JP2001254940A - High-temperature air generator - Google Patents

High-temperature air generator

Info

Publication number
JP2001254940A
JP2001254940A JP2000068679A JP2000068679A JP2001254940A JP 2001254940 A JP2001254940 A JP 2001254940A JP 2000068679 A JP2000068679 A JP 2000068679A JP 2000068679 A JP2000068679 A JP 2000068679A JP 2001254940 A JP2001254940 A JP 2001254940A
Authority
JP
Japan
Prior art keywords
air
temperature
combustion
air heater
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068679A
Other languages
Japanese (ja)
Inventor
Shigehiro Miyamae
茂広 宮前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000068679A priority Critical patent/JP2001254940A/en
Publication of JP2001254940A publication Critical patent/JP2001254940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature air generator for inhibiting the rate of excess air for combustion and improving a heat exchange efficiency. SOLUTION: One portion of an exhaust gas that is discharged during the heating process of a heat-storing body 2 in a heat-storing air heater 3 is re- circulated, thus reducing the temperature of the combustion gas that is circulated to the heat-storing body 2 to a specific temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温空気発生装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature air generator.

【0002】[0002]

【従来の技術】一般に、従来の高温空気発生装置は、図
3及び図4に示される如く、バーナ1から噴射される燃
料と燃焼用空気とを混合させて燃焼させ、高温の燃焼ガ
スをセラミックス等の蓄熱体2に流通させることによ
り、蓄熱体2を加熱した後、該蓄熱体2に空気を流通さ
せることにより、高温空気を発生させる蓄熱式空気加熱
器3を並設し、一方の蓄熱式空気加熱器3における蓄熱
体2の加熱行程中に他方の蓄熱式空気加熱器3における
高温空気の発生行程が行われ、且つ一方の蓄熱式空気加
熱器3における高温空気の発生行程中に他方の蓄熱式空
気加熱器3における蓄熱体2の加熱行程が行われるよ
う、蓄熱式空気加熱器3の運転をそれぞれ交互に切り換
えて連続的に高温空気を発生させるようにしてなる構成
を有している。
2. Description of the Related Art Generally, as shown in FIGS. 3 and 4, a conventional high-temperature air generating apparatus mixes fuel injected from a burner 1 with combustion air and burns the mixture, thereby converting a high-temperature combustion gas into ceramics. After the heat storage element 2 is heated by flowing through the heat storage element 2, a heat storage type air heater 3 that generates high-temperature air by flowing air through the heat storage element 2 is provided in parallel, During the heating process of the regenerator 2 in the regenerative air heater 3, the process of generating high-temperature air in the other regenerative air heater 3 is performed, and during the process of generating high-temperature air in one regenerative air heater 3, The operation of the regenerative air heater 3 is alternately switched so as to continuously generate high-temperature air so that the regenerative air heater 3 performs the heating step of the regenerator 2 in the regenerative air heater 3. I have.

【0003】前記バーナ1にはそれぞれ、三方切換弁4
の切換により燃料供給ライン5に接続される燃料供給分
岐ライン6を接続すると共に、前記バーナ1が接続され
る蓄熱式空気加熱器3の風箱7にはそれぞれ、三方切換
弁8の切換により燃焼用空気供給ライン9に接続される
燃焼用空気供給分岐ライン10を接続してあり、前記蓄
熱式空気加熱器3の蓄熱体2側にはそれぞれ、四方切換
弁11の切換により空気導入ライン12或いは排気ライ
ン13に接続される導入排出ライン14を接続してあ
る。
Each of the burners 1 has a three-way switching valve 4
The fuel supply branch line 6 connected to the fuel supply line 5 is connected by switching, and the combustion chamber 7 of the regenerative air heater 3 to which the burner 1 is connected is burned by switching the three-way switching valve 8, respectively. A combustion air supply branch line 10 connected to a supply air supply line 9 is connected to the regenerator 2 side of the regenerative air heater 3 by switching a four-way switching valve 11 to an air introduction line 12 or an air introduction line 12. An introduction / exhaust line 14 connected to the exhaust line 13 is connected.

【0004】又、前記蓄熱式空気加熱器3の中途部所要
箇所は連通路15によって連通せしめ、該連通路15
に、図示していないガス化装置等につながる導出路16
を形成し、発生した高温空気を導出路16からガス化装
置等へ供給するようにしてある。
A required portion in the middle of the regenerative air heater 3 is communicated by a communication path 15.
Outflow path 16 leading to a gasifier not shown
Is formed, and the generated high-temperature air is supplied to the gasifier or the like from the outlet path 16.

【0005】前述の如き高温空気発生装置においては、
三方切換弁4と三方切換弁8と四方切換弁11とをそれ
ぞれ図3に示されるポジションに切り換えた状態で、燃
料を燃料供給ライン5から三方切換弁4と一方の燃料供
給分岐ライン6とを介して一方の蓄熱式空気加熱器3の
バーナ1へ供給して噴射しつつ、燃焼用空気を燃焼用空
気供給ライン9から三方切換弁8と一方の燃焼用空気供
給分岐ライン10とを介して一方の蓄熱式空気加熱器3
の風箱7へ供給すると、前記バーナ1から噴射される燃
料と燃焼用空気とが混合して燃焼し、高温の燃焼ガスが
一方の蓄熱式空気加熱器3の蓄熱体2を通過して、該蓄
熱体2を加熱した後、一方の導入排出ライン14から四
方切換弁11と排気ライン13とを介して外部へ排出さ
れる。
In the high-temperature air generator as described above,
With the three-way switching valve 4, the three-way switching valve 8, and the four-way switching valve 11 switched to the positions shown in FIG. 3, fuel is transferred from the fuel supply line 5 to the three-way switching valve 4 and one of the fuel supply branch lines 6. The combustion air is supplied from the combustion air supply line 9 through the three-way switching valve 8 and the one combustion air supply branch line 10 while being supplied to the burner 1 of one regenerative air heater 3 and injected therethrough. One regenerative air heater 3
When the fuel is supplied to the wind box 7, the fuel injected from the burner 1 and the combustion air are mixed and burned, and the high-temperature combustion gas passes through the heat storage body 2 of one regenerative air heater 3, After heating the heat storage body 2, the heat storage body 2 is discharged from one of the introduction / discharge lines 14 to the outside via the four-way switching valve 11 and the exhaust line 13.

【0006】図3に示される状態で所要時間(例えば、
30[sec]程度)経過して、一方の蓄熱式空気加熱
器3の蓄熱体2が所要温度(例えば、1200〜130
0[℃]程度)に達すると、前記三方切換弁4と三方切
換弁8と四方切換弁11とがそれぞれ図3に示されるポ
ジションから図4に示されるポジションに切り換えら
れ、空気が空気導入ライン12から四方切換弁11と一
方の導入排出ライン14とを介して前記加熱された一方
の蓄熱体2に流通され、これにより、およそ1000
[℃]程度の高温空気が発生し、連通路15から導出路
16を経て図示していないガス化装置等へ供給される。
In the state shown in FIG. 3, the required time (for example,
After the elapse of about 30 [sec], the heat storage body 2 of one of the heat storage air heaters 3 has reached a required temperature (for example, 1200 to 130).
0 [° C.]), the three-way switching valve 4, the three-way switching valve 8, and the four-way switching valve 11 are switched from the position shown in FIG. 3 to the position shown in FIG. 12 flows through the four-way switching valve 11 and one of the introduction / discharge lines 14 to the heated one heat storage body 2, whereby about 1000
High-temperature air of about [° C.] is generated and supplied from the communication path 15 to the gasifier (not shown) via the outlet path 16.

【0007】この間、燃料は燃料供給ライン5から三方
切換弁4と他方の燃料供給分岐ライン6とを介して他方
の蓄熱式空気加熱器3のバーナ1へ供給されて噴射さ
れ、且つ燃焼用空気は燃焼用空気供給ライン9から三方
切換弁8と他方の燃焼用空気供給分岐ライン10とを介
して他方の蓄熱式空気加熱器3の風箱7へ供給され、前
記バーナ1から噴射される燃料と燃焼用空気とが混合し
て燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器3
の蓄熱体2を通過して、該蓄熱体2を加熱した後、他方
の導入排出ライン14から四方切換弁11と排気ライン
13とを介して外部へ排出されており、図4に示される
状態で所要時間(例えば、30[sec]程度)経過し
て、他方の蓄熱式空気加熱器3の蓄熱体2が所要温度
(例えば、1200〜1300[℃]程度)に達する
と、前記三方切換弁4と三方切換弁8と四方切換弁11
とがそれぞれ図4に示されるポジションから再び図3に
示されるポジションに切り換えられ、空気が空気導入ラ
イン12から四方切換弁11と他方の導入排出ライン1
4とを介して前記加熱された他方の蓄熱体2に流通さ
れ、これにより、およそ1000[℃]程度の高温空気
が発生し、連通路15から導出路16を経て図示してい
ないガス化装置等へ供給され、以下、前述と同様の操作
が繰り返し行われ、連続的に高温空気の供給が行われ
る。
During this time, the fuel is supplied from the fuel supply line 5 to the burner 1 of the other regenerative air heater 3 via the three-way switching valve 4 and the other fuel supply branch line 6, and is injected there. Is supplied from the combustion air supply line 9 to the wind box 7 of the other regenerative air heater 3 via the three-way switching valve 8 and the other combustion air supply branch line 10, and the fuel injected from the burner 1 And combustion air are mixed and burned, and the high-temperature combustion gas is supplied to the other regenerative air heater 3.
After heating the heat storage element 2 and heating the heat storage element 2, the heat is discharged from the other introduction / discharge line 14 to the outside via the four-way switching valve 11 and the exhaust line 13, and the state shown in FIG. When a required time (for example, about 30 [sec]) elapses and the heat storage body 2 of the other regenerative air heater 3 reaches a required temperature (for example, about 1200 to 1300 [° C.]), the three-way switching valve is used. 4 and 3 way switching valve 8 and 4 way switching valve 11
Are switched from the position shown in FIG. 4 to the position shown in FIG. 3 again, and air flows from the air introduction line 12 to the four-way switching valve 11 and the other introduction / discharge line 1.
4 through the other heat storage element 2 which is heated, thereby generating high-temperature air of about 1000 [° C.]. Etc., and thereafter, the same operation as described above is repeatedly performed, and the supply of high-temperature air is continuously performed.

【0008】[0008]

【発明が解決しようとする課題】前述の如き従来の高温
空気発生装置の場合、通常の理論空気量で燃料の燃焼を
行うと、断熱火炎温度はおよそ2000[℃]近くまで
上昇してしまい、蓄熱体2の寿命が短くなってしまうと
共に、およそ1000[℃]程度の高温空気を得るため
には、およそ1200〜1300[℃]程度の燃焼温度
で充分であることから、大幅に過剰となる燃焼用空気を
蓄熱式空気加熱器3の風箱7へ供給して燃焼を行った
り、或いは適度な過剰空気で燃焼させてその燃焼部ケー
シングから放熱させているのが現状であるが、このよう
に大幅に過剰となる燃焼用空気を用いたり、放熱させた
場合、熱交換効率が60〜65[%]程度しか得られ
ず、効率が悪いという欠点を有していた。
In the case of the conventional high-temperature air generator as described above, when fuel is burned with a normal theoretical air amount, the adiabatic flame temperature rises to nearly 2000 [° C.], The life of the heat storage body 2 is shortened, and the combustion temperature of about 1200 to 1300 [° C] is sufficient to obtain high temperature air of about 1000 [° C]. At present, the combustion air is supplied to the wind box 7 of the regenerative air heater 3 to perform combustion, or the combustion air is burned with an appropriate excess air to release heat from the combustion part casing. In the case of using excessively large amount of combustion air or radiating heat, a heat exchange efficiency of only about 60 to 65 [%] is obtained, and the efficiency is poor.

【0009】本発明は、斯かる実情に鑑み、燃焼用空気
過剰率を抑えることができ、熱交換効率の向上を図り得
る高温空気発生装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-temperature air generator capable of suppressing an excess air ratio for combustion and improving heat exchange efficiency.

【0010】[0010]

【課題を解決するための手段】本発明は、バーナから噴
射される燃料と燃焼用空気とを混合させて燃焼させ、高
温の燃焼ガスを蓄熱体に流通させることにより、蓄熱体
を加熱した後、該蓄熱体に空気を流通させることによ
り、高温空気を発生させる蓄熱式空気加熱器を並設し、
一方の蓄熱式空気加熱器における蓄熱体の加熱行程中に
他方の蓄熱式空気加熱器における高温空気の発生行程が
行われ、且つ一方の蓄熱式空気加熱器における高温空気
の発生行程中に他方の蓄熱式空気加熱器における蓄熱体
の加熱行程が行われるよう、蓄熱式空気加熱器の運転を
それぞれ交互に切り換えて連続的に高温空気を発生させ
るよう構成した高温空気発生装置において、蓄熱式空気
加熱器における蓄熱体の加熱行程中に排出される排ガス
の一部をバーナでの燃焼下流域に投入して再循環させる
ことにより、蓄熱体に流通させる燃焼ガスの温度を所定
温度に低下させるよう構成したことを特徴とする高温空
気発生装置にかかるものである。
SUMMARY OF THE INVENTION The present invention relates to a method of mixing a fuel injected from a burner and combustion air, burning the mixture, and flowing a high-temperature combustion gas through the regenerator to heat the regenerator. By circulating air through the heat storage body, a regenerative air heater that generates high-temperature air is provided in parallel,
During the heating process of the regenerator in one regenerative air heater, the process of generating high-temperature air in the other regenerative air heater is performed, and during the process of generating high-temperature air in one regenerative air heater, the other In a high-temperature air generator configured to generate high-temperature air continuously by alternately switching the operation of the regenerative air heaters so that the heat-storage body is heated in the regenerative air heater, A part of the exhaust gas discharged during the heating process of the regenerator in the heat storage device is injected into the burner downstream of the burner and recirculated to lower the temperature of the combustion gas flowing through the regenerator to a predetermined temperature. The present invention relates to a high-temperature air generating device characterized in that:

【0011】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0012】並設された蓄熱式空気加熱器においては、
一方の蓄熱式空気加熱器のバーナから噴射される燃料と
燃焼用空気とが混合されて燃焼し、高温の燃焼ガスが一
方の蓄熱式空気加熱器の蓄熱体に流通して該蓄熱体が加
熱された後、切換が行われて他方の蓄熱式空気加熱器の
バーナから噴射される燃料と燃焼用空気とが混合されて
燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器の蓄
熱体に流通して該蓄熱体が加熱され、一方の蓄熱式空気
加熱器における蓄熱体の加熱行程と他方の蓄熱式空気加
熱器における蓄熱体の加熱行程とが交互に繰り返され、
他方の蓄熱式空気加熱器における蓄熱体の加熱行程中に
は、前記加熱された一方の蓄熱式空気加熱器の蓄熱体に
空気が流通され、高温空気が発生され、一方の蓄熱式空
気加熱器における蓄熱体の加熱行程中には、前記加熱さ
れた他方の蓄熱式空気加熱器の蓄熱体に空気が流通さ
れ、高温空気が発生され、これにより、連続的に高温空
気が発生されるが、前記蓄熱式空気加熱器における蓄熱
体の加熱行程中には、排出される排ガスの一部がバーナ
での燃焼下流域に投入され再循環されるため、蓄熱式空
気加熱器へ供給される燃焼用空気の過剰率を通常のボイ
ラと同程度まで低下させたとしても、蓄熱式空気加熱器
の蓄熱体の温度は必要以上に上昇しなくなり、熱交換効
率を向上させることが可能となる。
In the regenerative air heaters arranged side by side,
The fuel injected from the burner of one regenerative air heater and the combustion air are mixed and burnt, and the high-temperature combustion gas flows through the regenerator of one regenerative air heater to heat the regenerator. After that, switching is performed, the fuel injected from the burner of the other regenerative air heater and the combustion air are mixed and burnt, and the high-temperature combustion gas is stored in the regenerator of the other regenerative air heater. The heat accumulator is heated by flowing through the heat accumulator, and the heating process of the heat accumulator in one heat accumulating air heater and the heating process of the heat accumulator in the other heat accumulating air heater are alternately repeated,
During the heating process of the regenerator in the other regenerative air heater, air is circulated through the heated regenerator of the one regenerative air heater to generate high-temperature air. During the heating process of the regenerator in the above, air is circulated to the regenerator of the other heated regenerative air heater, and high-temperature air is generated, whereby high-temperature air is continuously generated. During the heating process of the regenerator in the regenerative air heater, a part of the exhaust gas discharged is injected into the combustion downstream region of the burner and recirculated. Even if the excess rate of air is reduced to the same level as that of a normal boiler, the temperature of the heat storage body of the regenerative air heater does not increase more than necessary, and the heat exchange efficiency can be improved.

【0013】仮に、蓄熱式空気加熱器における蓄熱体の
加熱行程中に排出される排ガスの一部をバーナでの燃焼
下流域に投入せずに、バーナでの燃焼域に投入したとす
ると、蓄熱式空気加熱器のバーナから燃料を噴射させて
燃焼させようとした場合に、排ガスが混入し、燃焼用空
気中の酸素濃度を大幅に低下させて燃焼が不安定となる
可能性があるが、本発明の場合には、排ガスの一部はバ
ーナでの燃焼下流域に投入されるため、バーナでの燃焼
が阻害される心配はなく、バーナでの燃焼を安定化させ
ることが可能となる。
If it is assumed that part of the exhaust gas discharged during the heating process of the regenerator in the regenerative air heater is not injected into the downstream area of combustion by the burner but is injected into the combustion area of the burner, When trying to burn by injecting fuel from the burner of the type air heater, exhaust gas may be mixed in, and the oxygen concentration in the combustion air may be significantly reduced, resulting in unstable combustion. In the case of the present invention, since a part of the exhaust gas is introduced into the downstream of the combustion in the burner, there is no concern that the combustion in the burner is hindered, and the combustion in the burner can be stabilized.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1及び図2は本発明を実施する形態の一
例であって、図中、図3及び図4と同一の符号を付した
部分は同一物を表わしており、基本的な構成は図3及び
図4に示す従来のものと同様であるが、本図示例の特徴
とするところは、図1及び図2に示す如く、蓄熱式空気
加熱器3における蓄熱体2の加熱行程中に排出される排
ガスの一部をバーナ1での燃焼下流域に投入して再循環
させることにより、蓄熱体2に流通させる燃焼ガスの温
度を所定温度に低下させるよう構成した点にある。
FIGS. 1 and 2 show an embodiment of the present invention. In the drawings, the portions denoted by the same reference numerals as those in FIGS. 3 and 4 represent the same components. 3 and FIG. 4 is the same as the conventional one, but the feature of this illustrated example is that, as shown in FIG. 1 and FIG. The point is that the temperature of the combustion gas flowing through the regenerator 2 is reduced to a predetermined temperature by introducing a part of the discharged exhaust gas into the downstream region of combustion in the burner 1 and recirculating the exhaust gas.

【0016】本図示例の場合には、排気ライン13途中
に設けられる排ガスファン17の下流側から排ガス再循
環ライン18を分岐させ、該排ガス再循環ライン18の
分岐部より下流側の排気ライン13途中に流量調節弁1
9を設けると共に、前記排ガス再循環ライン18途中に
流量調節弁20を設け、更に、前記排ガス再循環ライン
18を三方切換弁21を介して二つの排ガス再循環ライ
ン22に分岐させ、一方の排ガス再循環ライン22を一
方の蓄熱式空気加熱器3の中央部(一方のバーナ1での
燃焼下流域)に接続すると共に、他方の排ガス再循環ラ
イン22を他方の蓄熱式空気加熱器3の中央部(他方の
バーナ1での燃焼下流域)に接続してある。
In the illustrated example, an exhaust gas recirculation line 18 is branched from a downstream side of an exhaust gas fan 17 provided in the exhaust line 13, and an exhaust line 13 downstream of a branch portion of the exhaust gas recirculation line 18 is provided. Flow control valve 1 on the way
9, a flow control valve 20 is provided in the exhaust gas recirculation line 18, and the exhaust gas recirculation line 18 is branched into two exhaust gas recirculation lines 22 via a three-way switching valve 21. The recirculation line 22 is connected to the center of one regenerative air heater 3 (downstream of combustion in one burner 1), and the other exhaust gas recirculation line 22 is connected to the center of the other regenerative air heater 3. (The downstream side of the combustion in the other burner 1).

【0017】次に、上記図示例の作動を説明する。Next, the operation of the above illustrated example will be described.

【0018】三方切換弁4と三方切換弁8と四方切換弁
11とをそれぞれ図1に示されるポジションに切り換え
た状態で、燃料を燃料供給ライン5から三方切換弁4と
一方の燃料供給分岐ライン6とを介して一方の蓄熱式空
気加熱器3のバーナ1へ供給して噴射しつつ、燃焼用空
気を燃焼用空気供給ライン9から三方切換弁8と一方の
燃焼用空気供給分岐ライン10とを介して一方の蓄熱式
空気加熱器3の風箱7へ供給すると、前記バーナ1から
噴射される燃料と燃焼用空気とが混合して燃焼し、高温
の燃焼ガスが一方の蓄熱式空気加熱器3の蓄熱体2を通
過して、該蓄熱体2を加熱した後、一方の導入排出ライ
ン14から四方切換弁11と排気ライン13とを介して
外部へ排出される。
With the three-way switching valve 4, three-way switching valve 8, and four-way switching valve 11 switched to the positions shown in FIG. 1, fuel is supplied from the fuel supply line 5 to the three-way switching valve 4 and one fuel supply branch line. 6, the combustion air is supplied from the regenerative air heater 3 to the burner 1 of the regenerative air heater 3 and injected therefrom, while the combustion air is supplied from the combustion air supply line 9 to the three-way switching valve 8 and the one combustion air supply branch line 10. When the fuel is supplied to the wind box 7 of one regenerative air heater 3 through the air, the fuel injected from the burner 1 and the combustion air are mixed and burnt, and the high-temperature combustion gas is heated by the one regenerative air heater. After passing through the heat storage unit 2 of the vessel 3 and heating the heat storage unit 2, the heat storage unit 2 is discharged from one introduction / discharge line 14 to the outside via the four-way switching valve 11 and the exhaust line 13.

【0019】ここで、三方切換弁21は図1に示される
ポジションに切り換えられており、排気ライン13途中
の流量調節弁19の開度と排ガス再循環ライン18途中
の流量調節弁20の開度とを調節することにより、一方
の蓄熱式空気加熱器3における蓄熱体2の加熱行程中に
排出される排ガスの一部がバーナ1での燃焼下流域に投
入され再循環されるため、蓄熱式空気加熱器3の風箱7
へ供給される燃焼用空気の過剰率を通常のボイラと同様
に5〜10[%]程度まで低下させたとしても、蓄熱式
空気加熱器3の蓄熱体2の温度は1200〜1300
[℃]程度に抑えられ、必要以上に上昇しなくなり、熱
交換効率を90[%]程度まで向上させることが可能と
なる。
Here, the three-way switching valve 21 is switched to the position shown in FIG. 1 and the opening of the flow control valve 19 in the exhaust line 13 and the opening of the flow control valve 20 in the exhaust gas recirculation line 18. Is adjusted, a part of the exhaust gas discharged during the heating process of the regenerator 2 in one regenerative air heater 3 is injected into the combustion downstream region of the burner 1 and recirculated. Wind box 7 of air heater 3
Even if the excess rate of the combustion air supplied to the regenerative air heater 3 is reduced to about 5 to 10% as in a normal boiler, the temperature of the regenerator 2 of the regenerative air heater 3 is 1200 to 1300.
It is suppressed to about [° C.], does not increase more than necessary, and the heat exchange efficiency can be improved to about 90%.

【0020】図1に示す状態で所要時間(例えば、30
[sec]程度)経過すると、前記三方切換弁4と三方
切換弁8と四方切換弁11とがそれぞれ図1に示すポジ
ションから図2に示すポジションに切り換えられ、空気
が空気導入ライン12から四方切換弁11と一方の導入
排出ライン14とを介して前記加熱された一方の蓄熱体
2に流通され、これにより、およそ1000[℃]程度
の高温空気が発生し、連通路15から導出路16を経て
図示していないガス化装置等へ供給される。
In the state shown in FIG. 1, the required time (for example, 30
[Sec], the three-way switching valve 4, three-way switching valve 8, and four-way switching valve 11 are switched from the position shown in FIG. 1 to the position shown in FIG. The heat is passed through the heated one heat storage unit 2 through the valve 11 and the one introduction / discharge line 14, thereby generating high-temperature air of about 1000 [° C.]. After that, it is supplied to a gasifier not shown.

【0021】この間、燃料は燃料供給ライン5から三方
切換弁4と他方の燃料供給分岐ライン6とを介して他方
の蓄熱式空気加熱器3のバーナ1へ供給されて噴射さ
れ、且つ燃焼用空気は燃焼用空気供給ライン9から三方
切換弁8と他方の燃焼用空気供給分岐ライン10とを介
して他方の蓄熱式空気加熱器3の風箱7へ供給され、前
記バーナ1から噴射される燃料と燃焼用空気とが混合し
て燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器3
の蓄熱体2を通過して、該蓄熱体2を加熱した後、他方
の導入排出ライン14から四方切換弁11と排気ライン
13とを介して外部へ排出されるが、この時、前記三方
切換弁21は図1に示されるポジションから図2に示さ
れるポジションに切り換えられており、排気ライン13
途中の流量調節弁19の開度と排ガス再循環ライン18
途中の流量調節弁20の開度とを調節することにより、
他方の蓄熱式空気加熱器3における蓄熱体2の加熱行程
中に排出される排ガスの一部がバーナ1での燃焼下流域
に投入され再循環されるため、蓄熱式空気加熱器3の風
箱7へ供給される燃焼用空気の過剰率を通常のボイラと
同様に5〜10[%]程度まで低下させたとしても、蓄
熱式空気加熱器3の蓄熱体2の温度は1200〜130
0[℃]程度に抑えられ、必要以上に上昇しなくなり、
熱交換効率を90[%]程度まで向上させることが可能
となる。
During this time, fuel is supplied from the fuel supply line 5 to the burner 1 of the other regenerative air heater 3 via the three-way switching valve 4 and the other fuel supply branch line 6, and is injected there. Is supplied from the combustion air supply line 9 to the wind box 7 of the other regenerative air heater 3 via the three-way switching valve 8 and the other combustion air supply branch line 10, and the fuel injected from the burner 1 And combustion air are mixed and burned, and the high-temperature combustion gas is supplied to the other regenerative air heater 3.
After passing through the heat storage body 2 and heating the heat storage body 2, the heat is discharged from the other introduction / discharge line 14 to the outside through the four-way switching valve 11 and the exhaust line 13. At this time, the three-way switching is performed. The valve 21 is switched from the position shown in FIG. 1 to the position shown in FIG.
Opening of flow control valve 19 on the way and exhaust gas recirculation line 18
By adjusting the opening of the flow control valve 20 on the way,
Part of the exhaust gas discharged during the heating process of the heat storage unit 2 in the other heat storage air heater 3 is injected into the downstream area of combustion in the burner 1 and recirculated, so that the wind box of the heat storage air heater 3 Even if the excess rate of the combustion air supplied to 7 is reduced to about 5 to 10% as in a normal boiler, the temperature of the heat storage body 2 of the regenerative air heater 3 is 1200 to 130
It is suppressed to about 0 [° C], does not rise more than necessary,
Heat exchange efficiency can be improved to about 90%.

【0022】図2に示す状態で所要時間(例えば、30
[sec]程度)経過すると、前記三方切換弁4と三方
切換弁8と四方切換弁11と三方切換弁21とがそれぞ
れ図2に示すポジションから再び図1に示すポジション
に切り換えられ、空気が空気導入ライン12から四方切
換弁11と他方の導入排出ライン14とを介して前記加
熱された他方の蓄熱体2に流通され、これにより、およ
そ1000[℃]程度の高温空気が発生し、連通路15
から導出路16を経て図示していないガス化装置等へ供
給され、以下、前述と同様の操作が繰り返し行われ、連
続的に高温空気の供給が行われる。
In the state shown in FIG. 2, the required time (for example, 30
[Sec], the three-way switching valve 4, three-way switching valve 8, four-way switching valve 11, and three-way switching valve 21 are respectively switched from the position shown in FIG. 2 to the position shown in FIG. The high-temperature air of about 1000 [° C.] is generated from the introduction line 12 through the four-way switching valve 11 and the other introduction / discharge line 14 to the other heated heat storage body 2, thereby generating a communication passage. Fifteen
The gas is supplied to a gasifier (not shown) through the outlet path 16 and thereafter, the same operation as described above is repeatedly performed, and the high-temperature air is continuously supplied.

【0023】仮に、排ガス再循環ライン22が蓄熱式空
気加熱器3の中央部(一方のバーナ1での燃焼下流域)
に接続されておらず、バーナ1の風箱7に接続されてい
るとすると、蓄熱式空気加熱器3のバーナ1から燃料を
噴射させて燃焼させようとした場合に、排ガスが混入
し、燃焼用空気中の酸素濃度を大幅に低下させて燃焼が
不安定となる可能性があるが、排ガス再循環ライン22
は蓄熱式空気加熱器3の中央部(一方のバーナ1での燃
焼下流域)に接続してあるため、バーナ1での燃焼が阻
害される心配はなく、バーナ1での燃焼を安定化させる
ことが可能となる。
Suppose that the exhaust gas recirculation line 22 is located at the center of the regenerative air heater 3 (downstream of combustion in one burner 1).
Is connected to the wind box 7 of the burner 1, when the fuel is injected from the burner 1 of the regenerative air heater 3 and burned, the exhaust gas is mixed and burnt. Although the oxygen concentration in the service air may be significantly reduced and combustion may become unstable, the exhaust gas recirculation line 22
Is connected to the central portion of the regenerative air heater 3 (downstream of combustion in one burner 1), so there is no concern that combustion in the burner 1 will be hindered, and combustion in the burner 1 will be stabilized. It becomes possible.

【0024】こうして、燃焼用空気過剰率を抑えること
ができ、熱交換効率の向上を図り得る。
In this way, the excess air rate for combustion can be suppressed, and the heat exchange efficiency can be improved.

【0025】尚、本発明の高温空気発生装置は、上述の
図示例にのみ限定されるものではなく、本発明の要旨を
逸脱しない範囲内において種々変更を加え得ることは勿
論である。
Incidentally, the high-temperature air generating device of the present invention is not limited to the above illustrated example, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上、説明したように本発明の高温空気
発生装置によれば、燃焼用空気過剰率を抑えることがで
き、熱交換効率の向上を図り得るという優れた効果を奏
し得る。
As described above, according to the high-temperature air generating apparatus of the present invention, an excellent effect that the excess air ratio for combustion can be suppressed and the heat exchange efficiency can be improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
であって、一方のバーナを燃焼させた状態を表わす図で
ある。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention, showing a state in which one burner is burned.

【図2】本発明を実施する形態の一例の全体概要構成図
であって、他方のバーナを燃焼させた状態を表わす図で
ある。
FIG. 2 is an overall schematic configuration diagram of an example of an embodiment of the present invention, showing a state where the other burner is burned.

【図3】従来例の全体概要構成図であって、一方のバー
ナを燃焼させた状態を表わす図である。
FIG. 3 is an overall schematic configuration diagram of a conventional example, showing a state in which one burner is burned.

【図4】従来例の全体概要構成図であって、他方のバー
ナを燃焼させた状態を表わす図である。
FIG. 4 is an overall schematic configuration diagram of a conventional example, showing a state in which the other burner is burned.

【符号の説明】[Explanation of symbols]

1 バーナ 2 蓄熱体 3 蓄熱式空気加熱器 18 排ガス再循環ライン 21 三方切換弁 22 排ガス再循環ライン DESCRIPTION OF SYMBOLS 1 Burner 2 Heat storage body 3 Heat storage air heater 18 Exhaust gas recirculation line 21 Three-way switching valve 22 Exhaust gas recirculation line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バーナから噴射される燃料と燃焼用空気
とを混合させて燃焼させ、高温の燃焼ガスを蓄熱体に流
通させることにより、蓄熱体を加熱した後、該蓄熱体に
空気を流通させることにより、高温空気を発生させる蓄
熱式空気加熱器を並設し、一方の蓄熱式空気加熱器にお
ける蓄熱体の加熱行程中に他方の蓄熱式空気加熱器にお
ける高温空気の発生行程が行われ、且つ一方の蓄熱式空
気加熱器における高温空気の発生行程中に他方の蓄熱式
空気加熱器における蓄熱体の加熱行程が行われるよう、
蓄熱式空気加熱器の運転をそれぞれ交互に切り換えて連
続的に高温空気を発生させるよう構成した高温空気発生
装置において、蓄熱式空気加熱器における蓄熱体の加熱
行程中に排出される排ガスの一部をバーナでの燃焼下流
域に投入して再循環させることにより、蓄熱体に流通さ
せる燃焼ガスの温度を所定温度に低下させるよう構成し
たことを特徴とする高温空気発生装置。
The fuel injected from a burner and combustion air are mixed and burned, and high-temperature combustion gas is passed through the heat accumulator to heat the heat accumulator and then distribute air to the heat accumulator. By doing so, a regenerative air heater that generates high-temperature air is provided in parallel, and during the heating process of the regenerator in one regenerative air heater, the process of generating high-temperature air in the other regenerative air heater is performed. And, during the process of generating high-temperature air in one regenerative air heater, the heating process of the heat storage body in the other regenerative air heater is performed,
In a high-temperature air generator configured to generate high-temperature air continuously by alternately switching the operation of a regenerative air heater, a part of exhaust gas discharged during a heating process of a regenerator in the regenerative air heater A high-temperature air generator characterized in that the temperature of the combustion gas circulated through the heat storage body is reduced to a predetermined temperature by introducing the gas into the downstream region of combustion in the burner and recirculating the same.
JP2000068679A 2000-03-13 2000-03-13 High-temperature air generator Pending JP2001254940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068679A JP2001254940A (en) 2000-03-13 2000-03-13 High-temperature air generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068679A JP2001254940A (en) 2000-03-13 2000-03-13 High-temperature air generator

Publications (1)

Publication Number Publication Date
JP2001254940A true JP2001254940A (en) 2001-09-21

Family

ID=18587697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068679A Pending JP2001254940A (en) 2000-03-13 2000-03-13 High-temperature air generator

Country Status (1)

Country Link
JP (1) JP2001254940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210050A (en) * 2014-04-28 2015-11-24 日本ファーネス株式会社 High temperature oxygen combustion apparatus and high temperature oxygen combustion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210050A (en) * 2014-04-28 2015-11-24 日本ファーネス株式会社 High temperature oxygen combustion apparatus and high temperature oxygen combustion method

Similar Documents

Publication Publication Date Title
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
JP2009144948A (en) Water heater
JP2003226507A (en) Staged lean combustion for rapid start of fuel processor
CN101338894A (en) Low-calorie fuel dual prewarming and thermal storage type energy-saving boiler
JP6465865B2 (en) Combustor and fuel cell system
CN108461781B (en) Method for starting up a fuel cell device and fuel cell device
CN106871120A (en) Burner assembly and the gas heater with it
JP2004115013A (en) Heating system for vehicle
US6887607B1 (en) Fuel cell system for generating electric energy and heat
JPH07220745A (en) Fuel cell system
KR101496542B1 (en) Instantaneous hot water boiler having hot water mixing structure
JP2001254940A (en) High-temperature air generator
JP2837787B2 (en) Thermal storage type low NOx burner
JP3562378B2 (en) Polymer electrolyte fuel cell system
JP3804436B2 (en) Reformer
US5951281A (en) Gas flow circulation type tubular heating equipment
JP2005353347A (en) Fuel cell system
JP3706455B2 (en) Hydrogen / oxygen combustor for hydrogen combustion turbine
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP2003132921A (en) Solid electrolyte fuel cell system
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JP2003217603A (en) Fuel cell cogeneration system
JP2001165507A (en) High temperature air generating device
JPH0458464A (en) Thermal medium heating device of fuel reformer for fuel cell
CN106439867A (en) Heat accumulation type catalytic combusting device