the saccharification reaction solution is irradiated with ultrasonic waves, the enzyme adsorbed on the cellulose is peeled off, so that the saccharification reaction is promoted. In addition, when cellulases derived from different microorganisms are added, a synergistic effect is produced and the enzyme reaction can be promoted. In addition, when a parallel saccharification and fermentation system is used, in which fermentation is performed simultaneously with saccharification, cellobiose and glucose produced by decomposing cellulose are accumulated and fermented, so that product inhibition does not occur and the overall saccharification rate is increased. be able to.

次に、添付図面に従って、本発明方法の具体的な実施形態を説明する。
図1は本発明を実施する場合のフローシートの一例である。原料となるリグノセルロース系バイオマス1は粉砕後、可溶化処理工程2において加圧熱水により処理される。処理されたバイオマスは固液分離3によりオリゴ糖を含有する水溶液4と可溶化処理工程の残渣5に分けられ、この可溶化処理工程の残渣5に対し粉砕処理工程6において粉砕処理される。実用化に際しては、この固液分離工程3を設けることなく可溶化処理工程2により生成するオリゴ糖を含有する水溶液(液体分)4と可溶化処理工程の残渣(固体分)5の全量に対し粉砕処理を行うことも可能である。次に粉砕処理を行ったバイオマスについて酵素糖化工程7において酵素糖化を行い、固液分離工程8で酵素糖化残渣9と糖の水溶液10に分離する。
Next, specific embodiments of the method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an example of a flow sheet for carrying out the present invention. The lignocellulosic biomass 1 as a raw material is treated with pressurized hot water in the solubilization treatment step 2 after pulverization. The treated biomass is divided into an aqueous solution 4 containing oligosaccharide and a residue 5 of the solubilization process by solid-liquid separation 3, and the residue 5 of the solubilization process is pulverized in the pulverization process 6. In practical use, the total amount of the aqueous solution (liquid component) 4 containing the oligosaccharide produced by the solubilization treatment step 2 and the residue (solid component) 5 of the solubilization treatment step 5 without the solid-liquid separation step 3 is provided. It is also possible to perform pulverization. Next, the pulverized biomass is subjected to enzymatic saccharification in the enzymatic saccharification step 7 and separated into an enzymatic saccharification residue 9 and an aqueous sugar solution 10 in the solid-liquid separation step 8.

図2は、加圧熱水処理によりリグノセルロース系バイオマス構成成分を分離して回収するための熱水流通式の反応システムである。バイオマスとしては24〜42メッシュのもみ殻粉末を用いた。両端を孔径5μmの焼結フィルターでキャップし、かつ周囲に保温用ラインヒータ16が設けられた内容積28mlのステンレス鋼製反応器17に、乾燥したもみ殻粉末10gを仕込む。また熱水を調製するための加熱コイル14内に、水槽11中の蒸留水をポンプ12によって満たしておく。保圧弁19を系内の圧力が所定値になるように設定した後、加熱コイル14内の水が突沸しないようにバルブ13を閉じたのち、バルブ13´及び13″を開いて、窒素ボンベ21より窒素ガスを送って系内を加圧する。次いで、バルブ13´及び13″を閉じたのち、バルブ13を開き、所定温度に加熱しておいた予熱用油浴15をジャッキ25で上昇させ、予熱コイル14をこの中に浸して、内部の水を加熱する。   FIG. 2 is a hot water circulation type reaction system for separating and recovering lignocellulosic biomass constituents by pressurized hot water treatment. As biomass, 24-42 mesh rice husk powder was used. 10 g of dried rice husk powder is charged into a stainless steel reactor 17 having an internal volume of 28 ml, which is capped at both ends with a sintered filter having a pore diameter of 5 μm and is provided with a line heater 16 for heat insulation. Moreover, the distilled water in the water tank 11 is filled with the pump 12 in the heating coil 14 for preparing hot water. After setting the pressure holding valve 19 so that the pressure in the system becomes a predetermined value, the valve 13 is closed so that the water in the heating coil 14 does not bump, and then the valves 13 'and 13 "are opened, and the nitrogen cylinder 21 Then, nitrogen gas was sent to pressurize the system. Next, after closing the valves 13 'and 13' ', the valve 13 was opened and the preheating oil bath 15 heated to a predetermined temperature was raised with the jack 25, The preheating coil 14 is immersed in this to heat the water inside.

