JP4037599B2 - Gasification apparatus and gasification method for solid or liquid fuel - Google Patents

Gasification apparatus and gasification method for solid or liquid fuel Download PDF

Info

Publication number
JP4037599B2
JP4037599B2 JP2000284372A JP2000284372A JP4037599B2 JP 4037599 B2 JP4037599 B2 JP 4037599B2 JP 2000284372 A JP2000284372 A JP 2000284372A JP 2000284372 A JP2000284372 A JP 2000284372A JP 4037599 B2 JP4037599 B2 JP 4037599B2
Authority
JP
Japan
Prior art keywords
temperature
air
steam
gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000284372A
Other languages
Japanese (ja)
Other versions
JP2001158885A (en
Inventor
邦夫 吉川
力 保田
勝 坂井
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
IHI Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical IHI Corp
Priority to JP2000284372A priority Critical patent/JP4037599B2/en
Publication of JP2001158885A publication Critical patent/JP2001158885A/en
Application granted granted Critical
Publication of JP4037599B2 publication Critical patent/JP4037599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Chimneys And Flues (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体又は液体燃料のガス化装置及びガス化方法に関するものであり、より詳細には、廃棄物、石炭、バイオマス燃料又は重質油等の固体又は液体燃料を熱分解反応によりガス化し、比較的良質の燃料ガスを生成する固体又は液体燃料のガス化装置及びガス化方法に関するものである。
【0002】
【従来の技術】
廃プラスチック、汚泥、シュレッダダスト又は都市ゴミ等の廃棄物、或いは、石炭等の固体燃料を熱分解炉に導入し、無酸素又は低酸素状態の高温還元性雰囲気において固体燃料を熱分解して熱分解ガスを生成する固体燃料のガス化システムが知られている。熱分解炉として、廃棄物ガス化溶融炉、石炭ガス化炉、ロータリーキルン式熱分解炉(外部加熱式熱分解炉)又はー括投入型熱分解炉(自燃式熱分解炉) などの様々な形式の燃焼炉又は焼成炉が、一般に使用される。
【0003】
本発明者等は、800℃を超える高温の空気を連続的に供給可能な高温空気発生装置と、多数の球形セラミックスを内蔵した廃棄物ガス化溶融炉とを含む廃棄物ガス化溶融システムを近年において開発している。高温空気発生装置の高温空気は、廃棄物ガス化炉に導入され、球形セラミックス(ペブル)上の廃棄物は、溶融スラグ化する。廃棄物の熱分解により生成した熱分解ガスは、炉外に導出され、洗浄装置及び浄化装置に導入される。洗浄・浄化装置は、熱分解ガスの塩素分、硫黄分、重金属又は微量残留物等の環境汚染物質を除去するとともに、熱分解ガスを急冷し、ダイオキシンの再合成等を防止する。洗浄・浄化され且つ冷却した熱分解ガスは、比較的良質の燃料ガスとしてボイラ又は工業炉等の加熱炉、ガスエンジン、ガスタービン又はディーゼルエンジン等の内燃機関、或いは、各種の熱サイクル機関等の如く、任意の燃焼設備又は熱機関に供給される。
【0004】
また、近年の熱分解ガス化システムとして、例えば、熱分解ガスを生成する熱分解炉と、クラッキング装置等の高温分解処理装置と、熱分解ガスを洗浄・冷却するガス洗浄装置とを備えた構成のものが知られている。熱分解炉は、廃棄物又は石炭等の固体又は液体燃料を低酸素又は無酸素状態の炉内焼成雰囲気において熱分解する。高温分解処理装置は、熱分解ガスのタール分及びオイル分等を高温分解し、ガス洗浄装置は、熱分解ガスの硫黄分、ダスト、塩素分等を除去するとともに、熱分解ガスを急冷する。高温分解処理及び洗浄・冷却処理を受けた熱分解ガスは、精製燃料ガスとして各種の燃焼設備又は熱機関に供給される。
【0005】
【発明が解決しようとする課題】
この種のガス化システムにおいては、熱分解ガスが保有する多大な顕熱は、洗浄・浄化装置又はガス洗浄装置の洗浄・浄化工程において失われ、これは、システム全体の熱効率の低下をもたらす。このような熱損失を回避すべく、高温の水蒸気を熱分解ガスと混合し、高温水蒸気の水蒸気改質作用により熱分解ガス中の炭化水素を改質する水蒸気改質法の適用が検討されている。炭化水素の水蒸気改質反応は、一般に吸熱反応であり、改質反応に要する反応熱は、外燃式又は内燃式の燃焼装置により改質反応域に供給される。
【0006】
近年、水蒸気を700℃以上の高温域に連続的に加熱することができる装置が、本願発明者等によって開発され、高温不活性ガス又は熱媒体としての水蒸気の各種用途が検討されている。殊に、凝縮の結果として水を生成するにすぎない高温水蒸気は、窒素ガス等の不活性ガスと異なり、冷却・凝縮後の処理を簡素化する上で極めて有利である。しかも、700℃以上の高温の水蒸気は、多大な顕熱を保有するので、水蒸気自体が保有する顕熱により上記改質反応の反応熱を少なくとも部分的に供給することができる。
【0007】
しかしながら、上記熱分解ガスの水蒸気改質反応に要する反応熱は、700℃を超える高温水蒸気によっても十分に確保し難く、従って、改質反応に要する熱量の不足を簡易な手段により補うことができる構成を開発すべき必要が生じている。
【0008】
また、本発明者等は、上記廃棄物ガス化溶融システムにおいて、比較的高酸素濃度の高温空気により廃棄物をガス化溶融する過程で比較的多量の煤が炉内に発生する現象を既に確認しており、このため、このような煤の発生を効率的に抑制する対策を構ずべき必要性を認識している。
【0009】
本発明は、かかる課題に鑑みてなされたものであり、その目的とするところは、ガス化炉又は熱分解炉の熱分解ガスを比較的良質の燃料ガスに改質することができる固体又は液体燃料のガス化装置及びガス化方法を提供することにある。
【0010】
本発明は又、燃焼装置等の内熱又は外熱手段を格別に設けることなく、熱分解ガス中の炭素化合物の水蒸気改質反応に要する十分な熱を確保することができる固体又は液体燃料のガス化装置及びガス化方法を提供することにある。
【0012】
【課題を解決するための手段及び作用】
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、700℃以上の高温水蒸気及び高温空気を固体又は液体燃料の熱分解域及び熱分解ガスの改質域の少なくとも一方に導入することにより、比較的多量の一酸化炭素及び水素を含む所望の高温粗燃料ガスを生成し得る事実を確認するとともに、上記高温空気に加えて上記高温水蒸気をガス化炉内に導入することにより、ガス化溶融反応に伴う煤の発生を顕著に抑制し得る現象を見出し、かかる知見に基づき、本願発明を達成したものである。
【0013】
即ち、本発明によれば、 低酸素又は無酸素状態のガス化炉又熱分解炉の熱分解域における固体又は液体燃料の蒸し焼きにより熱分解ガスを生成するガス化炉又は熱分解炉を備えた固体又は液体燃料のガス化装置において、
水又は低温水蒸気と低温空気とを700℃以上の高温水蒸気及び高温空気に加熱する水蒸気及び空気の加熱装置と、
前記ガス化炉又は熱分解炉の熱分解域の熱分解ガスを導入可能な中空の改質域を備えた改質装置と、
前記改質域に導入された前記熱分解ガスが、該熱分解ガス中の炭素化合物と前記高温水蒸気及び高温空気との吸熱改質反応及び酸化発熱反応によって改質されるように、所定の重量比の前記高温水蒸気及び高温空気を前記改質域に導入する高温水蒸気及び高温空気の供給装置とを有することを特徴とする固体又は液体燃料のガス化装置が提供される。
【0014】
本発明は又、 低酸素又は無酸素状態のガス化炉又熱分解炉の熱分解域における固体又は液体燃料の蒸し焼きにより熱分解ガスを生成する固体又は液体燃料のガス化方法において、
ガス化炉又は熱分解炉の熱分解ガスを中空の改質域に導入する工程と、
水又は低温水蒸気と低温空気とを700℃以上の高温水蒸気及び高温空気に加熱して該高温水蒸気及び高温空気を前記改質域に導入し、前記高温水蒸気及び高温空気を前記熱分解ガス混合して該熱分解ガスを改質する工程とを有し、
前記高温水蒸気及び高温空気と前記熱分解ガスとを混合する前記工程において、前記高温空気と前記熱分解ガス中の炭素化合物との発熱反応により発生した熱により、前記高温水蒸気及び前記炭素化合物の吸熱改質反応に要する熱を補うように、前記高温水蒸気及び高温空気の重量比を所定の範囲内に設定したことを特徴とする固体又は液体燃料のガス化方法を提供する。
本発明の上記構成によれば、高温の水蒸気及び空気が中空の改質域に導入される。高温水蒸気及び高温空気は、熱分解ガスに混合し、高温空気は、熱分解ガスと発熱反応し、高温水蒸気は、熱分解ガス中の炭素化合物と吸熱反応する。高温空気と熱分解ガス中の炭素化合物との発熱反応により発生した熱は、高温水蒸気及び炭素化合物の吸熱改質反応に要する熱を補うので、燃焼装置等の内熱又は外熱手段を格別に設けることなく、熱分解ガス中の炭素化合物の水蒸気改質反応に要する十分な熱が確保される。適当な比率の高温空気及び高温水蒸気を熱分解域又は改質域に導入することにより、熱分解ガスと高温空気及び高温水蒸気との反応が円滑に進行するので、高温空気及び高温水蒸気の相乗効果により比較的良質の高温粗燃料ガスを生成することができる。
【0017】
本明細書において、「固体又は液体燃料」は、炭素化合物を含む廃棄物、石炭、バイオマス燃料、重質油等の固体、半固体又は液体の燃料を意味し、炭素化合物の概念は、炭化水素、有機炭素化合物、或いは、炭素を含む可燃性物質を包含する。また、「空気」は、純酸素、空気、或いは、酸素及び空気の混合気を包含するものであり、酸化剤として作用する流体を意味する。「低温空気」は、外界雰囲気の温度又は一般的な熱交換器によって加熱可能な温度、例えば、0℃〜500℃の範囲の温度を有する「空気」を意味する。更に、「低温水蒸気」は、従来の水蒸気生成技術によって供給可能な範囲の温度及び圧力を有する水蒸気又は過熱水蒸気を意味する。
【0018】
【発明の実施の形態】
本発明の好適な実施形態によれば、低温水蒸気は、低温空気と混合した後、水蒸気・空気加熱装置によって700℃以上の高温に加熱され、熱分解域又は改質域に供給される。好ましくは、低温水蒸気及び低温空気は、混合制御装置の制御下に混合し、適切な重量比の低温水蒸気を含有する低温混合気として水蒸気・空気加熱装置に供給される。
【0019】
本発明の他の好適な実施形態によれば、低温水蒸気は、水蒸気加熱装置によって700℃以上の高温に加熱され、低温空気は、空気加熱装置によって700℃以上の高温に加熱される。加熱後の高温水蒸気及び高温空気は、混合制御装置の制御下に混合し、適切な重量比の高温水蒸気を含有する高温混合気として熱分解域又は改質域に供給される。
【0020】
好ましくは、混合制御装置は、水蒸気及び空気の混合比を任意の混合比に調節可能な混合制御弁又は複数の制御弁の集合体と、制御弁の混合比を可変設定可能な電子制御装置等の混合比制御手段とを備える。
【0021】
本発明の更に他の好適な実施形態において、低温水蒸気は、水蒸気加熱装置によって700℃以上の高温に加熱され、低温空気は、空気加熱装置によって700℃以上の高温に加熱される。加熱後の高温水蒸気及び高温空気は、水蒸気供給路及び空気供給路を介して熱分解域又は改質域に夫々導入され、熱分解域又は改質域において混合する。
【0022】
上記高温混合気、或いは、高温水蒸気及び高温空気は、熱分解域、改質域、或いは、熱分解域及び改質域の双方に導入される。高温水蒸気及び高温空気は、固体又は液体燃料及び熱分解ガス中の炭化水素と反応し、熱分解ガスは、炭化水素、水素及び一酸化炭素を含む改質ガスに改質され、高温の粗燃料ガスとして冷却装置及びガス洗浄・浄化設備に供給される。好ましくは、冷却装置は、高温粗ガスが保有する顕熱によって水を低温水蒸気に気化し、或いは、系外の水蒸気発生装置が生成した水蒸気を高温粗ガスの顕熱によって加熱する。これにより、高温粗ガスの顕熱を有効利用し、システム全体の熱効率を改善することができる。
【0023】
本発明の好ましい実施形態によれば、上記加熱装置は、低温流体(低温空気、低温水蒸気又は低温混合気)に伝熱接触可能な熱交換装置と、該熱交換装置との伝熱接触により加熱された高温流体(高温空気、高温水蒸気又は高温混合気)を第1及び第2給気分流に分流する分流域と、可燃性物質を導入可能な燃焼域とを有する。第2給気分流は、上記熱分解域及び/又は改質域に供給され、第1給気分流は、燃焼域に流入する。熱交換装置、燃焼域及び分流域は、相互連通し、燃焼域の燃焼反応により生成した高温燃焼ガスは、熱交換装置を介して排気される。熱交換装置を構成する蓄熱体が、高温燃焼ガスに伝熱接触して蓄熱し、上記低温流体に伝熱接触して放熱する。好ましくは、熱交換装置は、燃焼ガスと低温流体とが交互に流通可能な多数の狭小流路を備えたハニカム型蓄熱体からなる。このような形式の加熱装置及びハニカム型蓄熱体の詳細は、例えば、特願平10−189号(特開平10−246428号公報)及び特願平5−6911号(特開平6−213585号公報))等に開示されている。なお、熱交換装置として、例えば、多数のペレット、ペブル又はボール形蓄熱体を収容した形式の蓄熱型熱交換器を使用しても良い。
【0024】
本発明の他の好適な実施形態では、レキュペレータ、金属コイル又は金属フィン形式の熱交換器が前記加熱装置として使用され、熱交換器は、高温の粗燃料ガスと、水、低温水蒸気又は低温空気との顕熱交換により水、低温水蒸気又は低温空気を中温又は高温の水蒸気又は空気に加熱する。水は、噴霧手段等により微細な水滴を含むミストとして加熱装置に供給しても良い。なお、加熱装置として水蒸気ボイラーを使用し、水の加熱により上記高温水蒸気を生成することも可能である。
【0025】
例えば、ガス化装置は、高温燃料ガスを低温燃料ガスに冷却する冷却装置を有し、冷却装置は、粗燃料ガスと低温水蒸気及び/又は低温空気との熱交換により低温水蒸気及び/又は低温空気を700℃以上の温度に加熱する高温加熱用熱交換器、燃料ガスと低温水蒸気及び/又は低温空気との熱交換により低温水蒸気及び/又は低温空気を500℃〜700℃の温度に加熱する中温加熱用熱交換器、更には、燃料ガスと水との熱交換により低温水蒸気を生成する水蒸気生成用(低温加熱用)熱交換器を備える。なお、ガス化炉又は熱分解炉と冷却装置との間にセラミックフィルター等の脱塵装置を介装しても良い。
【0026】
また、冷却装置は、3つの冷却器に分割しても良く、この場合、高温加熱用、中温加熱用及び水蒸気生成用(低温加熱用)の各熱交換器は、各冷却器に夫々収容される。変形例として、冷却装置は、2つの冷却器に分割され、高温加熱用及び中温加熱用の各熱交換器は第1冷却器に収容され、水蒸気加熱用熱交換器は下流側の第2冷却器に収容される。このように冷却装置を分割した場合、脱硫装置、脱塩装置、脱硝装置又は脱塵装置等を中温加熱用熱交換器と低温加熱用熱交換器との間に介装し、粗燃料ガスの冷却に伴って生成する粗燃料ガス中の酸等を除去することができる。
【0027】
本発明によるガス化装置の精製燃料ガスは、例えば、燃焼設備又は熱機関の燃焼装置に主燃料として供給される。燃焼装置として、燃焼設備又は熱機関のバーナー又は燃焼器等を例示し得る。燃焼装置の熱エネルギーにより発電機を駆動することにより、電気エネルギーを系外の機器又は設備に供給することができる。例えば、施設内で発生した廃棄物を上記固体又は液体燃料として使用するとともに、上記ガス化装置にガスタービン装置及び発電機を組合せることにより、比較的小型のコジェネレーションシステムを提供することが可能となる。
【0028】
本発明によるガス化装置の精製燃料ガスを燃焼設備又は熱機関の燃焼装置に補助燃料として供給し、これを燃焼装置の主燃料又は燃焼用空気に添加しても良い。例えば、上記構成のガス化装置を船舶等の施設内廃棄物の焼却装置として使用し、ガス化装置の精製燃料ガスを船舶等の内燃機関の主燃料又は燃焼用空気に添加することができる。このような構成によれば、船舶等の施設内の廃棄物を処分し、同時に、船舶等の燃料消費量を削減することが可能となる。
【0029】
本発明の応用として、廃棄物又は石炭を上記固体又は液体燃料として使用した廃棄物ガス化システム又は石炭ガス化システムを提供することができる。本発明の更なる応用として、この種のシステムに対して発電装置を組合せ、これにより、廃棄物又は石炭を燃料とした複合発電システムを提供することが可能となる。
【0030】
図1は、本発明の好適な実施形態に係る固体又は液体燃料ガス化装置のシステム・フロー図である。
固体又は液体燃料ガス化装置は、固体又は液体燃料を熱分解するガス化手段と、ガス化手段の高温粗燃料ガスを冷却する冷却器と、冷却した粗燃料ガスを精製するガス洗浄・浄化設備と、高温水蒸気及び高温空気をガス化手段の熱分解域又は改質域に供給する水蒸気・空気加熱装置とを備える。ガス化手段及び水蒸気・空気加熱装置は、ガス化設備を構成する。廃棄物又は石炭等の固体又は液体燃料が、燃料供給手段WTによってガス化手段に供給されるとともに、水蒸気・空気加熱装置によって700℃以上、好ましくは、800℃以上の温度に加熱された高温水蒸気及び高温空気が、ガス化材且つ改質材としてガス化手段に供給される。固体又は液体燃料は、高温水蒸気及び高温空気の存在下にガス化手段において熱分解ガス及び残渣に熱分解する。熱分解ガス中の炭化水素は、高温水蒸気及び高温空気と反応し、熱分解ガスは、炭化水素、一酸化炭素及び水素を含む粗燃料ガスに改質される。炭化水素及び高温水蒸気の反応は、一般に下式(1) で示される吸熱反応であり、炭化水素及び高温空気の反応は、一般に下式(2) で示される発熱反応である。
【0031】
CxHx+H2 O→CO +H2 +H2 O・・・・(1)
CxHx+O2 +N2 →CO +CO2 +H2 +H2 O+N2 ・・・・(2)
【0032】
高温水蒸気は、固体又は液体燃料の熱分解により生成した熱分解ガスと反応し、熱分解ガスは、比較的多量の一酸化炭素及び水素を含有する改質ガス(高温粗ガス)に改質される。炭化水素及び高温空気の発熱反応によって発生した熱は、炭化水素及び高温水蒸気の吸熱改質反応に要する熱として消費される。
【0033】
高温粗ガスは、高温ガス給送路HGを介して冷却器に供給される。給水管路WSが冷却器に接続され、給水管路WSの給水は、冷却器において高温粗ガスと熱交換して気化し、比較的低温、例えば、150℃〜250℃の温度の過熱水蒸気を生成する。低温水蒸気は、低温水蒸気供給路LSを介して水蒸気・空気加熱装置に供給され、700℃以上、好ましくは、800℃以上の高温に加熱された後、上記の如く、ガス化手段に導入される。同時に、外気温相当温度の低温空気が、水蒸気・空気加熱装置に供給され、700℃以上、好適には、800℃以上の温度に加熱された後、ガス化手段に導入される。
【0034】
冷却器において冷却した低温粗ガスは、低温ガス給送路LGを介してガス洗浄・浄化装置に導入される。ガス洗浄・浄化装置は、低温粗ガス中の煤塵、硫黄、塩素及び重金属等の環境汚染物質を除去する除塵装置、脱硫装置、脱塩装置及び重金属除去装置等の各種洗浄・浄化装置を含み、低温粗ガスを比較的良質の燃料ガスに精製する。ガス浄化装置の精製ガス(燃料ガス)は、燃料ガス給送路FGを介してエネルギー利用設備に供給される。エネルギー利用設備として、ガスタービン装置、ガスエンジン装置、ボイラー、工業炉又はディーゼルエンジン等の各種内燃機関又は燃焼設備を例示し得る。例えば、燃料ガス給送路FGは、ガスタービン発電装置の内燃機関に接続され、ガスタービン装置の発電機は、内燃機関の燃焼作動により発電し、系外の設備又は機器に給電する。燃料ガスの少なくとも一部は、燃料ガス給送路RGを介して水蒸気・空気加熱装置に供給され、燃焼する。水蒸気・空気加熱装置は、熱交換器を介して燃料ガスの燃焼熱を水蒸気及び空気に伝熱し、水蒸気及び空気を上記の如く高温に加熱する。
【0035】
このように構成されたガス化装置は、固体又は液体燃料の熱分解により生成した熱分解ガスを高温空気及び高温水蒸気により高温の粗燃料ガスに改質し、高温粗ガスが保有する顕熱は、冷却器において低温水蒸気の生成に使用される。洗浄・浄化処理を受けた燃料ガスは、水蒸気・空気加熱装置の燃料として使用されるとともに、エネルギー利用設備の燃料として使用される。かくして、上記ガス化装置の構成によれば、固体又は液体燃料から燃料ガスを生成し且つ燃料ガスの燃焼反応により発電する廃棄物ガス化発電システム又は石炭ガス化発電システム等のガス化装置を提供し得る。
【0036】
図2は、図1に示すガス化設備の構成を示すブロックフロー図である。
図2に示すガス化設備では、低温空気供給路LA、低温水蒸気供給路LS及び燃料ガス給送路RGは、低温空気、低温水蒸気及び燃料ガスを水蒸気・空気加熱装置に供給し、燃料ガスは、加熱装置の燃焼域において燃焼する。低温水蒸気及び空気は、熱交換器(図示せず)を介して燃料ガスの燃焼熱を受熱し、700℃以上、好適には、800℃以上の高温に加熱される。加熱後の高温水蒸気及び高温空気は、ガス供給路MG1、MG2を介してガス化設備の熱分解ガス化炉及びガス改質装置に導入される。好ましくは、高温空気及び高温水蒸気の重量比は、2:8〜5:5の範囲に設定される。
【0037】
熱分解ガス化炉に導入された高温空気及び高温水蒸気は、熱分解ガス化炉の炉内領域に低酸素濃度の焼成雰囲気を形成するとともに、固体又は液体燃料の蒸し焼きに要する顕熱を炉内雰囲気に供給する。固体又は液体燃料として、例えば、液体、半固体及び固体の多種の材質の廃棄物を含む混合廃棄物が、燃料供給手段WTによってガス化炉内に導入される。廃棄物は、高温且つ低酸素濃度の炉内焼成雰囲気により蒸し焼きされ、熱分解ガス及び残渣に熱分解し、炭化水素を主成分とする熱分解ガスを生成する。ガス化炉の熱分解ガスは、熱分解ガス給送路TGを介してガス改質装置の改質域に導入される。残渣は、燃焼作動中に炉外に連続的に搬出され、或いは、作動停止後に冷却し、水蒸気の凝縮水と一緒に炉外に排出される。
【0038】
ガス改質装置の改質域に導入された熱分解ガスは、高温空気及び高温水蒸気と混合し、この結果、改質域において、熱分解ガス中の炭化水素と高温空気との発熱反応が進行するとともに、熱分解ガス中の炭化水素と高温水蒸気との吸熱改質反応が進行する。水蒸気による炭化水素の改質反応に要する熱は、高温水蒸気自体が保有する顕熱によって供給されるばかりでなく、炭化水素及び高温空気の反応により発生する反応熱によって供給される。改質域に生成した改質ガスは、高温粗ガスとして高温ガス給送路HGに送出される。
【0039】
このような実施形態によれば、高温水蒸気は、多大な顕熱を保有する熱媒体且つ不活性ガスとして熱分解ガス化炉に供給されるとともに、熱分解ガス中の炭化水素の改質反応に要する熱を改質域に供給する熱媒体且つ改質材としてガス改質装置に供給される。
【0040】
図3は、図1に示すガス化設備の変形例を示すブロックフロー図である。
図3に示すガス化設備においては、水蒸気・空気加熱装置は、燃料ガスの燃焼熱により低温空気及び低温水蒸気を700℃以上、好ましくは、800℃以上、更に好ましくは、1000℃以上の高温に加熱し、高温空気及び高温水蒸気をガス化炉に導入する。好ましくは、高温水蒸気及び高温空気の重量比は、2:8〜5:5の範囲に設定される。図3(A)に示す構成では、高温空気及び高温水蒸気の混合気が、ガス供給路MGを介してガス化炉に供給され、図3(B)に示す構成では、高温空気及び高温水蒸気は、ガス供給路HA、HSを介してガス化炉に夫々供給され、ガス化炉の炉内領域で混合する。
【0041】
ガス化炉の炉内に導入された高温空気は、固体又は液体燃料のガス化材として働き、固体又は液体燃料は、高温の空気に接触し、酸化発熱反応により溶融するとともに、熱分解ガスを生成する。溶融した灰分又は残渣は、ガス化炉の作動中又は停止後に炉外に搬出される。炉内に導入された高温水蒸気は、固体又は液体燃料のガス化溶融により多量の煤が発生するのを抑制するとともに、熱分解ガス中の炭化水素と水蒸気改質反応し、熱分解ガスを改質する。ガス化炉の炉内領域に生成した改質ガスは、高温の粗燃料ガスとして高温ガス給送路HGに送出される。
【0042】
このようなガス化設備においては、高温水蒸気は、固体又は液体燃料のガス化溶融に伴って発生し得る煤の発生を抑制するとともに、熱分解ガス中の炭化水素の改質反応に要する熱を供給する熱媒体且つ改質材としてガス化炉内に導入される。所望により、図1に示すガス改質装置を高温ガス給送路HGに更に介装し、高温水蒸気及び高温空気をガス改質装置の改質域に導入しても良い。
【0043】
図4は、図1に示すガス化設備の更なる変形例を示すブロックフロー図である。
図4に示すガス化設備は、外部加熱式の熱分解ガス化炉と、改質域を有するガス改質装置とを備える。水蒸気・空気加熱装置は、燃料ガスの燃焼熱により低温空気及び低温水蒸気を700℃以上、好ましくは、800℃以上の高温に加熱し、高温空気及び高温水蒸気をガス改質装置に導入する。高温空気及び高温水蒸気の重量比は、2:8〜5:5の範囲に設定される。
【0044】
熱分解ガス化炉に導入された固体又は液体燃料は、熱分解ガス化炉の炉内領域において熱分解ガス及び残渣に熱分解し、熱分解ガスは、熱分解ガス給送路TGを介してガス改質装置に導入される。熱分解ガスは、ガス改質装置の改質域において高温水蒸気及び高温空気と混合し、熱分解ガス中の炭化水素の水蒸気改質反応が改質域に生起し且つ進行する。炭化水素の水蒸気改質反応に要する熱は、高温水蒸気が保有する顕熱により供給されるとともに、高温空気及び炭化水素の反応熱により供給される。この結果、熱分解ガスは、比較的多量の一酸化炭素及び水素を含む高温の粗燃料ガスとして高温ガス給送路HGに送出される。
【0045】
図5は、本発明の他の好適な実施形態に係る固体又は液体燃料ガス化装置のシステム・フロー図である。
図5に示す実施形態では、ガス化装置は、高温粗ガスの顕熱により低温空気及び低温空気を加熱する冷却装置を備える。冷却装置は、高温粗ガス給送路HG及び低温ガス給送路LGの間に介装される。冷却装置は、粗ガスの流動方向に順次整列配置した高温区画、中温区画及び低温区画を備えており、各区画には、粗ガスと伝熱接触可能な高温加熱用、中温加熱用及び水蒸気生成用の各熱交換器が配置される。所望により、セラミックフィルター等の脱塵装置が高温粗ガス給送路HGに配置される。
【0046】
給水管路WSが水蒸気生成用熱交換器の流入ポートに接続され、給水管路WSの給水は、粗ガスの熱を受熱して気化し、比較的低温(例えば、150℃〜250℃)の過熱水蒸気として、低温水蒸気供給路LSに送出される。供給路LSの低温水蒸気は、低温空気供給路LAに導入され、外気温相当温度の低温空気と混合する。水蒸気及び空気の混合気(低温混合気)は、高温加熱用及び中温加熱用の各熱交換器の流入ポートに導入され、粗ガスの熱を受熱して更に加熱される。
【0047】
高温粗ガスの流入側に位置する高温加熱用熱交換器は、低温混合気を700℃以上、好ましくは、800℃以上の高温に加熱し、冷却装置の中央部に位置する中温加熱用熱交換器は、低温混合気を500℃以上、好ましくは、600℃〜700℃の範囲の温度(以下、「中温」という)に加熱する。高温粗ガスは、各区画において混合気及び給水と熱交換して順次降温し、低温粗ガスとして給送路LGからガス洗浄・浄化装置に送出される。高温加熱用熱交換器により加熱された高温混合気は、高温混合気供給路HMGを介してガス化設備に供給され、中温加熱用熱交換器で加熱された中温混合気は、中温混合気供給路MMGを介してガス化設備に供給される。好ましくは、高温空気及び高温水蒸気の重量比は、2:8〜5:5の範囲に設定される。
【0048】
図6は、図5に示すガス化設備の構成を示すブロックフロー図である。
中温混合気供給路MMGの下流端は、熱分解ガス化炉に接続される。中温混合気は、熱分解ガス化炉に導入され、熱分解ガス化炉の炉内領域に低酸素濃度の焼成雰囲気を形成するとともに、固体又は液体燃料の蒸し焼きに要する顕熱を炉内雰囲気に供給する。ガス化炉内の廃棄物は、熱分解ガス及び残渣に熱分解し、熱分解ガスは、熱分解ガス給送路TGを介してガス改質装置の改質域に導入され、残渣は、炉外に排出される。
【0049】
高温混合気供給路HMGの下流端は、ガス改質装置に接続され、高温混合気は、ガス改質装置の改質域に導入される。改質域では、熱分解ガス中の炭化水素と高温空気との発熱反応が進行するとともに、熱分解ガス中の炭化水素と高温水蒸気との吸熱改質反応が進行する。前述の実施形態と同様、水蒸気による炭化水素の改質反応に要する熱は、高温水蒸気自体が保有する顕熱によって供給されるばかりでなく、炭化水素及び高温空気の反応により発生する反応熱によっても供給される。改質域に生成した改質ガスは、高温粗ガスとして高温ガス給送路HGに送出され、上記の如く、低温混合気(空気及び水蒸気)及び水と熱交換して冷却される。
【0050】
このような実施形態によれば、高温水蒸気及び高温空気により廃棄物ガス化及び熱分解ガス改質を行うばかりでなく、改質ガスが保有する顕熱により、空気、水蒸気及び水を加熱し、システム全体の熱効率を改善することができる。所望により、高温及び中温区画と、低温区画とを別個の冷却器として構成しても良い。この場合、各冷却器を連通する流路に脱硫装置等を配置して粗燃料ガス中の酸等を除去することができる。
【0051】
【実施例】
以下、図7乃至図15を参照して、本発明に係るガス化装置及びガス化方法の実施例について詳細に説明する。
図7は、本発明の第1実施例に係るガス化装置の全体構成を示すシステム・フロー図である。
【0052】
図7に示す廃棄物ガス化システムは、図2に示す基本構成のガス化設備1を備えており、ガス化設備1は、熱分解ガス化炉2及び改質器3を有する。熱分解ガス化炉2は、ー括投入型のバッチ式熱分解炉からなり、廃棄物を蒸し焼き可能な炉内領域(熱分解域)を備える。改質器3は、熱分解ガス化炉2の上部に配置された中空の改質域を有し、改質域は、熱分解ガス給送路TGを介して熱分解ガス化炉2の熱分解域と連通する。
【0053】
改質器3の改質域は、高温ガス給送路HGを介して冷却器6に接続され、冷却器6は、低温ガス給送路LGを介してガス洗浄・浄化装置7に接続される。ガス洗浄・浄化装置7は、燃料ガス給送路FGを介してガスタービン装置等に接続される。
【0054】
給水管路WSが冷却器6の熱交換器に接続され、熱交換器は、低温水蒸気給送路LSの上流端に接続される。低温水蒸気供給路LSは、第1及び第2水蒸気流路LS1、LS2に分岐し、流路LS1、LS2の下流端は、混合制御弁51、52に夫々接続される。外界雰囲気の空気を供給可能な給気ファン60が、低温空気供給路LAに介装され、低温空気供給路LAは、第1及び第2空気流路LA1、LA2に分岐する。流路LA1、LA2の下流端は、混合制御弁51、52に夫々接続される。混合制御弁51、52は、低温空気及び低温水蒸気を2:8〜5:5の範囲内の混合比(重量比)に混合する。
【0055】
混合制御弁51、52の各吐出口は、低温混合気供給路SA1 、SA2の上流端に接続される。供給路SA1 、SA2の下流端は、水蒸気・空気加熱装置10、10の各流路切換装置20に接続される。水蒸気・空気加熱装置10、10は、高温混合気供給路MG1、MG2の上流端に接続され、供給路MG1、MG2の下流端は、熱分解ガス化炉2及び改質器3の高温混合気導入口4、5に夫々接続される。
【0056】
図8は、水蒸気・空気加熱装置10の全体構成及び作動態様を示す概略断面図である。図8(A)は、水蒸気・空気加熱装置10の第1加熱工程を示し、図8(B)は、水蒸気・空気加熱装置10の第2加熱工程を示す。
【0057】
図8に示す如く、水蒸気・空気加熱装置10は、対をなす第1及び第2加熱部10A、10Bと、各加熱部を相互連通する連通部10Cとから構成される。加熱部10Aは、第1熱交換装置11及び第1燃焼域13を有し、加熱部10Bは、第2熱交換装置12及び第2燃焼域14を有する。第1及び第2燃焼域13、14は、熱交換装置11、12及び流路切換装置20を介して低温混合気供給路SAに交互に連通する。連通部10Cは、水蒸気・空気加熱装置10の中心軸線に対して対称の構造に形成され、突出部16が、該中心軸線上において流路内方に突出する。燃料供給口43、44及び酸化剤吐出口83、84が、第1及び第2加熱部10A、10Bに夫々配設される。燃料供給口43、44は、燃料供給路F1、F2を介して燃料ガス給送路RG(図7)に接続され、燃料ガスを燃焼域13、14内に交互に吐出ないし噴射する。酸化剤吐出口83、84は、酸化剤供給路OX1、OX2を介して酸化剤供給路OXG に接続され、所望により、酸化剤を燃焼域13、14に交互に供給する。
【0058】
水蒸気・空気加熱装置10は更に、燃料供給口43、44の燃料ガス吹込み量及び吹込み時期を制御する燃料供給制御装置40と、酸化剤吐出口83、84の酸化剤供給量及び供給時期を制御する酸化剤供給制御装置80とを有する。制御装置40は、燃料供給路F1、F2に夫々介装された第1及び第2燃料供給制御弁41、42を備え、制御装置80は、酸化剤供給路OX1、OX2に夫々介装された第1及び第2流量制御弁81、82を備える。酸化剤として、酸素濃度を調整した空気、或いは、酸素が一般に使用される。
【0059】
第1及び第2熱交換器11、12は、多数のセル孔(狭小流路)を備えたハニカム構造のセラミックス製又は金属製蓄熱体からなり、各セル孔は、低温混合気(水蒸気/空気)及び燃焼排ガスが交互に通過可能な小寸法断面の流路を構成する。蓄熱体は、加熱部10A、10Bの内部に組込み可能な全体形状及び寸法を有し、セル壁の壁厚及び各セル壁のピッチ(壁体間隔)は、好ましくは、蓄熱体の容積効率の最大値に相応し且つ0.7乃至1.0の範囲内の熱交換装置11、12の温度効率を確保し得る所望の壁厚及びピッチに設定される。更に好ましくは、セル壁の壁厚は、1.6mm以下の所定厚に設定され、セル壁ピッチは、5.0mm以下の所定値に設定される。
【0060】
第1及び第2燃焼域13、14の間に位置する分流域15は、高温混合気供給路MG1、MG2の上流端に接続され、第1及び第2熱交換装置11、12の各基端部は、流路切換装置20を介して、低温混合気供給路SA1、SA2及び排気導出路EXに接続される。流路切換装置20は、第1給気開閉弁21、第2給気開閉弁22、第1排気開閉弁23及び第2排気開閉弁24を備える。給気開閉弁21、22は、給送路SA1、SA2の分岐連通管路25を介して相互連通し、排気開閉弁23、24は、排気導出路EXの分岐連通管路26を介して相互連通する。
【0061】
第1給気開閉弁21及び第1排気開閉弁23は、同時に開放し且つ同時に閉塞するように連動し、第2給気開閉弁22及び第2排気開閉弁24は、同時に開放し且つ同時に閉塞するように連動する。水蒸気・空気加熱装置10の制御装置(図示せず)は、図8(A)に示す第1加熱工程において、第1給気開閉弁21及び第1排気開閉弁23を開放し且つ第2給気開閉弁22及び第2排気開閉弁24を閉塞する。他方、水蒸気・空気加熱装置10の制御装置は、図8(B)に示す第2加熱工程において、第1給気開閉弁21及び第1排気開閉弁23を閉塞し且つ第2給気開閉弁22及び第2排気開閉弁24を開放する。
【0062】
ハニカム型蓄熱体及び水蒸気・空気加熱装置の各部構成は、特願平5−6911号(特開平6−213585号公報)及び特願平10−189号(特開平10−246428号公報)等に詳細に記載されているので、更なる詳細な説明は、省略する。
【0063】
次に、上記構成の廃棄物ガス化システムの作動について、説明する。
図7に示す如く、廃棄物は、燃料供給手段WTによって熱分解ガス化炉2の熱分解域に導入される。高温混合気供給路MG1の高温混合気が、導入口4から炉内に導入され、廃棄物を蒸し焼き可能な低酸素濃度の高温焼成雰囲気が、熱分解域に形成される。廃棄物は、残渣及び熱分解ガスに熱分解し、炉底部に堆積した廃棄物の焼却残渣は、ガス化炉2の作動中又は冷却後に炉外に搬出される。
【0064】
熱分解ガスは、熱分解ガス給送路TGを介して改質器3の改質域に流入し、高温混合気供給路MG2の高温混合気が、導入口5から改質域に導入される。改質域の熱分解ガスは、高温混合気と混合し、この結果、熱分解ガス中の炭化水素と高温空気との発熱反応が進行するとともに、熱分解ガス中の炭化水素と高温水蒸気との吸熱改質反応が進行する。改質域に生成した改質ガスは、高温の粗燃料ガスとして高温ガス給送路HGから冷却器6に導入される。
【0065】
冷却器6において冷却した低温の粗燃料ガスは、低温ガス給送路LGを介してガス洗浄・浄化装置7に導入され、除塵、脱硫、脱塩及び重金属除去等の洗浄・浄化処理を受けた後、精製燃料ガスとして燃料ガス給送路FG、RGに送出される。例えば、60乃至80%の重量比の燃料ガスは、燃料ガス給送路FGを介して後続のエネルギー利用設備に供給され、40乃至20%の重量比の燃料ガスは、混合気加熱用燃料として燃料ガス給送路RGから水蒸気・空気加熱装置10に供給される。
【0066】
冷却器6の熱交換器において加熱された給水管路WSの給水は、低温水蒸気として気化し、低温水蒸気供給路LSに送出される。低温水蒸気は、混合制御弁51、52によって低温空気供給路LAの低温空気と混合した後、低温混合気供給路SA1、SA2から水蒸気・空気加熱装置10の流路切換装置20に供給される。
【0067】
流路切換装置20は、上記第1加熱工程において、低温混合気を第1燃焼域13に導入し且つ第2燃焼域14の燃焼排ガスを排気導出路EXに導出し(図8A)、第2加熱工程において、低温混合気を第2燃焼域14に導入し且つ第1燃焼域13の燃焼排ガスを排気導出路EXに導出する(図8B)。
【0068】
第1加熱工程(図8A)において、燃料供給制御装置40は、燃料ガス給送路RGの燃料ガスを第2燃焼域14に吹込む。所望により、酸化剤供給制御装置80は、酸化剤を第2燃焼域14に供給する。低温混合気は、第1熱交換装置11を流通する間に700℃以上、好適には、800℃以上に加熱される。高温の混合気流Hは、分流域15に流入し、分流域15において、第1及び第2分流H1:H2に分流する。第2分流H2は、高温混合気供給路MGに送出され、第1分流H1は、第2燃焼域14に流入し、燃料ガスと混合して燃焼反応し、高温の燃焼排ガスを第2燃焼域14に生成する。燃焼排ガスは、第2熱交換装置12、第2給排路L2及び第1排気開閉弁23を介して排気ファン30(図7)に誘引され、排気路EG及び排気口31から系外に排気される。燃焼排ガスは、第2熱交換装置12を通過する際に第2熱交換装置12の蓄熱体と伝熱接触し、燃焼排ガス流が保有する顕熱は、該蓄熱体に蓄熱される。
【0069】
第2加熱工程(図8B)において、低温混合気は、第2熱交換装置12を流通する間に上記高温域に加熱される。高温混合気流Hは、分流域15に流入し、分流域15において、第1及び第2分流H1:H2に分流する。第2分流H2は、高温混合気供給路MGに送出され、第1分流H1は、第1燃焼域13に流入し、制御装置40、80は、燃料ガス及び酸化剤を第1燃焼域13に供給する。第1分流H1は、燃料ガスと混合して燃焼反応し、高温の燃焼排ガスを第1燃焼域13に生成する。燃焼排ガスは、第1熱交換装置11、第1給排路L1及び第2排気開閉弁24を介して排気ファン30(図7)に誘引され、排気路EG及び排気口31から系外に排気される。燃焼排ガスは、第1熱交換装置11を通過する際に第1熱交換装置11の蓄熱体と伝熱接触し、燃焼排ガス流が保有する顕熱は、該蓄熱体に蓄熱される。
【0070】
水蒸気・空気加熱装置10は、120秒以下、好適には、60秒以下、更に好適には30秒以下の所定時間に設定された所定の時間間隔で交互に第1又は第2加熱工程に切換えられる。このため、第2分流H2は、連続的に高温混合気供給路MGに送出され、図7に示す如く、高温混合気供給路MG1、MG2を介して熱分解ガス化炉2及び改質器3に夫々供給され、熱分解域の高温焼成雰囲気及び改質域の水蒸気改質反応を維持する。
【0071】
図9は、図7に示す実施例の変形例を示すガス化装置のシステム・フロー図である。
図9に示す廃棄物ガス化システムは、単一の水蒸気・空気加熱装置10及び混合制御弁50を備えており、加熱装置10の高温混合気を分流する分配制御弁70が、高温混合気供給路MGの下流端に配設される。分配制御弁70の第1吐出口は、第1混合気供給路MG1を介して導入口4と連通し、分流制御弁70の第2吐出口は、第2混合気供給路MG2を介して導入口5と連通する。分配制御弁70は、所定割合の高温混合気を熱分解ガス化炉2の熱分解域に供給し、残余の割合の高温混合気を改質器3の改質域に供給する。その他の廃棄物ガス化システムの構成は、図7に示すシステム構成と実質的に同一である。
【0072】
図10は、図7に示す実施例の更なる変形例を示すガス化装置のシステム・フロー図である。
図10に示す廃棄物ガス化システムは、低温空気を加熱する空気加熱装置10Aと、低温水蒸気を加熱する水蒸気加熱装置10Bとを備える。空気加熱装置10Aの流路切換装置20は、低温空気供給路LAに接続され、空気加熱装置10の分流域15は、高温空気供給路HAに接続される。給気ファン60が低温空気供給路LAに介装され、分配制御弁71が、供給路HAの下流端に接続される。他方、水蒸気加熱装置10Bの流路切換装置20は、低温水蒸気供給路LSに接続される。水蒸気加熱装置10の分流域15は、高温水蒸気供給路HSに接続され、分配制御弁72が、高温水蒸気供給路HSの下流端に接続される。
【0073】
分配制御弁71の第1及び第2吐出口は、第1及び第2高温空気流路HA1、HA2に接続され、分配制御弁72の第1及び第2吐出口は、第1及び第2の高温水蒸気流路HS1、HS2に接続される。第1の高温空気流路及び高温水蒸気流路HA1、HS1は、熱分解ガス化炉2の熱分解域と連通し、分配制御弁71、72は、所定割合の高温空気及び高温水蒸気を導入口4A、4Bから熱分解域に導入する。第2の高温空気流路及び高温水蒸気流路HA2、HS2は、改質器3の改質域と連通し、分配制御弁71、72は、残余の割合の高温空気及び高温水蒸気を導入口5A、5Bから改質域に導入する。熱分解域及び改質域に導入された高温空気及び高温水蒸気は、熱分解域及び改質域において混合する。その他の廃棄物ガス化システムの構成は、図7に示すシステム構成と実質的に同一である。
【0074】
図11は、本発明の第2実施例に係るガス化装置の全体構成を示すシステム・フロー図である。図11において、上記第1実施例の各構成要素と実質的に同一又は同等の構成要素については、同一の参照符号が付されている。
【0075】
図11に示す廃棄物ガス化システムは、図3に示す基本構成の廃棄物ガス化設備1を備える。ガス化設備1は、ペブル床ガス化炉2からなり、多数の球形セラミックス( ペブル) により構成されるペブル床8を備える。ペブル床8は、例えば、直径20〜50mm程度のアルミナボールの充填層又は積層体からなり、ペブル床8の上方には、廃棄物を熱分解可能な熱分解域が画成される。ガス化設備1は、廃棄物を装入可能な燃料供給手段WTを備え、所望により適当な寸法又は粒度に粉砕された廃棄物が、供給手段WTによってガス化炉2内に導入される。1000℃以上の高温混合気(空気及び水蒸気)が、熱分解域に導入され、高温混合気は、廃棄物を熱分解し、溶融する。球形セラミックスは、高温混合気によって加熱され且つ高温混合気の顕熱を蓄熱し、廃棄物に伝熱接触して廃棄物の溶融ガス化反応を促進する。廃棄物の溶融スラグは、球形セラミックスの間隙を流下してスラグ・ガス分離域9に流入する。分離域9の底部に滞留した溶融スラグは、炉外に抽出され、冷却・固化し、路盤材等の建築材料又は土木材料等として再利用される。
【0076】
高温混合気による廃棄物の溶融過程で発生した熱分解ガスは、ペブル床8のセラミックス球の間隙を通過し、高温粗ガスとして分離域9から高温ガス給送路HGに送出される。給送路HGの高温粗ガスは、冷却器6、低温ガス給送路LG及びガス洗浄・浄化装置7を流通し、低温の精製燃料ガスとして燃料ガス給送路FG、RGに送出される。給送路FGの燃料ガスは、ガスタービン装置等のエネルギー利用設備に供給され、給送路RGの燃料ガスは、水蒸気・空気加熱装置10に供給される。冷却器6内の熱交換器は、高温粗ガスが保有する顕熱によって給水管路WSの給水を低温水蒸気に気化し、低温水蒸気は、混合制御弁50において低温空気供給路LAの低温空気と混合した後、水蒸気・空気加熱装置10の流路切換装置20に供給される。混合制御弁50は、低温水蒸気及び低温空気を2:8〜5:5の範囲内の混合比(重量比)に混合する。
【0077】
水蒸気・空気加熱装置10の構成は、上記第1実施例の水蒸気・空気加熱装置の構成と実質的に同一であり、第1加熱工程(図8A)及び2加熱工程(図8B)を所定時間毎、例えば、60秒以下の時間間隔で交互に反復実施し、これにより、低温混合気供給路SAの低温混合気を1000℃以上の高温に連続的に加熱し、高温混合気供給路MGに送出する。供給路MGは、高温混合気をガス化炉2内に導入する。高温混合気は、熱分解域の廃棄物をガス化溶融し、廃棄物を溶融スラグと熱分解ガスとに熱分解する。混合気中の高温水蒸気は、廃棄物のガス化溶融により多量の煤が発生するのを抑制するとともに、熱分解ガス中の炭化水素と水蒸気改質反応し、熱分解ガスを改質する。
【0078】
図12は、図11に示す実施例の変形例を示すガス化装置のシステム・フロー図である。
図12に示す廃棄物ガス化システムは、図10に示す実施例と同様、低温空気を加熱する空気加熱装置10Aと、低温水蒸気を加熱する水蒸気加熱装置10Bとを備える。空気加熱装置10Aの流路切換装置20は、給気ファン60を備えた低温空気供給路LAに接続され、空気加熱装置10の分流域15は、高温空気供給路HAに接続される。水蒸気加熱装置10Bの流路切換装置20は、低温水蒸気供給路LSに接続され、水蒸気加熱装置10の分流域15は、高温水蒸気供給路HSに接続される。
【0079】
供給路HA、HSの高温空気及び高温水蒸気は夫々、導入口4A、4Bから熱ガス化炉2内に導入される。高温空気及び高温水蒸気は、上記の如く、熱分解域の廃棄物をガス化溶融し、廃棄物を溶融スラグ及び熱分解ガスに熱分解し、高温水蒸気は、煤の発生を抑制するとともに、熱分解ガス中の炭化水素と反応し、熱分解ガスを改質する。その他の廃棄物ガス化システムの構成は、図11に示すシステム構成と実質的に同一である。
【0080】
図13は、図11に示す実施例の更なる変形例を示すガス化装置のシステム・フロー図である。
図13に示す廃棄物ガス化システムは、高温側の混合制御弁55を備える点にいて、図12に示す構成と相違する。高温空気供給路HA及び高温水蒸気供給路HSが混合制御弁55に接続され、高温空気及び高温水蒸気は、所定の混合比で混合する。空気及び水蒸気の高温混合気は、高温混合気供給路MGを介してガス化設備1に供給され、導入口4から熱分解域に導入される。その他の構成は、図12に示すシステム構成と同一であるので、更なる詳細な説明は、省略する。
【0081】
図14は、本発明の第3実施例に係るガス化装置の全体構成を示すシステム・フロー図である。図14において、上記第1及び第2実施例の各構成要素と実質的に同一又は同等の構成要素については、同一の参照符号が付されている。
【0082】
図14に示す廃棄物ガス化システムは、熱分解炉2及び改質器3を含むガス化設備1を備えるとともに、冷却器6、ガス洗浄・浄化装置7及び水蒸気・空気加熱装置10を備える。ガス化設備1の構成は、図4に示す基本構成に相当する。熱分解炉2は、酸素濃度制御手段(図示せず)を備えた外部加熱式ロータリーキルンからなり、ロータリーキルンの熱分解域は、酸素濃度制御手段の制御下に低酸素状態又は無酸素状態の炉内焼成雰囲気に維持・管理される。熱分解炉2の前処理装置は、シュレッダーダスト化工程、都市ゴミの破砕、選別及び乾燥工程、或いは、汚泥の沈降分離、脱水及び乾燥工程等を実施する公知の手段を備えており、熱分解効率を向上すべく、例えば150mm以下の寸法の砕片に廃棄物を破砕した後、廃棄物の砕片を熱分解炉2の廃棄物装入部に投入する。熱分解域の廃棄物は、所謂蒸し焼き状態の炉内焼成雰囲気にて約500〜600℃程度に加熱され、熱分解反応の進行により熱分解ガス及び残渣に分解する。熱分解ガス及び残渣は、分離部において相互分離し、残渣は、残渣取出装置、有価金属選別装置、溶融炉等(図示せず)に導入され、他方、熱分解ガスは、改質器3の改質域に導入される。
【0083】
改質器3の改質域は、高温ガス給送路HGを介して冷却器6に接続され、冷却器6は、低温ガス給送路LGを介してガス洗浄・浄化装置7に接続される。ガス洗浄・浄化装置6は、燃料ガス給送路FGを介してガスタービン装置等のエネルギー利用設備に接続される。
【0084】
給水管路WSが冷却器6の熱交換器に接続され、熱交換器は、低温水蒸気供給路LSの上流端に接続される。低温水蒸気供給路LSの下流端は、混合制御弁50の第1流入口に接続される。外界雰囲気の空気を供給可能な給気ファン60を備えた低温空気供給路LAが、混合制御弁50の第2流入口に接続され、低温混合気供給路SAが、混合制御弁50の吐出口に接続される。混合制御弁50は、低温空気及び低温水蒸気を2:8〜5:5の範囲内の混合比(重量比)に混合し、低温空気及び低温水蒸気の混合気を水蒸気・空気加熱装置10に供給する。
【0085】
水蒸気・空気加熱装置10は、上記各実施例の水蒸気・空気加熱装置と実質的に同一の構造を有し、第1加熱工程(図8A)及び2加熱工程(図8B)を所定時間毎、例えば、60秒以下の時間間隔で交互に反復実施することにより、低温混合気供給路SAの低温混合気を700℃以上、好適には、800℃以上の高温に連続的に加熱し、高温混合気供給路MGに送出する。供給路MGは、高温混合気を改質器3に導入し、高温混合気は、改質域の熱分解ガスと混合する。この結果、熱分解ガス中の炭化水素と高温空気との発熱反応が進行するとともに、熱分解ガス中の炭化水素と高温水蒸気との吸熱改質反応が進行する。改質域に生成した改質ガスは、高温の粗燃料ガスとして高温ガス給送路HGから冷却器6に導入される。その他のシステム構成は、前述の各実施例と実質的に同一であるので、更なる詳細な説明は、省略する。
【0086】
図15は、本発明の第4実施例に係るガス化装置の全体構成を示すシステム・フロー図である。図15において、上記各実施例の各構成要素と実質的に同一又は同等の構成要素については、同一の参照符号が付されている。
【0087】
図15に示す廃棄物ガス化システムは、図5及び図6に示す基本構成を有するガス化設備1を備えており、ガス化設備1は、熱分解ガス化炉2及び改質器3を有する。熱分解ガス化炉2は、ー括投入型のバッチ式熱分解炉からなり、熱分解ガス化炉2の熱分解域は、熱分解ガス給送路TGを介して改質器3の改質域と連通する。また、改質器3の改質域は、高温混合気供給路HMGを介して、高温加熱用熱交換器61に接続され、ガス化炉2の熱分解域は、中温混合気供給路MMGを介して、中温加熱用熱交換器62に接続される。
【0088】
冷却装置6は、上流側から順に配列した高温区画6a、中温区画6b及び低温区画6cを備える。高温区画6aは、高温ガス給送路HGを介して改質器3と連通する。所望により、セラミックフィルター等の脱塵装置が、高温ガス給送路HGに介装される。高温区画6a及び中温区画6bには、高温加熱用及び中温加熱用の各熱交換器61、62が夫々配置され、低温区画6cには、水蒸気生成用熱交換器63が配置される。熱交換器61、62は、0.8以上、好ましくは、0.9以上の温度効率を発揮するプレートフィン型又はフィンチューブ型熱交換器からなり、熱交換器63は、粗ガスとの熱交換により水蒸気を気化する汎用的な気−液・熱交換器からなる。
【0089】
高温ガス給送路HGの高温粗ガスは、少なくとも800℃、一般には、900℃以上の温度を有し、高温粗ガスは、熱回収可能な多大な顕熱を保有する。冷却装置6に流入した高温粗ガスは、熱交換器61と伝熱接触し、低温混合気供給路SA1の低温混合気を700℃以上、好ましくは、800℃以上の高温に加熱した後、熱交換器62と伝熱接触し、低温混合気供給路SA2の低温混合気を500℃以上、好ましくは、600℃以上の中温に加熱する。熱交換器61、62を通過して降温した粗ガスは、熱交換器63と更に伝熱接触し、給水管路WSの給水を150℃〜250℃程度の低温水蒸気に気化した後、低温ガス給送路LGを介してガス洗浄・浄化装置7に供給され、洗浄・浄化処理を受けた後、燃料ガス給送路FGに送出される。
【0090】
熱交換器63の低温水蒸気は、低温水蒸気供給路LSに送出され、混合制御弁50にて外気温相当温度の低温空気と混合した後、低温混合気供給路SA1:SA2を介して、熱交換器61、62に夫々導入され、上記の如く、高温及び中温混合気に加熱される。高温空気及び高温水蒸気の混合比(重量比)は、2:8〜5:5の範囲に設定される。
【0091】
熱交換器62の中温混合気は、供給路MMGから熱分解ガス化炉2の熱分解域に導入され、廃棄物を残渣及び熱分解ガスに熱分解し、熱交換器61の高温混合気は、供給路HMGから改質器3に導入され、熱分解ガスを粗燃料ガスに改質する。
【0092】
本実施例によれば、ガス洗浄・浄化装置7により精製した全燃料ガスをガスタービン装置等のエネルギー利用設備に供給し得るとともに、高温粗ガスの廃熱を効果的に回収して低温混合気を高温混合気及び中温混合気に加熱するので、システム全体の熱効率を向上することができる。
【0093】
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
【0094】
例えば、上記各実施例の記載における「廃棄物」の用語を「微粉炭」、「微粉炭及び一次空気」又は「石炭」に置換することにより、上記各実施例のシステムを石炭ガス化装置として把握し得る。この場合、微粉炭等の石炭は、上記燃料供給手段WTによってガス化設備1に供給され、ガス化設備1は、石炭ガス化装置として機能する。石炭ガス化ガスは、高温水蒸気及び高温空気により改質され、しかる後、冷却器6及びガス洗浄・浄化装置7により精製され、精製燃料ガスとして水蒸気・空気加熱装置10及びエネルギー利用設備に供給される。
【0095】
また、上記各実施例における水蒸気・空気加熱装置10の各部構造、例えば、流路切換装置20の弁型式、分流域15の構造等については、適宜変更することが可能である。例えば、流路切換装置20として、4方弁型式の弁機構を採用しても良く、また、分流域15は、第1燃焼域13及び第2燃焼域14を相互連通可能な連通路及び分流制御弁により形成しても良い。
【0096】
更に、高温粗ガスにより水蒸気を加熱する手段として、例えば、特願平10−24144号(特開平11−223482号公報)に開示された熱交換システムを採用しても良い。このような熱交換システムは、上記冷却器の低温水蒸気を加熱する手段として使用され、或いは、系外の水蒸気生成手段にて生成した低温水蒸気を加熱する手段として使用される。熱交換システムにより加熱された水蒸気は、上記水蒸気・空気加熱装置によって700℃以上の高温に更に加熱される。
【0097】
また、上記ガス化設備の高温粗ガスを冷却せず、これを高温ガスとして工業炉等の燃焼設備又は熱機関に直に供給しても良い。この場合、水蒸気発生手段及び水蒸気・空気加熱装置には、これら装置の燃焼用燃料が、系外の燃料供給設備から別途供給される。
【0098】
更には、高温区画、中温区画及び低温区画を備えた上記構成の冷却装置(図15)を2乃至3の冷却器に分割し、例えば、粗ガス中の硫黄分等を除去する脱硫装置等を中温区画の熱交換器(62)と低温区画の熱交換器(63)との間に介装しても良い。
【0099】
【発明の効果】
以上説明した如く、本発明によれば、高温の水蒸気及び空気が改質域に導入され、高温空気は、熱分解ガスと発熱反応し、高温水蒸気は、熱分解ガス中の炭素化合物と吸熱反応する。このような固体又は液体燃料のガス化装置及びガス化方法によれば、ガス化炉又は熱分解炉の熱分解ガスを比較的良質の燃料ガスに改質することができる。
【0100】
また、高温空気と熱分解ガス中の炭素化合物との発熱反応により発生した熱によって高温水蒸気及び炭素化合物の吸熱改質反応に要する熱を補う本発明の構成によれば、燃焼装置等の内熱又は外熱手段を格別に設けることなく、熱分解ガス中の炭素化合物の水蒸気改質反応に要する十分な熱を確保することができる。
【図面の簡単な説明】
【図1】本発明の好適な実施形態に係るガス化装置のシステム・フロー図である。
【図2】図1に示すガス化設備の構成を示すブロックフロー図である。
【図3】図1に示すガス化設備の変形例を示すブロックフロー図である。
【図4】図1に示すガス化設備の更なる変形例を示すブロックフロー図である。
【図5】本発明の他の好適な実施形態に係るガス化装置のシステム・フロー図である。
【図6】図5に示すガス化設備の構成を示すブロックフロー図である。
【図7】本発明の第1実施例に係るガス化装置の全体構成を示すシステム・フロー図である。
【図8】図7に示す水蒸気・空気加熱装置の全体構成及び作動態様を示す概略断面図であり、図8(A)は、水蒸気・空気加熱装置の第1加熱工程を示し、図8(B)は、水蒸気・空気加熱装置の第2加熱工程を示す。
【図9】図7に示す実施例の変形例を示すガス化装置のシステム・フロー図である。
【図10】図7に示す実施例の更なる変形例を示すガス化装置のシステム・フロー図である。
【図11】本発明の第2実施例に係るガス化装置の全体構成を示すシステム・フロー図である。
【図12】図11に示す実施例の変形例を示すガス化装置のシステム・フロー図である。
【図13】図11に示す実施例の更なる変形例を示すガス化装置のシステム・フロー図である。
【図14】本発明の第3実施例に係るガス化装置の全体構成を示すシステム・フロー図である。
【図15】本発明の第4実施例に係るガス化装置の全体構成を示すシステム・フロー図である。
【符号の説明】
1 ガス化設備
2 熱分解ガス化炉、ガス化炉、熱分解炉
3 改質器
6 冷却器、冷却装置
7 ガス洗浄・浄化装置
10 水蒸気・空気加熱装置
10A 空気加熱装置
10B 水蒸気加熱装置
61:62:63 熱交換器
LA 低温空気供給路
LS 低温水蒸気供給路
SA 低温混合気供給路
MG ガス供給路、高温混合気供給路
HMG 高温混合気供給路
MMG 中温混合気供給路
HA ガス供給路、高温空気供給路
HS ガス供給路、高温水蒸気供給路
TG 熱分解ガス給送路
HG 高温ガス給送路
LG 低温ガス給送路
RG:FG 燃料ガス給送路
[0001]
BACKGROUND OF THE INVENTION
  The present inventionSolid or liquidThe present invention relates to a fuel gasification apparatus and a gasification method, and more specifically, waste, coal, biomass fuel, heavy oil, etc.Solid or liquidGasify fuel by pyrolysis reaction to produce relatively good quality fuel gasSolid or liquidThe present invention relates to a fuel gasifier and a gasification method.
[0002]
[Prior art]
Waste such as waste plastic, sludge, shredder dust or municipal waste, or solid fuel such as coal is introduced into a pyrolysis furnace, and the solid fuel is pyrolyzed and heated in a high-temperature reducing atmosphere in an oxygen-free or low-oxygen state. Gasification systems for solid fuels that produce cracked gas are known. Various types of pyrolysis furnaces such as waste gasification and melting furnaces, coal gasification furnaces, rotary kiln type pyrolysis furnaces (external heating type pyrolysis furnaces), and batch-type pyrolysis furnaces (self-combustion type pyrolysis furnaces) Generally, a combustion furnace or a firing furnace is used.
[0003]
The present inventors have recently developed a waste gasification and melting system including a high-temperature air generator capable of continuously supplying high-temperature air exceeding 800 ° C. and a waste gasification and melting furnace incorporating a large number of spherical ceramics. Developed in The high-temperature air of the high-temperature air generator is introduced into a waste gasification furnace, and the waste on the spherical ceramic (pebble) is melted into slag. The pyrolysis gas generated by the thermal decomposition of the waste is led out of the furnace and introduced into a cleaning device and a purification device. The cleaning / purification device removes environmental pollutants such as chlorine, sulfur, heavy metals or trace residues of the pyrolysis gas, and rapidly cools the pyrolysis gas to prevent dioxin resynthesis. The pyrolysis gas that has been cleaned, purified and cooled is a relatively good fuel gas such as a heating furnace such as a boiler or an industrial furnace, an internal combustion engine such as a gas engine, a gas turbine or a diesel engine, or various heat cycle engines. Thus, it is supplied to any combustion facility or heat engine.
[0004]
  Further, as a recent pyrolysis gasification system, for example, a configuration including a pyrolysis furnace that generates pyrolysis gas, a high-temperature decomposition treatment apparatus such as a cracking apparatus, and a gas cleaning apparatus that cleans and cools the pyrolysis gas Things are known. Pyrolysis furnace can be used for waste or coalSolid or liquidThe fuel is pyrolyzed in a low-oxygen or oxygen-free furnace firing atmosphere. The high-temperature decomposition treatment device decomposes the pyrolysis gas tar and oil at high temperatures, and the gas cleaning device removes sulfur, dust, chlorine, etc. of the pyrolysis gas and quenches the pyrolysis gas rapidly. The pyrolysis gas that has undergone the high-temperature decomposition treatment and the cleaning / cooling treatment is supplied as a refined fuel gas to various combustion facilities or heat engines.
[0005]
[Problems to be solved by the invention]
In this type of gasification system, a large amount of sensible heat possessed by the pyrolysis gas is lost in the cleaning / purifying process of the cleaning / purifying apparatus or the gas cleaning apparatus, which leads to a decrease in the thermal efficiency of the entire system. In order to avoid such heat loss, application of a steam reforming method in which high-temperature steam is mixed with pyrolysis gas and hydrocarbons in the pyrolysis gas are reformed by the steam reforming action of high-temperature steam has been studied. Yes. The hydrocarbon steam reforming reaction is generally an endothermic reaction, and the reaction heat required for the reforming reaction is supplied to the reforming reaction zone by an external combustion type or internal combustion type combustion apparatus.
[0006]
In recent years, an apparatus capable of continuously heating water vapor to a high temperature range of 700 ° C. or higher has been developed by the inventors of the present application, and various uses of water vapor as a high-temperature inert gas or a heat medium have been studied. In particular, high-temperature steam that only produces water as a result of condensation is extremely advantageous for simplifying the treatment after cooling and condensation, unlike an inert gas such as nitrogen gas. In addition, since high-temperature steam at 700 ° C. or higher retains a large amount of sensible heat, the reaction heat of the reforming reaction can be at least partially supplied by the sensible heat possessed by the steam itself.
[0007]
However, the reaction heat required for the steam reforming reaction of the pyrolysis gas is difficult to ensure even with high-temperature steam exceeding 700 ° C. Therefore, the shortage of heat required for the reforming reaction can be compensated by simple means. There is a need to develop a configuration.
[0008]
In addition, the present inventors have already confirmed the phenomenon that a relatively large amount of soot is generated in the furnace in the process of gasifying and melting waste with high-temperature air having a relatively high oxygen concentration in the waste gasification and melting system. For this reason, we recognize the need to take measures to efficiently suppress the occurrence of such defects.
[0009]
  This invention is made | formed in view of this subject, The place made into the objective can modify | reform the pyrolysis gas of a gasification furnace or a pyrolysis furnace to a comparatively good quality fuel gas.Solid or liquidAn object of the present invention is to provide a fuel gasification apparatus and a gasification method.
[0010]
  The present invention can also secure sufficient heat required for the steam reforming reaction of the carbon compound in the pyrolysis gas without providing any internal heat or external heat means such as a combustion device.Solid or liquidAn object of the present invention is to provide a fuel gasification apparatus and a gasification method.
[0012]
[Means and Actions for Solving the Problems]
  As a result of intensive studies to achieve the above object, the present inventor has obtained high temperature steam and high temperature air of 700 ° C or higher.Solid or liquidBy introducing into at least one of the pyrolysis zone of the fuel and the reforming zone of the pyrolysis gas, it is confirmed that the desired high-temperature crude fuel gas containing a relatively large amount of carbon monoxide and hydrogen can be generated, and By introducing the high-temperature steam in addition to high-temperature air into the gasification furnace, a phenomenon that can remarkably suppress the generation of soot associated with the gasification-melting reaction has been found, and the present invention has been achieved based on such knowledge. is there.
[0013]
  That is, according to the present invention,Steaming solid or liquid fuel in the pyrolysis zone of a gasifier or pyrolyzer with low or no oxygenEquipped with gasification furnace or pyrolysis furnace to generate pyrolysis gas bySolid or liquidIn the fuel gasifier,
  A steam and air heating device for heating water or low-temperature steam and low-temperature air to high-temperature steam at 700 ° C. or higher and high-temperature air;
  A reformer having a hollow reforming zone capable of introducing the pyrolysis gas of the pyrolysis zone of the gasification furnace or pyrolysis furnace;
  A predetermined weight so that the pyrolysis gas introduced into the reforming zone is reformed by an endothermic reforming reaction and an oxidation exothermic reaction between the carbon compound in the pyrolysis gas and the high-temperature steam and high-temperature air. Ratio of the hot steam and hot airA supply device for high-temperature steam and high-temperature air introduced into the reforming zone;DoIt is characterized bySolid or liquidA fuel gasifier is provided.
[0014]
  The present invention also providesSteaming solid or liquid fuel in the pyrolysis zone of a gasifier or pyrolyzer with low or no oxygenProduces pyrolysis gasSolid or liquidIn the fuel gasification method,
  Introduce pyrolysis gas from gasification furnace or pyrolysis furnace into hollow reforming zoneProcess,
  Heat water or low-temperature steam and low-temperature air to high-temperature steam and high-temperature air at 700 ° C or higherThenHigh-temperature steam and high-temperature air are introduced into the reforming zoneAndThe high temperature steam and high temperature air are converted into the pyrolysis gas.WhenmixtureAnd reforming the pyrolysis gas,
  In the step of mixing the high temperature steam and high temperature air with the pyrolysis gas,The heat generated by the exothermic reaction between the high temperature air and the carbon compound in the pyrolysis gas compensates for the heat required for the endothermic reforming reaction of the high temperature steam and the carbon compound.Thus, the weight ratio of the high temperature steam and high temperature air was set within a predetermined range.It is characterized bySolid or liquidA fuel gasification method is provided.
  According to the above configuration of the present invention, high-temperature steam and air are introduced into the hollow reforming zone. The high temperature steam and the high temperature air are mixed with the pyrolysis gas, the high temperature air undergoes an exothermic reaction with the pyrolysis gas, and the high temperature steam undergoes an endothermic reaction with the carbon compound in the pyrolysis gas. The heat generated by the exothermic reaction between the high-temperature air and the carbon compound in the pyrolysis gas supplements the heat required for the endothermic reforming reaction of the high-temperature steam and the carbon compound. Without providing, sufficient heat required for the steam reforming reaction of the carbon compound in the pyrolysis gas is secured. By introducing an appropriate ratio of high-temperature air and high-temperature steam into the pyrolysis zone or reforming zone, the reaction between the pyrolysis gas and high-temperature air and high-temperature steam proceeds smoothly. Thus, it is possible to produce a relatively high-quality high-temperature crude fuel gas.
[0017]
  In this specification, “Solid or liquid“Fuel” means solid, semi-solid or liquid fuels such as carbon compound waste, coal, biomass fuel, heavy oil, etc., and the concept of carbon compound is hydrocarbon, organic carbon compound or carbon. Includes flammable substances. “Air” includes pure oxygen, air, or a mixture of oxygen and air, and means a fluid that acts as an oxidant. “Cryogenic air” means “air” having a temperature of the ambient atmosphere or a temperature that can be heated by a general heat exchanger, for example, in the range of 0 ° C. to 500 ° C. Further, “low temperature steam” means steam or superheated steam having a temperature and pressure in a range that can be supplied by conventional steam generation techniques.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
According to a preferred embodiment of the present invention, low-temperature steam is mixed with low-temperature air, heated to a high temperature of 700 ° C. or higher by a steam / air heating device, and supplied to the pyrolysis zone or reforming zone. Preferably, the low-temperature steam and the low-temperature air are mixed under the control of the mixing control device, and supplied to the steam / air heating device as a low-temperature mixture containing low-temperature steam in an appropriate weight ratio.
[0019]
According to another preferred embodiment of the present invention, the low temperature steam is heated to a high temperature of 700 ° C. or higher by the steam heating device, and the low temperature air is heated to a high temperature of 700 ° C. or higher by the air heating device. The high-temperature steam and high-temperature air after heating are mixed under the control of the mixing control device, and supplied to the thermal decomposition zone or reforming zone as a high-temperature mixture containing high-temperature steam in an appropriate weight ratio.
[0020]
Preferably, the mixing control device includes a mixing control valve or a set of a plurality of control valves capable of adjusting the mixing ratio of water vapor and air to an arbitrary mixing ratio, an electronic control device capable of variably setting the mixing ratio of the control valves, and the like. And a mixing ratio control means.
[0021]
In still another preferred embodiment of the present invention, the low temperature steam is heated to a high temperature of 700 ° C. or higher by a steam heating device, and the low temperature air is heated to a high temperature of 700 ° C. or higher by an air heating device. The high-temperature steam and high-temperature air after heating are respectively introduced into the thermal decomposition zone or the reforming zone via the steam supply path and the air supply path, and are mixed in the thermal decomposition zone or the reforming zone.
[0022]
  The high-temperature gas mixture, high-temperature steam and high-temperature air are introduced into the pyrolysis zone, the reforming zone, or both the pyrolysis zone and the reforming zone. Hot steam and hot air areSolid or liquidReacts with hydrocarbons in the fuel and pyrolysis gas, and the pyrolysis gas is reformed into a reformed gas containing hydrocarbon, hydrogen and carbon monoxide, and as a high-temperature crude fuel gas, a cooling device and gas cleaning / purification equipment To be supplied. Preferably, the cooling device vaporizes water into low-temperature steam by sensible heat possessed by the high-temperature crude gas, or heats steam generated by the steam generator outside the system by sensible heat of the high-temperature crude gas. Thereby, the sensible heat of high-temperature crude gas can be used effectively and the thermal efficiency of the whole system can be improved.
[0023]
According to a preferred embodiment of the present invention, the heating device is heated by heat transfer contact with a heat exchange device capable of heat transfer contact with a low temperature fluid (low temperature air, low temperature steam or a low temperature gas mixture), and the heat exchange device. A diversion area for diverting the high-temperature fluid (high-temperature air, high-temperature steam or high-temperature mixture) into the first and second supply air diversions, and a combustion area into which a combustible substance can be introduced. The second charge air split is supplied to the pyrolysis zone and / or the reforming zone, and the first charge split flow flows into the combustion zone. The heat exchange device, the combustion zone, and the shunt zone are in communication with each other, and the high-temperature combustion gas generated by the combustion reaction in the combustion zone is exhausted through the heat exchange device. The heat storage body constituting the heat exchange device is in heat transfer contact with the high temperature combustion gas to store heat, and is in heat transfer contact with the low temperature fluid to dissipate heat. Preferably, the heat exchange device is formed of a honeycomb type heat storage body having a large number of narrow flow paths through which combustion gas and low temperature fluid can alternately flow. Details of the heating device and the honeycomb type heat storage body of this type are disclosed in, for example, Japanese Patent Application No. 10-189 (Japanese Patent Application Laid-Open No. 10-246428) and Japanese Patent Application No. 5-6911 (Japanese Patent Application Laid-Open No. 6-213585). )) Etc. In addition, as a heat exchange apparatus, you may use the heat storage type heat exchanger of the type which accommodated many pellets, pebble, or a ball-shaped heat storage body, for example.
[0024]
In another preferred embodiment of the invention, a heat exchanger in the form of a recuperator, metal coil or metal fin is used as the heating device, the heat exchanger comprising hot crude fuel gas and water, cold steam or cold air. Water, low-temperature steam or low-temperature air is heated to medium-temperature or high-temperature steam or air by sensible heat exchange. The water may be supplied to the heating device as a mist containing fine water droplets by a spraying means or the like. It is also possible to use a steam boiler as a heating device and generate the high-temperature steam by heating water.
[0025]
For example, the gasifier has a cooling device that cools the high-temperature fuel gas to the low-temperature fuel gas, and the cooling device uses low-temperature steam and / or low-temperature air by heat exchange between the crude fuel gas and low-temperature steam and / or low-temperature air. Heat exchanger for heating to a temperature of 700 ° C. or higher, medium temperature for heating low temperature steam and / or low temperature air to a temperature of 500 ° C. to 700 ° C. by heat exchange between fuel gas and low temperature steam and / or low temperature air A heat exchanger for heating, and further, a heat exchanger for generating steam (for low temperature heating) that generates low temperature steam by heat exchange between fuel gas and water are provided. A dust removing device such as a ceramic filter may be interposed between the gasification furnace or the pyrolysis furnace and the cooling device.
[0026]
Further, the cooling device may be divided into three coolers. In this case, each heat exchanger for high temperature heating, medium temperature heating, and steam generation (low temperature heating) is accommodated in each cooler. The As a modification, the cooling device is divided into two coolers, each heat exchanger for high temperature heating and medium temperature heating is accommodated in the first cooler, and the heat exchanger for steam heating is the second cooling on the downstream side. Stored in a container. When the cooling device is divided in this way, a desulfurization device, a desalination device, a denitration device, a dust removal device, or the like is interposed between the intermediate temperature heating heat exchanger and the low temperature heating heat exchanger, Acids and the like in the crude fuel gas generated with cooling can be removed.
[0027]
  The refined fuel gas of the gasifier according to the present invention is supplied as main fuel to, for example, a combustion facility or a combustion device of a heat engine. Examples of the combustion device include a combustion facility or a heat engine burner or a combustor. By driving the generator with the thermal energy of the combustion device, electric energy can be supplied to equipment or equipment outside the system. For example, waste generated in the facilitySolid or liquidBy using it as fuel and combining the gasifier with a gas turbine device and a generator, it is possible to provide a relatively small cogeneration system.
[0028]
The refined fuel gas of the gasifier according to the present invention may be supplied to the combustion equipment or the combustion device of the heat engine as an auxiliary fuel and added to the main fuel or combustion air of the combustion device. For example, the gasifier having the above-described configuration can be used as an incinerator for in-facility waste such as a ship, and the refined fuel gas of the gasifier can be added to the main fuel or combustion air of an internal combustion engine such as a ship. According to such a configuration, it is possible to dispose of the waste in the facility such as a ship and at the same time reduce the fuel consumption of the ship or the like.
[0029]
  As an application of the present invention, waste or coalSolid or liquidA waste gasification system or a coal gasification system used as fuel can be provided. As a further application of the present invention, it is possible to combine this type of system with a power generation device, thereby providing a combined power generation system using waste or coal as fuel.
[0030]
  FIG. 1 relates to a preferred embodiment of the present invention.Solid or liquidIt is a system flow figure of a fuel gasifier.
  Solid or liquidThe fuel gasifier isSolid or liquidGasification means for pyrolyzing fuel, a cooler for cooling the high-temperature crude fuel gas of the gasification means, a gas cleaning / purification facility for purifying the cooled crude fuel gas, and high-temperature steam and high-temperature air gasification means A steam / air heating device for supplying to the pyrolysis zone or reforming zone. The gasification means and the steam / air heating device constitute a gasification facility. Waste or coalSolid or liquidThe body fuel is supplied to the gasification means by the fuel supply means WT, and the high-temperature steam and high-temperature air heated to a temperature of 700 ° C. or higher, preferably 800 ° C. or higher by the water vapor / air heating device are used as the gasification material. And it supplies to a gasification means as a modifier.Solid or liquidThe fuel is pyrolyzed into pyrolysis gas and residue in the gasification means in the presence of hot steam and hot air. Hydrocarbons in the pyrolysis gas react with high-temperature steam and high-temperature air, and the pyrolysis gas is reformed into a crude fuel gas containing hydrocarbons, carbon monoxide and hydrogen. The reaction between hydrocarbon and high-temperature steam is generally an endothermic reaction represented by the following formula (1), and the reaction between hydrocarbon and high-temperature air is generally an exothermic reaction represented by the following formula (2).
[0031]
CxHx + H2 O → CO + H2 + H2 O ... (1)
CxHx + O2 + N2 → CO + CO2 + H2 + H2 O + N2 .... (2)
[0032]
  Hot steam isSolid or liquidIt reacts with the pyrolysis gas produced by the thermal decomposition of the fuel, and the pyrolysis gas is reformed into a reformed gas (high temperature crude gas) containing a relatively large amount of carbon monoxide and hydrogen. The heat generated by the exothermic reaction of hydrocarbons and high temperature air is consumed as the heat required for the endothermic reforming reaction of hydrocarbons and high temperature steam.
[0033]
The hot crude gas is supplied to the cooler via the hot gas feed path HG. The feed water line WS is connected to a cooler, and the feed water of the feed water line WS is vaporized by exchanging heat with the high-temperature crude gas in the cooler, so that superheated steam having a relatively low temperature, for example, 150 ° C. to 250 ° C. is generated. Generate. The low-temperature steam is supplied to the steam / air heating device via the low-temperature steam supply passage LS, heated to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher, and then introduced into the gasification means as described above. . At the same time, low-temperature air having a temperature corresponding to the outside air temperature is supplied to the water vapor / air heating device, heated to a temperature of 700 ° C. or higher, preferably 800 ° C. or higher, and then introduced into the gasification means.
[0034]
The low-temperature crude gas cooled in the cooler is introduced into the gas cleaning / purifying device via the low-temperature gas feed path LG. Gas cleaning / purification equipment includes various cleaning / purification equipment such as dust removal equipment, desulfurization equipment, demineralization equipment and heavy metal removal equipment for removing environmental pollutants such as dust, sulfur, chlorine and heavy metals in low-temperature crude gas, Purify low-temperature crude gas into relatively good fuel gas. The purified gas (fuel gas) of the gas purification device is supplied to the energy utilization facility via the fuel gas supply path FG. Examples of the energy utilization equipment may include various internal combustion engines or combustion equipment such as a gas turbine device, a gas engine device, a boiler, an industrial furnace, or a diesel engine. For example, the fuel gas supply path FG is connected to an internal combustion engine of a gas turbine power generation device, and the generator of the gas turbine device generates power by the combustion operation of the internal combustion engine and supplies power to facilities or equipment outside the system. At least a part of the fuel gas is supplied to the steam / air heating device via the fuel gas supply path RG and burned. The steam / air heating device transfers the combustion heat of the fuel gas to the steam and air via the heat exchanger, and heats the steam and air to a high temperature as described above.
[0035]
  The gasifier configured in this way isSolid or liquidThe pyrolysis gas generated by the thermal decomposition of the fuel is reformed into a high-temperature crude fuel gas by high-temperature air and high-temperature steam, and the sensible heat possessed by the high-temperature crude gas is used for generating low-temperature steam in the cooler. The fuel gas that has undergone the cleaning / purification process is used as a fuel for the steam / air heating device and also as a fuel for the energy utilization equipment. Thus, according to the configuration of the gasifier,Solid or liquidA gasification apparatus such as a waste gasification power generation system or a coal gasification power generation system that generates fuel gas from fuel and generates power by a combustion reaction of the fuel gas can be provided.
[0036]
FIG. 2 is a block flow diagram showing the configuration of the gasification facility shown in FIG.
In the gasification facility shown in FIG. 2, the low-temperature air supply path LA, the low-temperature steam supply path LS, and the fuel gas supply path RG supply low-temperature air, low-temperature steam, and fuel gas to the steam / air heating device. It burns in the combustion zone of the heating device. The low-temperature steam and air receive the heat of combustion of the fuel gas through a heat exchanger (not shown) and are heated to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher. The high-temperature steam and high-temperature air after heating are introduced into the pyrolysis gasification furnace and gas reformer of the gasification facility via the gas supply paths MG1 and MG2. Preferably, the weight ratio of high temperature air and high temperature steam is set in the range of 2: 8 to 5: 5.
[0037]
  The high-temperature air and high-temperature steam introduced into the pyrolysis gasification furnace form a low oxygen concentration firing atmosphere in the furnace region of the pyrolysis gasification furnace,Solid or liquidThe sensible heat required for steaming the fuel is supplied to the furnace atmosphere.Solid or liquidAs the fuel, for example, a mixed waste containing wastes of various materials such as liquid, semi-solid and solid is introduced into the gasification furnace by the fuel supply means WT. The waste is steamed and burned in a high-temperature and low-oxygen-concentration furnace firing atmosphere, and pyrolyzed into pyrolysis gas and residue to generate pyrolysis gas mainly composed of hydrocarbons. The pyrolysis gas of the gasification furnace is introduced into the reforming zone of the gas reformer through the pyrolysis gas feed path TG. The residue is continuously carried out of the furnace during the combustion operation, or is cooled after the operation is stopped and discharged together with the condensed water of steam.
[0038]
The pyrolysis gas introduced into the reforming zone of the gas reformer is mixed with high-temperature air and high-temperature steam. As a result, an exothermic reaction between hydrocarbons in the pyrolysis gas and high-temperature air proceeds in the reforming zone. At the same time, an endothermic reforming reaction between hydrocarbons in the pyrolysis gas and high-temperature steam proceeds. The heat required for the reforming reaction of hydrocarbon by steam is not only supplied by the sensible heat possessed by the high temperature steam itself, but is also supplied by the reaction heat generated by the reaction between the hydrocarbon and the high temperature air. The reformed gas generated in the reforming zone is sent to the high-temperature gas feed path HG as a high-temperature crude gas.
[0039]
According to such an embodiment, the high-temperature steam is supplied to the pyrolysis gasification furnace as a heat medium and an inert gas having a large amount of sensible heat, and for the reforming reaction of hydrocarbons in the pyrolysis gas. The heat required is supplied to the gas reforming apparatus as a heat medium and a reforming material for supplying the reforming zone.
[0040]
FIG. 3 is a block flow diagram showing a modification of the gasification facility shown in FIG.
In the gasification facility shown in FIG. 3, the steam / air heating device generates low temperature air and low temperature steam at a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher, more preferably 1000 ° C. or higher by the combustion heat of the fuel gas. Heat and introduce hot air and hot steam into the gasifier. Preferably, the weight ratio of high temperature steam and high temperature air is set in the range of 2: 8 to 5: 5. In the configuration shown in FIG. 3A, a mixture of high-temperature air and high-temperature steam is supplied to the gasifier through the gas supply path MG, and in the configuration shown in FIG. The gas supply passages HA and HS are respectively supplied to the gasification furnace and mixed in the furnace area of the gasification furnace.
[0041]
  The high-temperature air introduced into the gasification furnace isSolid or liquidWorking as a fuel gasifier,Solid or liquidThe fuel comes into contact with high-temperature air, melts by an oxidative exothermic reaction, and generates pyrolysis gas. The molten ash or residue is carried out of the furnace during or after operation of the gasification furnace. The high temperature steam introduced into the furnaceSolid or liquidWhile suppressing the generation of a large amount of soot due to the gasification and melting of the fuel, it undergoes a steam reforming reaction with hydrocarbons in the pyrolysis gas to reform the pyrolysis gas. The reformed gas generated in the in-furnace region of the gasification furnace is sent to the high-temperature gas feed path HG as a high-temperature crude fuel gas.
[0042]
  In such a gasification facility, high-temperature steam isSolid or liquidIt is introduced into the gasification furnace as a heat medium and reforming material that suppresses the generation of soot that can occur with gasification and melting of fuel and supplies heat required for the reforming reaction of hydrocarbons in the pyrolysis gas. The If desired, the gas reformer shown in FIG. 1 may be further interposed in the high-temperature gas feed path HG, and high-temperature steam and high-temperature air may be introduced into the reforming zone of the gas reformer.
[0043]
FIG. 4 is a block flow diagram showing a further modification of the gasification facility shown in FIG.
The gasification facility shown in FIG. 4 includes an external heating type pyrolysis gasification furnace and a gas reformer having a reforming zone. The steam / air heating device heats low-temperature air and low-temperature steam to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher by the combustion heat of the fuel gas, and introduces the high-temperature air and high-temperature steam into the gas reformer. The weight ratio of high temperature air and high temperature steam is set in the range of 2: 8 to 5: 5.
[0044]
  Introduced into pyrolysis gasifierSolid or liquidThe fuel is thermally decomposed into pyrolysis gas and residue in the in-furnace region of the pyrolysis gasification furnace, and the pyrolysis gas is introduced into the gas reformer through the pyrolysis gas feed path TG. The pyrolysis gas is mixed with high-temperature steam and high-temperature air in the reforming zone of the gas reformer, and the steam reforming reaction of hydrocarbons in the pyrolysis gas occurs and proceeds in the reforming zone. The heat required for the steam reforming reaction of hydrocarbons is supplied by the sensible heat possessed by the high-temperature steam and is also supplied by the reaction heat of the high-temperature air and the hydrocarbon. As a result, the pyrolysis gas is sent to the high temperature gas supply path HG as a high temperature crude fuel gas containing a relatively large amount of carbon monoxide and hydrogen.
[0045]
  FIG. 5 relates to another preferred embodiment of the present invention.Solid or liquidIt is a system flow figure of a fuel gasifier.
  In the embodiment shown in FIG. 5, the gasifier includes a cooling device that heats the low temperature air and the low temperature air by the sensible heat of the high temperature crude gas. The cooling device is interposed between the high-temperature crude gas supply path HG and the low-temperature gas supply path LG. The cooling device has a high temperature section, an intermediate temperature section, and a low temperature section that are sequentially arranged in the flow direction of the crude gas, and each section is for high temperature heating, medium temperature heating, and steam generation capable of heat transfer contact with the crude gas. Each heat exchanger is arranged. If desired, a dust removing device such as a ceramic filter is disposed in the high-temperature coarse gas feed path HG.
[0046]
The feed water line WS is connected to the inflow port of the water vapor generating heat exchanger, and the feed water in the feed water line WS is vaporized by receiving the heat of the crude gas and is relatively low in temperature (for example, 150 ° C. to 250 ° C.). The superheated steam is sent to the low temperature steam supply path LS. The low-temperature water vapor in the supply path LS is introduced into the low-temperature air supply path LA and is mixed with the low-temperature air having a temperature corresponding to the outside air temperature. A mixture of water vapor and air (low temperature mixture) is introduced into the inflow port of each heat exchanger for high temperature heating and medium temperature heating, and receives the heat of the crude gas to be further heated.
[0047]
The high-temperature heating heat exchanger located on the inflow side of the high-temperature crude gas heats the low-temperature mixture to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher, and heat exchange for intermediate temperature heating located in the center of the cooling device. The vessel heats the low temperature mixture to 500 ° C. or higher, preferably 600 ° C. to 700 ° C. (hereinafter referred to as “medium temperature”). The high-temperature crude gas is heat-exchanged with the air-fuel mixture and the feed water in each section, and the temperature is lowered sequentially, and is sent as a low-temperature crude gas from the supply path LG to the gas cleaning / purifying device. The high-temperature mixture heated by the heat exchanger for high-temperature heating is supplied to the gasification facility via the high-temperature mixture supply path HMG, and the intermediate-temperature mixture heated by the heat exchanger for intermediate-temperature heating is supplied with the intermediate-temperature mixture The gas is supplied to the gasification facility via the path MMG. Preferably, the weight ratio of high temperature air and high temperature steam is set in the range of 2: 8 to 5: 5.
[0048]
  FIG. 6 is a block flow diagram showing the configuration of the gasification facility shown in FIG.
  The downstream end of the intermediate temperature mixture supply path MMG is connected to a pyrolysis gasification furnace. The medium temperature air-fuel mixture is introduced into the pyrolysis gasification furnace to form a low oxygen concentration firing atmosphere in the furnace area of the pyrolysis gasification furnace,Solid or liquidThe sensible heat required for steaming the fuel is supplied to the furnace atmosphere. The waste in the gasification furnace is pyrolyzed into pyrolysis gas and residue, and the pyrolysis gas is introduced into the reforming zone of the gas reformer through the pyrolysis gas feed path TG, Discharged outside.
[0049]
The downstream end of the high temperature mixture supply path HMG is connected to a gas reformer, and the high temperature mixture is introduced into the reforming zone of the gas reformer. In the reforming zone, an exothermic reaction between hydrocarbons in the pyrolysis gas and high-temperature air proceeds, and an endothermic reforming reaction between hydrocarbons in the pyrolysis gas and high-temperature steam proceeds. As in the previous embodiment, the heat required for the hydrocarbon reforming reaction with steam is not only supplied by the sensible heat of the high temperature steam itself, but also by the reaction heat generated by the reaction between the hydrocarbon and the high temperature air. Supplied. The reformed gas generated in the reforming zone is sent as a high-temperature crude gas to the high-temperature gas feed path HG, and is cooled by exchanging heat with the low-temperature mixture (air and steam) and water as described above.
[0050]
According to such an embodiment, not only waste gasification and pyrolysis gas reforming are performed with high-temperature steam and high-temperature air, but also air, steam and water are heated by sensible heat possessed by the reformed gas, The thermal efficiency of the entire system can be improved. If desired, the high and medium temperature compartments and the low temperature compartment may be configured as separate coolers. In this case, a desulfurization device or the like can be arranged in a flow path that communicates each cooler to remove acid or the like in the crude fuel gas.
[0051]
【Example】
Hereinafter, embodiments of the gasification apparatus and the gasification method according to the present invention will be described in detail with reference to FIGS.
FIG. 7 is a system flow diagram showing the overall configuration of the gasifier according to the first embodiment of the present invention.
[0052]
The waste gasification system shown in FIG. 7 includes the gasification equipment 1 having the basic configuration shown in FIG. 2, and the gasification equipment 1 has a pyrolysis gasification furnace 2 and a reformer 3. The pyrolysis gasification furnace 2 is a batch-type batch pyrolysis furnace, and includes an in-furnace region (pyrolysis region) where waste can be steamed. The reformer 3 has a hollow reforming zone disposed in the upper part of the pyrolysis gasification furnace 2, and the reforming zone is the heat of the pyrolysis gasification furnace 2 via the pyrolysis gas feed path TG. Communicate with the decomposition zone.
[0053]
The reforming zone of the reformer 3 is connected to the cooler 6 via the high temperature gas supply path HG, and the cooler 6 is connected to the gas cleaning / purifying device 7 via the low temperature gas supply path LG. . The gas cleaning / purifying device 7 is connected to a gas turbine device or the like via a fuel gas supply path FG.
[0054]
The feed water line WS is connected to the heat exchanger of the cooler 6, and the heat exchanger is connected to the upstream end of the low temperature steam supply path LS. The low-temperature steam supply path LS branches into first and second steam flow paths LS1, LS2, and the downstream ends of the flow paths LS1, LS2 are connected to the mixing control valves 51, 52, respectively. An air supply fan 60 capable of supplying air in the outside atmosphere is interposed in the low-temperature air supply path LA, and the low-temperature air supply path LA branches into the first and second air flow paths LA1 and LA2. The downstream ends of the flow paths LA1 and LA2 are connected to the mixing control valves 51 and 52, respectively. The mixing control valves 51 and 52 mix low-temperature air and low-temperature steam to a mixing ratio (weight ratio) within the range of 2: 8 to 5: 5.
[0055]
The discharge ports of the mixing control valves 51 and 52 are connected to the upstream ends of the low-temperature mixture supply passages SA1 and SA2. The downstream ends of the supply channels SA1 and SA2 are connected to the flow path switching devices 20 of the steam / air heating devices 10 and 10, respectively. The steam / air heating devices 10 and 10 are connected to the upstream ends of the high-temperature mixture supply paths MG1 and MG2, and the downstream ends of the supply paths MG1 and MG2 are the high-temperature mixture of the pyrolysis gasification furnace 2 and the reformer 3, respectively. The inlets 4 and 5 are connected respectively.
[0056]
FIG. 8 is a schematic cross-sectional view showing the overall configuration and operation mode of the steam / air heating apparatus 10. FIG. 8A shows a first heating process of the steam / air heating apparatus 10, and FIG. 8B shows a second heating process of the steam / air heating apparatus 10.
[0057]
As shown in FIG. 8, the steam / air heating device 10 includes a pair of first and second heating units 10 </ b> A and 10 </ b> B and a communication unit 10 </ b> C that interconnects the heating units. The heating unit 10A has a first heat exchange device 11 and a first combustion zone 13, and the heating unit 10B has a second heat exchange device 12 and a second combustion zone 14. The first and second combustion zones 13 and 14 alternately communicate with the low-temperature mixture supply path SA via the heat exchange devices 11 and 12 and the flow path switching device 20. The communication portion 10 </ b> C is formed in a symmetric structure with respect to the central axis of the steam / air heating device 10, and the protruding portion 16 protrudes inward of the flow path on the central axis. Fuel supply ports 43 and 44 and oxidant discharge ports 83 and 84 are provided in the first and second heating units 10A and 10B, respectively. The fuel supply ports 43 and 44 are connected to the fuel gas supply path RG (FIG. 7) via the fuel supply paths F1 and F2, and discharge or inject fuel gas into the combustion zones 13 and 14 alternately. The oxidant discharge ports 83 and 84 are connected to the oxidant supply path OXG via the oxidant supply paths OX1 and OX2, and alternately supply the oxidant to the combustion zones 13 and 14 as desired.
[0058]
The steam / air heating device 10 further includes a fuel supply control device 40 for controlling the fuel gas injection amount and the injection timing of the fuel supply ports 43 and 44, and the oxidant supply amount and the supply timing of the oxidant discharge ports 83 and 84. And an oxidant supply control device 80 for controlling the above. The control device 40 includes first and second fuel supply control valves 41 and 42 interposed in the fuel supply paths F1 and F2, respectively. The control device 80 is interposed in the oxidant supply paths OX1 and OX2, respectively. First and second flow control valves 81 and 82 are provided. As the oxidizer, air with adjusted oxygen concentration or oxygen is generally used.
[0059]
The first and second heat exchangers 11 and 12 are made of a honeycomb-structured ceramic or metal heat storage body having a large number of cell holes (narrow channels), and each cell hole has a low-temperature mixture (water vapor / air). ) And a flue gas having a small cross section through which combustion exhaust gas can pass alternately. The heat storage body has an overall shape and dimensions that can be incorporated into the heating units 10A and 10B, and the wall thickness of the cell walls and the pitch of each cell wall (wall body spacing) are preferably determined by the volume efficiency of the heat storage body. The desired wall thickness and pitch are set so as to ensure the temperature efficiency of the heat exchangers 11 and 12 corresponding to the maximum value and in the range of 0.7 to 1.0. More preferably, the wall thickness of the cell wall is set to a predetermined thickness of 1.6 mm or less, and the cell wall pitch is set to a predetermined value of 5.0 mm or less.
[0060]
A shunt zone 15 located between the first and second combustion zones 13 and 14 is connected to the upstream end of the high-temperature mixture supply passages MG1 and MG2, and the base ends of the first and second heat exchange devices 11 and 12 are connected to each other. The section is connected to the low temperature mixture supply paths SA1 and SA2 and the exhaust outlet path EX via the flow path switching device 20. The flow path switching device 20 includes a first air supply on / off valve 21, a second air supply on / off valve 22, a first exhaust on / off valve 23, and a second exhaust on / off valve 24. The air supply on / off valves 21 and 22 communicate with each other via a branch communication pipe 25 of the feed paths SA1 and SA2, and the exhaust on / off valves 23 and 24 communicate with each other via a branch communication pipe 26 of the exhaust lead-out path EX. Communicate.
[0061]
The first air supply open / close valve 21 and the first exhaust open / close valve 23 are interlocked so that they are simultaneously opened and simultaneously closed, and the second air supply open / close valve 22 and the second exhaust open / close valve 24 are simultaneously opened and simultaneously closed. Interlock to do. In the first heating step shown in FIG. 8A, the control device (not shown) of the steam / air heating device 10 opens the first air supply on / off valve 21 and the first exhaust on / off valve 23 and the second supply. The air on / off valve 22 and the second exhaust on / off valve 24 are closed. On the other hand, in the second heating step shown in FIG. 8B, the control device for the steam / air heating device 10 closes the first air supply on / off valve 21 and the first exhaust on / off valve 23 and the second air supply on / off valve. 22 and the second exhaust opening / closing valve 24 are opened.
[0062]
The configuration of each part of the honeycomb type heat storage body and the steam / air heating device is described in Japanese Patent Application No. 5-6911 (Japanese Patent Laid-Open No. 6-213585) and Japanese Patent Application No. 10-189 (Japanese Patent Laid-Open No. 10-246428). Since it is described in detail, further detailed description is omitted.
[0063]
Next, the operation of the waste gasification system configured as described above will be described.
As shown in FIG. 7, the waste is introduced into the pyrolysis zone of the pyrolysis gasification furnace 2 by the fuel supply means WT. The high-temperature air-fuel mixture in the high-temperature air-fuel mixture supply path MG1 is introduced into the furnace through the introduction port 4, and a high-temperature firing atmosphere having a low oxygen concentration capable of steaming the waste is formed in the thermal decomposition zone. The waste is pyrolyzed into a residue and pyrolysis gas, and the incineration residue of the waste deposited on the bottom of the furnace is carried out of the furnace during the operation of the gasification furnace 2 or after cooling.
[0064]
The pyrolysis gas flows into the reforming zone of the reformer 3 via the pyrolysis gas feed channel TG, and the high-temperature gas mixture in the high-temperature gas mixture supply channel MG2 is introduced into the reforming zone through the inlet 5. . The pyrolysis gas in the reforming zone is mixed with the high-temperature gas mixture. As a result, an exothermic reaction between the hydrocarbons in the pyrolysis gas and the high-temperature air proceeds, and the hydrocarbons in the pyrolysis gas and the high-temperature steam are mixed. The endothermic reforming reaction proceeds. The reformed gas generated in the reforming zone is introduced into the cooler 6 from the high-temperature gas feed path HG as a high-temperature crude fuel gas.
[0065]
The low-temperature crude fuel gas cooled in the cooler 6 is introduced into the gas cleaning / purification device 7 through the low-temperature gas supply path LG and subjected to cleaning / purification processing such as dust removal, desulfurization, demineralization and heavy metal removal. Then, it is sent to the fuel gas feed paths FG and RG as purified fuel gas. For example, a fuel gas having a weight ratio of 60 to 80% is supplied to a subsequent energy utilization facility via a fuel gas supply path FG, and a fuel gas having a weight ratio of 40 to 20% is used as a fuel for heating the mixture. It is supplied to the water vapor / air heating device 10 from the fuel gas supply path RG.
[0066]
The feed water in the feed water pipe WS heated in the heat exchanger of the cooler 6 is vaporized as low-temperature steam and sent to the low-temperature steam supply path LS. The low-temperature steam is mixed with the low-temperature air in the low-temperature air supply path LA by the mixing control valves 51 and 52, and then supplied to the flow path switching device 20 of the steam / air heating apparatus 10 from the low-temperature mixture supply paths SA1 and SA2.
[0067]
In the first heating step, the flow path switching device 20 introduces the low-temperature mixture into the first combustion zone 13 and leads the combustion exhaust gas in the second combustion zone 14 to the exhaust outlet passage EX (FIG. 8A). In the heating step, the low temperature air-fuel mixture is introduced into the second combustion zone 14 and the combustion exhaust gas in the first combustion zone 13 is led out to the exhaust outlet passage EX (FIG. 8B).
[0068]
In the first heating step (FIG. 8A), the fuel supply control device 40 blows the fuel gas from the fuel gas supply path RG into the second combustion zone 14. If desired, the oxidant supply controller 80 supplies oxidant to the second combustion zone 14. The low temperature air-fuel mixture is heated to 700 ° C. or higher, preferably 800 ° C. or higher while flowing through the first heat exchange device 11. The high-temperature mixed air flow H flows into the diversion area 15 and is divided into the first and second diversion H1: H2 in the diversion area 15. The second branch stream H2 is sent to the high-temperature mixture supply path MG, and the first branch stream H1 flows into the second combustion zone 14, mixes with the fuel gas, undergoes a combustion reaction, and converts the high-temperature combustion exhaust gas into the second combustion zone. 14 to generate. The combustion exhaust gas is attracted to the exhaust fan 30 (FIG. 7) through the second heat exchange device 12, the second supply / exhaust passage L2, and the first exhaust opening / closing valve 23, and exhausted from the exhaust passage EG and the exhaust port 31 to the outside of the system. Is done. When the combustion exhaust gas passes through the second heat exchange device 12, it comes into heat transfer contact with the heat storage body of the second heat exchange device 12, and the sensible heat held by the combustion exhaust gas flow is stored in the heat storage body.
[0069]
In the second heating step (FIG. 8B), the low temperature air-fuel mixture is heated to the high temperature range while flowing through the second heat exchange device 12. The high-temperature mixed airflow H flows into the diversion area 15 and is divided into the first and second diversion H1 and H2 in the diversion area 15. The second branch flow H2 is sent to the high-temperature mixture supply path MG, the first branch flow H1 flows into the first combustion zone 13, and the control devices 40 and 80 send the fuel gas and the oxidant to the first combustion zone 13. Supply. The first shunt H1 is mixed with the fuel gas and combusted to generate a high-temperature combustion exhaust gas in the first combustion zone 13. The combustion exhaust gas is attracted to the exhaust fan 30 (FIG. 7) via the first heat exchange device 11, the first supply / exhaust passage L1, and the second exhaust opening / closing valve 24, and exhausted from the exhaust passage EG and the exhaust port 31 to the outside of the system. Is done. When the combustion exhaust gas passes through the first heat exchange device 11, it comes into heat transfer contact with the heat storage body of the first heat exchange device 11, and the sensible heat held by the combustion exhaust gas flow is stored in the heat storage body.
[0070]
The steam / air heating device 10 is switched to the first or second heating step alternately at a predetermined time interval set to a predetermined time of 120 seconds or less, preferably 60 seconds or less, and more preferably 30 seconds or less. It is done. For this reason, the second diversion H2 is continuously sent to the high-temperature mixture supply path MG, and as shown in FIG. 7, the pyrolysis gasifier 2 and the reformer 3 via the high-temperature mixture supply paths MG1 and MG2. To maintain the high temperature firing atmosphere in the pyrolysis zone and the steam reforming reaction in the reform zone.
[0071]
FIG. 9 is a system flow diagram of the gasifier showing a modification of the embodiment shown in FIG.
The waste gasification system shown in FIG. 9 includes a single steam / air heating device 10 and a mixing control valve 50, and a distribution control valve 70 for diverting the high-temperature mixture of the heating device 10 supplies a high-temperature mixture. It is disposed at the downstream end of the path MG. The first discharge port of the distribution control valve 70 communicates with the introduction port 4 via the first mixture supply path MG1, and the second discharge port of the flow control valve 70 is introduced via the second mixture supply path MG2. Communicates with mouth 5 The distribution control valve 70 supplies a predetermined ratio of the high-temperature mixture to the pyrolysis zone of the pyrolysis gasifier 2 and supplies the remaining ratio of the high-temperature mixture to the reforming zone of the reformer 3. The configuration of the other waste gasification system is substantially the same as the system configuration shown in FIG.
[0072]
FIG. 10 is a system flow diagram of the gasifier showing a further modification of the embodiment shown in FIG.
The waste gasification system shown in FIG. 10 includes an air heating device 10A that heats low-temperature air and a water vapor heating device 10B that heats low-temperature steam. The flow path switching device 20 of the air heating device 10A is connected to the low temperature air supply path LA, and the shunt region 15 of the air heating device 10 is connected to the high temperature air supply path HA. The supply fan 60 is interposed in the low temperature air supply path LA, and the distribution control valve 71 is connected to the downstream end of the supply path HA. On the other hand, the flow path switching device 20 of the steam heating apparatus 10B is connected to the low temperature steam supply path LS. The diversion area 15 of the steam heating device 10 is connected to the high-temperature steam supply path HS, and the distribution control valve 72 is connected to the downstream end of the high-temperature steam supply path HS.
[0073]
The first and second discharge ports of the distribution control valve 71 are connected to the first and second high-temperature air flow paths HA1 and HA2, and the first and second discharge ports of the distribution control valve 72 are the first and second discharge ports. It is connected to the high temperature steam flow path HS1, HS2. The first high-temperature air flow path and the high-temperature steam flow path HA1, HS1 communicate with the pyrolysis zone of the pyrolysis gasification furnace 2, and the distribution control valves 71, 72 are inlets for a predetermined ratio of high-temperature air and high-temperature steam. 4A and 4B are introduced into the thermal decomposition zone. The second high-temperature air flow path and the high-temperature steam flow path HA2, HS2 communicate with the reforming zone of the reformer 3, and the distribution control valves 71, 72 introduce the remaining proportion of high-temperature air and high-temperature steam into the inlet 5A. 5B is introduced into the reforming zone. High-temperature air and high-temperature steam introduced into the pyrolysis zone and the reforming zone are mixed in the pyrolysis zone and the reforming zone. The configuration of the other waste gasification system is substantially the same as the system configuration shown in FIG.
[0074]
FIG. 11 is a system flow diagram showing the overall configuration of the gasifier according to the second embodiment of the present invention. In FIG. 11, components that are substantially the same as or equivalent to the components of the first embodiment are given the same reference numerals.
[0075]
The waste gasification system shown in FIG. 11 includes the waste gasification equipment 1 having the basic configuration shown in FIG. The gasification facility 1 includes a pebble bed gasification furnace 2 and includes a pebble bed 8 composed of a number of spherical ceramics (pebbles). The pebble floor 8 is made of, for example, a packed layer or a laminate of alumina balls having a diameter of about 20 to 50 mm, and a thermal decomposition zone capable of thermally decomposing waste is defined above the pebble floor 8. The gasification facility 1 includes a fuel supply means WT capable of charging waste, and waste that is pulverized to an appropriate size or particle size as needed is introduced into the gasification furnace 2 by the supply means WT. A high-temperature mixture (air and water vapor) of 1000 ° C. or higher is introduced into the thermal decomposition zone, and the high-temperature mixture thermally decomposes and melts the waste. Spherical ceramics are heated by a high-temperature air-fuel mixture, store sensible heat of the high-temperature air-fuel mixture, and heat transfer contact with the waste to promote the melt gasification reaction of the waste. The waste molten slag flows down through the gap between the spherical ceramics and flows into the slag / gas separation zone 9. The molten slag staying at the bottom of the separation zone 9 is extracted outside the furnace, cooled and solidified, and reused as building materials such as roadbed materials or civil engineering materials.
[0076]
The pyrolysis gas generated during the melting process of the waste by the high-temperature gas mixture passes through the gap between the ceramic spheres of the pebble bed 8 and is sent as a high-temperature crude gas from the separation zone 9 to the high-temperature gas feed path HG. The high-temperature crude gas in the supply path HG flows through the cooler 6, the low-temperature gas supply path LG, and the gas cleaning / purification device 7, and is sent to the fuel gas supply paths FG and RG as a low-temperature purified fuel gas. The fuel gas in the feed path FG is supplied to energy utilization equipment such as a gas turbine device, and the fuel gas in the feed path RG is supplied to the steam / air heating device 10. The heat exchanger in the cooler 6 vaporizes the feed water in the feed water line WS into low-temperature steam by sensible heat held in the high-temperature crude gas, and the low-temperature steam is mixed with the low-temperature air in the low-temperature air supply path LA in the mixing control valve 50. After mixing, it is supplied to the flow path switching device 20 of the steam / air heating device 10. The mixing control valve 50 mixes low-temperature steam and low-temperature air at a mixing ratio (weight ratio) within the range of 2: 8 to 5: 5.
[0077]
The configuration of the steam / air heating device 10 is substantially the same as the configuration of the steam / air heating device of the first embodiment, and the first heating step (FIG. 8A) and the second heating step (FIG. 8B) are performed for a predetermined time. Each time, for example, it is repeated alternately at a time interval of 60 seconds or less, whereby the low-temperature mixture in the low-temperature mixture supply path SA is continuously heated to a high temperature of 1000 ° C. or higher, and the high-temperature mixture supply path MG Send it out. The supply path MG introduces a high-temperature mixture into the gasification furnace 2. The high-temperature air-fuel mixture gasifies and melts the waste in the pyrolysis zone, and pyrolyzes the waste into molten slag and pyrolysis gas. The high-temperature steam in the gas mixture suppresses the generation of a large amount of soot due to gasification and melting of the waste, and reforms the pyrolysis gas by performing a steam reforming reaction with the hydrocarbon in the pyrolysis gas.
[0078]
FIG. 12 is a system flow diagram of the gasifier showing a modification of the embodiment shown in FIG.
The waste gasification system shown in FIG. 12 includes an air heating device 10A that heats low-temperature air and a steam heating device 10B that heats low-temperature steam, as in the embodiment shown in FIG. The flow path switching device 20 of the air heating device 10A is connected to a low temperature air supply path LA provided with an air supply fan 60, and the shunt area 15 of the air heating device 10 is connected to a high temperature air supply path HA. The flow path switching device 20 of the steam heating apparatus 10B is connected to the low temperature steam supply path LS, and the diversion area 15 of the steam heating apparatus 10 is connected to the high temperature steam supply path HS.
[0079]
The high-temperature air and high-temperature steam in the supply passages HA and HS are introduced into the thermal gasification furnace 2 from the introduction ports 4A and 4B, respectively. As described above, high-temperature air and high-temperature steam gasify and melt the waste in the pyrolysis zone, pyrolyze the waste into molten slag and pyrolysis gas, and high-temperature steam suppresses generation of soot and heat. Reacts with hydrocarbons in cracked gas to reform pyrolyzed gas. The structure of the other waste gasification system is substantially the same as the system structure shown in FIG.
[0080]
FIG. 13 is a system flow diagram of the gasifier showing a further modification of the embodiment shown in FIG.
The waste gasification system shown in FIG. 13 is different from the configuration shown in FIG. 12 in that a high-temperature side mixing control valve 55 is provided. The high-temperature air supply path HA and the high-temperature steam supply path HS are connected to the mixing control valve 55, and the high-temperature air and the high-temperature steam are mixed at a predetermined mixing ratio. The high-temperature air-fuel mixture of air and water vapor is supplied to the gasification facility 1 through the high-temperature air-fuel mixture supply path MG, and is introduced into the thermal decomposition zone from the inlet 4. Other configurations are the same as the system configuration shown in FIG. 12, and thus further detailed description is omitted.
[0081]
FIG. 14 is a system flow diagram showing the overall configuration of the gasifier according to the third embodiment of the present invention. In FIG. 14, components that are substantially the same as or equivalent to the components of the first and second embodiments are given the same reference numerals.
[0082]
The waste gasification system shown in FIG. 14 includes a gasification facility 1 including a pyrolysis furnace 2 and a reformer 3, and also includes a cooler 6, a gas cleaning / purification device 7, and a steam / air heating device 10. The configuration of the gasification facility 1 corresponds to the basic configuration shown in FIG. The pyrolysis furnace 2 is composed of an externally heated rotary kiln equipped with oxygen concentration control means (not shown), and the thermal decomposition zone of the rotary kiln is in a low oxygen state or oxygen-free state furnace under the control of the oxygen concentration control means. Maintained and managed in a firing atmosphere. The pretreatment device of the pyrolysis furnace 2 is equipped with known means for carrying out a shredder dusting process, municipal waste crushing, sorting and drying processes, sludge sedimentation separation, dehydration and drying processes, etc. In order to improve the efficiency, for example, the waste is crushed into pieces having a size of 150 mm or less, and then the waste pieces are put into the waste charging portion of the pyrolysis furnace 2. The waste in the pyrolysis zone is heated to about 500 to 600 ° C. in a so-called steaming-in-furnace firing atmosphere, and decomposes into pyrolysis gas and residues as the pyrolysis reaction proceeds. The pyrolysis gas and the residue are separated from each other in the separation unit, and the residue is introduced into a residue take-out device, a valuable metal sorting device, a melting furnace or the like (not shown), while the pyrolysis gas is supplied to the reformer 3. Introduced into the reforming zone.
[0083]
The reforming zone of the reformer 3 is connected to the cooler 6 via the high temperature gas supply path HG, and the cooler 6 is connected to the gas cleaning / purifying device 7 via the low temperature gas supply path LG. . The gas cleaning / purifying device 6 is connected to an energy utilization facility such as a gas turbine device via a fuel gas supply path FG.
[0084]
The feed water pipe WS is connected to the heat exchanger of the cooler 6, and the heat exchanger is connected to the upstream end of the low-temperature steam supply path LS. The downstream end of the low temperature steam supply path LS is connected to the first inlet of the mixing control valve 50. A low-temperature air supply path LA provided with an air supply fan 60 capable of supplying air in the outside atmosphere is connected to the second inlet of the mixing control valve 50, and the low-temperature mixture supply path SA is an outlet of the mixing control valve 50. Connected to. The mixing control valve 50 mixes low-temperature air and low-temperature steam at a mixing ratio (weight ratio) in the range of 2: 8 to 5: 5, and supplies the mixture of low-temperature air and low-temperature steam to the steam / air heating device 10. To do.
[0085]
The steam / air heating device 10 has substantially the same structure as the steam / air heating device of each of the above embodiments, and the first heating step (FIG. 8A) and the second heating step (FIG. 8B) are performed every predetermined time. For example, the low temperature gas mixture in the low temperature gas mixture supply passage SA is continuously heated to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher by repeatedly performing alternately at a time interval of 60 seconds or less. It is sent to the air supply path MG. The supply path MG introduces a high-temperature mixture into the reformer 3, and the high-temperature mixture is mixed with the pyrolysis gas in the reforming zone. As a result, an exothermic reaction between the hydrocarbon in the pyrolysis gas and high-temperature air proceeds, and an endothermic reforming reaction between the hydrocarbon in the pyrolysis gas and high-temperature steam proceeds. The reformed gas generated in the reforming zone is introduced into the cooler 6 from the high-temperature gas feed path HG as a high-temperature crude fuel gas. Other system configurations are substantially the same as those of the above-described embodiments, and further detailed description is omitted.
[0086]
FIG. 15 is a system flow diagram showing the overall configuration of the gasifier according to the fourth embodiment of the present invention. In FIG. 15, constituent elements that are substantially the same as or equivalent to the constituent elements of the above-described embodiments are given the same reference numerals.
[0087]
The waste gasification system illustrated in FIG. 15 includes a gasification facility 1 having the basic configuration illustrated in FIGS. 5 and 6, and the gasification facility 1 includes a pyrolysis gasification furnace 2 and a reformer 3. . The pyrolysis gasification furnace 2 is a batch-type batch pyrolysis furnace, and the pyrolysis gasification furnace 2 is reformed by the reformer 3 via the pyrolysis gas supply path TG. Communicate with the region. The reforming zone of the reformer 3 is connected to the high-temperature heating heat exchanger 61 via the high-temperature mixture supply path HMG, and the pyrolysis zone of the gasification furnace 2 is connected to the medium-temperature mixture supply path MMG. To the intermediate temperature heating heat exchanger 62.
[0088]
The cooling device 6 includes a high-temperature compartment 6a, an intermediate-temperature compartment 6b, and a low-temperature compartment 6c arranged in order from the upstream side. The high temperature section 6a communicates with the reformer 3 via the high temperature gas supply path HG. If desired, a dust removing device such as a ceramic filter is interposed in the high temperature gas supply path HG. Heat exchangers 61 and 62 for high temperature heating and medium temperature heating are arranged in the high temperature compartment 6a and the medium temperature compartment 6b, respectively, and a water vapor generating heat exchanger 63 is arranged in the low temperature compartment 6c. The heat exchangers 61 and 62 are plate fin type or fin tube type heat exchangers exhibiting a temperature efficiency of 0.8 or more, preferably 0.9 or more, and the heat exchanger 63 is heat from the crude gas. It consists of a general-purpose gas-liquid / heat exchanger that vaporizes water vapor by exchange.
[0089]
The high-temperature crude gas in the high-temperature gas supply path HG has a temperature of at least 800 ° C., and generally 900 ° C. or higher, and the high-temperature crude gas has a large amount of sensible heat that can be recovered. The high-temperature crude gas that has flowed into the cooling device 6 is in heat transfer contact with the heat exchanger 61 and heats the low-temperature mixture in the low-temperature mixture supply path SA1 to a high temperature of 700 ° C. or higher, preferably 800 ° C. or higher. Heat exchange contact is made with the exchanger 62, and the low temperature mixture in the low temperature mixture supply path SA2 is heated to an intermediate temperature of 500 ° C or higher, preferably 600 ° C or higher. The crude gas that has cooled down after passing through the heat exchangers 61 and 62 is further brought into heat transfer contact with the heat exchanger 63, and after the feed water in the feed water line WS is vaporized into low-temperature steam of about 150 ° C to 250 ° C, the low-temperature gas The gas is supplied to the gas cleaning / purifying device 7 through the supply path LG, and after being subjected to cleaning / purification processing, is sent to the fuel gas supply path FG.
[0090]
The low-temperature steam of the heat exchanger 63 is sent to the low-temperature steam supply path LS and mixed with the low-temperature air having the temperature corresponding to the outside temperature by the mixing control valve 50, and then heat exchange is performed via the low-temperature mixture supply path SA1: SA2. Each is introduced into a vessel 61, 62 and heated to a high and medium temperature mixture as described above. The mixing ratio (weight ratio) of high-temperature air and high-temperature steam is set in the range of 2: 8 to 5: 5.
[0091]
The intermediate temperature mixture of the heat exchanger 62 is introduced into the thermal decomposition zone of the pyrolysis gasification furnace 2 from the supply path MMG, and the waste is pyrolyzed into residue and pyrolysis gas. Then, it is introduced into the reformer 3 from the supply path HMG and reforms the pyrolysis gas into a crude fuel gas.
[0092]
According to the present embodiment, the entire fuel gas purified by the gas cleaning / purifying device 7 can be supplied to an energy utilization facility such as a gas turbine device, and the waste heat of the high temperature crude gas can be effectively recovered to produce a low temperature mixture. Is heated to a high temperature mixture and a medium temperature mixture, so that the thermal efficiency of the entire system can be improved.
[0093]
The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.
[0094]
For example, by replacing the term “waste” in the description of the above embodiments with “pulverized coal”, “pulverized coal and primary air”, or “coal”, the system of each of the above embodiments is used as a coal gasifier. You can figure it out. In this case, coal such as pulverized coal is supplied to the gasification facility 1 by the fuel supply means WT, and the gasification facility 1 functions as a coal gasifier. The coal gasification gas is reformed by high-temperature steam and high-temperature air, and then purified by the cooler 6 and the gas cleaning / purification device 7 and supplied to the steam / air heating device 10 and the energy utilization equipment as purified fuel gas. The
[0095]
Further, the structure of each part of the water vapor / air heating device 10 in each of the above embodiments, for example, the valve type of the flow path switching device 20, the structure of the flow dividing region 15, and the like can be appropriately changed. For example, a four-way valve type valve mechanism may be employed as the flow path switching device 20, and the flow dividing region 15 includes a communication path and a flow dividing flow that can communicate with the first combustion region 13 and the second combustion region 14. It may be formed by a control valve.
[0096]
Furthermore, for example, a heat exchange system disclosed in Japanese Patent Application No. 10-24144 (Japanese Patent Laid-Open No. 11-223482) may be adopted as means for heating water vapor with a high-temperature crude gas. Such a heat exchange system is used as a means for heating the low-temperature steam of the cooler, or as a means for heating the low-temperature steam generated by the steam generation means outside the system. The steam heated by the heat exchange system is further heated to a high temperature of 700 ° C. or higher by the steam / air heating device.
[0097]
Further, the high-temperature crude gas of the gasification facility may be directly supplied to a combustion facility such as an industrial furnace or a heat engine as a high-temperature gas without cooling. In this case, the fuel for combustion of these devices is separately supplied from the fuel supply equipment outside the system to the steam generating means and the steam / air heating device.
[0098]
Furthermore, the cooling device (FIG. 15) having the above-described configuration including the high-temperature compartment, the medium-temperature compartment, and the low-temperature compartment is divided into two to three coolers, for example, a desulfurization device that removes sulfur or the like in the crude gas. You may interpose between the heat exchanger (62) of a medium temperature division, and the heat exchanger (63) of a low temperature division.
[0099]
【The invention's effect】
  As explained above, according to the present invention, hot water vapor and air areIn the reforming zoneWhen introduced, the high-temperature air undergoes an exothermic reaction with the pyrolysis gas, and the high-temperature steam undergoes an endothermic reaction with the carbon compound in the pyrolysis gas. like thisSolid or liquidAccording to the fuel gasification apparatus and the gasification method, the pyrolysis gas of the gasification furnace or the pyrolysis furnace can be reformed to a relatively good quality fuel gas.
[0100]
Further, according to the configuration of the present invention, the heat generated by the exothermic reaction between the high temperature air and the carbon compound in the pyrolysis gas is supplemented with the heat required for the endothermic reforming reaction of the high temperature steam and the carbon compound. Or sufficient heat required for the steam reforming reaction of the carbon compound in the pyrolysis gas can be ensured without providing any external heat means.
[Brief description of the drawings]
FIG. 1 is a system flow diagram of a gasifier according to a preferred embodiment of the present invention.
FIG. 2 is a block flow diagram showing the configuration of the gasification facility shown in FIG.
FIG. 3 is a block flow diagram showing a modification of the gasification facility shown in FIG.
FIG. 4 is a block flow diagram showing a further modification of the gasification facility shown in FIG.
FIG. 5 is a system flow diagram of a gasifier according to another preferred embodiment of the present invention.
6 is a block flow diagram showing the configuration of the gasification facility shown in FIG. 5. FIG.
FIG. 7 is a system flow diagram showing the overall configuration of the gasifier according to the first embodiment of the present invention.
8 is a schematic cross-sectional view showing the overall configuration and operation mode of the water vapor / air heating device shown in FIG. 7. FIG. 8 (A) shows the first heating step of the water vapor / air heating device, and FIG. B) shows the 2nd heating process of a water vapor | steam and an air heating apparatus.
9 is a system flow diagram of a gasifier showing a modification of the embodiment shown in FIG. 7. FIG.
FIG. 10 is a system flow diagram of a gasifier showing a further modification of the embodiment shown in FIG.
FIG. 11 is a system flow diagram showing an overall configuration of a gasifier according to a second embodiment of the present invention.
12 is a system flow diagram of a gasifier showing a modification of the embodiment shown in FIG.
FIG. 13 is a system flow diagram of a gasifier showing a further modification of the embodiment shown in FIG.
FIG. 14 is a system flow diagram showing an overall configuration of a gasifier according to a third embodiment of the present invention.
FIG. 15 is a system flow diagram showing an overall configuration of a gasifier according to a fourth embodiment of the present invention.
[Explanation of symbols]
1 Gasification facilities
2 Pyrolysis gasification furnace, gasification furnace, pyrolysis furnace
3 Reformer
6 Coolers and cooling devices
7 Gas cleaning and purification equipment
10 Steam / Air Heater
10A Air heating device
10B steam heater
61:62:63 Heat exchanger
LA Low temperature air supply path
LS Low-temperature steam supply path
SA Low temperature mixture supply path
MG gas supply path, high-temperature mixture supply path
HMG high-temperature mixture supply path
MMG medium temperature mixture supply path
HA gas supply path, high-temperature air supply path
HS gas supply path, high-temperature steam supply path
TG pyrolysis gas supply path
HG hot gas feed path
LG Low temperature gas supply path
RG: FG fuel gas supply path

Claims (17)

低酸素又は無酸素状態のガス化炉又熱分解炉の熱分解域における固体又は液体燃料の蒸し焼きにより熱分解ガスを生成するガス化炉又は熱分解炉を備えた固体又は液体燃料のガス化装置において、
水又は低温水蒸気と低温空気とを700℃以上の高温水蒸気及び高温空気に加熱する水蒸気及び空気の加熱装置と、
前記ガス化炉又は熱分解炉の熱分解域の熱分解ガスを導入可能な中空の改質域を備えた改質装置と、
前記改質域に導入された前記熱分解ガスが、該熱分解ガス中の炭素化合物と前記高温水蒸気及び高温空気との吸熱改質反応及び酸化発熱反応によって改質されるように、所定の重量比の前記高温水蒸気及び高温空気を前記改質域に導入する高温水蒸気及び高温空気の供給装置とを有することを特徴とする固体又は液体燃料のガス化装置。
Solid or gasifier liquid fuel with a gasification furnace or thermal decomposition furnace to produce a pyrolysis gas with steamed solid or liquid fuel in the pyrolysis zone hypoxia or anoxia gasifier Matanetsu decomposition furnace In
A steam and air heating device for heating water or low-temperature steam and low-temperature air to high-temperature steam at 700 ° C. or higher and high-temperature air;
A reformer having a hollow reforming zone capable of introducing the pyrolysis gas of the pyrolysis zone of the gasification furnace or pyrolysis furnace;
A predetermined weight so that the pyrolysis gas introduced into the reforming zone is reformed by an endothermic reforming reaction and an oxidation exothermic reaction between the carbon compound in the pyrolysis gas and the high-temperature steam and high-temperature air. gasifier the high-temperature steam and solid or liquid fuels, characterized in that the hot air is closed and the supply device of the high-temperature steam and hot air is introduced into the reforming area ratio.
前記供給装置は、前記高温水蒸気及び高温空気が保有する顕熱と、前記高温空気及び前記燃料の酸化発熱反応により発生する熱とによって前記固体又は液体燃料が熱分解して、熱分解ガスを生成するように、前記高温水蒸気及び高温空気を前記熱分解域に導入する供給路を更に有することを特徴とする請求項1に記載のガス化装置。It said supply device comprises a sensible heat the hot steam and hot air's, the solid or liquid fuel by the heat generated by the oxidation exothermic reaction of the hot air and the fuel is thermally decomposed, generate pyrolysis gas The gasifier according to claim 1, further comprising a supply path for introducing the high-temperature steam and high-temperature air into the thermal decomposition zone . 前記加熱装置は、低温水蒸気を700℃以上の高温に加熱する水蒸気加熱装置と、低温空気を700℃以上の高温に加熱する空気加熱装置とを有し、前記供給装置は、前記高温水蒸気及び高温空気を前記改質域に夫々導入する高温水蒸気供給路及び高温空気供給路を備えることを特徴とする請求項1又は2に記載のガス化装置。  The heating device includes a steam heating device that heats low-temperature steam to a high temperature of 700 ° C. or higher, and an air heating device that heats low-temperature air to a high temperature of 700 ° C. or higher, and the supply device includes the high-temperature steam and high temperature The gasifier according to claim 1 or 2, further comprising a high-temperature steam supply path and a high-temperature air supply path for introducing air into the reforming zone. 前記加熱装置は、低温水蒸気及び低温空気を混合する混合手段と、前記水蒸気及び空気の混合気を700℃以上の高温に加熱する水蒸気・空気加熱装置とを有し、前記供給装置は、高温の水蒸気及び空気の混合気を前記改質域に導入する高温混合気供給路を備えることを特徴とする請求項1又は2に記載のガス化装置。  The heating device includes a mixing means for mixing low temperature steam and low temperature air, and a water vapor / air heating device for heating the mixture of water vapor and air to a high temperature of 700 ° C. or higher. The gasifier according to claim 1, further comprising a high-temperature air-fuel mixture supply path that introduces an air-fuel mixture of water vapor and air into the reforming zone. 前記加熱装置は、低温水蒸気を700℃以上の高温に加熱する水蒸気加熱装置と、低温空気を700℃以上の高温に加熱する空気加熱装置と、前記高温水蒸気及び高温空気を混合する混合手段とを有し、前記供給装置は、前記高温水蒸気及び高温空気の混合気を前記改質域に導入する高温混合気供給路を備えることを特徴とする請求項1又は2に記載のガス化装置。  The heating device includes a steam heating device that heats low-temperature steam to a high temperature of 700 ° C. or higher, an air heating device that heats low-temperature air to a high temperature of 700 ° C. or higher, and a mixing unit that mixes the high-temperature steam and high-temperature air. The gasifier according to claim 1, wherein the supply device includes a high-temperature mixture supply path that introduces the mixture of the high-temperature steam and high-temperature air into the reforming zone. 改質後のガスを精製するガス精製装置を更に有し、該精製装置は、精製後の燃料ガスの少なくとも一部を前記加熱装置に供給する燃料ガス給送路を備え、前記加熱装置は、精製後のガスの燃焼熱によって前記水又は低温水蒸気と前記低温空気とを高温に加熱する熱交換装置を備えることを特徴とする請求項に記載のガス化装置。The apparatus further includes a gas purifier for purifying the reformed gas, and the purifier includes a fuel gas supply path for supplying at least a part of the refined fuel gas to the heating device. The gasifier according to claim 1 , further comprising a heat exchange device that heats the water or the low-temperature steam and the low-temperature air to a high temperature by the combustion heat of the gas after purification. 前記混合手段は、前記水蒸気及び空気の混合比を任意の混合比に可変設定可能な混合制御装置を備えることを特徴とする請求項4又は5に記載のガス化装置。  The gasifier according to claim 4 or 5, wherein the mixing unit includes a mixing control device capable of variably setting the mixing ratio of the water vapor and air to an arbitrary mixing ratio. 低酸素又は無酸素状態のガス化炉又熱分解炉の熱分解域における固体又は液体燃料の蒸し焼きにより熱分解ガスを生成する固体又は液体燃料のガス化方法において、
ガス化炉又は熱分解炉の熱分解ガスを中空の改質域に導入する工程と、
水又は低温水蒸気と低温空気とを700℃以上の高温水蒸気及び高温空気に加熱して該高温水蒸気及び高温空気を前記改質域に導入し、前記高温水蒸気及び高温空気を前記熱分解ガス混合して該熱分解ガスを改質する工程とを有し、
前記高温水蒸気及び高温空気と前記熱分解ガスとを混合する前記工程において、前記高温空気と前記熱分解ガス中の炭素化合物との発熱反応により発生した熱により、前記高温水蒸気及び前記炭素化合物の吸熱改質反応に要する熱を補うように、前記高温水蒸気及び高温空気の重量比を所定の範囲内に設定したことを特徴とする固体又は液体燃料のガス化方法。
In a gasification method of a solid or liquid fuel that generates pyrolysis gas by steaming solid or liquid fuel in a pyrolysis zone of a gasification furnace or pyrolysis furnace in a low oxygen or oxygen-free state ,
Introducing a pyrolysis gas of a gasification furnace or a pyrolysis furnace into a hollow reforming zone ;
Water or a low-temperature steam and low-temperature air is heated to 700 ° C. or more high temperature steam and hot air to introducing the hot steam and hot air to the reforming zone, mixed with the pyrolysis gas the high-temperature steam and hot air And reforming the pyrolysis gas,
In the step of mixing the high-temperature steam and high-temperature air and the pyrolysis gas, the heat generated by the exothermic reaction between the high-temperature air and the carbon compound in the pyrolysis gas is used to absorb heat of the high-temperature steam and the carbon compound. the heat required for the reforming reaction to the auxiliary Migihitsuji, solid or gasification process of the liquid fuel, characterized in that setting the weight ratio of the high temperature steam and hot air within a predetermined range.
前記高温水蒸気及び高温空気は、前記熱分解域に更に導入され、前記固体又は液体燃料は、前記高温水蒸気及び高温空気が保有する顕熱と、前記高温空気及び前記燃料の酸化発熱反応により発生する熱とによって熱分解し、熱分解ガスを前記熱分解域に生成することを特徴とする請求項に記載のガス化方法。The hot steam and hot air is further introduced into the pyrolysis zone, wherein the solid or liquid fuel, a sensible heat the hot steam and hot air's, generated by the oxidation exothermic reaction of the hot air and the fuel construed Therefore pyrolytic to heat, gasification method according to claim 8, the pyrolysis gas and generates the pyrolysis zone. 前記高温水蒸気及び高温空気の混合比可変制御されることを特徴とする請求項に記載のガス化方法。The gasification method according to claim 8 , wherein a mixing ratio of the high-temperature steam and high-temperature air is variably controlled. 前記低温空気として、比較的低温の空気、純酸素、或いは、空気及び酸素の混合気が使用されることを特徴とする請求項8、9又は10に記載のガス化方法。11. The gasification method according to claim 8 , wherein a relatively low temperature air, pure oxygen, or a mixture of air and oxygen is used as the low temperature air. 前記改質域において改質反応を受けた熱分解ガスは、洗浄・浄化処理を受けた後、ガス化装置外の燃焼設備又は熱機関に対して精製燃料ガスとして供給されるとともに、水又は低温水蒸気と低温空気とを700℃以上の高温水蒸気及び高温空気に加熱する加熱装置に対して精製燃料ガスとして供給され、該加熱装置は、前記精製燃料ガスの燃焼熱によって前記水又は低温水蒸気と前記低温空気とを加熱することを特徴とする請求項8乃至11のいずれか1項に記載のガス化方法。The pyrolysis gas that has undergone the reforming reaction in the reforming zone is subjected to a cleaning and purification process, and then supplied as a refined fuel gas to a combustion facility or a heat engine outside the gasifier, and water or low temperature Supplyed as refined fuel gas to a heating device that heats steam and low-temperature air to high-temperature steam and high-temperature air at 700 ° C. or higher, and the heating device uses the heat of combustion of the purified fuel gas to produce the water or the low-temperature steam and the The gasification method according to any one of claims 8 to 11 , wherein the low-temperature air is heated. 前記改質反応を受けた熱分解ガスは、洗浄・浄化処理を受ける前に冷却装置に導入され、該冷却装置は、前記熱分解ガスが保有する顕熱によって水を低温水蒸気に気化し、或いは、低温水蒸気及び/又は空気を加熱するとともに、改質後の前記熱分解ガスを冷却することを特徴とする請求項12に記載のガス化方法。The pyrolysis gas that has undergone the reforming reaction is introduced into a cooling device before undergoing a cleaning / purification process, and the cooling device vaporizes water into low-temperature steam by sensible heat that the pyrolysis gas has, or The gasification method according to claim 12 , wherein the low-temperature steam and / or air is heated and the pyrolysis gas after reforming is cooled. 前記固体又は液体燃料として、廃棄物、石炭、バイオマス燃料又は重質油が使用されることを特徴とする請求項8乃至13のいずれか1項に記載のガス化方法。The gasification method according to any one of claims 8 to 13 , wherein waste, coal, biomass fuel or heavy oil is used as the solid or liquid fuel. 請求項1乃至のいずれか1項に記載のガス化装置を備えた廃棄物ガス化装置Waste gasifier having a gasification apparatus according to any one of claims 1 to 7. 請求項1乃至のいずれか1項に記載のガス化装置を備えた石炭ガス化装置Coal gasification apparatus having a gasifier according to any one of claims 1 to 7. 請求項1乃至のいずれか1項に記載のガス化装置と、該ガス化装置が生成した燃料ガスを燃料として作動する発電装置とを備えたガス化発電装置A gasification power generation device comprising the gasification device according to any one of claims 1 to 7 and a power generation device that operates using fuel gas generated by the gasification device as fuel.
JP2000284372A 1999-09-20 2000-09-19 Gasification apparatus and gasification method for solid or liquid fuel Expired - Fee Related JP4037599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284372A JP4037599B2 (en) 1999-09-20 2000-09-19 Gasification apparatus and gasification method for solid or liquid fuel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-266168 1999-09-20
JP26616899 1999-09-20
JP2000284372A JP4037599B2 (en) 1999-09-20 2000-09-19 Gasification apparatus and gasification method for solid or liquid fuel

Publications (2)

Publication Number Publication Date
JP2001158885A JP2001158885A (en) 2001-06-12
JP4037599B2 true JP4037599B2 (en) 2008-01-23

Family

ID=26547335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284372A Expired - Fee Related JP4037599B2 (en) 1999-09-20 2000-09-19 Gasification apparatus and gasification method for solid or liquid fuel

Country Status (1)

Country Link
JP (1) JP4037599B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027241B2 (en) * 2003-02-14 2007-12-26 之 渡邊 Waste treatment equipment
US20070214719A1 (en) * 2004-06-01 2007-09-20 Kunio Yoshikawa Solid-Fuel Gasification System
BE1016325A3 (en) * 2004-11-18 2006-08-01 Jacques Max Stanislas Ribesse Carbonaceous materials gasification method and device for its implementation.
KR100637273B1 (en) * 2005-03-31 2006-10-23 한국에너지기술연구원 High temperature air gasification process for hydrogen production and apparatus thereof
US7722690B2 (en) * 2006-09-29 2010-05-25 Kellogg Brown & Root Llc Methods for producing synthesis gas
US20110035990A1 (en) * 2008-02-28 2011-02-17 Krones Ag Method and device for converting carbonaceous raw materials
JP5793125B2 (en) * 2012-09-19 2015-10-14 一般財団法人電力中央研究所 Carbonization and gasification method and system
KR102267343B1 (en) * 2013-06-26 2021-06-18 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Direct-fired heating method and facility for implementing same
JP6369161B2 (en) 2013-12-13 2018-08-08 株式会社Ihi Tar reforming furnace
JP6541050B2 (en) * 2014-04-28 2019-07-10 日本ファーネス株式会社 High temperature oxygen combustion apparatus and high temperature oxygen combustion method
BR112018003771A2 (en) * 2015-09-24 2018-09-25 Air Liquide integrated industrial furnace with biomass gasification system
CN112126472A (en) * 2020-08-19 2020-12-25 青岛洪润林业生物质能源有限公司 Biomass pyrolysis gasification rotary furnace equipment

Also Published As

Publication number Publication date
JP2001158885A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
EP1228170B1 (en) Apparatus and method for gasifying liquid or solid fuel
JP3973840B2 (en) Solid fuel gasifier
AU2004320347B2 (en) Solid-fuel gasification system
EP1194508B1 (en) Electric power generating system by gasification
JP4037599B2 (en) Gasification apparatus and gasification method for solid or liquid fuel
JP4547244B2 (en) Organic gasifier
JP4033610B2 (en) Wet fuel gasification system and gasification method
US20060137579A1 (en) Gasification system
JP4255279B2 (en) Solid fuel gasification system
JP3939459B2 (en) Steam reforming method and steam reforming apparatus
JP3976888B2 (en) Coal air bed gasification method and apparatus
CN113751471B (en) Multi-fuel coupled system and method for online melting treatment of hazardous waste incineration fly ash
JP3984535B2 (en) Reforming apparatus for gasified solid fuel and method for reforming the same
JP3924172B2 (en) Waste pyrolysis gasification system
TW200540372A (en) Solid fuel gasifying system
JP2018193507A (en) Gas reforming furnace and method for reforming pyrolysis gas

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20000929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees