JP6540645B2 - 有機物質の熱分解方法及び熱分解設備 - Google Patents

有機物質の熱分解方法及び熱分解設備 Download PDF

Info

Publication number
JP6540645B2
JP6540645B2 JP2016189021A JP2016189021A JP6540645B2 JP 6540645 B2 JP6540645 B2 JP 6540645B2 JP 2016189021 A JP2016189021 A JP 2016189021A JP 2016189021 A JP2016189021 A JP 2016189021A JP 6540645 B2 JP6540645 B2 JP 6540645B2
Authority
JP
Japan
Prior art keywords
thermal decomposition
reactor
organic substance
gas
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189021A
Other languages
English (en)
Other versions
JP2018053047A (ja
Inventor
村井 亮太
亮太 村井
石井 純
純 石井
浩一 百野
浩一 百野
鷲見 郁宏
郁宏 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016189021A priority Critical patent/JP6540645B2/ja
Publication of JP2018053047A publication Critical patent/JP2018053047A/ja
Application granted granted Critical
Publication of JP6540645B2 publication Critical patent/JP6540645B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、廃プラスチックなどの有機物質を熱分解してガス状物質などに転換するための有機物質の熱分解技術に関する。
廃プラスチック、含油スラッジ、廃油などの多くは焼却処理されているのが現状である。しかし、焼却処理ではCO発生などの環境負荷が高く、また、焼却炉の熱的損傷の問題もあり、ケミカルリサイクル技術の確立が求められている。
ケミカルリサイクル技術のなかでも、有機物質を気体燃料や液体燃料に転換するための技術は、廃プラスチックを中心に従来から種々検討がなされ、例えば、以下のような提案がなされている。
特許文献1には、水素濃度60vol%以上、好ましくは80vol%以上、温度600℃以上のコークス炉ガス(COG)を廃プラスチックなどの有機物質と反応させることにより、有機物質を高効率で水素化分解・ガス化し、COGを増熱化する方法が開示されている。
また、特許文献2には、ガス化溶融炉で発生した一酸化炭素と水素を含有する排ガスを利用し、この排ガスに過剰の水蒸気を添加してシフト反応を行わせ、このシフト反応生成ガスを有機物質に接触させることで、有機物質を改質して低分子化(熱分解)する方法が開示されている。
また、特許文献3には、冶金炉で発生した一酸化炭素を含有する排ガスを利用し、この排ガスに過剰の水蒸気を添加してシフト反応を行わせ、このシフト反応生成ガスを有機物質に接触させることで、有機物質を改質して低分子化(熱分解)するとともに、改質反応器から出た低分子化生成物(熱分解生成物)のうち、液体生成物を改質反応器に還流させて再熱分解し、ガス化率を向上させるようにした方法が開示されている。
特開2007−224206号公報 特許第5679088号公報 特開2013−173884号公報 特開昭54−68888号公報
しかしながら、上記従来技術には、以下のような問題がある。
まず、特許文献1に関しては、有機物質のガス化率がきわめて高くなることが特徴であるが、COG中の水素濃度が60vol%以上となるのは石炭乾留工程のうちでも乾留末期に限られるので、特許文献1の方法では、乾留末期のタイミングでガス流路を切替え、多量のダストを含む600℃以上のCOGを廃プラスッチクの水素化分解反応器に供給する必要がある。しかし、このような過酷な条件で、流路切替弁を長期間安定して作動させ続けることは困難であり、この意味で実現性に乏しい技術であると言える。さらに、廃プラスチックの効率的なガス化のためには、60vol%以上の水素を含有するCOGを連続的に水素化分解反応器に供給することが必要であるが、このためには炭化室毎に水素濃度計と流路切替弁を設置する必要があり、設備コストが増大する。
また、特許文献2の方法は、設備的には比較的温和な条件で反応がなされるため、実施が容易であることや設備コストを低減できる利点を有するものの、得られる熱分解生成物は油状物質の割合が多くなり、ガス状物質の収率が低いという課題がある。油状物質は、使用場所までの輸送を考慮した場合、粘性を保つために保温が必要であるなどハンドリング性が悪い。このため有機物質の熱分解では、可能な限りガス状物質の収率を高めることが望まれる。
そのような課題に対して、特許文献3の方法では、気体生成物の収率を高めるために、改質反応器から出た熱分解生成物のうち、液体生成物を改質反応器に還流させて再熱分解させているが、本発明者らが検証実験を実施したところ、特許文献3の方法のように液体生成物を改質反応器に還流させても、その大部分が揮発するのみで熱分解が進まず、再び常温で液状となる物質として回収されてしまうことが判った。
したがって本発明の目的は、以上のような従来技術の課題を解決し、廃プラスチックなどの有機物質を熱分解して熱分解生成物を得る際に、気体生成物(常温で気体である熱分解生成物)の収率を高めることができる有機物質の熱分解方法を提供することにある。また、本発明の他の目的は、そのような有機物質の熱分解方法の実施に好適な設備を提供することにある。
本発明者らは、上記課題を解決するため検討を重ねた結果、反応器から出た熱分解生成物のうち液体生成物を反応器に還流させて再熱分解を行う際に、反応器外で液体生成物を重合処理した上で反応器に還流させることにより、気体生成物(常温で気体である熱分解生成物)の収率を飛躍的に高めることができることを見出した。
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]反応器(A)において、有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる方法であって、
反応器(A)から取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物の少なくとも一部を重合処理した後、再度、反応器(A)に導入して熱分解させることを特徴とする有機物質の熱分解方法。
[2]上記[1]の熱分解方法において、反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却して、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させ、この液状の熱分解生成物を重合処理することを特徴とする有機物質の熱分解方法。
[3]上記[1]又は[2]の熱分解方法において、有機物質が廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする有機物質の熱分解方法。
[4]上記[1]〜[3]のいずれかの熱分解方法において、反応器(A)が流動層式反応器であることを特徴とする有機物質の熱分解方法。
[5]上記[1]〜[4]のいずれかの熱分解方法において、混合ガス(g)は、さらに水蒸気を含むことを特徴とする有機物質の熱分解方法。
[6]上記[5]の熱分解方法において、混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする有機物質の熱分解方法。
[7]上記[1]〜[6]のいずれかの熱分解方法において生成した、常温で気体である熱分解生成物を有用ガス状物質として回収することを特徴とするガス状物質の製造方法。
[8]有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる反応器(A)と、
該反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置(B)と、
該分離装置(B)で分離された液状の熱分解生成物を重合処理する重合処理装置(C)と、
該重合処理装置(C)で重合処理された液状の熱分解生成物を反応器(A)に供給する供給手段(D)を備えることを特徴とする有機物質の熱分解設備。
[9]上記[8]の熱分解設備において、反応器(A)が流動層式反応器であることを特徴とする有機物質の熱分解設備。
本発明によれば、廃プラスチックなどの有機物質を熱分解して熱分解生成物を得る際に、気体生成物(常温で気体である熱分解生成物)の収率を飛躍的に高めることができる。また、実施設備に関しても、特別な計測器や流路切替弁などが必要なく、しかも比較的低い反応温度でも有機物質の熱分解を行うことができるので、比較的簡易な設備で実施することができる。また、熱分解に使用するガスは製鉄所やごみ処理場などで安定的に供給可能なガスを用いればよく、このようなガスを用いて有機物質を効率的に熱分解し、気体生成物(常温で気体である熱分解生成物)の割合が高い熱分解生成物を得ることができる。
本発明による有機物質の熱分解方法のフロー及び熱分解設備の一実施形態を模式的に示す全体構成図 図1中の重合処理工程及び重合処理装置を模式的に示す構成図 有機物質熱分解用の反応器における有機物質の炭素収支を示す説明図 有機物質熱分解用の反応器から取り出された油状物質を反応器に還流させる際に、油状物質を重合処理することなく反応器に還流させたときのガス化率をΦ=0.1、油状物質を重合処理した上で反応器に還流させたときのガス化率をΦ=0.6とした場合、定常運転を行うために必要な有機物質の装入量と油状物質の還流量の関係を示すグラフ
本発明法は、反応器Aにおいて有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる方法であって、反応器Aから取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物の少なくとも一部を重合処理した後、再度、反応器Aに導入して(反応器Aに還流させる)熱分解させるものである。なお、以下の説明では、有機物質の熱分解生成物のうち、常温で液体である熱分解生成物を「油状物質」、常温で気体である熱分解生成物を「ガス状物質」という。
上記のように、反応器Aから取り出された熱分解生成物のうち、油状物質を反応器Aに還流させて再熱分解を行う際に、反応器外で油状物質を重合処理した上で反応器Aに還流させることにより、ガス状物質の収率を飛躍的に高めることができる。
本発明において有機物質の熱分解に用いる、少なくとも水素及び二酸化炭素を含む混合ガス(g)としては、例えば、ガス化溶融炉や製鉄プロセスで発生するガス、或いはこれらのガスを改質したものを用いることができる。すなわち、ガス化溶融炉や製鉄プロセスで発生するガスが所定のガス組成を満足する場合は、そのまま使用すればよいが、例えば、転炉ガスのように一酸化炭素リッチで水素が少ないガスを使用する場合には、過剰の水蒸気を添加してシフト反応を行わせればよい。これにより、もともと含まれていた水素と、シフト反応で生成した二酸化炭素および水素と、シフト反応に消費されなかった水蒸気とを含む混合ガスが生成され、有機物質の熱分解に適したガス組成とすることができる。
ここで、ガス化溶融炉とは、ごみを低酸素状態で加熱することで熱分解させ、この熱分解で発生したガスを燃焼又は回収するとともに、灰分及び不燃物を高温で溶融する炉設備であり、熱分解と溶融を一体で行う方式と、分離して行う方式とがある。具体的には、ガス化改質方式(例えば、サーモセレクト方式など)、シャフト炉方式(例えば、コークスベッド式、酸素式、プラズマ式など)、キルン炉方式、流動床方式、半乾留・負圧燃焼方式などがある。本発明では、いずれの方式のガス化溶融炉で発生した排ガスを用いてもよく、また、2種以上の排ガスが混合されたものを用いてもよい。ガス化溶融炉で発生する排ガスとしては、例えば、二酸化炭素濃度が20〜60vol%、水素濃度が60〜20vol%である二酸化炭素と水素を含有する排ガス、一酸化炭素濃度が10〜50vol%、水素濃度が50〜10vol%である一酸化炭素と水素を含有する排ガスが挙げられ、これらの排ガスをそのまま或いは所定のガス組成に改質した上で、有機物質の熱分解用の混合ガス(g)として用いることができる。
また、製鉄プロセスにおける転炉ガスや高炉ガスなども利用可能なガスであり、上述のように水素が不足するガスの場合には、いわゆるシフト反応によって水素が生成するため、水素濃度が10vol%程度であっても本発明の混合ガス(g)として好適な組成となる。
一般に廃プラスチックなどの高分子量有機物質は300〜400℃以上で加熱すると熱分解が始まることが知られているが、この時、軽質化とともに重質化も進行してしまう。熱分解時に水素を共存させると、炭化水素種への水素付加反応と水素化分解反応が進行するため、重質化抑制と低分子化に有効である。しかしながら、水素化分解には高温が必要であり、且つ水素消費量が多くなることが問題である。
一方、水蒸気改質や炭酸ガス改質は、HOやCO分子中の酸素による炭化水素の酸化と看做すことができ、少ない水素添加量で低分子化と炭素質生成抑制が達成できる。さらに、水蒸気改質や炭酸ガス改質は、改質される有機分子の炭素鎖が長くなるにつれて反応温度が低下するという特徴を有する。これら水素化、水素化分解、水蒸気改質、および炭酸ガス改質を組み合わせることにより、比較的低い反応温度でも効率的に有機物質の低分子化を促進することが可能になる。
したがって、本発明で用いる混合ガス(g)は、水素及び二酸化炭素に加えて、水蒸気を含有することが好ましい。
本発明で用いられる有機物質を炭化水素(C)で示すと、上述の反応は、以下に示す反応式で表すことができる。
水素化:C+H→Cn+2
水素化分解:C+H→C+C(m=p+r、n+2=q+s)
水蒸気改質:C+HO→Cm−1n−2+CO+2H
炭酸ガス改質:C+CO→Cm−1n−2+2CO+H
ただし、水素化には下記のCO、COのメタネーション反応も含まれる。
CO+3H→CH+HO、CO+4H→CH+2H
なお、水蒸気改質や炭酸ガス改質で生成したHによっても、上記の水素化や水素化分解が進行する。
また、一酸化炭素を含有するガスに水蒸気を添加して、下記(1)のシフト反応を行えば、COをHとCOに変換できるので、本発明で用いる混合ガス(g)として好適なものとなる。
CO+HO→H+CO …(1)
ガス化溶融炉で発生する排ガスや製鉄所で発生するガスには一酸化炭素を多く含むものがあるため、この方法によれば、一酸化炭素と水蒸気のシフト反応を制御することで、熱分解用として好適な混合ガスを得ることができる。
特に、一酸化炭素を含有する排ガスに水蒸気を過剰に添加すると、生成ガス中に水蒸気が残留するため水蒸気改質反応を利用することができるようになる。つまりシフト反応の反応率を適宜制御することによって、ガス中の水蒸気、水素、炭酸ガスの各濃度を制御し、有機物質熱分解用として好適なガス組成の混合ガス(g)とすることができる。
シフト反応の反応率は、シフト反応器内での滞留時間を調整することで制御することができる。例えば、滞留時間を短くするには、シフト反応器長さを小さくしたり、或いは触媒充填量を少なくする方法が一般的であり、その場合、シフト反応器長さや触媒充填量は、ほぼ平衡まで反応を進行させる場合の1/2〜1/4程度とすればよい。
サーモセレクト方式のガス化溶融炉から発生する排ガスには、通常、COが20〜40vol%、COが40〜20vol%、Hが20〜40vol%程度含有されている。したがって、このような二酸化炭素と水素を含有する排ガスに適量の水蒸気を混合するだけで、CO:15〜20vol%、CO:10〜35vol%、H:15〜20vol%、HO:20〜50vol%程度の組成となり、有機物質熱分解用の混合ガス(g)として好適なものとなる。
また、製鉄所で発生する高炉ガスや転炉ガスについても、同様のシフト反応を利用することで、有機物質熱分解用として好適なガス組成に改質することができる。
なお、混合ガス(g)として、上述したようなシフト反応で生成したガスを用いる場合において、反応器Aに投入する有機物質が水を含んでいる場合には、反応器A内で水蒸気が発生するので、その分を考慮してシフト反応で添加する水蒸気の過剰割合を調整することが好ましい。
本発明において、熱分解の対象となる有機物質に特別な制限はないが、高分子量の有機物質が好適であり、例えば、廃プラスチック、含油スラッジ、廃油、バイオマスなどが挙げられ、これらの1種以上を対象とすることができる。
対象とする廃プラスチックの種類に特別な制限はないが、例えば、産業廃棄物系、容器包装リサイクル法の対象プラスチックなどを挙げることができる。より具体的には、PEやPPなどのポリオレフィン類、PAやPETなどの熱可塑性ポリエステル類、PSなどのエラストマー類、熱硬化性樹脂類、合成ゴム類や発砲スチロールなどを挙げることができる。なお、多くのプラスチック類にはフィラーなどの無機物が添加されているが、本発明では、このような無機物は反応に関与しないので、固体状残渣として反応器Aから排出される。また、廃プラスチックは、必要に応じて適当なサイズに事前裁断された後、反応器Aに投入される。
また、廃プラスチックがポリ塩化ビニルなどの塩素含有樹脂を含んでいると、反応器A内で塩素が発生し、この塩素がガス状物質や油状物質中に含有されてしまう恐れがある。したがって、廃プラスチックが塩素含有樹脂を含む恐れがある場合には、反応器A内にCaOなどのような塩素吸収剤を投入し、塩素分が生成するガス状物質や油状物質中に含有されないようにすることが好ましい。
含油スラッジとは、含油廃液処理工程で発生する汚泥状の混合物のことであり、一般に30〜70質量%程度の水分を含んでいる。スラッジ中の油分としては、例えば、各種鉱物油、天然及び/又は合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。なお、反応器Aに含油スラッジを供給する際などのハンドリング性を向上させるために、遠心分離などの手法により、スラッジ中の水分を30〜50質量%程度まで低減させてもよい。
廃油としては、例えば、使用済みの各種鉱物油、天然及び/又は合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。また、これら2種以上の廃油の混合物であってもよい。また、製鉄所の圧延工程で発生する廃油の場合、一般に多量(通常、80質量%超程度)の水分を含有しているが、この水分についても、比重分離などの手法によって事前に低減させておくことが、ハンドリング性の面で有利である。
バイオマスとしては、例えば、下水汚泥、紙、建設廃材、間伐材などの他、ゴミ固形燃料(RDF)などの加工されたバイオマスなどが挙げられるが、これらに限定されるものではない。バイオマスには、通常、多量の水分が含有されているので、事前に乾燥させておくことがエネルギー効率の点から好ましい。また、ナトリウムやカリウムなどのアルカリ金属を比較的高濃度に含むバイオマスの場合、反応器A内でアルカリ金属が析出する可能性があるので、水洗などの方法によって事前にアルカリ金属を溶出させておくことが好ましい。なお、建設廃材などの大型のバイオマスは、事前に裁断して反応器Aに投入される。
反応器A内での反応温度は400〜800℃程度が望ましく、600〜650℃程度がより望ましい。反応温度が400℃未満では有機物質の熱分解が進みにくく、ガス状物質の収率が低くなる。一方、反応温度が800℃を超えると熱分解生成物のガス状物質のうちC1〜C4化合物の熱分解が進んでCOやCOが生成され、ガス状物質の発熱量が低下し、気体燃料としての価値が低下する。
なお、反応温度が高いとガス状物質の生成量が増加し、油状物質の生成量が減少する傾向があるが、反応温度が低い方がエネルギーコストは小さくなるため、できるだけ低温での反応が有利である。圧力の影響はほとんど認められないので、常圧〜数kg/cm程度の微加圧で反応器Aを運転することが経済的である。
反応器Aの種類は特に限定されないが、一般に流動層式反応器は熱伝導に優れていることが知られており、本発明で流動層式反応器を採用した場合、熱伝導に優れるために有機物質の熱分解速度が高くなるなどの利点があり、特に好ましい。
また、反応器A内で廃プラスチックなどの有機物質が円滑に移動し、且つ有機物質熱分解用の混合ガス(g)と効率的に接触できるという点から、ロータリーキルンのような横型の移動床式反応器も好ましい。
また、本発明では有機物質の熱分解に特に触媒を必要としないが、触媒を充填して反応を行ってもよい。触媒としては、水蒸気改質活性、炭酸ガス改質活性、水素化活性、水素化分解活性をそれぞれ有する1種又は2種以上の触媒を用いることができる。具体例としては、Ni系改質触媒、Ni系水素化触媒、Pt/ゼオライト系石油精製触媒などを挙げることができる。また、微細なFe粒子からなることが知られている転炉発生ダストも、改質触媒や水素化分解触媒として用いることができる。
本発明では、ガス状物質の収率を高めるため、反応器Aから取り出された有機物質の熱分解生成物のうち、油状物質の少なくとも一部を重合処理した後、反応器Aに還流させて再度熱分解させる。なお、反応器Aに還流させる油状物質は、反応器Aから取り出された油状物質の一部でもよいし、全部でもよい。
反応器Aから取り出される油状物質は、通常、C10〜C12を主成分として、C5〜C24の炭化水素からなり、ナフサ(C5〜C8)、灯油(C9〜C12)、軽油(C13〜C24)の混合物であり、重油相当(C25以上)をほとんど含まない良質の軽質油である。したがって、そのまま回収して液体燃料などとして使用することが可能であるが、輸送の利便性や燃焼性などを観点からすると、ガス状物質の収率を高めることが望ましい。
上述したような混合ガス(g)を用い、反応温度を400〜800℃として、有機物質の熱分解実験を実施したところ、ガス状物質の収率は概ね3〜4割程度であり、油状物質の収率が6〜7割程度であった。油状物質を分析すると、C10〜C12を主成分とした炭化水素であった。高分子である有機物質は反応器内で熱分解が進み、C10〜C12程度に分解されると揮発して反応器外に排出され、常温に冷却されると油状物質になるものと推定された。この油状物質を反応器に還流させてもほとんど熱分解されず揮発してしまい、ふたたび常温で油状物質となるため、還流量が少量ではガス状物質の収率向上にはつながらず、収率向上のためには大量の油状物質を還流(循環)させることが必要なことが判った。そこで、反応器から回収した油状物質を重合させて高分子化した上で反応器に還流させたところ、油状物質が熱分解され、ガス状物質の収率を向上させることができた。これは、C10〜C12程度の油状物質をそのまま反応器に還流させると、炭素の鎖状構造が切断されて低分子化する前に揮発してしまうのに対して、重合処理することで高分子化すると揮発までに時間がかかるため、揮発前に炭素の鎖状構造が切断されてガス状物質となり、その結果、C1〜C4のガス状物質の収率が向上するものと考えられる。
油状物質を重合させる方法としては、従来公知の方法を適用することができる。例えば、特許文献4に示されるような液状オレフィン重合体の製造法に関する公知の技術を適用することが可能である。この技術による重合反応は常温常圧下でよいことが特徴であり、例えば、デセン(C1020)を効率よく重合し、液状の高分子を得ることができる。
図1及び図2は、本発明による有機物質の熱分解方法のフロー及び熱分解設備の一実施形態を模式的に示すものであり、図1は全体構成図、図2は、図1中の重合処理工程及び重合処理装置を模式的に示す構成図である。
この実施形態の熱分解設備は、有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる反応器Aと、この反応器Aから排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却して、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガスから分離する分離装置Bと、この分離装置Bで分離された液状の熱分解生成物(油状物質)を重合処理する重合処理装置Cと、この重合処理装置Cで重合処理された液状の熱分解生成物を反応器Aに供給(還流)する供給手段Dを備える。
本実施形態の反応器A(熱分解炉)は流動層式反応器で構成されている。この流動層式反応器内の分散板1上には、流動層を構成する流動媒体3が充填されている。分散板1の下方の風箱2には、流動化ガスとして混合ガス(g)が導入され、この混合ガス(g)が分散板1から吹き出すことにより、流動媒体3による流動層が形成される。また、反応器Aの上部には有機物質の供給管4が接続され、貯留槽5から定量切出装置6によって切り出された有機物質が、この供給管4を通じて反応器A内に定量供給される。なお、供給管4には、反応器A内のガスが貯留槽5に流出しないようするための弁機構などが設けられる。
反応器Aは、反応温度までの昇温やガス化に伴う吸熱反応の熱補償のため、ヒーター7で加熱される。なお、反応器Aの加熱手段の形式は任意であり、例えば、流動媒体3の一部を反応器Aの外部に取り出してキルンなどの加熱炉で加熱し、この加熱された流動媒体3を再び反応器A内に戻す循環式加熱システムを用いてもよい。
所定温度に昇温され且つ流動層が形成された反応器A内に供給管4を通じて有機物質が定量供給され、有機物質の熱分解が開始される。反応器A内で生成した有機物質の熱分解生成物(ガス状物質及びガス化した油状物質)を含むガス(g)は、ガス取出管8で反応器Aから取り出され、分離装置Bに送られる。なお、反応器Aから取り出されるガス(g)には、通常、混合ガス(g)の未反応ガス成分が含まれる。
分離装置Bでは油状物質がガスから分離されるが、分離装置Bとしては、例えば、散水式のものを用いることができる。高温のガス(g)に散水することによりガス(g)の温度は常温付近まで冷却され、有機物質の熱分解生成物のうち常温で液体である熱分解生成物が液化し(油状物質となる)、ガス(g)から油状物質が分離される。分離装置Bで油状物質が分離されたガス(ガス状物質)は、製品ガスとしてガス輸送管9により系外に輸送され、種々の用途に利用される。
一方、油状物質は油分輸送管10により重合処理装置Cに送られ、ここで重合処理(高分子化処理)された後、供給手段Dである油分還流管11で再度反応器Aに導入される。
図2に示す本実施形態の重合処理装置Cは、触媒の存在下で油状物質の重合処理を行う触媒反応槽12を備えており、この触媒反応槽12に油分輸送管10を通じて油状物質が供給される。なお、分離装置Bとして散水式のものを使用した場合は、油状物質は水と混合した状態にあるため、比重分離等により油水分離を行い、油状物質のみを触媒反応槽12に供給することが望ましい。触媒反応槽12において触媒と油状物質を十分に混合するため、本実施形態のように撹拌装置13を設置してもよい。触媒反応槽12で油状物質の重合処理(重合反応)を行い、オーバーフローを固液分離装置14に流入させ、重合処理が済んだ油状物質と触媒を分離する。本実施形態の固液分離装置14は、沈殿法により触媒を油状物質から沈降分離する。沈降分離された触媒は、再利用のためにポンプ16を備えた触媒循環管15により触媒反応槽12に返送(循環)される。このようにして重合処理装置Cで重合処理された油状物質は、油分還流管11で反応器Aに還流され、再度熱分解される。
触媒反応槽12で用いる触媒は、上述した特許文献4に示されるものなど、公知の種々の触媒を用いることができるが、なかでも、ハロゲン化アルミニウム触媒、特に塩化アルミニウム触媒が好適である。
図3に示すように、反応器Aにおける有機物質の炭素収支を考えると、定常状態では排出炭素量と装入炭素量がバランスする条件より下記(2)式が成り立つ。なお、油状物質の還流とは、反応器Aから取り出された熱分解生成物のうちの油状物質を反応器Aに戻すことを指す。
b×Φ+η×a=a …(2)
但し a:有機物質からの炭素の供給量(kg/h)
η:有機物質のガス化率(−)
b:油状物質の還流量(kg/h)
Φ:還流させた油状物質のガス化率(−)
すなわち、油状物質の還流量は、下記(3)式で表される。
b=(a/Φ)・(1−η) …(3)
例えば、熱分解の反応温度600℃、η=0.6において、油状物質を重合処理することなく反応器Aに還流させたときのガス化率をΦ=0.1、油状物質を重合処理した上で反応器Aに還流させたときのガス化率をΦ=0.6とした場合、定常運転を行うために必要な有機物質の装入量と油状物質の還流量の関係は図4のようになる。還流させた油状物質のガス化率Φの値により、必要な油状物質の還流量は大きく変わることが判る。
本発明法で得られるガス状物質は、可燃成分が一酸化炭素とC1〜C4程度の炭化水素からなり、そのLHVは約4〜8Mcal/Nmで高い発熱量を有する。このため、本発明法で得られるガス状物質は気体燃料として好適であり、また、天然ガス代替として高炉の還元剤や焼結鉱製造プロセスの凝結剤などとしても使用できる。
・発明例1
精製サーモセレクト方式のガス化溶融炉(Thermoselect Waste Gasification and Reforming Process)から発生し、塩化水素などの不純物を除去した後の排ガス(以下、サーモガス(Purified synthesis gas)という。)に水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。このためサーモガスの払出し配管に分岐管を設け、この分岐管を通じてサーモガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器を配置した。
サーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であった。スチーム混合器に対してサーモガスを108Nm/h、水蒸気として圧力10kg/cmGのスチームを64Nm/h供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/h(質量流量では171kg/h)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1及び図2に示す設備構成において廃プラスチックの熱分解処理を実施した。
流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理したポリエチレンを880kg/hで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を重合処理装置Cで重合処理した後、反応器Aに還流させた。反応状態はポリエチレンの供給開始から約27時間後、定常状態に達した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から重合処理後の油状物質を一定時間抜き出して還流量を定量するとともに、油状物質の成分分析を行った。また、油分輸送管10から重合処理前の油状物質を抜き出して、その成分分析を行った。この発明例における原料供給条件を表1に、ガス状物質の生成量、組成及びLHVを表2に、重合処理前後の油状物質の組成と重合処理後の油状物質の反応器Aへの還流量を表3に、それぞれ示す。
この発明例では、反応器Aから取り出された油状物質を重合処理した後、反応器Aに還流させたので、ほぼ熱分解生成物の全量をガス状物質として回収することができた。このとき原料として供給したサーモガス、水蒸気、ポリエチレンの合計量は1051kg/hであった。油状物質の還流量は580kg/hと比較的少ない量に抑えることができた。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガス(1.8Mcal/Nm)の4.0倍に増熱していた。
Figure 0006540645
Figure 0006540645
Figure 0006540645
・発明例2
製鉄所の転炉から発生したガスに水蒸気を添加してシフト反応を行わせ、これにより得られたガスを有機物質熱分解用の混合ガス(g)として用いた。このため転炉ガスの払出し配管に分岐管を設け、この分岐管を通じて転炉ガスの一部を抜き出すことができるようにするとともに、この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器、Fe−Cr系高温シフト触媒を充填したシフト反応器(円筒竪型)を配置した。
転炉ガスの平均組成は、H:1vol%、CO:65vol%、CO:15vol%、HO:1vol%、N:18vol%であった。スチーム混合器に対して転炉ガスを70Nm/h、水蒸気として圧力10kg/cmGのスチームを101Nm/h供給した後、ガス予熱器にて320℃まで予熱し、シフト反応器に導入した。シフト反応は発熱反応であり、シフト反応器温度は430℃まで上昇した。シフト反応後のガス組成は、H:26vol%、CO:0vol%、CO:30vol%、HO:35vol%、N:9vol%であり、流量は171Nm/h(質量流量では171kg/h)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1及び図2に示す設備構成において廃プラスチックの熱分解処理を実施した。
流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器A内に混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理したポリエチレンを880kg/hで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を重合処理装置Cで重合処理した後、反応器Aに還流させた。反応状態はポリエチレンの供給開始から約27時間後、定常状態に達した。
ガス輸送管9を通過するガス状物質の成分分析を行うとともに、LHVを求めた。また、油分還流管11から重合処理後の油状物質を一定時間抜き出して還流量を定量するとともに、油状物質の成分分析を行った。また、油分輸送管10から重合処理前の油状物質を抜き出して、その成分分析を行った。この発明例における原料供給条件を表4に、ガス状物質の生成量、組成及びLHVを表5に、重合処理前後の油状物質の組成と重合処理後の油状物質の反応器Aへの還流量を表6に、それぞれ示す。
この発明例では、反応器Aから取り出された油状物質を重合処理した後、反応器Aに還流させたので、ほぼ熱分解生成物の全量をガス状物質として回収することができた。このとき原料として供給したサーモガス、水蒸気、ポリエチレンの合計量は1051kg/hであった。油状物質の還流量は581kg/hと比較的少ない量に抑えることができた。生成したガス状物質のLHVは5.7Mcal/Nmであり、転炉ガス(2.0Mcal/Nm)の2.9倍に増熱していた。
Figure 0006540645
Figure 0006540645
Figure 0006540645
・比較例1
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。すなわち、使用したサーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であり、このサーモガスをスチーム混合器に108Nm/h導入し、水蒸気として圧力10kg/cm2Gのスチームを64Nm/h供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量は172Nm/h(質量流量では171kg/h)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1に示す設備構成において、油状物質を反応器Aに還流させることなく、廃プラスチックの熱分解処理を実施した。
流動層式の反応器Aはヒーター7により予め600℃に予熱されており、反応器Aに混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理したポリエチレンを880kg/hで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、油状物質は反応器Aに還流させなかった。反応状態はポリエチレンの供給開始から約22時間後、定常状態に達した。
発明例1と同様の方法で、得られたガス状物質と油状物質の生成量と組成を求めるとともに、ガス状物質についてはLHVを求めた。この比較例における原料供給条件を表7に、ガス状物質の生成量、組成及びLHVを表8に、油状物質の組成を表9に、それぞれ示す。
この比較例では、供給原料総量に対する熱分解生成物の生成率は、ガス状物質が33%、油状物質が59%であり、油状物質がガス状物質よりも多く生成された。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガスの4.0倍に増熱していた。
以上のように、この比較例では油状物質を反応器Aに還流させて再熱分解させなかったため、ガス状物質の生成量が大幅に減少する結果となった。
Figure 0006540645
Figure 0006540645
Figure 0006540645
・比較例2
発明例1と同様に、サーモガスに水蒸気を添加したガスを有機物質熱分解用の混合ガス(g)として用いた。すなわち、使用したサーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であり、このサーモガスをスチーム混合器に108Nm/h導入し、水蒸気として圧力10kg/cmGのスチームを64Nm/h供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成は、H:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であり、流量が172Nm/h(質量流量では171kg/h)であった。このガスを有機物質熱分解用の混合ガス(g)として用い、図1に示す設備構成において、油状物質を重合処理することなく反応器Aに還流させ、廃プラスチックの熱分解処理を実施した。
流動層式の反応器Aはヒーター7により予め600℃に予熱されており、この反応器Aに混合ガス(g)を導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理したポリエチレンを880kg/hで供給し、計画反応温度である620℃まで昇温した。620℃に到達後、10日間、廃プラスチックの熱分解処理を継続した。この際、分離装置Bで分離された油状物質を重合処理装置Cで重合処理することなく、反応器Aに還流させた。反応状態はポリエチレンの供給開始から約25時間後、定常状態に達した。
発明例1と同様の方法で、得られたガス状物質と油状物質の生成量と組成を求めるとともに、ガス状物質についてはLHVを求めた。この比較例における原料供給条件を表10に、ガス状物質の生成量、組成及びLHVを表11に、油状物質の組成と反応器Aへの還流量を表12に、それぞれ示す。
この比較例では、油状物質を重合処理することなく反応器Aに還流させているため、ほぼ全量をガス状物質として回収できたものの、油状物質の還流量は3500kg/hと非常に多く、油状物質の還流に大きな設備的負担(費用)が必要となった。生成したガス状物質のLHVは7.2Mcal/Nmであり、サーモガス(1.8Mcal/Nm)の4.0倍に増熱していた。
Figure 0006540645
Figure 0006540645
Figure 0006540645
A 反応器
B 分離装置
C 重合処理装置
D 供給手段
1 分散板
2 風箱
3 流動媒体
4 供給管
5 貯留槽
6 定量切出装置
7 ヒーター
8 ガス取出管
9 ガス輸送管
10 油分輸送管
11 油分還流管
12 触媒反応槽
13 撹拌装置
14 固液分離装置
15 触媒循環管
16 ポンプ

Claims (9)

  1. 反応器(A)において、有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる方法であって、
    反応器(A)から取り出された有機物質の熱分解生成物のうち、常温で液体である熱分解生成物の少なくとも一部を重合処理した後、再度、反応器(A)に導入して熱分解させることを特徴とする有機物質の熱分解方法。
  2. 反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却して、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させ、この液状の熱分解生成物を重合処理することを特徴とする請求項1に記載の有機物質の熱分解方法。
  3. 有機物質が廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする請求項1又は2に記載の有機物質の熱分解方法。
  4. 反応器(A)が流動層式反応器であることを特徴とする請求項1〜3のいずれかに記載の有機物質の熱分解方法。
  5. 混合ガス(g)は、さらに水蒸気を含むことを特徴とする請求項1〜4のいずれかに記載の有機物質の熱分解方法。
  6. 混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする請求項5に記載の有機物質の熱分解方法。
  7. 請求項1〜6のいずれかに記載の熱分解方法において生成した、常温で気体である熱分解生成物を有用ガス状物質として回収することを特徴とするガス状物質の製造方法。
  8. 有機物質を少なくとも水素及び二酸化炭素を含む混合ガス(g)と接触させることにより熱分解させる反応器(A)と、
    該反応器(A)から排出された、有機物質の熱分解生成物を含むガス(g)を常温又は常温近傍まで冷却し、ガス(g)に含まれる有機物質の熱分解生成物の一部を液化させてガス(g)から分離する分離装置(B)と、
    該分離装置(B)で分離された液状の熱分解生成物を重合処理する重合処理装置(C)と、
    該重合処理装置(C)で重合処理された液状の熱分解生成物を反応器(A)に供給する供給手段(D)を備えることを特徴とする有機物質の熱分解設備。
  9. 反応器(A)が流動層式反応器であることを特徴とする請求項8に記載の有機物質の熱分解設備。
JP2016189021A 2016-09-28 2016-09-28 有機物質の熱分解方法及び熱分解設備 Active JP6540645B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189021A JP6540645B2 (ja) 2016-09-28 2016-09-28 有機物質の熱分解方法及び熱分解設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189021A JP6540645B2 (ja) 2016-09-28 2016-09-28 有機物質の熱分解方法及び熱分解設備

Publications (2)

Publication Number Publication Date
JP2018053047A JP2018053047A (ja) 2018-04-05
JP6540645B2 true JP6540645B2 (ja) 2019-07-10

Family

ID=61833946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189021A Active JP6540645B2 (ja) 2016-09-28 2016-09-28 有機物質の熱分解方法及び熱分解設備

Country Status (1)

Country Link
JP (1) JP6540645B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421393A1 (de) * 1984-06-08 1985-12-12 Krupp Koppers GmbH, 4300 Essen Verfahren zur weiterverarbeitung von schwelgas aus der abfallpyrolyse
JP4648794B2 (ja) * 2005-08-05 2011-03-09 新日鉄エンジニアリング株式会社 ガス化ガスの精製方法及び装置
JP4540628B2 (ja) * 2006-03-16 2010-09-08 三井造船株式会社 廃棄物ガス化装置
JP5835006B2 (ja) * 2012-02-27 2015-12-24 Jfeスチール株式会社 有機物質のガス化方法並びに有機物質のガス化装置
JP6227293B2 (ja) * 2012-07-18 2017-11-08 Jfeスチール株式会社 有機物質の低分子化方法

Also Published As

Publication number Publication date
JP2018053047A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
KR100445363B1 (ko) 기화를통한폐기물처리장치및방법
JP5333646B2 (ja) 水素の製造方法
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
US10329490B2 (en) Method of and system for producing solid carbon materials
JP5835006B2 (ja) 有機物質のガス化方法並びに有機物質のガス化装置
HUE035566T2 (en) Process for converting organic material into methane rich gas
JP6070580B2 (ja) 有機物質の低分子化方法および低分子化システム
JP2014037524A (ja) 有機物質の低分子化方法
JP5999114B2 (ja) 有機物質の低分子化方法および低分子化システム
JP2012188641A (ja) 有機物質の低分子化方法及び冶金炉発生排ガスの利用方法
JP5679088B2 (ja) 有機物質の低分子化方法
JP2006104261A (ja) 炭化水素系重質原料の改質方法
JP6540645B2 (ja) 有機物質の熱分解方法及び熱分解設備
JP6777110B2 (ja) 有機物質の熱分解方法及び熱分解設備
JP6638661B2 (ja) 有機物質の熱分解方法及び熱分解設備
JP6369694B2 (ja) 有機物質の低分子化方法および低分子化設備
JP5906805B2 (ja) 高炉または製鉄所の操業方法
JP5999115B2 (ja) 有機物質の低分子化方法および低分子化システム
US20160009554A1 (en) Molten metal gasifier
JP5835003B2 (ja) 有機物質の利材化方法
JP6904388B2 (ja) 有機物質の熱分解方法
JP6369693B2 (ja) 有機物質の低分子化方法および低分子化設備
WO2014132230A1 (en) Molten metal gasifier
JP2007224206A (ja) 高熱量ガスの生成方法
JP2002371307A (ja) 有機系又は炭化水素系廃棄物のリサイクル方法及びリサイクルに適した高炉設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250