次に、水槽11からポンプ12により蒸留水を供給し、反応器17の直下部に装備された熱電対23で測定される温度が急上昇を始めた時点で、水槽11´から反応を終結させるための冷却用蒸留水を、ポンプ12´を用いて流し始める。この冷却水は、反応器上部から流出してきた熱水と直接接触して、該熱水を急冷し、その混合水は冷却器18においてさらに30℃付近まで冷却されたのち、保圧弁19を通過し、受器20に流入する。系内の圧力が所定値に達し、保圧弁19から水が流出し始めた時点を反応開始時間とし、一定時間毎に受器20に分解生成物を回収する。なお、図2において、22及び22´は圧力計であり、24は圧力計22で示される圧力及び熱電対23で示される温度の記録計である。   Next, distilled water is supplied from the water tank 11 by the pump 12, and the reaction is terminated from the water tank 11 ′ when the temperature measured by the thermocouple 23 provided immediately below the reactor 17 starts to rise rapidly. Of cooling water is started to flow using the pump 12 '. This cooling water comes into direct contact with the hot water flowing out from the upper part of the reactor to rapidly cool the hot water, and the mixed water is further cooled to about 30 ° C. in the cooler 18 and then passes through the pressure holding valve 19. And flows into the receiver 20. The time when the pressure in the system reaches a predetermined value and water begins to flow out from the pressure-holding valve 19 is taken as the reaction start time, and the decomposition products are collected in the receiver 20 at regular intervals. In FIG. 2, 22 and 22 ′ are pressure gauges, and 24 is a pressure gauge indicated by the pressure gauge 22 and a temperature recorder indicated by the thermocouple 23.

本発明によると、従来方法の2倍以上の高い効率で、リグノセルロース系バイオマスから糖類を製造することができ、しかも色素や生理活性成分を含む細胞含有成分や五炭糖の製造原料となるヘミセルロースを分離回収することができる。   According to the present invention, hemicellulose can be produced from lignocellulosic biomass at a efficiency that is at least twice as high as that of the conventional method, and it is a raw material for producing cell-containing components and pentose containing pigments and bioactive components. Can be separated and recovered.

次に、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれらによりなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited by these.

(1)熱水処理工程
図2において、反応器17として、両端を孔径5μmの銀メッキされたニッケル製焼結フィルター(孔径5μm)でキャップした内容積28mlのステンレス鋼製固定床型反応器を用い、この中に24〜42メッシュのもみ殻10gを仕込み、128℃、1MPaの加圧熱水を15ml/分で30分間流して細胞内含有成分を抽出除去した後、205℃、2MPaの加圧熱水を15ml/分で30分間流してヘミセルロースの糖化を行った。得られたヘミセルロース区分中には、ヘミセルロース分解物以外に約30%のリグニンと灰分が含まれていた。ヘミセルロース区分水溶液を除いたもみ殻残渣の方は、セルロース以外に約40%のリグニンと灰分が含まれていた。
(1) Hydrothermal treatment step In FIG. 2, as a reactor 17, a fixed-bed reactor made of stainless steel having an internal volume of 28 ml, which is capped with a silver-plated nickel sintered filter (pore diameter 5 μm) at both ends, is 5 μm. Into this, 10 g of 24-42 mesh rice husk was charged, and the components contained in the cells were extracted and removed by flowing pressurized water at 128 ° C. and 1 MPa for 30 minutes at 15 ml / min, and then added at 205 ° C. and 2 MPa. Hemicellulose was saccharified by flowing pressurized hot water at 15 ml / min for 30 minutes. The obtained hemicellulose section contained about 30% lignin and ash in addition to the hemicellulose degradation product. The rice husk residue excluding the hemicellulose fraction aqueous solution contained about 40% lignin and ash in addition to cellulose.

(2)機械的粉砕処理工程
熱水処理後のもみ殻残渣物の一部は、減圧乾燥により絶乾にした後、遊星型ボールミル粉砕機(フリッチュ製,P−5)によりメカノケカル処理を行った。メカノケカル処理は内容積500mlのジルコニア製容器及びジルコニア製ボール(20mmφ)を用い、1容器当たり、絶乾のもみ殻残渣物50gを投入し、公転回転数250rpmにて,10分間粉砕−10分間休止のサイクルで、4時間粉砕した。得られた処理物の粉末X線回折測定からセルロースは非晶状態(結晶化度0%)であった。レーザー回折式粒度分布測定から、平均粒径は8.5μmであった。
(2) Mechanical pulverization process Part of the rice husk residue after hydrothermal treatment was completely dried by vacuum drying, and then subjected to mechanochemical treatment by a planetary ball mill pulverizer (Fritsch, P-5). . The mechanocal treatment uses a zirconia container with an internal volume of 500 ml and a zirconia ball (20 mmφ), puts 50 g of completely dry rice husk residue per container, pulverizes for 10 minutes at a revolution speed of 250 rpm and pauses for 10 minutes. And then pulverized for 4 hours. From the powder X-ray diffraction measurement of the obtained processed product, the cellulose was in an amorphous state (crystallinity 0%). From the laser diffraction particle size distribution measurement, the average particle size was 8.5 μm.

生成粒子の再凝集を抑制して、より効率的に粉砕を進めるため,水酸基を含有する化合物として粉砕時にエタノールを添加して粉砕した。絶乾のもみ殻残渣物50gに対し20質量%のエタノールを添加し,室温で12時間放置して、全体に均一に吸着させた。この場合,添加したエタノールは完全に吸着されて、スラリー状になることなく乾燥物と同様に粉砕が可能であった。前述と同様の方法によりボールミル粉砕して得られたメカノケミカル処理物では、セルロースは結晶化度5%であり、平均粒径は5μmであった。
セルロースの結晶化度は、2θ=15度付近の回折ピークから、イソガイ・ウスダの方法[「繊維学会誌」,第46巻,第324頁(1990)]に従って算出した。
In order to suppress the reaggregation of the generated particles and proceed the pulverization more efficiently, ethanol was added as a compound containing a hydroxyl group at the time of pulverization. 20% by mass of ethanol was added to 50 g of completely dried rice husk residue, and allowed to stand at room temperature for 12 hours to uniformly adsorb the whole. In this case, the added ethanol was completely adsorbed and could be pulverized in the same manner as the dried product without becoming a slurry. In the mechanochemically processed product obtained by ball milling using the same method as described above, cellulose had a crystallinity of 5% and an average particle size of 5 μm.
The crystallinity of cellulose was calculated from the diffraction peak around 2θ = 15 ° according to the method of Isogai Usuda [“Journal of the Fiber Society”, Vol. 46, p. 324 (1990)].

(3)糖化処理工程
熱水処理したもみ殻残渣(結晶化度44%)又は熱水処理後に更に機械的処理したもみ殻残渣(結晶化度0%)を基質として、45℃の50mM酢酸−酢酸ナトリウム緩衝液1ml反応液中に最終濃度が5%(w/v)になるように添加した。また、酵素としては市販のセルラーゼ製剤(商品名:アクレモニウムセルラーゼ、明治製菓製)を最終濃度0.05%(w/v)になるように反応液に添加し、更に反応液中に市販のβグルコシダーゼ(商品名:ノボザイム、ノボザイム製)を0.63ユニット相当添加した。このような反応液組成を標準組成として、反応温度45℃で24時間糖化反応を行った。
糖化反応後に得られた糖含有溶液について遠心分離(12,000rpm、5分間)を用いて固液分離した後の糖化液中の全還元糖量はソモギ・ネルソン反応を用いて測定した。また、糖化液中のグルコース量はグルコーステストワコーを用いて測定した。
これらの結果から、加圧熱水処理でヘミセルロースを取り除いただけでは、もみ殻中のセルロースは9質量%しかグルコースに変換されないが、加圧熱水処理後に機械的粉砕処理を行ってセルロース構造の結晶化度を非晶状態まで低下すれば、もみ殻中のセルロースの21質量%がグルコースに変換され、糖化反応は2倍以上促進された。
エタノール添加により得られた結晶化度5%、平均粒径は5μmの機械的粉砕処理の場合も、前述と同様に糖化反応は2倍以上促進された。
(3) Saccharification treatment process 50 mM acetic acid at 45 ° C. using as a substrate a rice husk residue (crystallinity: 44%) treated with hydrothermal treatment or a rice husk residue (crystallinity: 0%) further mechanically treated after hydrothermal treatment. A final concentration of 5% (w / v) was added to a 1 ml sodium acetate buffer reaction solution. As the enzyme, a commercially available cellulase preparation (trade name: Acremonium cellulase, manufactured by Meiji Seika Co., Ltd.) is added to the reaction solution to a final concentration of 0.05% (w / v), and further commercially available in the reaction solution. β-glucosidase (trade name: Novozyme, manufactured by Novozyme) was added in an amount corresponding to 0.63 unit. Using such a reaction solution composition as a standard composition, a saccharification reaction was performed at a reaction temperature of 45 ° C. for 24 hours.
The total amount of reducing sugar in the saccharified solution after solid-liquid separation using a centrifugal separation (12,000 rpm, 5 minutes) of the saccharide-containing solution obtained after the saccharification reaction was measured using the Somogi-Nelson reaction. Moreover, the amount of glucose in the saccharified solution was measured using a glucose test Wako.
From these results, if only hemicellulose is removed by pressurized hot water treatment, only 9% by mass of cellulose in the rice husk is converted to glucose. When the crystallinity was lowered to an amorphous state, 21% by mass of cellulose in the rice husk was converted to glucose, and the saccharification reaction was accelerated more than twice.
In the case of mechanical pulverization treatment with a crystallinity of 5% and an average particle size of 5 μm obtained by adding ethanol, the saccharification reaction was promoted more than twice as described above.

本発明方法は、リグノセルロース系バイオマスを原料として糖類を製造する方法として有用である。   The method of the present invention is useful as a method for producing saccharides using lignocellulosic biomass as a raw material.

本発明方法の一例の工程図。Process drawing of an example of this invention method. 本発明方法を実施するのに好適な装置のフローシート図。The flow sheet figure of an apparatus suitable for enforcing the method of the present invention.

符号の説明Explanation of symbols

1 リグノセルロース系バイオマス
2 可溶化処理工程
3 固液分離工程
4 オリゴ糖類等の水溶液
5 可溶化処理工程残渣
6 粉砕処理工程
7 酵素糖化工程
8 固液分離工程
9 酵素糖化残渣
10 糖の水溶液
11、11´水槽
12、12´ポンプ
13、13´、13″バルブ
14 予熱コイル
15 予熱用油浴
16 保温用ヒーター
17 反応器
18 冷却器
19 保圧弁
20 受器
21 窒素ボンベ
22、22´圧力計
23 熱電対
24 記録計
25 ジャッキ
DESCRIPTION OF SYMBOLS 1 Lignocellulosic biomass 2 Solubilization process 3 Solid-liquid separation process 4 Aqueous solution of oligosaccharides 5 Solubilization process residue 6 Grinding process 7 Enzyme saccharification process 8 Solid-liquid separation process 9 Enzyme saccharification residue 10 Aqueous solution 11 of sugar, 11 'water tank 12, 12' pump 13, 13 ', 13 "valve 14 preheating coil 15 preheating oil bath 16 heat retaining heater 17 reactor 18 cooler 19 pressure retaining valve 20 receiver 21 nitrogen cylinder 22, 22' pressure gauge 23 Thermocouple 24 Recorder 25 Jack

Claims (4)

リグノセルロース系バイオマスから糖類を製造する方法であって、温度制御した加圧熱水により、リグノセルロース系バイオマスの構成成分のセルロースからそれ以外の構成成分を分離除去する工程である熱水処理工程、その熱水処理物を絶乾にした後、機械的粉砕処理することにより、セルロースを粉砕するとともにセルロースの結晶化度が10%以下に低下するまでメカノケミカル的に活性化させる機械的粉砕処理工程及びその機械的粉砕物を酵素で糖化処理する糖化処理工程を含むことを特徴とするリグノセルロース系バイオマス処理方法。 A method for producing saccharides from lignocellulosic biomass, which is a hydrothermal treatment step that is a step of separating and removing other constituent components from cellulose as a constituent component of lignocellulosic biomass by temperature-controlled pressurized hot water, A mechanical pulverization process in which the hydrothermally treated product is completely dried and then mechanically pulverized, whereby the cellulose is pulverized and mechanochemically activated until the crystallinity of the cellulose is reduced to 10% or less. and, lignocellulosic biomass processing method characterized by comprising the saccharification process step of saccharification its mechanical pulverized product with an enzyme. 前記熱水処理物を絶乾にした後、揮発性有機溶媒又は親和性高分子化合物の存在下で機械的粉砕処理する請求項1記載のリグノセルロース系バイオマス処理方法。The lignocellulosic biomass treatment method according to claim 1, wherein the hydrothermally treated product is subjected to mechanical drying in the presence of a volatile organic solvent or an affinity polymer compound after being completely dried. 前記揮発性有機溶媒が揮発性有機ヒドロキシル化合物である請求項記載のリグノセルロース系バイオマス処理方法。 The method for treating lignocellulosic biomass according to claim 2, wherein the volatile organic solvent is a volatile organic hydroxyl compound. 前記親和性高分子化合物が水溶性の天然高分子化合物又は合成高分子化合物である請求項記載のリグノセルロース系バイオマス処理方法。 The method for treating a lignocellulosic biomass according to claim 2, wherein the affinity polymer compound is a water-soluble natural polymer compound or a synthetic polymer compound.
JP2004329870A 2004-11-12 2004-11-12 Lignocellulosic biomass processing method Expired - Fee Related JP5126728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329870A JP5126728B2 (en) 2004-11-12 2004-11-12 Lignocellulosic biomass processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329870A JP5126728B2 (en) 2004-11-12 2004-11-12 Lignocellulosic biomass processing method

Publications (2)

Publication Number Publication Date
JP2006136263A JP2006136263A (en) 2006-06-01
JP5126728B2 true JP5126728B2 (en) 2013-01-23

Family

ID=36617460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329870A Expired - Fee Related JP5126728B2 (en) 2004-11-12 2004-11-12 Lignocellulosic biomass processing method

Country Status (1)

Country Link
JP (1) JP5126728B2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019421B2 (en) * 2006-10-13 2012-09-05 独立行政法人産業技術総合研究所 Method for producing sugar
US20100151527A1 (en) * 2007-03-30 2010-06-17 Takashi Endo Fine fibrous cellulosic material and process for producing the same
JP5136984B2 (en) * 2007-04-04 2013-02-06 独立行政法人産業技術総合研究所 Method for producing sugar
US20100285534A1 (en) * 2007-04-19 2010-11-11 Mascoma Corporation Combined thermochemical pretreatment and refining of lignocellulosic biomass
JP5099757B2 (en) * 2007-07-23 2012-12-19 独立行政法人産業技術総合研究所 Method for producing saccharides from lignocellulosic biomass
WO2009046283A1 (en) * 2007-10-05 2009-04-09 University Of Georgia Research Foundation, Inc. Apparatus and methods for treating biomass
JP5498005B2 (en) * 2007-10-11 2014-05-21 志朗 坂 Process for producing alcohols via organic acids
JP5278991B2 (en) * 2007-11-21 2013-09-04 独立行政法人産業技術総合研究所 Method for producing ethanol raw material and ethanol from lignocellulosic biomass
JP4960208B2 (en) * 2007-12-05 2012-06-27 株式会社東芝 Lignin-fired power plant
JP5385561B2 (en) * 2007-12-27 2014-01-08 花王株式会社 Method for producing sugar
JP5385563B2 (en) * 2007-12-27 2014-01-08 花王株式会社 Method for producing sugar
JP5322151B2 (en) * 2008-01-11 2013-10-23 独立行政法人農業・食品産業技術総合研究機構 Saccharification method of rice straw
JP4524351B2 (en) 2008-02-01 2010-08-18 三菱重工業株式会社 Organic raw material production system and method using biomass raw material
JP4427583B2 (en) 2008-02-01 2010-03-10 三菱重工業株式会社 Biothermal decomposition apparatus and method for biomass, and organic raw material production system using biomass raw material
JP4427584B2 (en) * 2008-02-01 2010-03-10 三菱重工業株式会社 Biothermal decomposition apparatus and method for biomass, and organic raw material production system using biomass raw material
JP5059650B2 (en) * 2008-02-22 2012-10-24 学校法人 中央大学 Method for producing monosaccharide or oligosaccharide from polysaccharide
JP5013531B2 (en) * 2008-02-27 2012-08-29 国立大学法人高知大学 Method for producing glucose and method for producing sulfonated activated carbon
FI20085275L (en) * 2008-04-02 2009-10-09 Hannu Ilvesniemi A method for processing biomass
JP5339250B2 (en) * 2008-07-28 2013-11-13 独立行政法人産業技術総合研究所 Method for producing enzyme solution and method for producing sugar
JP2010131004A (en) 2008-10-30 2010-06-17 Oji Paper Co Ltd Saccharide production process
JP5403587B2 (en) * 2009-01-20 2014-01-29 独立行政法人産業技術総合研究所 Monosaccharide production method
JP5469881B2 (en) * 2009-02-27 2014-04-16 国立大学法人 東京大学 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
JP5324995B2 (en) 2009-04-03 2013-10-23 本田技研工業株式会社 Method for concentrating ethanol aqueous solution
JP5231311B2 (en) 2009-04-03 2013-07-10 本田技研工業株式会社 Ethanol aqueous solution concentrator
JP5267387B2 (en) * 2009-08-28 2013-08-21 王子ホールディングス株式会社 Bast fiber manufacturing method and bast fiber
JP2011142893A (en) * 2010-01-18 2011-07-28 Ihi Corp Hot water-flowing type saccharification apparatus
CN102791887A (en) * 2010-01-18 2012-11-21 株式会社Ihi Biomass treatment device
US9868932B2 (en) 2010-03-10 2018-01-16 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
JP2012005359A (en) * 2010-06-22 2012-01-12 Kao Corp Method for manufacturing monosaccharide, disaccharide, and/or oligosaccharide
JP5854586B2 (en) 2010-07-06 2016-02-09 三菱重工メカトロシステムズ株式会社 Fermentation system and method using sugar solution
BRPI1009203B1 (en) 2010-07-09 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. BIOMASS HYDROTHERMAL DECOMPOSITION SYSTEM AND SACARIDE SOLUTION PRODUCTION METHOD USING BIOMASS MATERIAL
JP4764527B1 (en) * 2010-07-09 2011-09-07 三菱重工業株式会社 Biomass processing system and sugar liquid production method using biomass raw material
CA2744522C (en) 2010-09-03 2014-07-29 Mitsubishi Heavy Industries, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
JP5827777B2 (en) * 2010-10-31 2015-12-02 バダン プンカジアン ダン プヌラパン テクノロジBadan Pengkajian dan Penerapan Teknologi Cellulose biomass sugar solution manufacturing method and apparatus
US9434971B2 (en) 2011-01-13 2016-09-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
JP2013141415A (en) * 2012-01-06 2013-07-22 Ihi Corp Method and device for producing monosaccharide, and method and device for producing ethanol
BR112014021043B1 (en) * 2012-03-29 2021-08-03 Mitsubishi Power Environmental Solutions, Ltd SYSTEM FOR PROCESSING BIOMASS AND METHOD FOR PRODUCTION OF SACCHARIDE SOLUTION USING BIOMASS RAW MATERIAL
CN111534554A (en) * 2012-07-13 2020-08-14 瑞恩麦特克斯股份有限公司 Supercritical hydrolysis of biomass
WO2014091890A1 (en) * 2012-12-13 2014-06-19 昭和電工株式会社 Pretreatment method for cellulose-containing biomass, production method for saccharifying biomass composition, and sugar production method
WO2014109345A1 (en) * 2013-01-10 2014-07-17 昭和電工株式会社 Biomass composition for saccharification use, method for selecting biomass composition for saccharification use, and method for producing sugar
WO2015033948A1 (en) * 2013-09-04 2015-03-12 関西化学機械製作株式会社 Method for producing ethanol
CA2957312C (en) 2014-08-07 2023-10-03 Nissan Chemical Industries, Ltd. Saccharification enzyme composition, saccharification reaction solution, and sugar production method
FI3186286T3 (en) 2014-09-26 2024-07-10 Renmatix Inc Cellulose-containing compositions and methods of making same
US20170210826A1 (en) * 2015-09-30 2017-07-27 Api Intellectual Property Holdings, Llc Processes for producing nanocellulose, and nanocellulose compositions produced therefrom
KR101733082B1 (en) * 2015-12-29 2017-05-08 한국화학연구원 Fast but efficient removal or recovery technology of extractable components from biomass
BR112018075819A2 (en) 2016-06-17 2019-03-26 Nissan Chemical Corporation saccharification reaction mixture, saccharification enzyme composition, sugar production method and ethanol production method
DK3372697T3 (en) 2016-10-14 2021-10-11 Nissan Chemical Corp INSURANCE REACTION LIQUID, INSURANCE ENZYME COMPOSITION, SUGAR MANUFACTURING PROCEDURE AND ETHANOL MANUFACTURING PROCEDURE
KR101965841B1 (en) * 2017-09-05 2019-04-04 한국화학연구원 Method for pretreatment of biomass
KR102062715B1 (en) * 2017-09-08 2020-01-06 한국화학연구원 Method for enhancing the reactivity of lignocellulosic biomass to hydrolytic enzyme
JP7104507B2 (en) 2017-11-08 2022-07-21 アースリサイクル株式会社 Cellulose separation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126999A (en) * 1985-11-29 1987-06-09 工業技術院長 Pretreatment of wood

Also Published As

Publication number Publication date
JP2006136263A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5126728B2 (en) Lignocellulosic biomass processing method
US8278080B2 (en) Method for pretreating biomass to produce bioethanol
EP2612920B1 (en) Method for enzymatic saccharification of lignocellulosic biomass, and method for manufacturing ethanol from lignocellulosic biomass
JP5136984B2 (en) Method for producing sugar
JP4958166B2 (en) Treatment of plant biomass with alcohol in the presence of oxygen
WO2010050223A1 (en) Saccharide production process and ethanol production process
JP5442284B2 (en) Pretreatment method for enzymatic hydrolysis treatment of herbaceous biomass and ethanol production method using herbaceous biomass as raw material
JP2009125050A (en) Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
US9809867B2 (en) Carbon purification of concentrated sugar streams derived from pretreated biomass
JP2014520538A (en) Conditioning of biomass to improve C5 / C6 sugar release before fermentation
WO2014026154A1 (en) Optimized pretreatment of biomass
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
JP5019421B2 (en) Method for producing sugar
JP2011010597A (en) Sugar and method for producing sugar, method for producing ethanol and method for producing lactic acid
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6331490B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6123504B2 (en) Ethanol production method
JP2011217634A (en) Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass
JP2015167480A (en) Method for enzymatic saccharification of biomass containing lignocellulose
JP7411178B2 (en) Method for producing alcohol from wood materials containing cellulose
JP2011083238A (en) Method for producing saccharide from bark raw material
JP6343967B2 (en) Method for producing ferulic acid
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass
JP6492724B2 (en) Method for crushing lignocellulose-containing biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100407

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees