JP6541050B2 - High temperature oxygen combustion apparatus and high temperature oxygen combustion method - Google Patents

High temperature oxygen combustion apparatus and high temperature oxygen combustion method Download PDF

Info

Publication number
JP6541050B2
JP6541050B2 JP2014093208A JP2014093208A JP6541050B2 JP 6541050 B2 JP6541050 B2 JP 6541050B2 JP 2014093208 A JP2014093208 A JP 2014093208A JP 2014093208 A JP2014093208 A JP 2014093208A JP 6541050 B2 JP6541050 B2 JP 6541050B2
Authority
JP
Japan
Prior art keywords
combustion
furnace
gas
pure oxygen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014093208A
Other languages
Japanese (ja)
Other versions
JP2015210050A (en
Inventor
晋 持田
晋 持田
但宏 荒明
但宏 荒明
丸田 薫
薫 丸田
寿 中村
寿 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014093208A priority Critical patent/JP6541050B2/en
Publication of JP2015210050A publication Critical patent/JP2015210050A/en
Application granted granted Critical
Publication of JP6541050B2 publication Critical patent/JP6541050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は高温酸素燃焼装置及び高温酸素燃焼方法に関するものであり、より詳細には、純酸素、或いは、純酸素を含む酸化剤を800℃以上の超高温域に加熱して炭化水素系燃料と混合する高温酸素燃焼装置及び高温酸素燃焼方法に関するものである。   The present invention relates to a high temperature oxyfuel combustion apparatus and a high temperature oxygen combustion method, and more particularly, a pure oxygen or an oxidant containing pure oxygen is heated to an ultrahigh temperature range of 800 ° C. or higher to obtain a hydrocarbon fuel and The present invention relates to a high temperature oxygen combustion apparatus and a high temperature oxygen combustion method for mixing.

管式加熱炉、金属加熱炉、窯業焼成炉、金属溶融炉、ガス化溶融炉又はボイラー等の工業炉、或いは、ラジアントチューブバーナ等の燃焼加熱式放熱装置は、炭化水素系燃料を供給する燃料供給装置と、燃焼用空気を供給する空気供給装置と、燃料及び燃焼用空気を混合し且つ燃料を燃焼させるバーナー等の燃焼装置とを備える。燃焼装置において混合した燃料及び燃焼用空気は、拡散燃焼による火炎を燃焼域に生成する。   Industrial heating furnaces such as tube furnaces, metal furnaces, ceramic furnaces, metal melting furnaces, gasification melting furnaces or boilers, or combustion heating type heat dissipation devices such as radiant tube burners are fuels that supply hydrocarbon fuels. A supply device, an air supply device for supplying combustion air, and a combustion device such as a burner for mixing fuel and combustion air and burning the fuel. The fuel and combustion air mixed in the combustion device generate a flame by diffusion combustion in the combustion zone.

一般的な燃焼装置において燃料の完全燃焼を図るには、燃焼用空気の実際空気量は、燃料の理論空気量を超える過剰な空気比に設定する必要があり、このため、燃焼用空気及び燃料の混合比(空燃費)は、概ね14乃至15程度に設定される。例えば、燃焼装置に供給されるメタン燃料の燃料容積は、必要空気量の1/15程度に設定される。多くの燃焼設備は、このような流量差を有する燃料噴射流と空気流とを所望の如く混合すべく、旋回流型又は保炎板型等の保炎器を備える。保炎器は、燃料及び空気の混合域に配設され、着火可能な高温循環流を形成し、これにより、火炎の吹き消えを防止し、火炎の安定性を確
保する。
In order to achieve complete combustion of fuel in a general combustion device, it is necessary to set the actual amount of air for combustion air to an excess air ratio exceeding the theoretical amount of air for fuel, and therefore, the air and fuel for combustion are The mixing ratio (air fuel efficiency) of is set to approximately 14 to 15. For example, the fuel volume of methane fuel supplied to the combustion device is set to about 1/15 of the required air amount. Many combustion equipments are provided with a flame holder such as a swirl flow type or a flame holding plate type in order to mix the fuel injection stream having such flow rate difference and the air flow as desired. A flame holder is disposed in the mixing zone of fuel and air to form an ignitable high temperature circulating flow, thereby preventing flame blowout and ensuring flame stability.

本願出願人等が開発した燃焼法として、ハニカム構造の切換式蓄熱型熱交換器等を備えた蓄熱再生型バーナーシステム(リジェネレイティブバーナー(regenerative burner)システム)を用いて燃焼用空気を800℃以上の超高温域に予熱し、高温予熱空気を混合域又は燃焼域に導入する高温空気燃焼法が知られている(特開平6−2135895号公報(特許文献1)等)。800℃以上に加熱された高温予熱空気による火炎の燃焼モードは、400℃以下の予熱空気による通常火炎の燃焼モード、或いは、400乃至800℃の温度範囲に加熱された予熱空気による遷移火炎の燃焼モードと比較し、極めて広範囲の空気比の燃焼雰囲気において安定燃焼する。このような高温空気燃焼法によれば、極端に低い酸素濃度(3〜10%)の燃焼場を炉内に形成し得るばかりでなく、局部熱発生現象を抑制した熱分散火炎を炉内に形成し、これにより、炉内温度場を均一化するとともに、NOx発生量を低下することができる。   As a combustion method developed by the applicants of the present invention, combustion air is set to 800 ° C. using a heat storage regenerative burner system (a regenerative burner system) equipped with a switching heat storage type heat exchanger of a honeycomb structure or the like. A high-temperature air combustion method is known in which the above-described ultra-high temperature region is preheated and high-temperature preheated air is introduced into the mixing region or combustion region (Japanese Patent Laid-Open No. 6-2135895 (Patent Document 1)). The combustion mode of the flame by high temperature preheated air heated to 800 ° C or higher is the combustion mode of a normal flame by preheated air of 400 ° C or lower, or the combustion of transition flame by preheated air heated to the temperature range of 400 to 800 ° C. As compared with the mode, stable combustion occurs in a combustion atmosphere of a very wide range of air ratios. According to such a high temperature air combustion method, not only the combustion field of extremely low oxygen concentration (3 to 10%) can be formed in the furnace, but also the heat dispersion flame in which the local heat generation phenomenon is suppressed is As a result, the temperature field in the furnace can be made uniform, and the amount of NOx generated can be reduced.

本出願人は又、炉外に導出した燃焼ガス(炉内ガス)、或いは、別途に生成した水蒸気を燃料(或いは、燃料及び燃焼用空気)に混合する高温空気燃焼法を国際特許出願PCT/JP00/05454号(WO01/13042号公報(特許文献2))において提案している。この公報に記載された高温空気燃焼法によれば、炉内に噴射する燃料のモーメンタム(運動量)を増大し、燃料及び燃焼用空気の混合過程及び混合比の制御性を向上し、これにより、火炎特性を効果的に制御することが可能となる。   The applicant also filed a high temperature air combustion method in which the combustion gas (in-furnace gas) led out of the furnace or the steam generated separately is mixed with fuel (or fuel and combustion air) as an international patent application PCT / It is proposed in JP 00/05454 (WO 01/13042 (patent document 2)). According to the high temperature air combustion method described in this publication, the momentum (momentum) of the fuel injected into the furnace is increased, and the controllability of the mixing process and the mixing ratio of the fuel and the combustion air is improved, whereby It is possible to control the flame characteristics effectively.

このような高温空気燃焼法によれば、熱回収率を理論限界に近い80〜90%にまで向上し、従来比でエネルギー消費量を約30%低減するとともに、NOx発生量を50%以上削減し、しかも、伝熱効率の向上により設備全体を約20%程度小型化することが可能になる。   According to such a high temperature air combustion method, the heat recovery rate is improved to 80 to 90% close to the theoretical limit, the energy consumption amount is reduced by about 30% and the NOx generation amount is reduced by 50% or more. Furthermore, the improvement of the heat transfer efficiency makes it possible to reduce the overall size of the facility by about 20%.

また、本出願人は、高温空気燃焼法において使用可能な炉内ガス循環ユニットとして、蓄熱装置を介して炉内ガスを給排口に送出する循環ファンと、炉内ガス導出位置又は内ガス噴射位置に切換可能な給排切換弁装置とを有する炉内ガス循環ユニットを特開2004-354041号公報(特許文献3)において提案している。同公報に記載された炉内ガス循環ユニットは、炉内ガスの炉内循環又は攪拌を制御すべく、炉体の任意の位置に配置することができる。   In addition, the applicant of the present invention, as a furnace gas circulation unit usable in the high temperature air combustion method, includes a circulation fan for delivering the furnace gas to the supply / discharge port via the heat storage device, the furnace gas outlet position or the internal gas injection. Japanese Patent Laid-Open No. 2004-354041 (Patent Document 3) proposes an in-furnace gas circulation unit having a feed / discharge switching valve device that can be switched to a position. The in-furnace gas circulation unit described in the publication can be disposed at any position of the furnace body to control in-furnace circulation or agitation of in-furnace gas.

更に、切換式蓄熱型熱交換器を備えた蓄熱再生型バーナーシステムにおいて、火炎温度を高温化すべく、燃焼用空気に純酸素を添加して燃焼用空気中の酸素濃度を高め、高酸素濃度且つ高温の燃焼用空気による燃焼火炎を炉内に形成する技術が特開平8-94064号公報(特許文献4)に記載されている。また、このような蓄熱再生型バーナーシステムの応用として、切換式蓄熱型熱交換器を介して純酸素を炉内に供給する酸素燃焼法が欧州特許出願公開公報EP0928938(特許文献5)に記載されている。この酸素燃焼法においては、純酸素が切換式蓄熱型熱交換器によって高温に加熱され、高温の純酸素は、炉内領域において炭化水素系燃料と混合接触して炉内燃焼反応を生起する。このような高温酸素燃焼法においては、切換式蓄熱型熱交換器の給排バランス及び熱バランスを確保すべく、炉内ガスの一部は、炉外に常時排気される。   Furthermore, in the heat storage and regeneration type burner system provided with the switching type heat storage type heat exchanger, pure oxygen is added to the combustion air to raise the flame temperature, and the oxygen concentration in the combustion air is increased to achieve high oxygen concentration and Japanese Patent Application Laid-Open No. 8-94064 (Patent Document 4) describes a technique for forming a combustion flame from high-temperature combustion air in a furnace. In addition, as an application of such a heat storage and regeneration type burner system, an oxyfuel combustion method of supplying pure oxygen into a furnace through a switchable heat storage type heat exchanger is described in European Patent Application Publication No. EP0928938 (Patent Document 5) ing. In this oxyfuel combustion method, pure oxygen is heated to a high temperature by the switchable heat storage type heat exchanger, and the high temperature pure oxygen is mixed and contacted with the hydrocarbon-based fuel in the furnace region to cause an in-furnace combustion reaction. In such a high temperature oxy-fuel combustion method, a part of the furnace gas is constantly exhausted outside the furnace in order to secure the supply and discharge balance and the heat balance of the switchable heat storage type heat exchanger.

特開平6−2135895号公報Japanese Patent Laid-Open No. 6-2135895 WO01/13042号公報WO 01/13042 特開2004-354041号公報Japanese Patent Application Laid-Open No. 2004-354041 特開平8-94064号公報JP-A-8-94064 欧州特許出願公開公報EP0928938European Patent Application Publication No. EP0928938

前述のとおり、高温空気燃焼法によれば、熱回収率を理論限界に近い80〜90%にまで向上し、従来比でエネルギー消費量を約30%低減するとともに、NOx発生量を50%以上削減し、しかも、伝熱効率の向上により設備全体を約20%程度小型化することが可能になる。このようなエネルギー効率の向上や、設備の小型化は、燃焼方法及び燃焼装置としては限界に近いものと考えられている。しかしながら、更なる燃焼技術の進歩のためには、このようなエネルギー効率を更に向上し且つ燃焼設備を更に小型化し、しかも、NOxの発生を更に抑制し得る新規な燃焼法を開発することが望まれる。   As mentioned above, according to the high temperature air combustion method, the heat recovery rate is improved to 80 to 90% close to the theoretical limit, and the energy consumption is reduced by about 30% compared to the conventional rate, and the NOx generation amount is 50% or more It is possible to reduce the size of the entire equipment by about 20% by reducing the heat transfer efficiency. Such improvement of energy efficiency and downsizing of equipment are considered to be close to the limit as a combustion method and a combustion apparatus. However, for further advancement of combustion technology, it is desirable to develop a new combustion method which can further improve such energy efficiency and further miniaturize the combustion equipment and further suppress the generation of NOx. Be

これに関し、特許文献5に記載された酸素燃焼法の如く、燃焼排ガスが保有する顕熱によって高温に予熱した純酸素を燃焼炉に供給する酸素燃焼法を採用することが考えられる。蓄熱再生型バーナーシステムを用いた酸素燃焼法によれば、燃焼域においてNOxが発生するのを実質的に完全に防止することが可能となる。   In this regard, it is conceivable to adopt an oxyfuel combustion method in which pure oxygen preheated to a high temperature is supplied to a combustion furnace by sensible heat possessed by combustion exhaust gas, as in the oxyfuel combustion method described in Patent Document 5. According to the oxyfuel combustion method using the heat storage and regeneration type burner system, it is possible to substantially completely prevent the generation of NOx in the combustion zone.

しかし、800℃以上に加熱された酸素は、極めて反応性が高く、このため、蓄熱再生型バーナーシステムを構成する熱交換器の金属又はセラミックスの酸化・腐食や、燃焼炉の炉体の酸化・腐食等が生じ易いので、このような酸素燃焼報法は、一般的な工業炉の燃焼設備として採用し難い事情がある。   However, oxygen heated to 800 ° C. or higher is extremely reactive, and therefore, oxidation / corrosion of metals or ceramics of a heat exchanger constituting a heat storage regenerative burner system, oxidation of a furnace body of a combustion furnace, Since the corrosion and the like easily occur, there is a circumstance that it is difficult to adopt such an oxyfuel combustion method as a general industrial furnace combustion facility.

また、従来の酸素燃焼法は、酸素及び燃料の燃焼反応により、主として高温の火炎を生成することを意図したものである。しかし、多くの工業炉においては、火炎温度が、炉の内面に施された耐火・断熱材料の耐熱温度を超えないように、火炎が局所的に高温化するのを防止又は抑制しつつ、広域且つ比較的低温の拡散燃焼火炎を炉内に生成することが望まれる。このため、このような拡散燃焼火炎を高温酸素燃焼法によって生成することが望まれる。   In addition, conventional oxyfuel combustion methods are intended to produce mainly high temperature flames by the combustion reaction of oxygen and fuel. However, in many industrial furnaces, the flame temperature does not exceed the heat resistance temperature of the fireproof and heat insulating material applied to the inner surface of the furnace, while preventing or suppressing the local increase in temperature of the flame, And it is desirable to produce a relatively low temperature diffusion combustion flame in the furnace. For this reason, it is desirable to produce such a diffusion combustion flame by a high temperature oxy-fuel combustion method.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、蓄熱再生型バーナーシステムに純酸素を供給して800℃以上の超高温域に加熱し、高温の酸素を炭化水素系燃料と燃焼反応せしめる工業炉の高温酸素燃焼装置及び高温酸素燃焼方法であって、燃焼域においてNOxが発生するのを実質的に完全に防止するとともに、高温空気燃焼法に比べてエネルギー消費量を更に低減し且つ燃焼炉及び燃焼設備を更に小型化することができ、しかも、一般的な工業炉において好ましく使用し得る高温酸素燃焼装置及び高温酸素燃焼方法を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to supply pure oxygen to a regenerative thermal burner system and heat it to an ultra-high temperature range of 800 ° C. or higher to obtain high-temperature oxygen High temperature oxygen combustion apparatus and high temperature oxygen combustion method of an industrial furnace which causes a combustion reaction with hydrocarbon fuel, which substantially completely prevents the generation of NOx in the combustion zone, and compared with the high temperature air combustion method. An object of the present invention is to provide a high temperature oxygen combustion apparatus and a high temperature oxygen combustion method which can further reduce energy consumption and further miniaturize a combustion furnace and a combustion facility, and can be preferably used in a general industrial furnace.

上記目的を達成すべく、本発明は、燃焼域を備えた燃焼系と、純酸素を酸化剤として燃焼域に供給するための酸化剤供給装置と、前記燃焼域に生成した燃焼ガスを前記燃焼系の系外に排気するための排気系装置又は設備とを有し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させる高温酸素燃焼装置において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記純酸素に伝熱して該純酸素を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記酸化剤供給装置の純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路と、800℃以上の温度に加熱した前記純酸素に前記燃焼ガスを添加し又は純酸素を前記燃焼ガスで希釈して前記純酸素と前記燃焼ガスとの混合気を生成する混合気生成手段とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、該混合気と前記炭化水素系燃料との混合接触による燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼装置を提供する。
本発明は又、燃焼域を備えた燃焼系と、純酸素を酸化剤として該燃焼域に供給するための酸化剤供給装置と、前記燃焼域に生成した燃焼ガスを前記燃焼系の系外に排気するための排気系装置又は設備とを有し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させる高温酸素燃焼装置において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素に前記燃焼ガスを添加し又は前記純酸素を前記燃焼ガスで希釈して前記純酸素と前記燃焼ガスとの混合気を生成する混合気生成手段と、該混合気及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記混合気に伝熱して該混合気を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記酸化剤供給装置の純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、加熱後の前記混合気と前記炭化水素系燃料との混合接触により前記燃焼域に燃焼反応を生じさせることを特徴とする高温酸素燃焼装置を提供する
To achieve the above object, the present invention, the combustion system having a combustion zone, an oxidant supply device for supplying to the combustion zone of pure oxygen as an oxidizing agent, the combustion gas generated in the combustion zone and an exhaust system device or equipment for exhausting to the outside of the combustion system, the hot oxygen combustion device for combustion reaction in the combustion zone and heated with the oxidant and hydrocarbon fuel to a temperature above 800 ° C. ,
The combustion zone, a fuel supply unit for supplying the hydrocarbon-based fuel to the combustion zone, the pure oxygen and the combustion gas, the sensible heat held by the combustion gas is transferred to the pure oxygen to be transferred to the pure oxygen A heat storage and regeneration type heat exchanger for heating pure oxygen to a temperature of 800 ° C. or higher, an oxidant introduction path for introducing pure oxygen of the oxidant supply device into the combustion zone through the heat exchanger, and The combustion gas is added to the pure oxygen heated to a temperature of 800 ° C. or more, and a combustion gas lead-out path for leading the combustion gas out of the combustion zone and delivering it to an exhaust system or facility via a heat exchanger or constitute the combustion system by the air-fuel mixture generating means for generating a mixture of the said combustion gas and said pure oxygen the pure oxygen diluted with the combustion gases,
The mixing a portion of the combustion gas by the gas generating means is recirculated in the system of the combustion system to produce the mixture, the mixture that by the catalytic combustion reaction between the hydrocarbon fuel and the mixture the cause in the combustion zone to provide a high-temperature oxygen combustion apparatus according to claim Rukoto.
The present invention also provides a combustion system having a combustion zone, an oxidant supply device for supplying pure oxygen as an oxidant to the combustion zone, and a combustion gas generated in the combustion zone outside the system of the combustion system. A high temperature oxygen combustion apparatus having an exhaust system or an exhaust system for exhausting, wherein the oxidizing agent heated to a temperature of 800 ° C. or more and a hydrocarbon based fuel are burned and reacted in the combustion zone,
The combustion zone, fuel supply means for supplying the hydrocarbon-based fuel to the combustion zone, the combustion gas is added to the pure oxygen, or the pure oxygen is diluted with the combustion gas to produce the pure oxygen and the combustion A mixture generation means for generating a mixture with a gas, the mixture and the combustion gas are brought into contact, the sensible heat held by the combustion gas is transferred to the mixture, and the mixture is heated to a temperature of 800 ° C. or more A regenerative heat exchanger for heating, an oxidant introduction path for introducing pure oxygen of the oxidant supply device into the combustion zone through the heat exchanger, and the combustion through the heat exchanger The combustion system is constituted by a combustion gas lead-out path for leading gas out of the combustion zone and delivering it to an exhaust system or facility;
A part of the combustion gas is recirculated in the system of the combustion system by the mixture generation means to generate the mixture, and the combustion is performed by mixed contact of the mixture after heating and the hydrocarbon fuel. There is provided a high temperature oxy-fuel combustion apparatus characterized by causing a combustion reaction in a zone .

好ましくは、上記混合気生成手段は、上記混合気の酸素濃度を体積比20〜60%の範囲内(好適には、30〜50%の範囲内)に設定する。所望により、上記燃焼ガスは、150℃以上に加熱又は予熱された純酸素に混合される。 Preferably, the mixture generation means sets the oxygen concentration of the mixture within a range of 20 to 60% by volume (preferably, within a range of 30 to 50%). Optionally , the combustion gas is mixed with pure oxygen heated or preheated to 150 ° C. or higher.

また、本発明は、燃焼系を構成する燃焼域に対し、酸化剤供給装置から供給される純酸素を酸化剤として前記燃焼域に供給し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させ、燃焼域に生成した燃焼ガスを排気系装置又は設備によって前記燃焼系の系外に排気する高温酸素燃焼方法において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記純酸素に伝熱して該純酸素を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路と、800℃以上の温度に加熱した前記純酸素に前記燃焼ガスを添加し又は純酸素を前記燃焼ガスで希釈して純酸素及び燃焼ガスの混合気を生成する混合気生成手段とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、該混合気と前記炭化水素系燃料との混合接触によ燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼方法を提供する。
更に、本発明は、燃焼系を構成する燃焼域に対し、酸化剤供給装置から供給される純酸素を酸化剤として前記燃焼域に供給し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させ、該燃焼域に生成した燃焼ガスを排気系装置又は設備によって前記燃焼系の系外に排気する高温酸素燃焼方法において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素に前記燃焼ガスを添加し又は前記純酸素を前記燃焼ガスで希釈して純酸素及び燃焼ガスの混合気を生成する混合気生成手段と、該混合気及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記混合気に伝熱して該混合気を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路とより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して、加熱後の前記混合気と前記炭化水素系燃料との混合接触による燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼方法を提供する。
Further, the present invention is to combustion zone constituting the combustion system, the pure oxygen supplied from the oxidizing agent supply device is supplied to the combustion zone as the oxidizing agent, and the oxidizing agent heated to a temperature above 800 ° C. carbide a hydrogen-based fuel is combusted reaction by the combustion zone, the hot oxygen combustion method of evacuating to the outside of the combustion system by the exhaust system apparatus or installation the combustion gas generated in the combustion zone,
The combustion zone, a fuel supply unit for supplying the hydrocarbon-based fuel to the combustion zone, the pure oxygen and the combustion gas, the sensible heat held by the combustion gas is transferred to the pure oxygen to be transferred to the pure oxygen A heat storage and regeneration type heat exchanger for heating pure oxygen to a temperature of 800 ° C. or higher, an oxidant introducing path for introducing the pure oxygen into the combustion zone via the heat exchanger, and the heat exchanger via the heat exchanger wherein the combustion gases derived from the combustion zone exhaust system device or combustion gas outlet passage for delivering the equipment, addition of the combustion gas to the pure oxygen which was heated to a temperature above 800 ° C. or the pure oxygen Te The combustion system is constituted by mixture generation means for diluting the mixture with the combustion gas to generate a mixture of pure oxygen and the combustion gas ;
The mixing a portion of the combustion gas by the gas generating means is recirculated in the system of the combustion system to produce the mixture, the mixture that by the catalytic combustion reaction between the hydrocarbon fuel and the mixture The present invention provides a high temperature oxygen combustion method characterized in that it is generated in the combustion zone .
Furthermore, according to the present invention, pure oxygen supplied from the oxidant supply device is supplied to the combustion zone as an oxidant to the combustion zone constituting the combustion system, and the oxidant and carbonized are heated to a temperature of 800 ° C. or higher A high-temperature oxygen combustion method in which a hydrogen-based fuel is burned and reacted in the combustion zone, and the combustion gas generated in the combustion zone is exhausted out of the system of the combustion system by an exhaust system or equipment.
The combustion zone, a fuel supply means for supplying the hydrocarbon-based fuel to the combustion zone, the combustion gas added to the pure oxygen, or the pure oxygen diluted with the combustion gas to obtain pure oxygen and combustion gas A mixture producing means for producing a mixture, the mixture and the combustion gas are contacted, and the sensible heat held by the combustion gas is transferred by the mixture to heat the mixture to a temperature of 800 ° C. or more A heat storage / regeneration type heat exchanger, an oxidant introduction path for introducing the pure oxygen into the combustion area through the heat exchanger, and the combustion gas is discharged from the combustion area through the heat exchanger. The combustion system from the combustion gas lead-out path for delivery to the exhaust system or equipment;
A part of the combustion gas is recirculated in the system of the combustion system by the mixture generation means, and a combustion reaction due to mixed contact of the mixture after heating and the hydrocarbon fuel is generated in the combustion zone The present invention provides a high temperature oxygen combustion method characterized by

好ましくは、上記混合気の酸素濃度は、体積比20〜60%の範囲内(好適には、体積比30〜50%の範囲内)に設定される。所望により、上記燃焼ガスは、150℃以上に加熱又は予熱された純酸素に混合される。

Preferably, the oxygen concentration of the mixture is set in the range of 20 to 60% by volume (preferably in the range of 30 to 50% by volume). Optionally , the combustion gas is mixed with pure oxygen heated or preheated to 150 ° C. or higher.

本発明の上記構成によれば、純酸素及び炭化水素系燃料の燃焼反応が燃焼域において進行するので、炉外に排出すべき燃焼排ガスの容積は減少し、従って、系外に排出される熱量が減少する。また、燃焼域に生成する水蒸気及び二酸化炭素がいずれも輻射性ガスであるので、燃焼域に配置された被加熱物等に対する加熱性能又は伝熱性能が向上する。これらの事項は、高温空気燃焼と明確に相違する点である。即ち、本発明によれば、高温空気燃焼法に比して、エネルギー消費量を更に低減するとともに、燃焼炉及び燃焼設備を更に小形化することができる。   According to the above configuration of the present invention, since the combustion reaction of pure oxygen and hydrocarbon fuel proceeds in the combustion zone, the volume of the flue gas to be discharged to the outside of the furnace is reduced, therefore the heat quantity discharged to the outside of the system Decreases. Further, since the water vapor and carbon dioxide generated in the combustion area are both radiation gases, the heating performance or heat transfer performance for the object to be heated or the like disposed in the combustion area is improved. These matters are clearly different from hot air combustion. That is, according to the present invention, energy consumption can be further reduced and the combustion furnace and the combustion equipment can be further miniaturized as compared with the high temperature air combustion method.

また、純酸素は、高温酸素燃焼により燃焼域に生成した燃焼ガスと混合し、純酸素及び燃焼ガスの混合気が燃焼域に供給される。混合気は、炭化水素系燃料に混合接触し、燃焼反応する。純酸素及び炭化水素系燃料の燃焼ガスは、実質的に二酸化炭素及び水蒸気のみを含むので、上記混合気は、純酸素、二酸化炭素及び水蒸気の混合気である。従って、意図せぬリーク等によって炉内に進入する微量の外界空気や、燃料に含まれる窒素化合物に由来する僅かな窒素酸化物を除き、窒素酸化物が燃焼域に発生する虞がない。従って、本発明の上記構成によれば、燃焼域においてNOxが発生するのを実質的に完全に防止することができる。なお、本発明によれば、後述するとおり、火炎の温度が極端に高温化せず、従って、このような外界空気や燃料に含まれる窒素に起因して窒素酸化物が燃焼域に生成する現象も抑制される。   Also, pure oxygen is mixed with the combustion gas generated in the combustion zone by high temperature oxygen combustion, and a mixture of pure oxygen and combustion gas is supplied to the combustion zone. The mixture comes into mixed contact with the hydrocarbon-based fuel and burns and reacts. Since the combustion gas of pure oxygen and hydrocarbon fuel substantially contains only carbon dioxide and water vapor, the mixture is a mixture of pure oxygen, carbon dioxide and water vapor. Therefore, there is no possibility that nitrogen oxides are generated in the combustion zone except for a small amount of ambient air entering the furnace due to an unintended leak or the like and a slight nitrogen oxide derived from a nitrogen compound contained in the fuel. Therefore, according to the above configuration of the present invention, it is possible to substantially completely prevent the generation of NOx in the combustion zone. According to the present invention, as will be described later, the phenomenon that the temperature of the flame does not become extremely high, and therefore nitrogen oxides are formed in the combustion zone due to nitrogen contained in such ambient air and fuel. Is also suppressed.

更に、本発明において、純酸素は、燃焼ガス(二酸化炭素及び水蒸気)に混合され、従って、酸素濃度が低下した酸化剤(例えば、体積比20〜50%の酸素濃度の酸化剤)が炉内に導入されるので、火炎温度が極端に高温化するのを防止することができる。このように火炎の温度が極端に高温化するのを防止することにより、燃焼域及び流路等を区画又は画成する耐火・断熱材料として、既知の耐火性能を有する従来の耐火・断熱材料を用いて工業炉及び流路等を形成し又は構築することが可能となる。なお、800℃以上の超高温域に加熱された上記混合気と炭化水素系燃料との燃焼反応においては、混合気の酸素濃度(体積比)が20%以上(好ましくは、30%以上)の場合、安定した燃焼反応が得られるとともに、火炎形状が概ね同等の形状で安定することが、本発明者等の実験により判明した。   Furthermore, in the present invention, pure oxygen is mixed with the combustion gas (carbon dioxide and water vapor), so that the oxidant with a reduced concentration of oxygen (for example, an oxidant with an oxygen concentration of 20 to 50% by volume) As a result, it is possible to prevent the flame temperature from becoming extremely high. Thus, by preventing the temperature of the flame from becoming extremely high, a conventional fireproof and heat insulating material having known fire resistance performance can be used as a fireproof and heat insulating material that divides or defines the combustion zone and the flow passage. It becomes possible to use or form an industrial furnace, a flow path, etc. In the combustion reaction between the above-mentioned mixture heated to an ultra-high temperature range of 800 ° C. or more and the hydrocarbon fuel, the oxygen concentration (volume ratio) of the mixture is 20% or more (preferably 30% or more). In the case, it was found by experiments of the present inventors that a stable combustion reaction is obtained and the flame shape is stabilized in a substantially equal shape.

他の観点より、本発明は、純酸素酸化剤として炉内に供給するための酸化剤供給装置と、燃焼排ガスを系外に排気するための排気系とを有し、前記燃焼排ガスが保有する顕熱を前記酸化剤に伝熱して該酸化剤を800℃以上の温度に加熱し、加熱後の前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼装置において、
酸化剤供給装置の純酸素供給源と前記排気系とに交互に接続され、炉内燃焼ガスを炉外に導出し且つ前記純酸素供給源の純酸素を炉内領域に供給するための蓄熱再生型の第1及び第2熱交換器と、
各熱交換器の蓄熱体を前記排気系又は純酸素供給源に交互に流体連通せしめる流路切換装置と、
前記第1熱交換器内の流路と、前記第2熱交換器内の流路とを相互連通させ、一方の熱交換器から系外に排気される燃焼排ガスの一部を他方の熱交換器の流路に供給して該燃焼排ガスを前記純酸素に添加する連通路とを有し、
前記純酸素及び燃焼排ガスの混合気と炭化水素系燃料とを炉内領域で燃焼反応させるようにしたことを特徴とする高温酸素燃焼装置を提供する。
好ましくは、上記連通路は、純酸素の流体圧力により燃焼排ガスを誘引し、燃焼排ガスを純酸素に混合せしめる。所望により、上記燃焼排ガスは、150℃以上に加熱又は予熱された純酸素に混合される。
From another aspect, the present invention has an oxidant feed device for feeding the furnace with pure oxygen as an oxidizing agent, and an exhaust system for exhausting the combustion exhaust gas out of the system, the combustion exhaust gas is held In the high-temperature oxygen combustion apparatus, the sensible heat is transferred to the oxidizing agent to heat the oxidizing agent to a temperature of 800 ° C. or higher, and the heated oxidizing agent and the hydrocarbon fuel are burned and reacted in the furnace region,
Heat storage and regeneration, alternately connected to the pure oxygen supply source of the oxidant supply device and the exhaust system, for leading out the furnace combustion gas to the outside of the furnace and supplying the pure oxygen of the pure oxygen supply source to the furnace region First and second heat exchangers of a type;
A flow path switching device which causes the heat storage bodies of the respective heat exchangers to be alternately in fluid communication with the exhaust system or the pure oxygen source;
The flow passage in the first heat exchanger and the flow passage in the second heat exchanger are interconnected with each other, and a part of the combustion exhaust gas exhausted from the one heat exchanger to the outside of the system is exchanged with the other heat exchange And a communication passage for supplying the flue gas to the pure oxygen to be supplied to the flow path of the
There is provided a high-temperature oxygen combustion apparatus characterized in that the mixture of the pure oxygen and the combustion exhaust gas and the hydrocarbon-based fuel are burned and reacted in a furnace area.
Preferably, the communication passage attracts the flue gas by the fluid pressure of pure oxygen and mixes the flue gas with pure oxygen. If desired, the flue gas is mixed with pure oxygen heated or preheated to 150 ° C. or higher.

本発明は又、純酸素酸化剤として炉内に供給し且つ燃焼排ガスを系外に排気するとともに、該燃焼排ガスが保有する顕熱を前記酸化剤に伝熱して該酸化剤を800℃以上の温度に加熱し、加熱後の前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼方法において、
蓄熱再生型の第1及び第2熱交換器を純酸素供給源及び排気系に交互に接続して、各熱交換器の蓄熱体を前記純酸素供給源及び排気系に交互に流体連通せしめ、
前記第1熱交換器内の流路と前記第2熱交換器内の流路とを相互連通させ、一方の熱交換器から系外に排気される燃焼排ガスの一部を他方の熱交換器の流路に供給し、該燃焼排ガスを前記純酸素に添加して純酸素及び燃焼排ガスの混合気を生成し、該混合気と炭化水素系燃料とを炉内領域で燃焼反応させることを特徴とする高温酸素燃焼方法を提供する。
好ましくは、燃焼排ガスは、純酸素の流体圧力により誘引され、純酸素に混合する。所望により、上記燃焼排ガスは、150℃以上に加熱又は予熱された純酸素に混合される。
The present invention also supplied to and combustion exhaust gas into the furnace while the exhaust from the system as the oxidant of pure oxygen, the oxidizing agent 800 ° C. or higher by heating transferred to the oxidant the sensible heat flue gas's High-temperature oxygen combustion method in which the oxidant after heating and the hydrocarbon fuel are burned and reacted in the furnace region,
The heat storage and regeneration type first and second heat exchangers are alternately connected to the pure oxygen source and the exhaust system, and the heat storage bodies of the respective heat exchangers are alternately fluidly connected to the pure oxygen source and the exhaust system,
The flow passage in the first heat exchanger and the flow passage in the second heat exchanger are interconnected with each other, and a part of the combustion exhaust gas exhausted out of the system from one heat exchanger is transferred to the other heat exchanger features and supplied to the flow path, with the addition of flue gas in the pure oxygen to produce a mixture of pure oxygen and combustion exhaust gas, that burning reaction of hydrocarbon fuel and said mixture in a furnace region To provide a high temperature oxygen combustion method.
Preferably, the flue gas is attracted by the fluid pressure of pure oxygen and mixes with it. If desired, the flue gas is mixed with pure oxygen heated or preheated to 150 ° C. or higher.

本発明の上記構成によれば、一方の熱交換器を介して系外に排気される燃焼排ガスの一部が、他方の熱交換器に供給される。各熱交換器の蓄熱体は、燃焼排ガスに伝熱接触して受熱し且つ蓄熱した後、純酸素、或いは、純酸素及び燃焼排ガスの混合気に伝熱接触して放熱し、純酸素又は混合気を加熱する。加熱後の純酸素と燃焼排ガスとの混合気、或いは、加熱後の混合気は、炉内に供給された炭化水素系燃料に混合接触し、炉内領域において燃焼反応する。純酸素及びその燃焼排ガスの混合気は、窒素を含まず、従って、燃焼域においてNOxが発生するのを実質的に完全に防止することができる。また、純酸素及び炭化水素系燃料の燃焼反応によれば、炉外に排出すべき燃焼排ガスの容積が減少し、従って、系外に排出される熱量が減少する。しかも、燃焼反応によって生成する水蒸気及び二酸化炭素がいずれも輻射性ガスであるので、燃焼炉の加熱性能又は伝熱性能が向上する。このため、高温空気燃焼法に比して、エネルギー消費量が更に低減する。しかも、本発明の高温酸素燃焼法では、給気流体及び排気流体の流量や、系内循環流体の流量が高温空気燃焼に比べて低減するので、高温空気燃焼法よりも燃焼炉及び燃焼設備を更に小形化することができる。   According to the above configuration of the present invention, a part of the flue gas exhausted out of the system via one heat exchanger is supplied to the other heat exchanger. The heat storage body of each heat exchanger receives heat in heat transfer contact with combustion exhaust gas and stores it, and then heat transfer contact with pure oxygen or a mixture of pure oxygen and combustion exhaust gas to dissipate heat, pure oxygen or mixture Heat your mind. The mixture of pure oxygen and the combustion exhaust gas after heating, or the mixture after heating mixes and contacts the hydrocarbon-based fuel supplied into the furnace, and causes a combustion reaction in the furnace area. The mixture of pure oxygen and its flue gas does not contain nitrogen, so that it is possible to substantially completely prevent the generation of NOx in the combustion zone. Further, according to the combustion reaction of pure oxygen and hydrocarbon fuel, the volume of the flue gas to be discharged to the outside of the furnace is reduced, and hence the amount of heat discharged to the outside of the system is reduced. Moreover, since the steam and carbon dioxide generated by the combustion reaction are both radiation gases, the heating performance or heat transfer performance of the combustion furnace is improved. For this reason, energy consumption is further reduced as compared with the high temperature air combustion method. Moreover, in the high temperature oxygen combustion method of the present invention, the flow rates of the intake fluid and the exhaust fluid and the flow rate of the circulating fluid in the system are reduced compared to high temperature air combustion, so the combustion furnace and the combustion equipment are It can be further miniaturized.

加えて、本発明の上記構成によれば、燃焼排ガス(二酸化炭素及び水蒸気)によって希釈した純酸素が炭化水素系燃料と燃焼反応するので、酸素及び燃料は緩慢に燃焼反応し、火炎温度が局所的に高温化するのを抑制しつつ、広域且つ比較的低温の拡散燃焼火炎を炉内に生成することができる。   In addition, according to the above configuration of the present invention, since the pure oxygen diluted by the combustion exhaust gas (carbon dioxide and steam) burns and reacts with the hydrocarbon fuel, the oxygen and the fuel slowly react and the flame temperature becomes local A wide range of relatively low temperature diffusion combustion flames can be produced in the furnace while suppressing the temperature rise.

また、本発明の上記構成によれば、高温の純酸素は、燃焼排ガスで希釈されるので、800℃以上の高温純酸素によって燃焼炉の炉体等に酸化・腐食が生じるのを防止することができる。好ましくは、燃焼排ガスは、加熱前の純酸素に添加され、或いは、中間温度(例えば、400℃程度)まで加熱された加熱過程の純酸素に添加される。これにより、800℃以上の高温純酸素によって熱交換器内の流路壁等が酸化・腐食するのを確実に防止することができる。   Further, according to the above configuration of the present invention, since high temperature pure oxygen is diluted by the combustion exhaust gas, oxidation / corrosion is prevented from occurring in the furnace body of the combustion furnace or the like by high temperature pure oxygen of 800 ° C. or higher. Can. Preferably, the flue gas is added to the pure oxygen before heating, or to the pure oxygen of the heating process heated to an intermediate temperature (for example, about 400 ° C.). Thereby, it is possible to reliably prevent oxidation and corrosion of the flow path wall and the like in the heat exchanger by high temperature pure oxygen of 800 ° C. or higher.

更に他の観点より、本発明は、純酸素酸化剤として炉内に供給するための酸化剤供給装置と、燃焼排ガスを系外に排気するための排気系とを有し、前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼装置において、
炉内壁面に配置され、純酸素を炉内領域に噴射するとともに、炉内ガスを純酸素噴流によって誘引して純酸素を炉内ガスで希釈し且つ加熱する純酸素噴射手段と、
炉内壁面に配置され、希釈後の純酸素に炭化水素系燃料を混合接触させるように炉内に炭化水素系燃料を噴射する燃料噴射手段と、
炉内ガスを炉外に導出して、該炉内ガスの一部を系外に排気するとともに、前記炉内ガスの残部を炉内領域に還流させる炉内ガス排気・循環装置とを有し、
炉内ガス排気・循環装置は、炉外に導出した炉内ガスに伝熱接触して加熱され且つ該炉内ガスを冷却する蓄熱再生型熱交換器の蓄熱体を有し、冷却後の炉内ガスの一部を系外に排気し、該炉内ガスの残部を前記蓄熱体に伝熱接触せしめて再熱した後、炉内領域に還流せしめることを特徴とする高温酸素燃焼装置を提供する。
好ましくは、炉内ガス排気・循環装置は、純酸素及び燃料の総流量の9倍以上の流量の炉内ガスを炉外に導出する。
Even more another aspect, the present invention has an oxidant feed device for feeding the furnace with pure oxygen as an oxidizing agent, and an exhaust system for exhausting the combustion exhaust gas from the system, and the oxidizing agent In a high temperature oxy-fuel combustion apparatus that burns and reacts with hydrocarbon fuel in the furnace region,
Pure oxygen injection means disposed on the inner wall surface of the furnace to inject pure oxygen into the furnace area and induce furnace gas by a pure oxygen jet to dilute and heat pure oxygen with the furnace gas;
Fuel injection means disposed on the inner wall surface of the furnace and injecting hydrocarbon fuel into the furnace so as to mix and contact hydrocarbon fuel with pure oxygen after dilution;
The in-furnace gas is led out of the furnace to exhaust a part of the in-furnace gas out of the system, and the in-furnace gas exhausting / circulating device is provided to recirculate the remainder of the in-furnace gas to the in-furnace region. ,
The in-furnace gas exhaust and circulation device has a heat storage body of a heat storage and regeneration type heat exchanger which is heated in heat transfer contact with the in-furnace gas led to the outside of the furnace and cools the in-furnace gas. A high temperature oxygen combustion apparatus characterized in that a part of the internal gas is exhausted to the outside of the system, and the remaining part of the furnace gas is brought into heat transfer contact with the heat storage body to be reheated and then returned to the furnace area. Do.
Preferably, the in-furnace gas exhaust and circulation device leads out-furnace gas having a flow rate of at least 9 times the total flow rate of pure oxygen and fuel out of the furnace.

本発明は又、純酸素を酸化剤として炉内に供給し、該酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させ、燃焼排ガスを系外に排気する高温酸素燃焼方法において、
炉内壁面に配置された純酸素噴射手段によって純酸素を炉内領域に噴射するとともに、炉内ガスを純酸素噴流によって誘引して純酸素を炉内ガスで希釈し且つ加熱し、
炉内壁面に配置された燃料噴射手段によって炭化水素系燃料を炉内領域に噴射し、炉内ガスで希釈された純酸素に炭化水素系燃料を混合接触させて酸素及び燃料を燃焼反応せしめ、
炉内ガスを炉外に導出して、炉外に導出した炉内ガスに伝熱接触する蓄熱再生型熱交換器の蓄熱体によって該炉内ガスを冷却するとともに、前記炉内ガスが保有する顕熱を前記蓄熱体に蓄熱し、
冷却後の前記炉内ガスの一部を燃焼排ガスとして系外に排気するとともに、冷却後の炉内ガスの残部を前記蓄熱体に伝熱接触せしめて炉内ガスの残部を再熱して、炉内領域に還流させることを特徴とする高温酸素燃焼方法を提供する。
好ましくは、炉内領域に噴射される純酸素及び燃料の総流量の9倍以上の流量の炉内ガスが、炉外に導出される。
The present invention also relates to a high temperature oxygen combustion method in which pure oxygen is supplied as an oxidant into the furnace, the oxidant and the hydrocarbon fuel are burned and reacted in the furnace region, and the combustion exhaust gas is exhausted out of the system
Pure oxygen is injected into the in-furnace region by pure oxygen injection means disposed on the inner wall surface of the furnace, and in-furnace gas is induced by pure oxygen jet to dilute and heat pure oxygen with in-furnace gas;
The hydrocarbon fuel is injected into the furnace area by the fuel injection means disposed on the inner wall of the furnace, and the pure oxygen diluted in the furnace gas is mixed with the hydrocarbon fuel to cause combustion reaction of the oxygen and the fuel.
The in-furnace gas is led out of the furnace, and the in-furnace gas is cooled by the heat storage material of the heat storage / regeneration type heat exchanger which makes heat transfer contact with the in-furnace gas led out of the furnace. Sensible heat is stored in the heat storage body,
A portion of the furnace gas after cooling is exhausted as combustion exhaust gas to the outside of the system, and the remaining portion of the furnace gas after cooling is brought into heat transfer contact with the heat storage body to reheat the remaining portion of the furnace gas. A high temperature oxy-fuel combustion method characterized by refluxing to the inner region.
Preferably, in-furnace gas having a flow rate of at least nine times the total flow rate of pure oxygen and fuel injected into the in-furnace region is led out of the furnace.

本発明の上記構成によれば、炉内ガス(二酸化炭素及び水蒸気)と純酸素との混合流体が炭化水素系燃料と燃焼反応するので、酸素及び燃料は緩慢に燃焼反応し、火炎温度が局所的に高温化するのを抑制しつつ、広域且つ比較的低温の拡散燃焼火炎を炉内に生成することができる。また、純酸素及びその燃焼排ガスの混合気は、窒素を含まず、従って、燃焼域においてNOxが発生するのを実質的に完全に防止することができる。更に、この燃焼反応は、純酸素及び炭化水素系燃料の炉内燃焼反応であるので、炉外に排出すべき燃焼排ガスの容積が減少するとともに、燃焼反応によって生成する水蒸気及び二酸化炭素は、いずれも輻射性ガスであり、従って、燃焼炉の加熱性能又は伝熱性能が向上する。従って、本発明によれば、高温空気燃焼法よりもエネルギー消費量を更に低減することができる。更に、上記高温酸素燃焼法では、給気流体及び排気流体の流量や、系内循環流体の流量が高温空気燃焼に比べて低減するので、高温空気燃焼法よりも燃焼炉及び燃焼設備を更に小形化することができる。   According to the above configuration of the present invention, since the mixed fluid of in-furnace gas (carbon dioxide and water vapor) and pure oxygen undergoes a combustion reaction with the hydrocarbon fuel, the oxygen and the fuel undergo a combustion reaction slowly, and the flame temperature is localized A wide range of relatively low temperature diffusion combustion flames can be produced in the furnace while suppressing the temperature rise. Also, the mixture of pure oxygen and its combustion exhaust gas does not contain nitrogen, and therefore, the generation of NOx in the combustion zone can be substantially completely prevented. Furthermore, since this combustion reaction is an in-furnace combustion reaction of pure oxygen and hydrocarbon fuel, the volume of the flue gas to be discharged to the outside of the furnace is reduced, and the steam and carbon dioxide generated by the combustion reaction are either Are also radiant gases, and thus improve the heating performance or heat transfer performance of the combustion furnace. Therefore, according to the present invention, energy consumption can be further reduced compared to the high temperature air combustion method. Furthermore, in the high temperature oxy-fuel combustion method, the flow rates of the supply fluid and the exhaust fluid and the flow rate of the in-system circulating fluid are reduced compared to high temperature air combustion, so the combustion furnace and the combustion facility are smaller than Can be

加えて、本発明の上記構成によれば、純酸素は、炉内領域において炉内ガスで希釈され且つ加熱されるので、熱交換器を構成する金属又はセラミックス材料の酸化・腐食や、燃焼炉の炉体の酸化・腐食等が生じるのを確実に防止することができる。また、蓄熱再生型熱交換器のガス循環量を適切に設定し、適量の燃焼排ガスを系外に排気することにより、燃焼系全体の流量バランス及び熱バランスを適正化することができる。   In addition, according to the above configuration of the present invention, pure oxygen is diluted and heated with the furnace gas in the furnace area, so that the oxidation / corrosion of the metal or ceramic material constituting the heat exchanger, the combustion furnace Oxidation and corrosion of the furnace body can be reliably prevented. In addition, the flow balance and heat balance of the entire combustion system can be optimized by appropriately setting the gas circulation amount of the heat storage and regeneration type heat exchanger and exhausting an appropriate amount of combustion exhaust gas out of the system.

なお、「純酸素」は、理想的には、不純物を全く含まない濃度100%の酸素であることが望ましいが、PSA(Pressure Swing Adsorption)等の技術で製造される通常の「純酸素」は、現実には、少量又は微量の不純物を含有しており、通常は、95%以下の濃度である。また、純酸素供給経路においては、少量又は微量の外界空気等が不可避的に純酸素供給流路内に進入することも現実には想定される。しかし、このような少量又は微量の不純物等が仮に純酸素に混入したとしても、本発明の意図は、大きく損なわれるものではない。従って、本明細書において、「純酸素」の用語は、90%以上(重量比)の酸素濃度を有する流体(気体)を意味するものとする。   In addition, although it is desirable that "pure oxygen" is oxygen with a concentration of 100% that does not contain any impurities ideally, normal "pure oxygen" produced by techniques such as PSA (Pressure Swing Adsorption) is In reality, it contains minor or trace amounts of impurities and is usually at a concentration of 95% or less. In addition, in the pure oxygen supply path, it is also practically assumed that a small amount or a small amount of ambient air and the like inevitably enter the pure oxygen supply flow path. However, even if such a small amount or a small amount of impurities and the like are mixed into pure oxygen, the intention of the present invention is not greatly impaired. Therefore, in the present specification, the term "pure oxygen" is intended to mean a fluid (gas) having an oxygen concentration of 90% or more (weight ratio).

本発明の高温酸素燃焼装置及び高温酸素燃焼方法は、蓄熱再生型バーナーシステムに純酸素を供給して800℃以上の超高温域に加熱し、高温の酸素を炭化水素系燃料と燃焼反応せしめる工業炉の高温酸素燃焼装置及び高温酸素燃焼方法を提供する。本発明の高温酸素燃焼装置及び高温酸素燃焼方法は、一般的な工業炉に好適に使用することができ、しかも、NOxが燃焼域に発生するのを実質的に完全に防止するとともに、高温空気燃焼法に比べてエネルギー消費量を更に低減し且つ燃焼炉及び燃焼設備を更に小型化することができる。   INDUSTRIAL APPLICABILITY The high temperature oxygen combustion apparatus and the high temperature oxygen combustion method according to the present invention is an industrial that supplies pure oxygen to a regenerative thermal burner system and heats it to a very high temperature range of 800 ° C. or more to cause combustion reaction of high temperature oxygen with hydrocarbon fuel. A high temperature oxy-fuel combustion apparatus and a high temperature oxy-fuel combustion method of a furnace The high temperature oxygen combustion apparatus and the high temperature oxygen combustion method of the present invention can be suitably used for a general industrial furnace, and moreover, substantially completely prevent NOx from being generated in the combustion zone, and high temperature air Energy consumption can be further reduced as compared with the combustion method, and the combustion furnace and the combustion equipment can be further miniaturized.

図1は、従来の高温空気燃焼法の構成を概略的に示す高温空気燃焼システムのブロック図である。FIG. 1 is a block diagram of a high temperature air combustion system schematically showing the configuration of a conventional high temperature air combustion method. 図2は、従来の高温空気燃焼法の構成を応用した高温酸素燃焼システムの構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing the configuration of a high temperature oxy-fuel combustion system to which the configuration of a conventional high temperature air combustion method is applied. 図3は、図2に示す燃焼系において、炉内燃焼ガスの一部を炉外に直に系外に排気するように構成された高温酸素燃焼システムを概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing a high temperature oxy-fuel combustion system configured to exhaust a part of in-furnace combustion gas out of the furnace directly outside the furnace in the combustion system shown in FIG. 図4は、本発明の好適な実施形態に係る高温酸素燃焼システムの構成を概略的に示すブロック図である。FIG. 4 is a block diagram schematically showing the configuration of a high temperature oxy-fuel combustion system according to a preferred embodiment of the present invention. 図5は、本発明に他の好適な実施形態に係る高温酸素燃焼システムの構成を概略的に示すブロック図である。FIG. 5 is a block diagram schematically showing the configuration of a high temperature oxy-fuel combustion system according to another preferred embodiment of the present invention. 図6は、本発明の更に他の好適な実施形態に係る高温酸素燃焼システムの構成を概略的に示すブロック図である。FIG. 6 is a block diagram schematically showing the configuration of a high temperature oxy-fuel combustion system according to still another preferred embodiment of the present invention. 図7は、図5に示す高温酸素燃焼システムの構成を更に具体的に示すシステム構成図である。FIG. 7 is a system configuration diagram showing the configuration of the high temperature oxygen combustion system shown in FIG. 5 more specifically. 図8は、図7に示す高温酸素燃焼システムの変形例を示すシステム構成図である。FIG. 8 is a system configuration diagram showing a modified example of the high temperature oxygen combustion system shown in FIG. 図9は、図6に示す高温酸素燃焼システムの構成を更に具体的に示すシステム構成図である。FIG. 9 is a system configuration diagram showing the configuration of the high temperature oxygen combustion system shown in FIG. 6 more specifically. 図10は、図4、図5、図7及び図8に示す高温酸素燃焼システムの蓄熱再生型熱交換器の全体構成を概略的に示す縦断面図である。FIG. 10 is a longitudinal sectional view schematically showing an entire configuration of the heat storage and regeneration type heat exchanger of the high-temperature oxygen combustion system shown in FIGS. 4, 5, 7 and 8. 図11は、図10に示す熱交換器の構造を具体的に示す縦断面図である。FIG. 11 is a longitudinal sectional view specifically showing the structure of the heat exchanger shown in FIG. 図12は、図11に示す連通路の分流・混合手段の構造を示す横断面図である。FIG. 12 is a cross-sectional view showing the structure of the dividing / mixing means of the communication passage shown in FIG. 図13は、図11に示す熱交換器に関し、給排切換弁装置の位置を切り換えた後の状態を示す縦断面図である。FIG. 13 is a longitudinal sectional view showing the heat exchanger shown in FIG. 11 after switching the position of the feed / discharge switching valve device. 図14は、図13に示す状態の熱交換器に関し、連通路の状態を示す縦断面図である。FIG. 14 is a longitudinal cross-sectional view showing the state of the communication passage in the heat exchanger shown in FIG. 図15は、分流・混合手段の変形例を示す断面図である。FIG. 15 is a cross-sectional view showing a modification of the diverting and mixing means. 図16は、排ガス循環流を純酸素と混合する混合手段の構成を例示する横断面図である。FIG. 16 is a cross-sectional view illustrating the configuration of mixing means for mixing the exhaust gas circulation flow with pure oxygen. 図17は、図16に示す混合手段の変形例を示す横断面図である。FIG. 17 is a cross-sectional view showing a modification of the mixing means shown in FIG. 図18は、図16に示す混合機構の他の変形例を示す横断面図である。FIG. 18 is a cross-sectional view showing another modification of the mixing mechanism shown in FIG. 図19は、図6及び図9に示す蓄熱再生型熱交換器の全体構成を概略的に示す縦断面図である。FIG. 19 is a longitudinal sectional view schematically showing an entire configuration of the heat storage and regeneration type heat exchanger shown in FIGS. 6 and 9. 図20は、図19に示す蓄熱再生型熱交換器の構造を具体的に示す縦断面図である。FIG. 20 is a longitudinal cross-sectional view specifically showing the structure of the heat storage and regeneration type heat exchanger shown in FIG. 図21は、図20に示す熱交換器に関し、給排切換弁装置の位置を切り換えた後の状態を示す縦断面図である。FIG. 21 is a longitudinal sectional view showing the heat exchanger shown in FIG. 20 after switching the position of the feed / discharge switching valve device.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、従来の高温空気燃焼法の構成を概略的に示す高温空気燃焼システムのブロック図である。図1(A)には、高温空気燃焼システムの第1燃焼形態が示され、図1(B)には、高温空気燃焼システムの第2燃焼形態が示されている。   FIG. 1 is a block diagram of a high temperature air combustion system schematically showing the configuration of a conventional high temperature air combustion method. FIG. 1 (A) shows a first combustion mode of the high temperature air combustion system, and FIG. 1 (B) shows a second combustion mode of the high temperature air combustion system.

高温空気燃焼法においては、燃焼炉Cは、蓄熱再生型バーナーシステムを構成する第1及び第2の蓄熱型熱交換器H1、H2を備える。第1燃焼形態(図1(A))においては、大気圧且つ大気温度(常圧・常温)の燃焼用空気Aが第2熱交換器H2に供給され、炉内燃焼ガスRが第1熱交換器H1を介して炉外に導出され、燃焼排ガスEとして系外に排気される。第2燃焼形態(図1(B))においては、常圧・常温の燃焼用空気Aが第1熱交換器H1に供給され、炉内燃焼ガスRが第2熱交換器H2を介して炉外に導出され、燃焼排ガスEとして系外に排気される。第1及び第2燃焼形態は、60秒以内に設定された所定時間間隔(例えば、30秒間隔)で交互に切り換えられ、熱交換器H1、H2によって800℃以上の超高温域に加熱された燃焼用空気が炉内領域αに実質的に連続的に供給される。炭化水素系燃料Fが炉内領域αに供給され、燃焼用空気Aと混合接触して炉内燃焼反応が生起する。   In the high temperature air combustion method, the combustion furnace C includes first and second heat storage type heat exchangers H1 and H2 that constitute a heat storage and regeneration type burner system. In the first combustion mode (FIG. 1A), the combustion air A at atmospheric pressure and atmospheric temperature (normal pressure and normal temperature) is supplied to the second heat exchanger H2, and the combustion gas R in the furnace is subjected to the first heat It is led out of the furnace through the exchanger H1 and exhausted out of the system as the flue gas E. In the second combustion mode (FIG. 1B), the combustion air A at normal pressure and normal temperature is supplied to the first heat exchanger H1, and the combustion gas R in the furnace is transferred to the furnace via the second heat exchanger H2. It is led out and exhausted out of the system as combustion exhaust gas E. The first and second combustion modes are alternately switched at a predetermined time interval (for example, 30 seconds interval) set within 60 seconds, and heated to an ultra-high temperature range of 800 ° C. or higher by the heat exchangers H1 and H2. Combustion air is supplied substantially continuously to the in-furnace region α. The hydrocarbon-based fuel F is supplied to the in-furnace region α, mixed with the combustion air A, and in-furnace combustion reaction occurs.

例えば、図1に化学式で示す如く、燃料Fとしてメタン(CH4)を用いた場合、燃焼反応の化学量論比は、燃料1モルに対して空気10モル(酸素2モル)であり、理論燃空比は、1/10である。従って、第1及び第2燃焼形態の各々において各熱交換器H1、H2を流通する気体の流量比は、給気流量:排気流量=10:11であり、これは、概ね均等な流量の燃焼用空気及び燃焼排ガスが熱交換器H1、H2を常時流通することを意味する。なお、給排気に約10%の流量差が生じるが、全体流量が比較的大きいので、この程度の流量差の場合、燃焼系全体の流量バランス及び熱バランスに実質的な影響が生じないことが既に確認されている。また、約10%の流量差の場合、必要に応じて少量の炉内燃焼ガスRを炉内燃焼域から直に系外に排気することにより、多大な熱損失を伴わずに燃焼系全体の流量バランス及び熱バランスを確保することが可能となる。 For example, as shown by the chemical formula in FIG. 1, when methane (CH 4 ) is used as the fuel F, the stoichiometry of the combustion reaction is 10 moles of air (2 moles of oxygen) to 1 mole of fuel, the theory The fuel / air ratio is 1/10. Therefore, in each of the first and second combustion modes, the flow rate ratio of the gas flowing through each heat exchanger H1, H2 is as follows: charge air flow rate: exhaust flow rate = 10: 11, which corresponds to the combustion with a substantially even flow rate. It means that the air and combustion exhaust gas always flow through the heat exchangers H1 and H2. Although a flow rate difference of approximately 10% occurs in air supply and exhaust, the overall flow rate is relatively large, so that in the case of this flow rate difference, the flow rate balance and heat balance of the entire combustion system are not substantially affected. It has already been confirmed. In the case of a flow rate difference of about 10%, if necessary, a small amount of in-furnace combustion gas R is exhausted from the in-furnace combustion zone directly out of the system, so that the entire combustion system It becomes possible to secure the flow rate balance and the heat balance.

図2は、このような高温空気燃焼法の構成を高温酸素燃焼法に適用した高温酸素燃焼システムの構成を概略的に示すブロック図である。   FIG. 2 is a block diagram schematically showing the configuration of a high temperature oxygen combustion system in which the configuration of such a high temperature air combustion method is applied to the high temperature oxygen combustion method.

図2に示す燃焼システムは、燃焼用空気Aに換えて純酸素Oを燃焼システムに供給するように構成した燃焼系である。純酸素Oは、熱交換器H1、H2によって800℃以上の超高温域に加熱された後、炉内領域αに供給される。炭化水素系燃料Fが炉内に供給され、加熱後の純酸素Oと混合して炉内燃焼反応が生起する。   The combustion system shown in FIG. 2 is a combustion system configured to supply pure oxygen O to the combustion system instead of the combustion air A. Pure oxygen O is supplied to the in-furnace region α after being heated to an ultra-high temperature range of 800 ° C. or more by the heat exchangers H1 and H2. The hydrocarbon-based fuel F is supplied into the furnace and mixed with the heated pure oxygen O to cause an in-furnace combustion reaction.

例えば、図1に化学式で示す如く、燃料Fとしてメタン(CH4)を用いた場合、燃焼反応の量論比は、燃料1モルに対して酸素2モルであり、従って、化学量論比は、1/2である。このため、第1燃焼形態(図2(A))及び第2燃焼形態(図2(B))の双方において、各熱交換器H1、H2を流通する気体の流量比は、排気流量:給気流量=3:2であるので、給気及び排気の流量差が大きく、燃焼系全体の流量バランス及び熱バランスを所望の如く確保し難い。例えば、高温空気燃焼法の燃焼系(図1)においては、燃焼排ガスEを200〜300℃の温度に冷却し得るが、図2に示す高温酸素燃焼法の燃焼系においては、そのような温度域に燃焼排ガス温度を低下させることができず、この結果、排気系の流路及び機器等に過大な熱負荷が課せられ、或いは、熱交換器H1、H2を構成する蓄熱体の過熱等が生じ易い。 For example, as shown by the chemical formula in FIG. 1, when methane (CH 4 ) is used as the fuel F, the stoichiometric ratio of the combustion reaction is 2 moles of oxygen to 1 mole of fuel, and therefore the stoichiometric ratio is , 1/2. For this reason, in both the first combustion mode (FIG. 2A) and the second combustion mode (FIG. 2B), the flow ratio of the gas flowing through each heat exchanger H1, H2 is: Since the air flow rate is 3: 2, the flow rate difference between the air supply and the exhaust is large, and it is difficult to secure the flow rate balance and heat balance of the entire combustion system as desired. For example, in the combustion system of the high temperature air combustion method (FIG. 1), the combustion exhaust gas E can be cooled to a temperature of 200 to 300 ° C., but in the combustion system of the high temperature oxygen combustion method shown in FIG. The combustion exhaust gas temperature can not be lowered to the area, and as a result, an excessive heat load is imposed on the flow path and equipment of the exhaust system, or overheating of the heat storage material constituting the heat exchangers H1 and H2 It is easy to occur.

図3は、図2に示す燃焼系において、炉内燃焼ガスの一部を直に系外に排気するように構成された高温酸素燃焼システムを概略的に示すブロック図である。   FIG. 3 is a block diagram schematically showing a high temperature oxy-fuel combustion system configured to exhaust part of in-furnace combustion gas directly out of the system in the combustion system shown in FIG.

図3に示す高温酸素燃焼システムは、各熱交換器H1、H2を流通する純酸素O及び燃焼排ガスEの流量比を均等化し、排気流量:給気流量=1:1に設定すべく、炉内燃焼ガスRの一部を炉内領域αから直に系外に排気するように構成した燃焼系である。例えば、メタン(CH4)を燃料として使用する場合、給気流量(酸素供給量及び燃料供給量の総量)の1/3に相当する流量の燃焼排ガスEaが炉内燃焼域から系外に直に排気される。このような構成によれば、第1及び第2燃焼形態の各々において各熱交換器H1、H2を流通する純酸素O及び燃焼排ガスEの流量を等量(給気流量=排気流量)に維持することができ、従って、燃焼系全体の流量バランス及び熱バランスを確保し得る。また、酸素及び炭化水素系燃料の燃焼反応により発生する燃焼ガスは、炉内発熱量に対して比較的少量であるので、上記の如く燃焼排ガスEaを系外に直に排気したとしても、燃焼系全体の熱損失は著しく増大せず、従って、熱効率が顕著に低下するのを回避することができる。 In the high-temperature oxygen combustion system shown in FIG. 3, the furnace is designed to equalize the flow ratio of pure oxygen O and flue gas E flowing through the heat exchangers H1 and H2, and set the exhaust flow rate: the charge air flow rate 1: 1. This is a combustion system configured to exhaust part of the internal combustion gas R directly out of the system from the in-furnace region α. For example, when methane (CH 4 ) is used as the fuel, the flue gas Ea having a flow rate equivalent to 1/3 of the charge air flow rate (total amount of oxygen supply amount and fuel supply amount) is directly discharged from the furnace combustion zone to the outside of the system. Exhausted. According to such a configuration, in each of the first and second combustion modes, the flow rates of the pure oxygen O and the combustion exhaust gas E flowing through the heat exchangers H1 and H2 are maintained at equal amounts (supply flow rate = exhaust flow rate) It is possible to maintain flow rate balance and heat balance throughout the combustion system. In addition, since the amount of combustion gas generated by the combustion reaction of oxygen and hydrocarbon fuel is relatively small relative to the calorific value in the furnace, even if the combustion exhaust gas Ea is discharged directly out of the system as described above, combustion is still possible. The heat loss of the whole system does not increase significantly, so that a significant reduction in the thermal efficiency can be avoided.

図2及び図3に示す高温酸素燃焼システムによれば、炉内領域αに生成する燃焼ガスの成分は、実質的に水蒸気及び二酸化炭素のみであり、従って、NOxの発生を実質的に完全に抑制することができ、しかも、燃焼系全体を循環する燃焼ガス流量や、系外に排気される燃焼排ガス量が低減するので、炉及び燃焼設備を小型化することが可能となる。しかも、燃焼排ガスが保有する顕熱が蓄熱再生式の熱交換器H1、H2によって効率的に回収されるので、燃料消費量(エネルギー消費量)を低下させることが可能となる。   According to the high temperature oxy-fuel combustion system shown in FIGS. 2 and 3, the components of the combustion gas generated in the in-furnace region α are substantially only water vapor and carbon dioxide, and therefore the generation of NOx is substantially completely eliminated. Since the flow rate of the combustion gas circulating through the entire combustion system and the amount of combustion exhaust gas exhausted outside the system can be reduced, the furnace and the combustion equipment can be miniaturized. Moreover, since the sensible heat held by the combustion exhaust gas is efficiently recovered by the heat storage and regeneration type heat exchangers H1 and H2, it is possible to reduce the fuel consumption (energy consumption).

しかし、800℃以上の超高温域に加熱された酸素は、極めて反応性が高く、このため、熱交換器H1、H2や高温ガス流路を構成する金属又はセラミックス材料の酸化・腐食や、燃焼炉の炉体の酸化・腐食等が懸念されることから、このような構成の高温酸素燃焼法は、炉体を構成する耐火・断熱材料や、燃焼設備を構成する材料又は素材の開発を前提条件とせざるを得ず、従って、現状では、一般的な工業炉の燃焼方式として採用し難い事情がある。また、このような酸素燃焼法においては、燃焼域の火炎が局所的に高温化し、一般的な工業炉の炉体及び流路等を構成する耐火・断熱材料が損耗又は損傷することが懸念される。   However, oxygen heated to an ultra-high temperature range of 800 ° C. or higher is extremely reactive, and therefore, the heat exchangers H1, H2 and the oxidation / corrosion of the metal or ceramic material constituting the high temperature gas flow path, and the combustion Since there is concern about oxidation, corrosion, etc. of the furnace body of the furnace, the high temperature oxy-fuel combustion method with such configuration is premised on the development of the fireproof / insulation material that constitutes the furnace body, or the material or material that constitutes the combustion equipment. There is no choice but to adopt it as a condition, and it is difficult to adopt it as a general industrial furnace combustion method at present. In addition, in such an oxygen combustion method, there is a concern that the flame in the combustion zone may be locally heated to high temperature, and the fireproof and heat insulating material constituting the furnace body and the flow path of a general industrial furnace may be worn or damaged. Ru.

図4及び図5は、本発明に係る高温酸素燃焼システムの構成を概略的に示すブロック図である。   FIG.4 and FIG.5 is a block diagram which shows roughly the structure of the high temperature oxygen combustion system which concerns on this invention.

図4及び図5には、純酸素を燃焼排ガスによって希釈すべく、炉内ガスの一部を再循環して純酸素に添加するように構成された本発明の高温酸素燃焼システムが概略的に示されている。図4及び図5に示す燃焼システムにおいては、炉外に導出された直後の燃焼排ガスEの一部が、バイパス流Bとして純酸素Oの供給流に添加され、バイパス流B及び酸素Oの混合気Mが炉内領域αに供給される。   FIGS. 4 and 5 schematically illustrate the high temperature oxy-fuel combustion system of the present invention configured to recirculate a portion of the furnace gas and add to pure oxygen in order to dilute the pure oxygen with the flue gas. It is shown. In the combustion system shown in FIGS. 4 and 5, a part of the flue gas E immediately after being discharged outside the furnace is added to the feed stream of pure oxygen O as the bypass stream B, and the bypass stream B and the oxygen O are mixed. Air M is supplied to the furnace area α.

図4に示す高温酸素燃焼システムにおいては、熱交換器H1、H2の高温側(炉内側)流路が相互連通する。第1燃焼形態(図4(A))において、純酸素Oが第2熱交換器H2に供給され、炉外に導出された燃焼排ガスEの一部がバイパス流Bとして加熱後の純酸素Oに添加される。燃焼排ガスEの残部は、第1熱交換器H1によって冷却された後、系外に排気される。バイパス流B及び酸素Oの混合気Mが、炉内領域αにおいて炭化水素系燃料Fに混合接触し、燃焼反応する。第2燃焼形態(図4(B))においては、純酸素Oが第1熱交換器H1に供給され、炉外に導出された燃焼排ガスEの一部がバイパス流Bとして加熱後の純酸素Oに添加される。燃焼排ガスEの残部は、第2熱交換器H2によって冷却された後、系外に排気される。バイパス流B及び純酸素Oの混合気Mは、炉内領域αにおいて炭化水素系燃料Fに混合接触し、燃焼反応する。所望により、燃焼系全体の流量バランス及び熱バランスを確保すべく、比較的少量の燃焼排ガスEaが炉内領域αから系外に直に排気される。   In the high temperature oxygen combustion system shown in FIG. 4, the high temperature side (furnace inside) flow paths of the heat exchangers H1 and H2 are in communication with each other. In the first combustion mode (FIG. 4 (A)), pure oxygen O is supplied to the second heat exchanger H2, and a part of the combustion exhaust gas E drawn out of the furnace serves as the bypass flow B and is heated after pure oxygen O. Is added to The remainder of the combustion exhaust gas E is exhausted out of the system after being cooled by the first heat exchanger H1. The mixture M of the bypass flow B and the oxygen O mixes and contacts the hydrocarbon-based fuel F in the in-furnace region α to cause a combustion reaction. In the second combustion mode (FIG. 4 (B)), pure oxygen O is supplied to the first heat exchanger H1, and a part of the combustion exhaust gas E drawn out of the furnace is treated as the bypass flow B pure oxygen after heating. Added to O. The remainder of the combustion exhaust gas E is exhausted out of the system after being cooled by the second heat exchanger H2. The mixture M of the bypass flow B and the pure oxygen O mixes and contacts the hydrocarbon-based fuel F in the in-furnace region α to cause a combustion reaction. If desired, a relatively small amount of flue gas Ea is exhausted directly from the furnace region α to the outside of the system in order to ensure the flow rate balance and heat balance of the entire combustion system.

図5に示す高温酸素燃焼システムにおいては、熱交換器H1、H2の低温側(炉外側)流路が相互連通する。第1燃焼形態(図5(A))において、純酸素Oが第2熱交換器H2に供給され、第1熱交換器H1によって冷却された燃焼排ガスEの一部が、バイパス流Bとして分流し、加熱前の純酸素Oに添加される。燃焼排ガスEの残部は、系外に排気される。バイパス流B及び純酸素Oの混合気Mが、第2熱交換器H2によって加熱された後、炉内領域αに供給され、炉内領域αにおいて炭化水素系燃料Fに混合接触し、燃焼反応する。第2燃焼形態(図5(B))においては、純酸素Oが第1熱交換器H1に供給され、第2熱交換器H2によって冷却された燃焼排ガスEの一部が、バイパス流Bとして分流し、加熱前の純酸素Oに添加される。燃焼排ガスEの残部は、系外に排気される。バイパス流B及び純酸素Oの混合気Mが、第1熱交換器H1によって加熱された後、炉内領域に供給され、炉内領域αにおいて炭化水素系燃料Fに混合接触し、燃焼反応する。所望により、燃焼系全体の流量バランス及び熱バランスを確保すべく、比較的少量の燃焼排ガスEaが炉内領域αから系外に直に排気される。   In the high temperature oxygen combustion system shown in FIG. 5, the low temperature side (furnace outside) flow paths of the heat exchangers H1 and H2 communicate with each other. In the first combustion mode (FIG. 5A), part of the combustion exhaust gas E supplied with pure oxygen O to the second heat exchanger H2 and cooled by the first heat exchanger H1 is divided as the bypass flow B. It is added to pure oxygen O before flowing and heating. The remainder of the combustion exhaust gas E is exhausted out of the system. After the mixture M of the bypass flow B and pure oxygen O is heated by the second heat exchanger H2, the mixture M is supplied to the in-furnace region α, mixed with the hydrocarbon fuel F in the in-furnace region α, and combusted. Do. In the second combustion mode (FIG. 5B), part of the combustion exhaust gas E supplied with pure oxygen O to the first heat exchanger H1 and cooled by the second heat exchanger H2 is used as the bypass flow B. It is divided and added to pure oxygen O before heating. The remainder of the combustion exhaust gas E is exhausted out of the system. After the mixture M of the bypass flow B and pure oxygen O is heated by the first heat exchanger H1, the mixture M is supplied to the in-furnace region, mixes and contacts the hydrocarbon-based fuel F in the in-furnace region α, and burns and reacts . If desired, a relatively small amount of flue gas Ea is exhausted directly from the furnace region α to the outside of the system in order to ensure the flow rate balance and heat balance of the entire combustion system.

図4及び図5に示す高温酸素燃焼システムにおいて、例えば、メタン(CH4)を燃料Fとして使用する場合、炭化水素系燃料と酸素との燃焼反応により生成した燃焼ガスは、実質的に二酸化炭素及び水蒸気の混合気であり、従って、混合気Mは、純酸素Oを二酸化炭素及び水蒸気によって希釈してなる給気流として炉内領域αに供給される。バイパス流Bの流量は、例えば、酸素供給量と等量に設定され、混合気Mの酸素濃度は、体積比50%に設定される。所望により、混合気Mの酸素濃度を体積比20%程度まで低減することも可能である。純酸素Oを炉内燃焼ガスRで希釈した混合気は、燃料Fと緩慢に燃焼反応するので、火炎温度が局所的に高温化するのを抑制した広域且つ比較的低温の拡散燃焼火炎を炉内に生成することができる。 In the high-temperature oxygen combustion system shown in FIGS. 4 and 5, for example, when methane (CH 4 ) is used as the fuel F, the combustion gas generated by the combustion reaction of the hydrocarbon fuel and oxygen is substantially carbon dioxide. And a mixture of steam, and therefore, the mixture M is supplied to the in-furnace region α as an air-supply stream formed by diluting pure oxygen O with carbon dioxide and steam. For example, the flow rate of the bypass flow B is set equal to the oxygen supply amount, and the oxygen concentration of the mixture M is set to 50% by volume. If desired, it is also possible to reduce the oxygen concentration of the air-fuel mixture M to about 20% by volume. Since a mixture of pure oxygen O diluted with in-furnace combustion gas R burns slowly with fuel F, a broad-area, relatively low temperature diffusion combustion flame which suppresses the local increase in flame temperature is used. Can be generated within.

図4に示す燃焼系においては、炉内領域αから導出された直後の燃焼排ガスEの一部がバイパス流Bとして熱交換器H1、H2の高温側(炉内側)流路を循環し、熱交換器H1、H2によって加熱された純酸素Oに混合する。他方、図5に示す燃焼系においては、炉内領域αから導出された燃焼排ガスEは、熱交換器H1、H2によって冷却された後、その一部がバイパス流Bとして純酸素Oに添加され、二酸化炭素及び水蒸気によって希釈された純酸素Oが、熱交換器H1、H2に伝熱接触して加熱される。   In the combustion system shown in FIG. 4, a part of the combustion exhaust gas E immediately after being derived from the in-furnace region α circulates as the bypass flow B in the high temperature side (furnace inside) flow path of the heat exchangers H1 and H2, It mixes with pure oxygen O heated by exchanger H1, H2. On the other hand, in the combustion system shown in FIG. 5, the combustion exhaust gas E derived from the in-furnace region α is partially added to pure oxygen O as bypass flow B after being cooled by heat exchangers H1 and H2. Pure oxygen O diluted with carbon dioxide and steam is brought into heat transfer contact with the heat exchangers H1 and H2 and heated.

図4に示す燃焼系では、熱交換器H1、H2の一部を除き、反応性が高い高温の純酸素に直に接触せず、従って、流路及び炉体の酸化・腐食等を抑制することができ、図5に示す燃焼系では、熱交換器H1、H2を含む全流路及び炉内壁面が800℃以上の高温純酸素に直に接触せず、従って、燃焼系全体の酸化・腐食等を確実に防止することができる。   In the combustion system shown in FIG. 4, except for a part of the heat exchangers H1 and H2, they do not directly contact the highly reactive high temperature pure oxygen, thus suppressing the oxidation and corrosion of the flow path and the furnace body. In the combustion system shown in FIG. 5, all the flow paths including the heat exchangers H1 and H2 and the inner wall surface of the furnace do not directly contact the high temperature pure oxygen of 800.degree. C. or more. Corrosion can be reliably prevented.

図4(C)に示す如く、熱交換器H1、H2において、各熱交換器の蓄熱体を気流方向に(前後に)分割し、各蓄熱体の中間部分においてバイパス流Bを純酸素Oに添加するように構成しても良い。このような構成によれば、図5に示す燃焼系と同じく、熱交換器H1、H2を含む全流路及び炉内壁面が高温の純酸素に直に接触するのを防止することが可能となる。また、このような構成によれば、低温側の蓄熱体部分によって純酸素Oが予熱されるので、バイパス流B中の水蒸気が常温の純酸素Oと混合して凝縮するのを確実に防止することができる。   As shown in FIG. 4C, in the heat exchangers H1 and H2, the heat storage bodies of the respective heat exchangers are divided in the air flow direction (back and forth), and the bypass flow B is converted into pure oxygen O in the middle portion of each heat storage body. You may comprise so that it may add. According to such a configuration, as in the combustion system shown in FIG. 5, it is possible to prevent all the flow paths including the heat exchangers H1 and H2 and the inner wall surface of the furnace from being in direct contact with high temperature pure oxygen Become. Moreover, according to such a configuration, since pure oxygen O is preheated by the low temperature side heat storage body portion, the water vapor in bypass flow B is surely prevented from mixing with pure oxygen O at normal temperature and condensing. be able to.

図6は、本発明の他の実施形態に係る高温酸素燃焼システムの構成を概略的に示すブロック図である。   FIG. 6 is a block diagram schematically showing the configuration of a high temperature oxy-fuel combustion system according to another embodiment of the present invention.

図4及び図5に示す実施形態は、純酸素O又はその混合気Mを蓄熱再生型の熱交換器H1、H2によって加熱する方式のものであるが、図6に示す実施形態の如く、高温の炉内燃焼ガスRによって純酸素Oを炉内領域αで加熱し且つ希釈することも可能である。図6には、純酸素O及び燃料Fの噴射ノズルを炉内壁面に配設し、純酸素O及び燃料Fを炉内領域αに直に噴射し、純酸素Oを炉内燃焼ガスRによって加熱し且つ希釈する方式の燃焼システムが示されている。   The embodiment shown in FIG. 4 and FIG. 5 is a system in which pure oxygen O or the mixture M thereof is heated by the heat storage and regeneration type heat exchangers H1 and H2, but as in the embodiment shown in FIG. It is also possible to heat and dilute pure oxygen O in the in-furnace region α by the in-furnace combustion gas R of In FIG. 6, injection nozzles of pure oxygen O and fuel F are disposed on the inner wall surface of the furnace, pure oxygen O and fuel F are directly injected into the in-furnace region α, and pure oxygen O is generated by in-furnace combustion gas R. A combustion system of the heating and dilution type is shown.

炉内領域αは、一般に、1200℃以上の高温雰囲気である。純酸素Oは、酸素噴射ノズルの噴射口から炉内領域αに噴射する。酸素噴射ノズルから炉内領域αに噴射した純酸素Oの噴流は、周囲の炉内ガスを誘引しながら、炉内燃焼ガスRと混合し且つ炉内燃焼ガスRによって加熱される。このような混合・加熱の作用は、酸素噴射ノズルの噴射部からノズル直径(口径)の約10倍に相当する距離範囲内の領域において急速に進行する。   The furnace area α is generally a high temperature atmosphere of 1200 ° C. or higher. Pure oxygen O is injected from the injection port of the oxygen injection nozzle into the furnace region α. The jet of pure oxygen O injected from the oxygen injection nozzle into the in-furnace region α mixes with in-furnace combustion gas R and is heated by the in-furnace combustion gas R while attracting ambient in-furnace gas. Such mixing / heating action rapidly progresses in a region within a distance range equivalent to about 10 times the nozzle diameter (diameter) from the jet part of the oxygen jet nozzle.

図6(A)及び図6(B)の各燃焼形態において、炉内領域αに噴射した純酸素Oは、炉内燃焼ガスRと混合し、炉内燃焼ガスRと同等の温度に加熱された後、炉内領域αに噴射した燃料Fと混合接触して炉内領域αで燃焼反応する。純酸素Oを炉内燃焼ガスRで希釈した混合気は、燃料Fと緩慢に燃焼反応し、これにより、火炎温度が局所的に高温化するのを抑制しつつ、広域且つ比較的低温の拡散燃焼火炎を炉内に生成することができる。   6A and 6B, the pure oxygen O injected into the in-furnace region α is mixed with the in-furnace combustion gas R and heated to the same temperature as the in-furnace combustion gas R. After that, the fuel F mixed with the fuel F injected into the in-furnace region α makes a combustion reaction in the in-furnace region α. A mixture obtained by diluting pure oxygen O with in-furnace combustion gas R burns slowly with fuel F, thereby suppressing local temperature increase of the flame temperature, and spreading a wide range and relatively low temperature. A combustion flame can be generated in the furnace.

図6に示す燃焼システムは又、炉内燃焼ガスRの一部を炉外に排気し、炉内燃焼ガスRの残部を炉内に還流させる炉内ガス排気・循環装置を備える。炉内ガス排気・循環装置は、一対の熱交換器H1、H2から構成される。例えば、炉内ガス排気・循環装置は、純酸素O及び燃料Fの総流量の約10倍に相当する流量の炉内燃焼ガスRを炉外に導出し且つ炉内に還流させる。   The combustion system shown in FIG. 6 also includes an in-furnace gas exhaust and circulation device that exhausts a part of the in-furnace combustion gas R to the outside of the furnace and refluxes the remainder of the in-furnace combustion gas R into the furnace. The in-furnace gas exhaust / circulation device is composed of a pair of heat exchangers H1 and H2. For example, the in-furnace gas exhaust / recirculation apparatus leads out the in-furnace combustion gas R at a flow rate corresponding to about 10 times the total flow rate of pure oxygen O and fuel F to the outside of the furnace and reflux it in the furnace.

図6に示す如く、炉内ガス排気・循環装置は、第1及び第2の蓄熱型熱交換器H1、H2を備える。炉内ガス排気・循環装置は、第1循環形態(図6(A))において、炉内燃焼ガスRを第1熱交換器H1から炉外に導出し、炉内燃焼ガスRが保有する顕熱を第1熱交換器H1に蓄熱し、冷却後の炉内燃焼ガスRの大部分を第2熱交換器H2に導入し、第2熱交換器H2によって再熱して炉内領域αに還流させる。炉内ガス排気・循環装置は、第2循環形態(図6(B))において、炉内燃焼ガスRを第2熱交換器H2から炉外に導出し、炉内燃焼ガスRが保有する顕熱を第2熱交換器H2に蓄熱し、冷却後の炉内燃焼ガスRの大部分を第1熱交換器H1に導入し、第1熱交換器H1によって再熱して炉内領域αに還流させる。各々の排気・循環形態において、冷却後の炉内燃焼ガスRの一部は、燃焼排ガスExとして系外に排気される。   As shown in FIG. 6, the in-furnace gas exhausting and circulating apparatus includes first and second heat storage type heat exchangers H1 and H2. In the first circulation mode (FIG. 6A), the in-furnace gas exhaust / recirculation apparatus brings out the in-furnace combustion gas R from the first heat exchanger H1 to the outside of the furnace and retains the in-furnace combustion gas R. Heat is stored in the first heat exchanger H1, most of the furnace combustion gas R after cooling is introduced into the second heat exchanger H2, reheated by the second heat exchanger H2 and returned to the furnace area α Let In the second circulation mode (FIG. 6B), the in-furnace gas exhaust / recirculation apparatus brings out the in-furnace combustion gas R from the second heat exchanger H2 to the outside of the furnace, and holds the in-furnace combustion gas R retained. Heat is stored in the second heat exchanger H2 and most of the furnace combustion gas R after cooling is introduced into the first heat exchanger H1 and reheated by the first heat exchanger H1 to be returned to the furnace area α Let In each of the exhaust and circulation modes, part of the furnace combustion gas R after cooling is exhausted out of the system as the combustion exhaust gas Ex.

第1及び第2循環形態は、60秒以内に設定された所定時間間隔(例えば、30秒間隔)で交互に切り換えられる。燃焼排ガスExの流量は、炉内領域αに供給される純酸素O及び燃料Fの総流量と等しい流量に設定される。例えば、燃焼排ガスExの流量は、炉内ガス導出量の約10%に設定され、炉外に導出した炉内燃焼ガスRの約90%が炉内領域αに還流する。即ち、炉外に導出した炉内燃焼ガスRの大部分が、炉外導出時の温度と概ね同等の温度で炉内領域αに還流する。燃焼排ガスExは、熱交換器H1、H2により冷却された後に系外に排気されるので、200〜300℃程度の温度を有するにすぎない。このような燃焼系によれば、各熱交換器H1、H2を炉外方向に流通する炉内燃焼ガスRの流量と、各熱交換器H1、H2を炉内方向に流通する炉内燃焼ガスRの流量との比は、概ね10:9であり、ほぼ同等であるので、燃焼系全体の流量バランス及び熱バランスを実質的に確保することができる。   The first and second circulation modes are alternately switched at predetermined time intervals (for example, 30 seconds) set within 60 seconds. The flow rate of the combustion exhaust gas Ex is set to a flow rate equal to the total flow rate of the pure oxygen O and the fuel F supplied to the in-furnace region α. For example, the flow rate of the combustion exhaust gas Ex is set to about 10% of the in-furnace gas discharge amount, and about 90% of the in-furnace combustion gas R drawn out of the furnace is returned to the in-furnace region α. That is, most of the in-furnace combustion gas R drawn out of the furnace is refluxed to the in-furnace region α at a temperature substantially equal to the temperature at the time of drawing out of the furnace. Since the flue gas Ex is exhausted out of the system after being cooled by the heat exchangers H1 and H2, the flue gas Ex only has a temperature of about 200 to 300 ° C. According to such a combustion system, the flow rate of the in-furnace combustion gas R flowing through the heat exchangers H1 and H2 outside the furnace, and the in-furnace combustion gas flowing through the heat exchangers H1 and H2 in the furnace direction The ratio of R to the flow rate is approximately 10: 9, which is substantially equal, so that the flow rate balance and heat balance of the entire combustion system can be substantially ensured.

図7は、図5に示す高温酸素燃焼システムの構成を更に具体的に示すシステム構成図である。   FIG. 7 is a system configuration diagram showing the configuration of the high temperature oxygen combustion system shown in FIG. 5 more specifically.

高温酸素燃焼システム1は、一対の再生蓄熱型熱交換器2(2A:2B)、給排切換弁装置3(3A:3B:3C:3D)及び排気ファン4を備える。熱交換器2は、炉内領域αを区画する耐熱・耐火材料の炉体9に配置される。熱交換器2は、蓄熱体ケース22内に蓄熱体21を収容した構造を有する。   The high temperature oxygen combustion system 1 includes a pair of regenerative heat storage type heat exchangers 2 (2A: 2B), a supply / discharge switching valve device 3 (3A: 3B: 3C: 3D) and an exhaust fan 4. The heat exchanger 2 is disposed in a furnace body 9 of heat-resistant and refractory material that divides the furnace area α. The heat exchanger 2 has a structure in which the heat storage body 21 is accommodated in the heat storage case 22.

各蓄熱体21は、円柱形の外形を有するハニカム構造のセラミックス製蓄熱体からなり、多数の狭小流路を有する。蓄熱体21の多数の狭小流路は、熱交換器2の軸線方向に蓄熱体21を貫通する。蓄熱体21は、0.9以上の温度効率を有する。このような蓄熱体21の構造及び機能等は、例えば、本願出願人による特願平5-6911号(特開平6-213585号公報(特許文献1))等に詳細に開示されているので、更なる詳細な説明は、省略する。   Each heat storage body 21 is made of a ceramic heat storage body having a honeycomb structure having a cylindrical outer shape, and has a large number of narrow flow paths. The many narrow flow paths of the heat storage body 21 penetrate the heat storage body 21 in the axial direction of the heat exchanger 2. The heat storage body 21 has a temperature efficiency of 0.9 or more. The structure, function, and the like of such a heat storage body 21 are disclosed in detail in, for example, Japanese Patent Application No. 5-6911 (Japanese Patent Application Laid-Open No. 6-213585 (Patent Document 1)) by the applicant of the present application. Further detailed description is omitted.

給排切換弁装置3は、制御ユニット(図示せず)の制御下に開閉制御可能な切換弁3A:3B:3C:3Dから構成される。切換弁3A、3Bを介装した排気管44、45が蓄熱体21の炉外側(低温側)流路に接続される。排気管44、45は、排気ファン4の吸引口に交互に接続される。排気ファン4の吐出口には、炉内ガスを系外に排気する排気管47が接続される。酸素噴射ノズル6が、蓄熱体21と同心状に各熱交換器2に配置される。ノズル6は、蓄熱体21の炉外側(低温側)端面に向かって純酸素Oを噴射する。ノズル6には、酸素供給管42、43が夫々接続される。酸素供給管42、43には、切換弁3C、3Dが夫々介装される。酸素供給管42、43は、純酸素Oの供給源(図示せず)に交互に接続される。蓄熱体21の低温側(炉外側)流路は、連通路7によって相互連通する。連通路7には、差圧制御弁、差圧制御機構、オリフィス等の差圧形成手段70(図7に概念的に示す)が介装される。   The supply / discharge switching valve device 3 is configured of a switching valve 3A: 3B: 3C: 3D that can be opened and closed under the control of a control unit (not shown). Exhaust pipes 44, 45 interposing the switching valves 3A, 3B are connected to the furnace outer side (low temperature side) flow passage of the heat storage body 21. The exhaust pipes 44, 45 are alternately connected to the suction port of the exhaust fan 4. An exhaust pipe 47 for exhausting the furnace gas to the outside of the system is connected to the discharge port of the exhaust fan 4. An oxygen injection nozzle 6 is disposed in each heat exchanger 2 concentrically with the heat storage body 21. The nozzle 6 injects pure oxygen O toward the furnace outer side (low temperature side) end face of the heat storage body 21. The oxygen supply pipes 42 and 43 are connected to the nozzle 6 respectively. The oxygen supply pipes 42, 43 are provided with switching valves 3C, 3D, respectively. The oxygen supply pipes 42, 43 are alternately connected to a pure oxygen O supply source (not shown). The low temperature side (furnace outside) flow paths of the heat storage body 21 communicate with each other by the communication path 7. In the communication passage 7, a differential pressure control means, a differential pressure control mechanism, differential pressure forming means 70 such as an orifice (shown conceptually in FIG. 7) are interposed.

図7(A)には、熱交換器2Bのノズル6に純酸素Oを供給する第1燃焼形態が示され、図7(B)には、熱交換器2Aのノズル6に純酸素Oを供給する第1燃焼形態が示されている。なお、炭化水素系燃料Fは、燃料噴射ノズル5の燃料噴射口から連続的に炉内領域αに噴射される。   7A shows a first combustion mode in which pure oxygen O is supplied to the nozzle 6 of the heat exchanger 2B, and FIG. 7B shows pure oxygen O in the nozzle 6 of the heat exchanger 2A. A first mode of combustion is shown. The hydrocarbon-based fuel F is continuously injected from the fuel injection port of the fuel injection nozzle 5 into the in-furnace region α.

図7(A)に示す第1燃焼形態においては、燃焼排ガスEは、熱交換器2Aを介して炉外に導出され、熱交換器2Aの蓄熱体21によって冷却される。燃焼排ガスEが保有する顕熱は、熱交換器2Aの蓄熱体21に蓄熱される。冷却後の燃焼排ガスEの一部は、熱交換器2Bのノズル6から噴射する純酸素Oの噴流に誘引され、図7(A)に排ガス循環流Erとして示す如く連通路7を流通し、熱交換器2Bの低温側(炉外側)流路に流入して純酸素Oと混合する。燃焼排ガスEの残部は、図7(A)に示す如く、排気管44を介して排気ファン4に吸引され、排気管47を介して系外に排気される。   In the first combustion mode shown in FIG. 7A, the combustion exhaust gas E is drawn out of the furnace through the heat exchanger 2A and cooled by the heat storage body 21 of the heat exchanger 2A. The sensible heat possessed by the combustion exhaust gas E is stored in the heat storage body 21 of the heat exchanger 2A. Part of the flue gas E after cooling is attracted by the jet of pure oxygen O injected from the nozzle 6 of the heat exchanger 2B, and flows through the communication passage 7 as shown in FIG. It flows into the low temperature side (furnace outside) flow passage of the heat exchanger 2B and mixes with pure oxygen O. The remaining portion of the combustion exhaust gas E is sucked by the exhaust fan 4 through the exhaust pipe 44 and exhausted out of the system through the exhaust pipe 47 as shown in FIG. 7A.

他方、図7(B)に示す第2燃焼形態においては、燃焼排ガスEは、熱交換器2Bによって炉外に導出され、熱交換器2Bの蓄熱体21によって冷却される。燃焼排ガスEが保有する顕熱は、熱交換器2Bの蓄熱体21に蓄熱される。冷却後の燃焼排ガスEの一部は、熱交換器2Aのノズル6から噴射する純酸素Oの噴流に誘引され、連通路7を介して熱交換器2Aの低温側(炉外側)流路に流入して純酸素Oと混合する。燃焼排ガスEの残部は、図7(B)に示す如く、排気管45を介して排気ファン4に吸引され、燃焼排ガスExとして排気管47から系外に排気される。   On the other hand, in the second combustion mode shown in FIG. 7B, the combustion exhaust gas E is drawn out of the furnace by the heat exchanger 2B and cooled by the heat storage body 21 of the heat exchanger 2B. The sensible heat possessed by the combustion exhaust gas E is stored in the heat storage body 21 of the heat exchanger 2B. A part of the flue gas E after cooling is attracted to the jet of pure oxygen O injected from the nozzle 6 of the heat exchanger 2A, and is connected to the low temperature side (furnace outside) flow path of the heat exchanger 2A via the communication path 7 It flows in and mixes with pure oxygen O. The remaining portion of the combustion exhaust gas E is sucked by the exhaust fan 4 through the exhaust pipe 45 as shown in FIG. 7B, and is exhausted out of the system from the exhaust pipe 47 as the combustion exhaust gas Ex.

給排切換弁装置3を構成する切換弁3A:3B:3C:3Dは、制御ユニット(図示せず)の制御下に60秒以内の所定時間間隔で開閉制御され、高温酸素燃焼システム1は、第1及び第2燃焼形態に交互に切換えられる。また、燃焼排ガスEaを炉外に直に排気する排気系が設けられ、炉内燃焼ガスRの一部が、炉外に常時排気される。   The switching valves 3A: 3B: 3C: 3D constituting the supply / discharge switching valve device 3 are controlled to open and close at predetermined time intervals within 60 seconds under the control of a control unit (not shown), and the high temperature oxygen combustion system 1 is The first and second combustion modes are alternately switched. Further, an exhaust system for directly exhausting the combustion exhaust gas Ea to the outside of the furnace is provided, and a part of the combustion gas R in the furnace is constantly exhausted outside the furnace.

このような構成によれば、各熱交換器2A、2Bを炉内方向に流通する給気流の流量と、各熱交換器2A、2Bを炉外方向に流通する排気流の流量とを常に等量に設定し、燃焼系全体の流量バランス及び熱バランスを確保することができ、しかも、燃焼排ガスEが保有する顕熱を効率的に熱回収することができる。また、純酸素Oは、燃焼排ガスEによって希釈された後に加熱されるので、蓄熱体21及び炉体9等の構成材料の酸化・腐食を確実に防止することができる。   According to such a configuration, the flow rate of the charge air flow circulating in each furnace in the furnace direction of the heat exchangers 2A and 2B, and the flow rate of the exhaust flow circulating in the furnace outside the heat exchangers 2A and 2B at all times, etc. The flow rate balance and heat balance of the entire combustion system can be secured by setting the amount, and moreover, the sensible heat possessed by the combustion exhaust gas E can be efficiently recovered. In addition, since pure oxygen O is heated after being diluted by the combustion exhaust gas E, oxidation and corrosion of constituent materials such as the heat storage body 21 and the furnace body 9 can be reliably prevented.

図8は、図7に示す高温酸素燃焼システムの変形例を示すシステム構成図である。なお、図8には、燃焼システムの第1燃焼形態のみが示されている。図7に示す燃焼システムは、排気ファン4に換えてエジェクタ4'を備える。エジェクタ4'は、高圧空気、高圧水蒸気等の駆動流体Jを噴射する噴射ノズル4"を備え、燃焼排ガスExを駆動流体Jの噴流によって誘引して系外に排気する。   FIG. 8 is a system configuration diagram showing a modified example of the high temperature oxygen combustion system shown in FIG. Note that FIG. 8 shows only the first combustion mode of the combustion system. The combustion system shown in FIG. 7 includes an ejector 4 ′ in place of the exhaust fan 4. The ejector 4 ′ includes an injection nozzle 4 ′ ′ for injecting a driving fluid J such as high pressure air and high pressure steam, and attracts the combustion exhaust gas Ex with a jet of the driving fluid J and exhausts it out of the system.

図9は、図6に示す高温酸素燃焼システムの構成を更に具体的に示すシステム構成図である。   FIG. 9 is a system configuration diagram showing the configuration of the high temperature oxygen combustion system shown in FIG. 6 more specifically.

高温酸素燃焼システム1は、図7及び図8に示す燃焼システムと同じく、炉体9に配置された一対の再生蓄熱型熱交換器2(2A:2B)と、燃焼排ガスExを系外に排気するための排気ファン4とを備える。しかしながら、酸素噴射ノズル6は、炉内領域αに純酸素Oを直に噴射するように炉体9に配置され、各蓄熱体21の低温側(炉外側)流路の間に延びる連通路7には、熱交換器2(2A、2B)の給排気方向を60秒以内の所定時間間隔で切換える四方弁形式の給排切換弁装置3'が介装される。熱交換器2は、給排切換弁装置3'の作動により、図9(A)に示す第1循環形態と、図9(B)に示す第2循環形態とに交互に切換えられる。   Similar to the combustion system shown in FIGS. 7 and 8, the high temperature oxygen combustion system 1 exhausts the combustion exhaust gas Ex to the outside of the system, as well as a pair of regenerative heat storage type heat exchangers 2 (2A: 2B) disposed in the furnace body 9. And an exhaust fan 4 for However, the oxygen injection nozzle 6 is disposed in the furnace body 9 so as to directly inject pure oxygen O into the in-furnace region α, and the communication passage 7 extending between the low temperature side (furnace outside) flow paths of each heat storage body 21. In addition, a four-way valve type feed switching valve device 3 'is disposed to switch the feed / discharge direction of the heat exchanger 2 (2A, 2B) at predetermined time intervals within 60 seconds. The heat exchanger 2 is alternately switched to the first circulation mode shown in FIG. 9 (A) and the second circulation mode shown in FIG. 9 (B) by the operation of the supply / discharge switching valve device 3 '.

第1循環形態(図9(A))において、炉内燃焼ガスRは、排気ファン4の吸引圧力下に炉外導出ガスE'として熱交換器2Bから炉外に導出される。炉内ガスE'が保有する顕熱は、熱交換器2Bの蓄熱体21に蓄熱される。冷却後の炉内ガスE'は、熱交換器2Aに導入され、熱交換器2Aの蓄熱体21によって導出時と同等の温度に再熱された後、炉内領域αに還流する。第2循環形態(図9(B))においては、炉内燃焼ガスRは、炉外導出ガスE'として熱交換器2Aから炉外に導出される。炉外導出ガスE'が保有する顕熱は、熱交換器2Aの蓄熱体21に蓄熱される。冷却後の炉外導出ガスE'は、熱交換器2Bに導入され、第2熱交換器H2の蓄熱体21によって導出時と同等の温度に再熱された後、炉内領域αに還流する。排気ファン4は、各循環形態において、冷却後の炉外導出ガスE'の一部を燃焼排ガスExとして系外に排気する。   In the first circulation mode (FIG. 9A), the in-furnace combustion gas R is drawn out of the heat exchanger 2B as the out-furnace derived gas E 'under the suction pressure of the exhaust fan 4 from the heat exchanger 2B. The sensible heat possessed by the in-furnace gas E 'is stored in the heat storage body 21 of the heat exchanger 2B. The in-furnace gas E ′ after cooling is introduced into the heat exchanger 2A, reheated to the same temperature as the time of discharge by the heat storage body 21 of the heat exchanger 2A, and then returned to the in-furnace region α. In the second circulation mode (FIG. 9 (B)), the in-furnace combustion gas R is drawn out of the heat exchanger 2A as the out-furnace derived gas E ′. The sensible heat held by the out-furnace derived gas E ′ is stored in the heat storage body 21 of the heat exchanger 2A. The cooled out gas E 'is introduced into the heat exchanger 2B, reheated to the same temperature as the time of discharge by the heat storage body 21 of the second heat exchanger H2, and then returned to the furnace area α. . In each circulation mode, the exhaust fan 4 exhausts a part of the out-furnace derived gas E 'after cooling out as a combustion exhaust gas Ex.

前述のとおり、燃焼排ガスExの流量は、炉内領域αに供給される純酸素O及び燃料Fの総流量と等しい流量に設定され、炉外導出ガスE'の流量は、例えば、燃焼排ガスExの約10倍に設定され、炉内領域αから導出された炉外導出ガスE'の90%が炉内領域αに還流する。   As described above, the flow rate of the combustion exhaust gas Ex is set equal to the total flow rate of the pure oxygen O and the fuel F supplied to the in-furnace region α, and the flow rate of the outgassing gas E ′ is, for example, the combustion exhaust gas Ex And 90% of the out-furnace derived gas E ′ derived from the in-furnace region α is returned to the in-furnace region α.

次に本発明の好適な実施例に係る高温酸素燃焼システムの蓄熱再生型熱交換器について説明する。   Next, a heat storage and regeneration type heat exchanger of a high temperature oxygen combustion system according to a preferred embodiment of the present invention will be described.

図4、図5、図7及び図8に示す高温酸素燃焼システム1は、蓄熱再生型熱交換器2によって排気される燃焼排ガスEの一部をバイパス流Bとして純酸素Oに添加し、燃焼排ガスEの残部を排気ファン4によって系外に排気する構成を有する。図10は、このような機能を有する蓄熱再生型熱交換器2の構成を示す縦断面図である。図10(A)には、熱交換器2Bに純酸素Oを供給する第1燃焼形態が示され、図10(B)には、熱交換器2Aに純酸素Oを供給する第2燃焼形態が示されている。なお、図10に示す熱交換器2の基本構成は、図5、図7及び図8に示す構成に相当しており、熱交換器2は、燃焼排ガスEを熱交換器2によって冷却した後にその一部(排ガス循環流Er)をバイパス流Bとして純酸素Oに添加する構成を有する。また、図11は、熱交換器2Aの構造を具体的に示す縦断面図であり、図12は、連通路7の構造を示す横断面図である。更に、図13及び図14は、燃焼形態を切り換えた状態を示す熱交換器2A及び連通路7の縦断面図及び横断面図である。   The high temperature oxygen combustion system 1 shown in FIG. 4, FIG. 5, FIG. 7 and FIG. 8 adds a portion of the combustion exhaust gas E exhausted by the heat storage regenerative heat exchanger 2 to pure oxygen O as a bypass flow B The remaining portion of the exhaust gas E is exhausted out of the system by the exhaust fan 4. FIG. 10 is a longitudinal sectional view showing the configuration of the heat storage and regeneration type heat exchanger 2 having such a function. FIG. 10A shows a first combustion mode for supplying pure oxygen O to the heat exchanger 2B, and FIG. 10B shows a second combustion mode for supplying pure oxygen O to the heat exchanger 2A. It is shown. The basic configuration of the heat exchanger 2 shown in FIG. 10 corresponds to the configurations shown in FIG. 5, FIG. 7 and FIG. 8. The heat exchanger 2 cools the combustion exhaust gas E by the heat exchanger 2 A part (the exhaust gas circulation flow Er) is added to the pure oxygen O as the bypass flow B. 11 is a longitudinal sectional view specifically showing the structure of the heat exchanger 2A, and FIG. 12 is a transverse sectional view showing the structure of the communication passage 7. As shown in FIG. Furthermore, FIG.13 and FIG.14 is the longitudinal cross-sectional view and cross-sectional view of the heat exchanger 2A which show the state which switched the combustion mode, and the communication path 7. As shown in FIG.

熱交換器2A、2Bは夫々、蓄熱体21を収容した蓄熱体ケース22と、炉体9と同質の耐熱・耐火材料からなる支持基板23とを有し、蓄熱体ケース22は、支持基板23を貫通する。支持基板23は、炉体9と一体化し、炉内領域αに面しており、炉体9の炉内壁面92を炉体9とともに形成する。蓄熱体ース22は、支持基板23を貫通する金属製円筒形部材からなり、支持基板23に一体的に支持される。蓄熱体ケース22の先端部は、蓄熱体21の先端面から更に炉内側に延び、僅かに縮径して炉内領域αに開口する。蓄熱体ケース22の先端円形開口は、炉内ガス給排口20を構成する。給排口20は、炉内領域9の炉内燃焼ガスRを吸引する炉内ガス吸引口として機能するとともに、純酸素O及び排ガス循環流Erの混合気Mを炉内領域αに供給するための混合気噴射口として機能する。   Each of the heat exchangers 2A and 2B has a heat storage case 22 containing a heat storage 21 and a support substrate 23 made of a heat-resistant / refractory material of the same quality as the furnace body 9, and the heat storage case 22 is a support substrate 23 Penetrate. The supporting substrate 23 is integrated with the furnace body 9 and faces the in-furnace region α, and the furnace inner wall surface 92 of the furnace body 9 is formed together with the furnace body 9. The heat storage body 22 is made of a metal cylindrical member penetrating the support substrate 23 and is integrally supported by the support substrate 23. The tip end portion of the heat storage body case 22 further extends from the tip end surface of the heat storage body 21 to the inside of the furnace, and is slightly reduced in diameter to open in the furnace inside region α. The tip circular opening of the heat storage case 22 constitutes an in-furnace gas supply / discharge port 20. The supply / discharge port 20 functions as a furnace gas suction port for suctioning the furnace combustion gas R in the furnace area 9 and supplies the mixture M of pure oxygen O and exhaust gas circulating flow Er to the furnace area α. Acts as a mixture injection port.

各熱交換器2の給排切換弁装置3は、蓄熱体ケース22と同軸状に炉外に配置される。弁装置3と蓄熱体21との間には、連通路7を構成する分流・混合装置8が介装される。図11には、熱交換器2Aの構造が具体的に示されている。なお、熱交換器2Bの構造は、熱交換器2Aの構造と実質的に同一である。   The feed / discharge switching valve device 3 of each heat exchanger 2 is disposed outside the furnace coaxially with the heat storage case 22. Between the valve device 3 and the heat storage body 21, a flow dividing / mixing device 8 constituting the communication passage 7 is interposed. The structure of the heat exchanger 2A is specifically shown in FIG. The structure of the heat exchanger 2B is substantially the same as the structure of the heat exchanger 2A.

図11に示す如く、分流・混合装置8は、蓄熱体ケース22に気密連結された炉内側フランジ部81と、弁装置3の給排管61に気密連結された炉外側フランジ部82と、フランジ部81、82の間に延びる真円形断面の外管83と、外管83の内側に同心状に配置された真円形断面の内管84とから構成される。図12示す如く、内管84は、内管84の管壁を径方向に貫通する多数の給排孔85を備える。連通路7を構成する連通管71が、外管83に一体的に連結され、連通管71の端部円形開口72が、外管83及び内管84の間の中空域86に開放される。給排孔85は、内管84の中心軸線廻りに約30°の角度間隔を隔てて周方向に整列配置される。図11に示す如く、給排孔85は、所定間隔Lを隔てて二列に配列され、全体的に炉内側に偏在した位置に配置されており、連通管71の端部円形開口72は、外管83の長さ方向中央部に位置決めされる。このような分流・混合装置8の二重管構造は、前述の差圧形成手段70(図7)を構成する。   As shown in FIG. 11, the diverting and mixing device 8 includes a furnace inner flange 81 airtightly connected to the heat storage case 22, a furnace outer flange 82 airtightly connected to the supply and discharge pipe 61 of the valve device 3, and a flange It comprises an outer tube 83 of a true circular cross section extending between the portions 81 and 82, and an inner tube 84 of a true circular cross section disposed concentrically inside the outer tube 83. As shown in FIG. 12, the inner pipe 84 is provided with a large number of supply and discharge holes 85 radially penetrating the pipe wall of the inner pipe 84. A communication pipe 71 constituting the communication passage 7 is integrally connected to the outer pipe 83, and an end circular opening 72 of the communication pipe 71 is opened to a hollow area 86 between the outer pipe 83 and the inner pipe 84. The supply and discharge holes 85 are circumferentially aligned around the central axis of the inner pipe 84 at an angular interval of about 30 °. As shown in FIG. 11, the supply and discharge holes 85 are arranged in two rows at a predetermined interval L, and are arranged at positions generally offset to the inside of the furnace, and the end circular opening 72 of the communicating pipe 71 is It is positioned at the longitudinal center of the outer tube 83. Such a double pipe structure of the flow dividing / mixing device 8 constitutes the above-described differential pressure forming means 70 (FIG. 7).

弁装置3は、弁機構30、純酸素導入口31、炉内ガス導出口32及び弁駆動装置33を備える。弁装置3は、給排管61、弁ハウジング51及び弁駆動装置33を直列に連結した構造を有する。弁駆動装置33は、支持部材58によって弁ハウジング51に一体的に取付けられたアクチュエータ50からなる。給排管61は、分流・混合装置8の炉外側フランジ部82に同心状に接続される。弁座部35を有するエルボ管36が給排管61の給排流路60内に配置される。エルボ管36は、給排管61の管壁を貫通し、管外に突出する。エルボ管36の突出端に形成された接続フランジ部分には、排気管44(破線で示す)が接続される。   The valve device 3 includes a valve mechanism 30, a pure oxygen inlet 31, a furnace gas outlet 32, and a valve driving device 33. The valve device 3 has a structure in which the supply and discharge pipe 61, the valve housing 51 and the valve drive device 33 are connected in series. The valve drive 33 comprises an actuator 50 integrally attached to the valve housing 51 by a support member 58. The supply and discharge pipe 61 is concentrically connected to the furnace outer flange portion 82 of the flow dividing and mixing device 8. An elbow pipe 36 having a valve seat 35 is disposed in the water supply and discharge channel 60 of the water supply and discharge pipe 61. The elbow pipe 36 penetrates the pipe wall of the water supply and discharge pipe 61 and protrudes out of the pipe. An exhaust pipe 44 (shown by a broken line) is connected to a connecting flange portion formed at the projecting end of the elbow pipe 36.

弁ハウジング51は、給排管61の炉外側端部に気密連結され、純酸素Oの供給領域56がハウジング51内に形成される。弁ハウジング51は、弁座部55を備え、アクチュエータ50のピストンロッド53が弁座部55の開口を貫通する。ピストンロッド53は、ロッド挿通部52に摺動可能に挿通される。給排管61、弁座部35、弁体54、弁座部55、アクチュエータ50、ロッド挿通部52及びピストンロッド53は、給排切換弁装置3の中心軸線CLを中心に同心状に配置される。   The valve housing 51 is airtightly connected to the furnace outer end of the supply and discharge pipe 61, and a pure oxygen O supply region 56 is formed in the housing 51. The valve housing 51 includes a valve seat 55, and the piston rod 53 of the actuator 50 penetrates the opening of the valve seat 55. The piston rod 53 is slidably inserted into the rod insertion portion 52. The supply / discharge pipe 61, the valve seat 35, the valve body 54, the valve seat 55, the actuator 50, the rod insertion portion 52, and the piston rod 53 are concentrically arranged around the central axis CL of the supply / discharge switching valve device 3. Ru.

弁座部35、弁体54及び弁座部55は、図7に示す切換弁3A、3Cを構成する。駆動装置33は、制御信号線59を介して制御ユニットC/U(図10)に接続される。弁座部35、弁体54及び弁座部55は、制御ユニットC/Uの制御下に弁座部34、35の開口を選択的に開閉制御する二位置制御弁として機能する。   The valve seat portion 35, the valve body 54 and the valve seat portion 55 constitute the switching valves 3A and 3C shown in FIG. The driver 33 is connected to the control unit C / U (FIG. 10) via a control signal line 59. The valve seat portion 35, the valve body 54 and the valve seat portion 55 function as a two-position control valve which selectively opens and closes the openings of the valve seat portions 34 and 35 under the control of the control unit C / U.

図11に示す熱交換器2Aの弁位置では、ピストンロッド53の先端部に固定された弁体54は、弁座部35の開口を開放し、弁座部55の開口を閉塞しており、給排管61内の給排流路60の燃焼排ガスEは、エルボ管36の管内領域37に流入し、排気管44に排気される。この状態は、図10(A)に示す第1燃焼形態に相当する。   In the valve position of the heat exchanger 2A shown in FIG. 11, the valve body 54 fixed to the tip of the piston rod 53 opens the opening of the valve seat 35 and closes the opening of the valve seat 55, The combustion exhaust gas E of the supply and discharge passage 60 in the supply and discharge pipe 61 flows into the in-pipe region 37 of the elbow pipe 36 and is exhausted to the exhaust pipe 44. This state corresponds to the first combustion mode shown in FIG.

熱交換器2Aの駆動装置33がピストンロッド53を伸長し、弁座部55の開口を開放し且つ弁座部35の開口を弁体54によって閉塞した状態が図13に記載されている。この状態では、酸素供給管42の純酸素Oが給排流路60に噴流し、分流装置8の管内流路80及び蓄熱体21のハニカム流路を介して炉内領域αに供給される。この状態は、図10(B)に示す第2燃焼形態に相当する。   A state in which the drive device 33 of the heat exchanger 2A extends the piston rod 53, opens the opening of the valve seat 55, and closes the opening of the valve seat 35 by the valve 54 is shown in FIG. In this state, pure oxygen O of the oxygen supply pipe 42 jets into the supply / discharge flow path 60 and is supplied to the in-furnace region α through the in-pipe flow path 80 of the flow dividing device 8 and the honeycomb flow path of the heat storage body 21. This state corresponds to the second combustion mode shown in FIG. 10 (B).

例えば、各燃焼形態において、各部の流体温度は、以下のとおり設定される。
導出時の炉内ガス温度(給排口20) Ti=1200℃
蓄熱体通過後の炉内ガス温度(弁機構30) T1=200℃
弁装置導入時の酸素温度(導入口31) T2=20℃
混合気Mのガス温度(給排口20) To=1100℃
For example, in each combustion mode, the fluid temperature of each part is set as follows.
Furnace gas temperature at the time of delivery (supply / discharge port 20) Ti = 1200 ° C
In-furnace gas temperature (valve mechanism 30) after heat storage medium passage T1 = 200 ° C
Oxygen temperature at the time of valve installation (inlet 31) T2 = 20 ° C
Gas temperature of mixture M (supply / discharge port 20) To = 1100 ° C.

図10に示す如く、一方の分流・混合装置8の管内流路80には、他方の分流・混合装置8の管内流路80を流通する純酸素Oの流体流の誘引圧力が作用するので、燃焼排ガスEの一部は、図12及び図14に示す如く、排ガス循環流Erとして連通路7の連通管71内に流入し、反対側の分流・混合装置8の管内流路80に流入して純酸素Oと混合する。排ガス循環流Erの流量は、主として、二重管構造の各分流・混合装置8の流路抵抗により設定される。   As shown in FIG. 10, since the attraction pressure of the fluid flow of pure oxygen O flowing in the in-pipe channel 80 of the other dividing / mixing apparatus 8 acts on the in-pipe channel 80 of one dividing / mixing apparatus 8, As shown in FIG. 12 and FIG. 14, a part of the combustion exhaust gas E flows into the communication pipe 71 of the communication path 7 as the exhaust gas circulation flow Er, and flows into the pipe flow path 80 of the diversion and mixing device 8 on the opposite side. Mix with pure oxygen O. The flow rate of the exhaust gas circulation flow Er is mainly set by the flow path resistance of each of the flow dividing / mixing devices 8 of the double pipe structure.

図15は、分流装置8の変形例を示す断面図である。図11〜図14に示す分流装置8においては、給排孔85は、内管84の管壁を径方向に貫通するが、給排孔85は、図15に示す如く、径方向に対して所定の傾斜角度をなす方向に配向しても良い。   FIG. 15 is a cross-sectional view showing a modification of the flow dividing device 8. In the flow dividing device 8 shown in FIGS. 11 to 14, the supply and discharge holes 85 pass through the inner wall of the inner pipe 84 in the radial direction. However, as shown in FIG. You may orientate in the direction which makes a predetermined inclination angle.

図16〜図18は、排ガス循環流Erを純酸素Oと混合するための混合機構を例示する断面図である。図16〜図18に示す混合機構は、排ガス循環流Er及び純酸素Oの混合のみを行う機構であり、分流・混合装置8のような分流機能を備えていない。このため、排ガス循環流Erは、別途に設けられた分流手段(図せず)によって燃焼排ガスEから分流され、各図に矢印で示す如く、連通管71に給送される。   16 to 18 are cross-sectional views illustrating a mixing mechanism for mixing the exhaust gas circulating flow Er with pure oxygen O. The mixing mechanism shown in FIG. 16 to FIG. 18 is a mechanism that only mixes the exhaust gas circulating flow Er and pure oxygen O, and does not have a diversion function like the diversion and mixing device 8. For this reason, the exhaust gas circulation flow Er is diverted from the combustion exhaust gas E by the separately provided flow dividing means (not shown), and is fed to the communication pipe 71 as shown by the arrows in each drawing.

図16に示す混合機構は、排ガス循環流Erを純酸素Oと効率的に混合するために、長円形の開口部101を備えた円形板100を有する。図17に示す混合機構は、排ガス循環流Erを純酸素Oと効率的に混合するために、多数の小径且つ真円形の開口部103を備えた円形板102を有する。図18に示す混合機構は、排ガス循環流Erを純酸素Oと効率的に混合するために、多数の小径且つ真円形の開口部105を備えた円形板104と、給排管61の延長管108に配置された円形板106とを有する。円形板106は、多数の小径且つ真円形の開口部107を備える。   The mixing mechanism shown in FIG. 16 has a circular plate 100 with an oval opening 101 in order to efficiently mix the exhaust gas circulating flow Er with pure oxygen O. The mixing mechanism shown in FIG. 17 has a circular plate 102 provided with a large number of small diameter and circular openings 103 in order to efficiently mix the exhaust gas circulating flow Er with pure oxygen O. The mixing mechanism shown in FIG. 18 includes a circular plate 104 having a large number of small diameter and circular openings 105 and an extension pipe of the supply and discharge pipe 61 in order to efficiently mix the exhaust gas circulation flow Er with pure oxygen O. And a circular plate 106 disposed at 108. The circular plate 106 is provided with a number of small diameter and round openings 107.

図19は、図6及び図9に示す蓄熱再生型熱交換器2の構成を示す縦断面図であり、図20及び図21は、図19に示す蓄熱再生型熱交換器2の構造を示す縦断面図である。   FIG. 19 is a longitudinal sectional view showing the configuration of the heat storage and regeneration type heat exchanger 2 shown in FIGS. 6 and 9, and FIGS. 20 and 21 show the structure of the heat storage and regeneration type heat exchanger 2 shown in FIG. It is a longitudinal cross-sectional view.

図6及び図9に示す高温酸素燃焼システム1は、蓄熱再生型熱交換器2によって炉外導出ガスE'の一部を燃焼排ガスExとして系外に排気するとともに、炉外導出ガスE'の残部を炉内領域αに再導入するように構成される。純酸素O及び炭化水素系燃料Fは、炉内領域αに直に吐出又は噴射される。図19は、このような炉外導出ガスE'の循環及び排気のための蓄熱再生型熱交換器2の構成を示す縦断面図である。   The high temperature oxygen combustion system 1 shown in FIG. 6 and FIG. 9 exhausts a part of the outgassing gas E 'out of the furnace as the combustion exhaust gas Ex by the heat storage and regeneration type heat exchanger 2 and The remainder is configured to be reintroduced into the in-furnace region α. Pure oxygen O and hydrocarbon fuel F are discharged or injected directly into the in-furnace region α. FIG. 19 is a longitudinal sectional view showing the configuration of the heat storage and regeneration type heat exchanger 2 for circulation and exhaustion of such out-furnace derived gas E ′.

蓄熱再生型熱交換器2は、一方の給排口20から炉内燃焼ガスRを炉外導出ガスE'として吸引し、蓄熱体21によって冷却し、冷却後の炉外導出ガスE'を循環ファン4により加圧し、他方の蓄熱体21によって再熱し、他方の給排口20から炉内領域αに噴射する。各熱交換器2は、図10、図11及び図13に示す熱交換器2において、連通路7及び分流・混合装置8を取り除いた構造を有する。   The heat storage / regeneration type heat exchanger 2 sucks in-furnace combustion gas R as out-of-furnace out gas E 'from one of the supply / discharge ports 20, cools it by the heat storage body 21, and circulates out-furnace out gas E' after cooling It is pressurized by the fan 4, reheated by the other heat storage body 21, and injected from the other supply / discharge port 20 into the furnace area α. Each heat exchanger 2 has a structure in which the communication passage 7 and the flow dividing / mixing device 8 are removed from the heat exchanger 2 shown in FIG. 10, FIG. 11 and FIG.

図20に示す弁装置3の弁位置では、弁体54は、弁座部35の開口を開放し、弁座部55の開口を閉塞している。この状態では、給排管61内の給排流路60の炉外導出ガスE'は、エルボ管36の管内領域37に流入し、排気管44に導出される。他方、図21に示す弁位置では、駆動装置33がピストンロッド53を伸長し、弁座部55の開口を開放し、弁座部35の開口を弁体54によって閉塞する。この状態では、給気管42の炉外導出ガスE'が給排流路60に噴流し、蓄熱体21のハニカム流路を介して炉内領域αに導入される。   In the valve position of the valve device 3 shown in FIG. 20, the valve body 54 opens the opening of the valve seat 35 and closes the opening of the valve seat 55. In this state, the out-furnace derived gas E ′ of the supply and discharge passage 60 in the supply and discharge pipe 61 flows into the in-pipe region 37 of the elbow pipe 36 and is drawn out to the exhaust pipe 44. On the other hand, in the valve position shown in FIG. 21, the drive device 33 extends the piston rod 53 to open the opening of the valve seat 55 and close the opening of the valve seat 35 by the valve body 54. In this state, the out-furnace derived gas E ′ of the air supply pipe 42 jets into the supply and discharge flow passage 60 and is introduced into the in-furnace region α through the honeycomb flow passage of the heat storage body 21.

図19(A)に示す第1循環形態において、炉内燃焼ガスR(図9)は、排気ファン4の吸引圧力下に炉外導出ガスE'として熱交換器2Aから炉外に導出され、切換弁3Aを介して排気管44に導出される。炉外導出ガスE'の顕熱は、熱交換器2Aの蓄熱体21に蓄熱される。冷却後の炉外導出ガスE'は、給気管43を介して熱交換器2Bの給気口31に供給され、熱交換器2Bの切換弁3Dを介して蓄熱体21のハニカム流路に導入され、導出時と同等の温度に再熱された後、炉内領域αに還流する。図19(B)に示す第2循環形態においては、炉内燃焼ガスR(図9)は、排気ファン4の吸引圧力下に炉外導出ガスE'として熱交換器2Bから炉外に導出され、切換弁3Bを介して排気管45に導出される。炉外導出ガスE'の顕熱は、熱交換器2Bの蓄熱体21に蓄熱される。冷却後の炉外導出ガスE'は、給気管42を介して熱交換器2Aの給気口31に供給され、熱交換器2Aの切換弁3Cを介して蓄熱体21のハニカム流路に導入され、導出時と同等の温度に再熱された後、炉内領域αに還流する。各循環形態において、排気ファン4は、冷却後の炉外導出ガスE'の一部を燃焼排ガスExとして系外に排気する。   In the first circulation mode shown in FIG. 19 (A), the combustion gas R in the furnace (FIG. 9) is led out of the heat exchanger 2A as the outlet gas E 'outside the furnace under the suction pressure of the exhaust fan 4, It is led to the exhaust pipe 44 via the switching valve 3A. The sensible heat of the out-furnace derived gas E 'is stored in the heat storage body 21 of the heat exchanger 2A. The out-furnace derived gas E 'after cooling is supplied to the air supply port 31 of the heat exchanger 2B through the air supply pipe 43, and is introduced into the honeycomb flow path of the heat storage body 21 through the switching valve 3D of the heat exchanger 2B. And after being reheated to the same temperature as at the time of discharge, it is returned to the furnace area α. In the second circulation mode shown in FIG. 19B, the in-furnace combustion gas R (FIG. 9) is led out of the heat exchanger 2B from the heat exchanger 2B as the out-furnace out gas E ′ under the suction pressure of the exhaust fan 4 , And is discharged to the exhaust pipe 45 via the switching valve 3B. The sensible heat of the out-furnace derived gas E 'is stored in the heat storage body 21 of the heat exchanger 2B. The out-furnace derived gas E 'after cooling is supplied to the air supply port 31 of the heat exchanger 2A through the air supply pipe 42, and introduced into the honeycomb flow path of the heat storage body 21 through the switching valve 3C of the heat exchanger 2A. And after being reheated to the same temperature as at the time of discharge, it is returned to the furnace area α. In each circulation mode, the exhaust fan 4 exhausts a part of the outside-furnace derived gas E ′ after cooling out of the system as the combustion exhaust gas Ex.

以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であり、このような変形例又は変更例も又、本発明の範囲内に含まれるものであることは、いうまでもない。   The preferred embodiments and examples of the present invention have been described above in detail, but the present invention is not limited to the above embodiments and examples, and is within the scope of the present invention as set forth in the claims. It goes without saying that various modifications or alterations are possible, and such modifications or variations are also included in the scope of the present invention.

例えば、上記実施形態及び実施例では、ハニカム構造の切換式蓄熱体を備えた熱交換器について説明したが、多数の粒状蓄熱体を備えた切換式熱交換器、或いは、回転式の蓄熱体を備えた熱交換器を本発明において用いても良い。なお、回転式の蓄熱体を用いた熱交換器を使用する場合、受熱及び放熱を反復する回転式蓄熱体の各部分又は各領域は、第1及び第2熱交換器及びその蓄熱体に相当する構成要素として把握し得る。   For example, although the heat exchanger provided with the switching heat storage body having a honeycomb structure has been described in the above embodiment and examples, a switching heat exchanger provided with a large number of granular heat storage bodies, or a rotary heat storage body A heat exchanger provided may be used in the present invention. When a heat exchanger using a rotary heat storage body is used, each portion or each region of the rotary heat storage body that repeats heat reception and heat release corresponds to the first and second heat exchangers and the heat storage body thereof. It can be understood as a component to

また、上記実施形態及び実施例では、本発明の高温酸素燃焼法を工業炉の燃焼装置として用いた構成について説明したが、本発明の高温酸素燃焼法をラジアントチューブバーナ等の燃焼加熱式放熱装置に適用すること可能である。   In the above embodiments and examples, the high temperature oxy-fuel combustion method of the present invention has been described as a combustion apparatus for an industrial furnace, but the high temperature oxygen combustion method of the present invention is a combustion heating type heat radiation device such as a radiant tube burner. It is possible to apply to

本発明は、一般的な工業炉において好ましく使用し得る高温酸素燃焼装置及び高温酸素燃焼方法であり、超高温域に加熱された純酸素と炭化水素系燃料との混合接触により炉内燃焼反応を生起するように構成される。本発明の高温酸素燃焼装置及び高温酸素燃焼方法によれば、燃焼域においてNOxが発生するのを実質的に完全に防止するとともに、高温空気燃焼法に比べてエネルギー消費量を更に低減し、しかも、燃焼炉及び燃焼設備を更に小型化することができるので、その実用的効果は、顕著なるものがある。   The present invention is a high-temperature oxygen combustion apparatus and a high-temperature oxygen combustion method that can be preferably used in a general industrial furnace, and the combustion reaction in the furnace is achieved by mixed contact of pure oxygen heated to an extremely high temperature range and a hydrocarbon fuel. Configured to occur. According to the high temperature oxy-fuel combustion apparatus and the high temperature oxygen combustion method of the present invention, the generation of NOx is substantially completely prevented in the combustion zone, and the energy consumption is further reduced as compared with the high temperature air combustion method. Since the combustion furnace and the combustion equipment can be further miniaturized, their practical effects are remarkable.

1 高温酸素燃焼システム
2 熱交換器
3 給排切換弁装置
4 排気ファン
5 燃料噴射ノズル
6 酸素噴射ノズル
7 連通路
8 分流装置
9 炉体
21 蓄熱体
70 差圧形成手段
C 燃焼炉
H1:H2 熱交換器
α 炉内領域
O 純酸素
F 炭化水素系燃料
M 混合気
E:Ea:Ex 燃焼排ガス
B バイパス流
Er 排ガス循環流
R 炉内燃焼ガス
Reference Signs List 1 high temperature oxygen combustion system 2 heat exchanger 3 supply / discharge switching valve device 4 exhaust fan 5 fuel injection nozzle 6 oxygen injection nozzle 7 communication passage 8 diverting device 9 furnace body 21 heat storage body 70 differential pressure forming means C combustion furnace H1: H2 heat Exchanger area in the furnace O Pure oxygen F Hydrocarbon fuel M Mixture E: Ea: Ex Combustion exhaust gas B Bypass flow Er Exhaust gas circulation flow R In-furnace combustion gas

Claims (18)

燃焼域を備えた燃焼系と、純酸素を酸化剤として燃焼域に供給するための酸化剤供給装置と、前記燃焼域に生成した燃焼ガスを前記燃焼系の系外に排気するための排気系装置又は設備とを有し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させる高温酸素燃焼装置において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記純酸素に伝熱して該純酸素を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記酸化剤供給装置の純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路と、800℃以上の温度に加熱した前記純酸素に前記燃焼ガスを添加し又は純酸素を前記燃焼ガスで希釈して前記純酸素と前記燃焼ガスとの混合気を生成する混合気生成手段とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、該混合気と前記炭化水素系燃料との混合接触による燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼装置。
Exhaust for exhausting a combustion system having a combustion zone, an oxidant supply device for supplying to the combustion zone of pure oxygen as an oxidizing agent, the combustion gas generated in the combustion zone to the outside of the combustion system and a system device or equipment, in the high-temperature oxygen combustion device for combustion reaction in the combustion zone and heated with the oxidant and hydrocarbon fuel to a temperature above 800 ° C.,
The combustion zone, a fuel supply unit for supplying the hydrocarbon-based fuel to the combustion zone, the pure oxygen and the combustion gas, the sensible heat held by the combustion gas is transferred to the pure oxygen to be transferred to the pure oxygen A heat storage and regeneration type heat exchanger for heating pure oxygen to a temperature of 800 ° C. or higher, an oxidant introduction path for introducing pure oxygen of the oxidant supply device into the combustion zone through the heat exchanger, and The combustion gas is added to the pure oxygen heated to a temperature of 800 ° C. or more, and a combustion gas lead-out path for leading the combustion gas out of the combustion zone and delivering it to an exhaust system or facility via a heat exchanger or constitute the combustion system by the air-fuel mixture generating means for generating a mixture of the said combustion gas and said pure oxygen the pure oxygen diluted with the combustion gases,
The mixing a portion of the combustion gas by the gas generating means is recirculated in the system of the combustion system to produce the mixture, the mixture that by the catalytic combustion reaction between the hydrocarbon fuel and the mixture hot oxygen combustion apparatus according to claim Rukoto causing the combustion zone.
燃焼域を備えた燃焼系と、純酸素を酸化剤として燃焼域に供給するための酸化剤供給装置と、前記燃焼域に生成した燃焼ガスを前記燃焼系の系外に排気するための排気系装置又は設備とを有し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させる高温酸素燃焼装置において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素に前記燃焼ガスを添加し又は前記純酸素を前記燃焼ガスで希釈して前記純酸素と前記燃焼ガスとの混合気を生成する混合気生成手段と、該混合気及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記混合気に伝熱して該混合気を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記酸化剤供給装置の純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、加熱後の前記混合気と前記炭化水素系燃料との混合接触により前記燃焼域に燃焼反応を生じさせることを特徴とする高温酸素燃焼装置。
Exhaust for exhausting a combustion system having a combustion zone, an oxidant supply device for supplying to the combustion zone of pure oxygen as an oxidizing agent, the combustion gas generated in the combustion zone to the outside of the combustion system and a system device or equipment, in the high-temperature oxygen combustion device for combustion reaction with the combustion zone and heated with the oxidant and hydrocarbon fuel to a temperature above 800 ° C.,
The combustion zone, fuel supply means for supplying the hydrocarbon-based fuel to the combustion zone, the combustion gas is added to the pure oxygen, or the pure oxygen is diluted with the combustion gas to produce the pure oxygen and the combustion A mixture generation means for generating a mixture with a gas, the mixture and the combustion gas are brought into contact, the sensible heat held by the combustion gas is transferred to the mixture, and the mixture is heated to a temperature of 800 ° C. or more A regenerative heat exchanger for heating, an oxidant introduction path for introducing pure oxygen of the oxidant supply device into the combustion zone through the heat exchanger, and the combustion through the heat exchanger The combustion system is constituted by a combustion gas lead-out path for leading gas out of the combustion zone and delivering it to an exhaust system or facility;
Wherein a portion of the combustion gas by air-fuel mixture producing means and recycled in the system of the combustion system to generate the air-fuel mixture, the combustion by the mixing contact of the mixture after heating and the hydrocarbon fuel hot oxygen combustion apparatus according to claim Rukoto cause combustion reaction in the range.
前記混合気生成手段は、前記混合気の酸素濃度を体積比20〜50%の範囲内に設定することを特徴とする請求項1又は2に記載の高温酸素燃焼装置。 The high temperature oxygen combustion device according to claim 1 or 2 , wherein the mixture generation means sets the oxygen concentration of the mixture within a range of 20 to 50% by volume. 燃焼系を構成する燃焼域に対し、酸化剤供給装置から供給される純酸素を酸化剤として前記燃焼域に供給し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させ、燃焼域に生成した燃焼ガスを排気系装置又は設備によって前記燃焼系の系外に排気する高温酸素燃焼方法において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記純酸素に伝熱して該純酸素を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路と、800℃以上の温度に加熱した前記純酸素に前記燃焼ガスを添加し又は純酸素を前記燃焼ガスで希釈して純酸素及び燃焼ガスの混合気を生成する混合気生成手段とにより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して前記混合気を生成し、該混合気と前記炭化水素系燃料との混合接触によ燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼方法。
The relative combustion zone constituting the combustion system, the pure oxygen supplied from the oxidizing agent supply device is supplied to the combustion zone as the oxidizing agent, the said oxidizing agent heated to a temperature above 800 ° C. and hydrocarbon fuel by combustion reaction in the combustion zone, the hot oxygen combustion method of evacuating to the outside of the combustion system by the exhaust system apparatus or installation the combustion gas generated in the combustion zone,
The combustion zone, a fuel supply unit for supplying the hydrocarbon-based fuel to the combustion zone, the pure oxygen and the combustion gas, the sensible heat held by the combustion gas is transferred to the pure oxygen to be transferred to the pure oxygen A heat storage and regeneration type heat exchanger for heating pure oxygen to a temperature of 800 ° C. or higher, an oxidant introducing path for introducing the pure oxygen into the combustion zone via the heat exchanger, and the heat exchanger via the heat exchanger wherein the combustion gases derived from the combustion zone exhaust system device or combustion gas outlet passage for delivering the equipment, addition of the combustion gas to the pure oxygen which was heated to a temperature above 800 ° C. or the pure oxygen Te The combustion system is constituted by mixture generation means for diluting the mixture with the combustion gas to generate a mixture of pure oxygen and the combustion gas ;
The mixing a portion of the combustion gas by the gas generating means is recirculated in the system of the combustion system to produce the mixture, the mixture that by the catalytic combustion reaction between the hydrocarbon fuel and the mixture The high temperature oxygen combustion method characterized by making it produce in the said combustion zone .
燃焼系を構成する燃焼域に対し、酸化剤供給装置から供給される純酸素を酸化剤として前記燃焼域に供給し、800℃以上の温度に加熱した前記酸化剤と炭化水素系燃料とを前記燃焼域で燃焼反応させ、燃焼域に生成した燃焼ガスを排気系装置又は設備によって前記燃焼系の系外に排気する高温酸素燃焼方法において、
前記燃焼域と、前記炭化水素系燃料を前記燃焼域に供給する燃料供給手段と、前記純酸素に前記燃焼ガスを添加し又は前記純酸素を前記燃焼ガスで希釈して純酸素及び燃焼ガスの混合気を生成する混合気生成手段と、該混合気及び前記燃焼ガスに接触し、前記燃焼ガスが保有する顕熱を前記混合気に伝熱して該混合気を800℃以上の温度に加熱する蓄熱再生型熱交換器と、該熱交換器を介して前記純酸素を前記燃焼域に導入するための酸化剤導入路と、前記熱交換器を介して前記燃焼ガスを前記燃焼域から導出して排気系装置又は設備に送出するための燃焼ガス導出路とより前記燃焼系を構成し、
前記混合気生成手段により前記燃焼ガスの一部を前記燃焼系の系内で再循環して、加熱後の前記混合気と前記炭化水素系燃料との混合接触によ燃焼反応を前記燃焼域に生じさせることを特徴とする高温酸素燃焼方法。
The relative combustion zone constituting the combustion system, the pure oxygen supplied from the oxidizing agent supply device is supplied to the combustion zone as the oxidizing agent, the said oxidizing agent heated to a temperature above 800 ° C. and hydrocarbon fuel by combustion reaction in the combustion zone, the hot oxygen combustion method of evacuating to the outside of the combustion system by the exhaust system apparatus or installation the combustion gas generated in the combustion zone,
The combustion zone, a fuel supply means for supplying the hydrocarbon-based fuel to the combustion zone, the combustion gas added to the pure oxygen, or the pure oxygen diluted with the combustion gas to obtain pure oxygen and combustion gas A mixture producing means for producing a mixture, the mixture and the combustion gas are contacted, and the sensible heat held by the combustion gas is transferred by the mixture to heat the mixture to a temperature of 800 ° C. or more A heat storage / regeneration type heat exchanger, an oxidant introduction path for introducing the pure oxygen into the combustion area through the heat exchanger, and the combustion gas is discharged from the combustion area through the heat exchanger. The combustion system from the combustion gas lead-out path for delivery to the exhaust system or equipment;
Wherein a portion of the combustion gas by air-fuel mixture producing means and recycled in the system of the combustion system, the combustion zone to by that combustion reaction in the mixing and contacting of the mixture after heating and the hydrocarbon fuel hot oxygen combustion method characterized by causing the.
前記混合気の酸素濃度の体積比は、20〜50%の範囲内に設定されることを特徴とする請求項4又は5に記載の高温酸素燃焼装置。 The high-temperature oxygen combustion apparatus according to claim 4 or 5 , wherein the volume ratio of the oxygen concentration of the mixture is set in the range of 20 to 50%. 純酸素酸化剤として炉内に供給するための酸化剤供給装置と、燃焼排ガスを系外に排気するための排気系とを有し、前記燃焼排ガスが保有する顕熱を前記酸化剤に伝熱して該酸化剤を800℃以上の温度に加熱し、加熱後の前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼装置において、
酸化剤供給装置の純酸素供給源と前記排気系とに交互に接続され、炉内燃焼ガスを炉外に導出し且つ前記純酸素供給源の純酸素を炉内領域に供給するための蓄熱再生型の第1及び第2熱交換器と、
各熱交換器の蓄熱体を前記排気系又は純酸素供給源に交互に流体連通せしめる流路切換装置と、
前記第1熱交換器内の流路と、前記第2熱交換器内の流路とを相互連通させ、一方の熱交換器から系外に排気される燃焼排ガスの一部を他方の熱交換器の流路に供給して該燃焼排ガスを前記純酸素に添加する連通路とを有し、
前記純酸素及び燃焼排ガスの混合気と炭化水素系燃料とを炉内領域で燃焼反応させるようにしたことを特徴とする高温酸素燃焼装置。
It has an oxidant supply device for supplying pure oxygen into the furnace as an oxidant, and an exhaust system for exhausting combustion exhaust gas out of the system, and transfers the sensible heat held by the combustion exhaust gas to the oxidant. In the high temperature oxygen combustion apparatus, the oxidant is heated to a temperature of 800 ° C. or more, and the oxidant and the hydrocarbon fuel after the heating are burned and reacted in the furnace region,
Heat storage and regeneration, alternately connected to the pure oxygen supply source of the oxidant supply device and the exhaust system, for leading out the furnace combustion gas to the outside of the furnace and supplying the pure oxygen of the pure oxygen supply source to the furnace region First and second heat exchangers of a type;
A flow path switching device which causes the heat storage bodies of the respective heat exchangers to be alternately in fluid communication with the exhaust system or the pure oxygen source;
The flow passage in the first heat exchanger and the flow passage in the second heat exchanger are interconnected with each other, and a part of the combustion exhaust gas exhausted from the one heat exchanger to the outside of the system is exchanged with the other heat exchange And a communication passage for supplying the flue gas to the pure oxygen to be supplied to the flow path of the
A high-temperature oxygen combustion apparatus characterized in that a mixture of the pure oxygen and the combustion exhaust gas and a hydrocarbon-based fuel are burned and reacted in a furnace region.
純酸素酸化剤として炉内に供給し且つ燃焼排ガスを系外に排気するとともに、該燃焼排ガスが保有する顕熱を前記酸化剤に伝熱して該酸化剤を800℃以上の温度に加熱し、加熱後の前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼方法において、
蓄熱再生型の第1及び第2熱交換器を純酸素供給源及び排気系に交互に接続して、各熱交換器の蓄熱体を前記純酸素供給源及び排気系に交互に流体連通せしめ、
前記第1熱交換器内の流路と前記第2熱交換器内の流路とを相互連通させ、一方の熱交換器から系外に排気される燃焼排ガスの一部を他方の熱交換器の流路に供給し、該燃焼排ガスを前記純酸素に添加して純酸素及び燃焼排ガスの混合気を生成し、該混合気と炭化水素系燃料とを炉内領域で燃焼反応させることを特徴とする高温酸素燃焼方法。
Pure oxygen is supplied as an oxidant into the furnace and exhaust the flue gas to the outside of the system, and sensible heat held by the flue gas is transferred to the oxidant to heat the oxidant to a temperature of 800 ° C. or higher. A high temperature oxygen combustion method in which the oxidant after heating and the hydrocarbon fuel are burned and reacted in a furnace area,
The heat storage and regeneration type first and second heat exchangers are alternately connected to the pure oxygen source and the exhaust system, and the heat storage bodies of the respective heat exchangers are alternately fluidly connected to the pure oxygen source and the exhaust system,
The flow passage in the first heat exchanger and the flow passage in the second heat exchanger are interconnected with each other, and a part of the combustion exhaust gas exhausted out of the system from one heat exchanger is transferred to the other heat exchanger features and supplied to the flow path, with the addition of flue gas in the pure oxygen to produce a mixture of pure oxygen and combustion exhaust gas, that burning reaction of hydrocarbon fuel and said mixture in a furnace region High temperature oxygen combustion method.
純酸素酸化剤として炉内に供給するための酸化剤供給装置と、燃焼排ガスを系外に排気するための排気系とを有し、前記酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させる高温酸素燃焼装置において、
炉内壁面に配置され、純酸素を炉内領域に噴射するとともに、炉内ガスを純酸素噴流によって誘引して純酸素を炉内ガスで希釈し且つ加熱する純酸素噴射手段と、
炉内壁面に配置され、希釈後の純酸素に炭化水素系燃料を混合接触させるように炉内に炭化水素系燃料を噴射する燃料噴射手段と、
炉内ガスを炉外に導出して、該炉内ガスの一部を系外に排気するとともに、前記炉内ガスの残部を炉内領域に還流させる炉内ガス排気・循環装置とを有し、
炉内ガス排気・循環装置は、炉外に導出した炉内ガスに伝熱接触して加熱され且つ該炉内ガスを冷却する蓄熱再生型熱交換器の蓄熱体を有し、冷却後の炉内ガスの一部を系外に排気し、該炉内ガスの残部を前記蓄熱体に伝熱接触せしめて再熱した後、炉内領域に還流せしめることを特徴とする高温酸素燃焼装置。
An oxidant supply device for supplying pure oxygen into the furnace as an oxidant, and an exhaust system for exhausting combustion exhaust gas out of the system, wherein the oxidant and the hydrocarbon-based fuel in the furnace region In a high-temperature oxygen combustion apparatus that causes a combustion reaction,
Pure oxygen injection means disposed on the inner wall surface of the furnace to inject pure oxygen into the furnace area and induce furnace gas by a pure oxygen jet to dilute and heat pure oxygen with the furnace gas;
Fuel injection means disposed on the inner wall surface of the furnace and injecting hydrocarbon fuel into the furnace so as to mix and contact hydrocarbon fuel with pure oxygen after dilution;
The in-furnace gas is led out of the furnace to exhaust a part of the in-furnace gas out of the system, and the in-furnace gas exhausting / circulating device is provided to recirculate the remainder of the in-furnace gas to the in-furnace region. ,
The in-furnace gas exhaust and circulation device has a heat storage body of a heat storage and regeneration type heat exchanger which is heated in heat transfer contact with the in-furnace gas led to the outside of the furnace and cools the in-furnace gas. A high temperature oxygen combustion apparatus characterized in that a part of the internal gas is exhausted out of the system, and the remaining part of the furnace internal gas is brought into heat transfer contact with the heat storage body to be reheated, and then returned to the furnace internal region.
純酸素を酸化剤として炉内に供給し、該酸化剤と炭化水素系燃料とを炉内領域で燃焼反応させ、燃焼排ガスを系外に排気する高温酸素燃焼方法において、
炉内壁面に配置された純酸素噴射手段によって純酸素を炉内領域に噴射するとともに、炉内ガスを純酸素噴流によって誘引して純酸素を炉内ガスで希釈し且つ加熱し、
炉内壁面に配置された燃料噴射手段によって炭化水素系燃料を炉内領域に噴射し、炉内ガスで希釈された純酸素に炭化水素系燃料を混合接触させて酸素及び燃料を燃焼反応せしめ、
炉内ガスを炉外に導出して、炉外に導出した炉内ガスに伝熱接触する蓄熱再生型熱交換器の蓄熱体によって該炉内ガスを冷却するとともに、前記炉内ガスが保有する顕熱を前記蓄熱体に蓄熱し、
冷却後の前記炉内ガスの一部を燃焼排ガスとして系外に排気するとともに、冷却後の炉内ガスの残部を前記蓄熱体に伝熱接触せしめて炉内ガスの残部を再熱して、炉内領域に還流させることを特徴とする高温酸素燃焼方法。
In a high temperature oxygen combustion method in which pure oxygen is supplied as an oxidant into a furnace, the oxidant and a hydrocarbon fuel are burned and reacted in the furnace region, and the flue gas is exhausted out of the system,
Pure oxygen is injected into the in-furnace region by pure oxygen injection means disposed on the inner wall surface of the furnace, and in-furnace gas is induced by pure oxygen jet to dilute and heat pure oxygen with in-furnace gas;
The hydrocarbon fuel is injected into the furnace area by the fuel injection means disposed on the inner wall of the furnace, and the pure oxygen diluted in the furnace gas is mixed with the hydrocarbon fuel to cause combustion reaction of the oxygen and the fuel.
The in-furnace gas is led out of the furnace, and the in-furnace gas is cooled by the heat storage material of the heat storage / regeneration type heat exchanger which makes heat transfer contact with the in-furnace gas led out of the furnace. Sensible heat is stored in the heat storage body,
A portion of the furnace gas after cooling is exhausted as combustion exhaust gas to the outside of the system, and the remaining portion of the furnace gas after cooling is brought into heat transfer contact with the heat storage body to reheat the remaining portion of the furnace gas. A high temperature oxygen combustion method characterized by refluxing to the inner region.
前記燃焼ガス又は燃焼排ガスは、150℃以上に加熱又は予熱された前記純酸素に混合されることを特徴とする請求項2又は7に記載の高温酸素燃焼装置。 The high-temperature oxygen combustion device according to claim 2 or 7 , wherein the combustion gas or the combustion exhaust gas is mixed with the pure oxygen heated or preheated to 150 ° C or more. 150℃以上に加熱又は予熱された前記純酸素に前記燃焼ガス又は燃焼排ガスを混合することを特徴とする請求項5又は8に記載の高温酸素燃焼方法。 9. The high-temperature oxygen combustion method according to claim 5 , wherein the combustion gas or the combustion exhaust gas is mixed with the pure oxygen heated or preheated to 150 ° C. or more. 前記混合気の酸素濃度は、体積比20〜50%の範囲内に設定されることを特徴とする請求項7に記載の高温酸素燃焼装置。   The high-temperature oxygen combustion device according to claim 7, wherein the oxygen concentration of the mixture is set in the range of 20 to 50% by volume. 前記連通路は、前記純酸素の流体圧力により前記燃焼排ガスを誘引し、該燃焼排ガスを前記純酸素に混合せしめることを特徴とする請求項7又は13に記載の高温酸素燃焼装置。   The high temperature oxygen combustion device according to claim 7 or 13, wherein the communication passage attracts the combustion exhaust gas by a fluid pressure of the pure oxygen and mixes the combustion exhaust gas with the pure oxygen. 前記混合気の酸素濃度は、体積比20〜50%の範囲内に設定されることを特徴とする請求項8に記載の高温酸素燃焼方法。   9. The high temperature oxygen combustion method according to claim 8, wherein the oxygen concentration of the mixture is set in the range of 20 to 50% by volume. 前記純酸素の流体圧力により前記燃焼排ガスを誘引し、該燃焼排ガスを前記純酸素に混合せしめることを特徴とする請求項8又は15に記載の高温酸素燃焼方法。   The high temperature oxygen combustion method according to claim 8 or 15, wherein the flue gas is attracted by the fluid pressure of the pure oxygen, and the flue gas is mixed with the pure oxygen. 前記炉内ガス排気・循環装置は、前記純酸素及び燃料の総流量の9倍以上の流量の炉内ガスを炉外に導出することを特徴とする請求項9に記載の高温酸素燃焼装置。   10. The high-temperature oxygen combustion apparatus according to claim 9, wherein the in-furnace gas exhausting / circulating device leads out-furnace gas whose flow rate is 9 times or more of the total flow rate of the pure oxygen and fuel out of the furnace. 炉内領域に噴射される前記純酸素及び燃料の総流量の9倍以上の流量の炉内ガスを炉外に導出することを特徴とする請求項10に記載の高温酸素燃焼方法。   The high-temperature oxygen combustion method according to claim 10, wherein the in-furnace gas having a flow rate equal to or more than 9 times the total flow rate of the pure oxygen and fuel injected into the in-furnace region is led out of the furnace.
JP2014093208A 2014-04-28 2014-04-28 High temperature oxygen combustion apparatus and high temperature oxygen combustion method Active JP6541050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093208A JP6541050B2 (en) 2014-04-28 2014-04-28 High temperature oxygen combustion apparatus and high temperature oxygen combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093208A JP6541050B2 (en) 2014-04-28 2014-04-28 High temperature oxygen combustion apparatus and high temperature oxygen combustion method

Publications (2)

Publication Number Publication Date
JP2015210050A JP2015210050A (en) 2015-11-24
JP6541050B2 true JP6541050B2 (en) 2019-07-10

Family

ID=54612372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093208A Active JP6541050B2 (en) 2014-04-28 2014-04-28 High temperature oxygen combustion apparatus and high temperature oxygen combustion method

Country Status (1)

Country Link
JP (1) JP6541050B2 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916161B2 (en) * 1975-10-15 1984-04-13 サタ ナオヤス Method of generating high temperature and high pressure energy gas
JP3068888B2 (en) * 1991-05-28 2000-07-24 株式会社日立製作所 Combustion apparatus and operation method thereof
JP2766452B2 (en) * 1993-10-12 1998-06-18 日本鋼管株式会社 Combustion method of regenerative burner
JP3771230B2 (en) * 1993-10-20 2006-04-26 日本ファーネス工業株式会社 How to burn a radiant tube burner
JP3668546B2 (en) * 1995-12-28 2005-07-06 日本ファーネス工業株式会社 Air circulation type tube heating equipment
JP3282955B2 (en) * 1995-12-28 2002-05-20 日本ファーネス工業株式会社 Hot air circulation system
JPH1194239A (en) * 1997-09-26 1999-04-09 Nippon Furnace Kogyo Kaisha Ltd Alternate changing-over heat storage regenerative burner system and method of controlling its combustion
JP2001050533A (en) * 1999-08-10 2001-02-23 Osaka Gas Co Ltd Alternate combustion device
JP4037599B2 (en) * 1999-09-20 2008-01-23 独立行政法人科学技術振興機構 Gasification apparatus and gasification method for solid or liquid fuel
JP2001254940A (en) * 2000-03-13 2001-09-21 Ishikawajima Harima Heavy Ind Co Ltd High-temperature air generator
US20020127505A1 (en) * 2001-01-11 2002-09-12 Hisashi Kobayashi Oxygen enhanced low nox combustion
JP4033851B2 (en) * 2003-05-08 2008-01-16 株式会社Nfkホールディングス Furnace gas circulation unit
JP2005037040A (en) * 2003-07-14 2005-02-10 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal combustor
JP4445222B2 (en) * 2003-07-30 2010-04-07 千代田化工建設株式会社 Reactor combustion control method and reactor
DE20313279U1 (en) * 2003-08-27 2003-10-16 Siemens Ag Steam power plant
KR101215229B1 (en) * 2005-10-28 2012-12-26 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 - PROCESS AND APPARATUS FOR LOW-NOx COMBUSTION
DE202007010480U1 (en) * 2006-08-24 2007-10-04 Lbe Feuerungstechnik Gmbh Radiant heater for heating an industrial furnace
JP4948184B2 (en) * 2007-01-18 2012-06-06 新日本製鐵株式会社 Industrial furnace combustion method
US8453585B2 (en) * 2008-04-14 2013-06-04 Babcock & Wilcox Power Generation Group, Inc. Oxy-combustion coal fired boiler and method of transitioning between air and oxygen firing
JP5509785B2 (en) * 2009-10-23 2014-06-04 株式会社Ihi Combustion equipment and combustion method for regenerative burner
US8740612B2 (en) * 2010-06-30 2014-06-03 Bryan Joseph Kraus Regenerative firing system
US9851102B2 (en) * 2012-09-26 2017-12-26 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method and system for heat recovery from products of combustion and charge heating installation including the same

Also Published As

Publication number Publication date
JP2015210050A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
KR100243839B1 (en) Combustion apparatus and thermal installation with the same
KR100827869B1 (en) Device and method for feeding fuel
CN106103338B (en) With the top burning type burner for having hole flame holder
CN108291717A (en) Perforation flame holder with gap between ceramic tile group
TWI420062B (en) Reactor employing high-temperature air combustion technology
JP2006308249A (en) HEAT STORAGE TYPE BURNER AND ITS LOW NOx COMBUSTION METHOD
JP6541050B2 (en) High temperature oxygen combustion apparatus and high temperature oxygen combustion method
JPH08208240A (en) Glass-melting oven
CN110425517A (en) A kind of minute yardstick flameless burner
TW201231882A (en) Method and device for diluted combustion
JP4863541B2 (en) Combustion apparatus and combustion method
JPH10246428A (en) Equipment and method for heating supply air flow
JP4248132B2 (en) Fuel supply apparatus and fuel supply method
JP2015510577A (en) High temperature FGR ultra-low NOx combustion system using Coanda effect
JP4033851B2 (en) Furnace gas circulation unit
US20110244409A1 (en) Comubstor
JP2009008315A (en) Flue integrated burner
JP2007101129A (en) Heat storage type burner device and its operation method
JP4033127B2 (en) Combustion control method for tubular flame burner
TWI751217B (en) Regenerative burner device
JP4060990B2 (en) Alternating combustion type regenerative burner system and heating furnace using the same
JP3595426B2 (en) Combustion device with flame stabilization means
JP4643385B2 (en) High temperature air flow generator
JP3499963B2 (en) Regenerative alternating burner
CN110425518A (en) A kind of realization NOxThe flameless combustion heating boiler system of near-zero release

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190531

R150 Certificate of patent or registration of utility model

Ref document number: 6541050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250