JP6539609B2 - Sintering apparatus and sintering method - Google Patents

Sintering apparatus and sintering method Download PDF

Info

Publication number
JP6539609B2
JP6539609B2 JP2016057846A JP2016057846A JP6539609B2 JP 6539609 B2 JP6539609 B2 JP 6539609B2 JP 2016057846 A JP2016057846 A JP 2016057846A JP 2016057846 A JP2016057846 A JP 2016057846A JP 6539609 B2 JP6539609 B2 JP 6539609B2
Authority
JP
Japan
Prior art keywords
core tube
gas
cylindrical member
sintering
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057846A
Other languages
Japanese (ja)
Other versions
JP2016179934A (en
Inventor
内田 一也
一也 内田
乙坂 哲也
哲也 乙坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to CN201610176855.9A priority Critical patent/CN106007356B/en
Priority to US15/080,467 priority patent/US9751796B2/en
Priority to DE102016105519.0A priority patent/DE102016105519A1/en
Publication of JP2016179934A publication Critical patent/JP2016179934A/en
Application granted granted Critical
Publication of JP6539609B2 publication Critical patent/JP6539609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、多孔質ガラス母材の焼結装置および焼結方法に関する。   The present invention relates to an apparatus and method for sintering a porous glass base material.

光ファイバ用ガラス母材の製造方法として、VAD法、OVD法等が知られている。これらの方法では、まず火炎中でガラス原料を燃焼して加水分解によりガラス微粒子を生成させる。次いで、生成したガラス微粒子を回転するターゲット棒に付着させることにより多孔質ガラス母材を形成する。更に、多孔質ガラス母材を1400〜1600℃で焼結して、透明な光ファイバ用ガラス母材とする。   VAD method, OVD method, etc. are known as a manufacturing method of the glass base material for optical fibers. In these methods, first, a glass raw material is burned in a flame to generate fine glass particles by hydrolysis. Subsequently, a porous glass base material is formed by adhering the produced | generated glass particulates to the rotating target rod. Furthermore, the porous glass preform is sintered at 1400 to 1600 ° C. to obtain a transparent optical fiber glass preform.

多孔質ガラス母材は、特定組成の雰囲気下で焼結される。焼結装置において焼結中に、多孔質ガラス母材を収容する炉心管に外気が侵入した場合、製造された透明ガラス母材の品質が低下する。また、炉心管内の雰囲気が外部に漏れた場合は環境を汚染する。そこで、焼結装置における炉心管を閉鎖する種々の構造が提案されている(例えば、特許文献1参照)。   The porous glass base material is sintered under an atmosphere of a specific composition. If outside air intrudes into a core tube containing a porous glass base during sintering in a sintering apparatus, the quality of the manufactured transparent glass base is degraded. In addition, if the atmosphere in the reactor core leaks to the outside, it pollutes the environment. Therefore, various structures for closing a core tube in a sintering apparatus have been proposed (see, for example, Patent Document 1).

特開2002−226218号公報JP, 2002-226218, A

焼結中の炉心管を閉鎖する構造は、構造が複雑で組み立てが難しく、運用も容易ではない。更に、焼結装置の稼働時間の増加とともに部品の劣化により気密性が低下する。そこで、焼結中の炉心管に対する外気の侵入および管内ガスの漏洩を防止する、簡潔で寿命の長い構造が模索されている。   The structure for closing the core tube during sintering is complicated in structure, difficult to assemble, and difficult to operate. Furthermore, the airtightness is reduced due to the deterioration of parts as the operating time of the sintering apparatus increases. Therefore, a simple and long-life structure is sought to prevent the entry of outside air into the core tube during sintering and the leakage of the gas in the tube.

本発明の第一の態様によると、多孔質ガラス母材を焼結する焼結装置であって、多孔質ガラス母材を収容する、ヒータに取り巻かれた炉心管と、多孔質ガラス母材に結合された保持棒が挿通される挿通穴を有して炉心管の一端に装着される蓋部材とシールガスを導入する供給ポートとシールガスを排出する排出ポートとを有して、挿通穴を覆って蓋部材に設けられるシール室と、シール室の内部において保持棒を挿通され、炉心管の内部の管内ガスとシール室の内部のガスとの間に雰囲気の圧力差を生じさせる筒状部材とを備えることを特徴とする焼結装置が提供される。   According to a first aspect of the present invention, there is provided a sintering apparatus for sintering a porous glass base material, which comprises a core tube surrounded by a heater, which accommodates the porous glass base material, and a porous glass base material. It has an insertion hole through which the combined holding rod is inserted, and has a cover member attached to one end of the core tube, a supply port for introducing a seal gas, and an exhaust port for discharging the seal gas. A cylindrical member which covers a seal chamber provided in a lid member and a holding rod is inserted inside the seal chamber to generate an atmospheric pressure difference between the gas in the core of the furnace core and the gas in the seal chamber And a sintering apparatus characterized by comprising:

本発明の第一の態様によると、多孔質ガラス母材を炉心管に収容して焼結する焼結方法であって、炉心管の内部における管内ガスの圧力を大気圧よりも高く維持しつつ、炉心管を取り巻くヒータにより炉心管に収容された多孔質ガラス母材を加熱し、多孔質ガラス母材に結合された保持棒と、保持棒が挿通される挿通穴を有して炉心管の一端に装着される蓋部材との間、および、保持棒と保持棒を挿通された筒状部材との間を通じて、挿通穴を覆って蓋部材に設けられたシール室に管内ガスの一部を排出し、シール室に排出した管内ガスの一部を、シール室に設けた供給ポートから供給されたシールガスと共に、シール室に設けた排出ポートから外部に排出させることを特徴とする多孔質ガラス母材の焼結方法が提供される。   According to a first aspect of the present invention, there is provided a sintering method in which a porous glass base material is contained in a core tube and sintered, and the pressure of the gas in the core tube is maintained higher than atmospheric pressure. A heater surrounding the core tube heats the porous glass base material contained in the core tube, and a holding rod coupled to the porous glass base material and an insertion hole through which the holding rod is inserted A portion of the gas in the pipe is covered in a sealing chamber provided in the lid member so as to cover the insertion hole through the lid member attached to one end and the holding rod and the cylindrical member inserted with the holding rod. Porous glass characterized in that a part of the gas in the pipe discharged and discharged into the seal chamber is discharged from the discharge port provided in the seal chamber together with the seal gas supplied from the supply port provided in the seal chamber. A method of sintering a base material is provided.

上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これら特徴群のサブコンビネーションもまた発明となり得る。   The above summary of the invention does not enumerate all of the features of the present invention. A subcombination of these feature groups can also be an invention.

焼結装置10の構造を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the structure of a sintering device 10. 焼結装置10におけるシール構造を説明する図である。It is a figure explaining the seal structure in sintering device 10. As shown in FIG. 炉心管12の内圧と、円筒室24へ流れるガスの流量との関係を示すグラフである。10 is a graph showing the relationship between the internal pressure of the furnace tube 12 and the flow rate of gas flowing to the cylindrical chamber 24. 円筒部材25の仕様を説明する模式図である。FIG. 7 is a schematic view illustrating the specification of a cylindrical member 25.

以下、発明の実施の形態を通じて本発明を説明する。以下の実施形態は特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention. The following embodiments do not limit the claimed invention. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.

図1は、焼結装置10の構造を示す模式的断面図である。焼結装置10は、ヒータ11、炉心管12および回転チャック15を備える。また、炉心管12の図中上端には、蓋部材18、円筒室24、円筒部材25、および上蓋部材13が配される。   FIG. 1 is a schematic cross-sectional view showing the structure of a sintering apparatus 10. The sintering apparatus 10 includes a heater 11, a core tube 12 and a rotating chuck 15. Further, at the upper end of the core tube 12 in the drawing, a lid member 18, a cylindrical chamber 24, a cylindrical member 25 and an upper lid member 13 are disposed.

炉心管12は、縦長の円筒形形状を有し、多孔質ガラス母材16を収容できる内径と長さとを有する。ヒータ11は、炉心管12を側方から取り囲んで配される。炉心管12の底部には、炉心管12の内部に、多孔質ガラス母材16を焼結する場合の雰囲気となる管内ガスを供給するガス導入ポート17が設けられる。焼結装置10において多孔質ガラス母材16を焼結する場合、炉心管12の内部には、He等をベースとした管内ガスが充填される。   The core tube 12 has an elongated cylindrical shape and has an inner diameter and a length capable of accommodating the porous glass base material 16. The heater 11 is disposed to laterally surround the furnace tube 12. At the bottom of the core tube 12, a gas introduction port 17 is provided inside the core tube 12 to supply an in-pipe gas serving as an atmosphere for sintering the porous glass base material 16. When the porous glass base material 16 is sintered in the sintering apparatus 10, the inside of the core tube 12 is filled with an in-pipe gas based on He or the like.

回転チャック15は、炉心管12の図中上方に配され、炉心管12に収容された多孔質ガラス母材16に結合された保持棒14の上部を把持する。また、回転チャック15は、把持した保持棒14を昇降させ、且つ、保持棒14を回転軸として多孔質ガラス母材16を回転させる。これにより、多孔質ガラス母材16全体を効率よく均一に加熱できる。   The rotary chuck 15 is disposed above the core tube 12 in the figure, and holds the upper portion of the holding rod 14 coupled to the porous glass preform 16 housed in the core tube 12. Further, the rotary chuck 15 raises and lowers the held holding bar 14 and rotates the porous glass base material 16 with the holding bar 14 as a rotation axis. Thereby, the whole porous glass base material 16 can be efficiently heated uniformly.

炉心管12の上端には、多孔質ガラス母材16を収容した炉心管12を閉鎖するシール構造が形成される。図示の焼結装置10においては、炉心管12の上端に蓋部材18が置かれる。蓋部材18は、保持棒14が挿通される挿通穴を略中央に有する。また、蓋部材18には、炉心管12の内外を連通させるガス排出ポート21が配される。   A seal structure is formed at the upper end of the core tube 12 to close the core tube 12 containing the porous glass preform 16. In the illustrated sintering apparatus 10, a lid member 18 is placed at the upper end of the core tube 12. The lid member 18 has an insertion hole through which the holding rod 14 is inserted at substantially the center. Further, the lid member 18 is provided with a gas discharge port 21 for communicating the inside and the outside of the furnace tube 12.

シール構造を形成する円筒部材25および円筒室24は、蓋部材18の図中上面に配される。円筒部材25は、その略中央に保持棒14を挿通される。   A cylindrical member 25 and a cylindrical chamber 24 which form a sealing structure are disposed on the upper surface of the lid member 18 in the figure. The holding rod 14 is inserted through substantially the center of the cylindrical member 25.

円筒室24は、蓋部材18の図中上面に、円筒部材25を覆って配される。更に、円筒室24の上端は、上蓋部材13により閉鎖される。保持棒14は、上蓋部材13も貫通する。円筒室24および上蓋部材13は、炉心管12の上部にシール室を形成する。   The cylindrical chamber 24 is disposed on the upper surface of the lid member 18 in the drawing, covering the cylindrical member 25. Furthermore, the upper end of the cylindrical chamber 24 is closed by the upper lid member 13. The holding rod 14 also penetrates the upper lid member 13. The cylindrical chamber 24 and the upper lid member 13 form a seal chamber in the upper portion of the core tube 12.

図2は、焼結装置10において炉心管12上部に形成されたシール構造を拡大して示す図である。図1と共通の要素には図1と同じ参照番号を付して重複する説明を省く。   FIG. 2 is an enlarged view of a seal structure formed on the upper portion of the core tube 12 in the sintering apparatus 10. As shown in FIG. Elements in common with FIG. 1 are assigned the same reference numerals as in FIG. 1 and redundant explanations are omitted.

蓋部材18に設けられたガス排出ポート21は、炉心管12の内部を外部に連通させて、炉心管12の内部から管内ガスを外部に直截に排出する。これにより、例えば、炉心管12内部の管内ガス圧が急激に上昇した場合に、炉心管12にかかる衝撃を緩和できる。ガス排出ポート21から排出された管内ガスは、図示を省略した排気手段および排気処理装置へ導かれる。   The gas discharge port 21 provided in the lid member 18 communicates the inside of the core tube 12 to the outside, and directly discharges the gas from the inside of the core tube 12 to the outside. Thereby, for example, when the gas pressure in the core tube 12 is rapidly increased, the impact applied to the core tube 12 can be alleviated. The gas in the pipe discharged from the gas discharge port 21 is led to exhaust means and an exhaust treatment device which are not shown.

円筒室24は、シールガスが供給される供給ポート22と、供給されたシールガスを排出する排気ポート23とをそれぞれ側面に有する。シールガスは、例えば大気であってもよい。排気ポート23から排気されたガスは、シールガスと共に、炉心管12から円筒室24に漏洩した管内ガスも含む。よって、排気ポート23から排出されたシールガスは、図示を省略した排気手段および排気処理装置へ導かれる。   The cylindrical chamber 24 has a supply port 22 supplied with the seal gas and an exhaust port 23 for discharging the supplied seal gas on its side. The seal gas may be, for example, the atmosphere. The gas exhausted from the exhaust port 23 includes the seal gas as well as the gas in the pipe leaking from the core pipe 12 to the cylindrical chamber 24. Therefore, the seal gas discharged from the exhaust port 23 is led to the exhaust means and the exhaust treatment device which are not shown.

円筒部材25は、縦長の筒状の形状を有する。円筒室24は、円筒部材25の外径および高さよりも大きな内径および高さを有する。よって、円筒部材25は、円筒室24の内部で、保持棒14に沿って円滑に移動する。 The cylindrical member 25 has a longitudinally long cylindrical shape. The cylindrical chamber 24 has an inner diameter and height greater than the outer diameter and height of the cylindrical member 25. Therefore, the circular cylinder member 25, within the cylindrical chamber 24, smoothly move along the holding bar 14.

上記のようなシール構造を有する焼結装置10においては、多孔質ガラス母材16の焼結を行う場合に、炉心管12内の圧力を大気圧よりも高く維持する。これにより、焼結装置10においては、蓋部材18の挿通穴19と保持棒14との間、および、円筒部材25の貫通穴26の内面と保持棒14との間隙を経て、炉心管12から円筒室24内に、炉心管12内の管内ガスの一部を流しながら多孔質ガラス母材16を焼結する。   In the sintering apparatus 10 having the seal structure as described above, the pressure in the core tube 12 is maintained higher than the atmospheric pressure when the porous glass base material 16 is sintered. Thereby, in the sintering device 10, the core tube 12 is passed through the gap between the insertion hole 19 of the lid member 18 and the holding rod 14 and the inner surface of the through hole 26 of the cylindrical member 25 and the holding rod 14. The porous glass base material 16 is sintered while flowing a part of the gas in the core tube 12 into the cylindrical chamber 24.

焼結装置10において、円筒部材25に保持棒14を挿通した状態で、円筒部材25の炉心管12側と円筒室24側との圧力差Δpは、円筒の長さをLとした場合に、下記の式1により表される。

Figure 0006539609
In the sintering apparatus 10, when the holding rod 14 is inserted through the cylindrical member 25, the pressure difference Δp between the core tube 12 side and the cylindrical chamber 24 side of the cylindrical member 25 is L when the length of the cylinder is L, It is represented by Formula 1 below.
Figure 0006539609

ここで、流体力学的相当面積Sは、流路面積をA、ぬれぶち長さをsとした場合に、下記の数2式で表される。なお、ぬれぶち長さsとは、流路断面において流体に接している支持棒外壁面と円筒内壁面との長さの総和である。

Figure 0006539609
Here, the hydrodynamic equivalent area S is represented by the following equation 2 when the flow passage area is A and the wet etching length is s. Here, the wetted weft length s is the total sum of the lengths of the support rod outer wall surface and the cylinder inner wall surface in contact with the fluid in the flow channel cross section.
Figure 0006539609

また、流路面積A、ぬれぶち長さsは、保持棒14の直径をD、円筒部材の穴径をdと表した場合に、それぞれ下記の式3、式4で表される。

Figure 0006539609
Figure 0006539609
Further, when the flow passage area A and the wet contact length s represent the diameter of the holding rod 14 as D and the hole diameter of the cylindrical member as d, they are expressed by the following expressions 3 and 4, respectively.
Figure 0006539609
Figure 0006539609

更に、円筒部材25と保持棒14との隙間を流れるガスの流速uは、隙間を流れるガス流量をqと表すと、下記の式5で表される。

Figure 0006539609
Furthermore, the flow velocity u of the gas flowing through the gap between the cylindrical member 25 and the holding rod 14 is expressed by the following equation 5 when the gas flow rate flowing through the gap is represented by q.
Figure 0006539609

よって、大気圧と炉心管12の内圧との圧力差、円筒部材25の長さおよび貫通穴26の径を決定して上記の式1から式5を用いることにより、炉心管12内から円筒室24へ向けて、炉心管12内のガスが予め定めた流量で流れるように制御できる。この場合、保持棒の直径Dの値は、装置の機械的強度などの設計で決められる。   Therefore, the pressure difference between the atmospheric pressure and the internal pressure of the core tube 12, the length of the cylindrical member 25 and the diameter of the through hole 26 are determined, and the above equation 1 to 5 are used. The gas in the core tube 12 can be controlled to flow at a predetermined flow rate toward 24. In this case, the value of the diameter D of the holding rod is determined by the design such as the mechanical strength of the device.

例えば、D=40mmとした場合、隙間を流れるガス流量qを0.1L/minとし、圧力差を500Paにしようとした場合、円筒部材の穴径dは、d=40.17mmとなる。円筒部材の穴径を小さくし、保持棒との隙間を狭くすれば、圧力差を大きくすることができ好ましいが、保持棒の外径の製作精度、円筒部材の穴の製作精度を考慮すると、円筒部材の穴径dと支持棒の直径Dとの差の下限を、d−D=0.1mm程度とするのが良い。   For example, when D = 40 mm, the gas flow rate q flowing through the gap is 0.1 L / min and the pressure difference is 500 Pa, the hole diameter d of the cylindrical member is d = 40.17 mm. It is preferable to reduce the hole diameter of the cylindrical member and narrow the gap with the holding rod, and thus the pressure difference can be increased, but in consideration of the manufacturing accuracy of the outer diameter of the holding rod and the manufacturing accuracy of the hole of the cylindrical member, The lower limit of the difference between the hole diameter d of the cylindrical member and the diameter D of the support rod may be approximately dD = 0.1 mm.

本実施例においては、保持棒14の外径が40mmの場合に、円筒部材25において保持棒1が挿通される挿通穴19の内面と保持棒14とのクリアランスを0.1mm以上、且つ、0.15mm以下の範囲とした。このクリアランスが0.1mm未満の場合は、円筒部材25と保持棒14とが接触する可能性が高くなり、保持棒14の円滑な昇降が妨げられる懸念がある。   In the present embodiment, when the outer diameter of the holding rod 14 is 40 mm, the clearance between the inner surface of the insertion hole 19 through which the holding rod 1 is inserted in the cylindrical member 25 and the holding rod 14 is 0.1 mm or more. It was in the range of .15 mm or less. If this clearance is less than 0.1 mm, the possibility of contact between the cylindrical member 25 and the holding rod 14 increases, and there is a concern that the smooth lifting and lowering of the holding rod 14 may be hindered.

一方、上記クリアランスが0.15mmを超えた場合は、円筒部材25と保持棒14との間隙から、円筒室24内のシールガスが炉心管12に侵入しやすくなる。同様の観点から、円筒部材25の長さを100mm以上とすることにより、炉心管12へのシールガスの侵入を効果的に防止できる。   On the other hand, when the above-mentioned clearance exceeds 0.15 mm, the seal gas in the cylindrical chamber 24 easily intrudes into the core tube 12 from the gap between the cylindrical member 25 and the holding rod 14. From the same point of view, by setting the length of the cylindrical member 25 to 100 mm or more, it is possible to effectively prevent the seal gas from entering the core tube 12.

なお、保持棒14および円筒部材25の円滑な相対移動を図るという観点からは、円筒部材25における貫通穴26の内面の垂直度が、蓋部材18の上面に接触する面に対して0.01mm以下であることが好ましい。   From the viewpoint of achieving smooth relative movement of the holding rod 14 and the cylindrical member 25, the perpendicularity of the inner surface of the through hole 26 in the cylindrical member 25 is 0.01 mm with respect to the surface contacting the upper surface of the lid member 18. It is preferable that it is the following.

一方、円筒室24と炉心管12との間のガス流を遮断するという観点から、蓋部材18の上面と、円筒部材25の下面とが密着していることが望ましい。そのような観点から、蓋部材18および円筒部材25において互いに接触する面の表面粗さを、Ra2.0以下とすることが好ましい。   On the other hand, it is desirable that the upper surface of the cover member 18 and the lower surface of the cylindrical member 25 be in close contact with each other from the viewpoint of blocking the gas flow between the cylindrical chamber 24 and the core tube 12. From such a point of view, it is preferable to set the surface roughness of the surfaces of the lid member 18 and the cylindrical member 25 in contact with each other to Ra 2.0 or less.

また、円筒部材25を保持棒14に対して円滑に変移させるという観点から、円筒部材25は、少なくとも貫通穴26の内面において、保持棒14に対して潤滑性を有することが好ましい。また、保持棒14は、特に炉心管12から引き上げられる場合に高温になっている。よって、円筒部材25は、保持棒14の温度に対して耐熱性を有することが好ましい。そのような特性を兼ね備えた材料としては、例えば、カーボンのバルク材を例示できる。   Further, from the viewpoint of smoothly shifting the cylindrical member 25 with respect to the holding rod 14, the cylindrical member 25 preferably has lubricity with respect to the holding rod 14 at least on the inner surface of the through hole 26. Also, the holding rod 14 is at a high temperature, particularly when it is pulled up from the furnace tube 12. Therefore, the cylindrical member 25 preferably has heat resistance to the temperature of the holding rod 14. As a material which has such a characteristic, the bulk material of carbon can be illustrated, for example.

上記の例では、シール室として円筒室24を、シール部材として円筒部材25をそれぞれ用いているが、シール室およびシール部材の形状が円筒形に限られるわけではないことはもちろんである。   In the above example, the cylindrical chamber 24 is used as the sealing chamber and the cylindrical member 25 is used as the sealing member, but the shapes of the sealing chamber and the sealing member are not limited to the cylindrical shape, of course.

[実験例]
穴径40.14mm、長さ150mmの円筒部材25を作製し、炉心管の上蓋上に設けた円筒内に設置した。なお、保持棒の外径は40mm(設計値)とした。炉心管12の内圧を変えながら、保持棒14と円筒部材25の貫通穴26との隙間を流れるガス流量を測定した。
[Example of experiment]
A cylindrical member 25 having a hole diameter of 40.14 mm and a length of 150 mm was produced and placed in a cylinder provided on the upper lid of the core tube. The outer diameter of the holding rod was 40 mm (design value). The gas flow rate flowing through the gap between the holding rod 14 and the through hole 26 of the cylindrical member 25 was measured while changing the internal pressure of the core tube 12.

図3は、上記測定の測定結果を示すグラフである。図示のように、炉心管12の内圧とガス流量との間には強い相関があり、ガス流量を制御することにより、炉心管12内の圧力を管理できることが判る。よって、炉心管12から円筒室24に向けて流れる管内ガスの流量は、予め定めた流量となるように制御することが好ましい。   FIG. 3 is a graph showing the measurement results of the above measurement. As shown, there is a strong correlation between the internal pressure of the core tube 12 and the gas flow rate, and it can be seen that the pressure in the core tube 12 can be managed by controlling the gas flow rate. Therefore, it is preferable to control the flow rate of the gas flowing from the furnace tube 12 toward the cylindrical chamber 24 to be a predetermined flow rate.

なお、炉心管内圧をゲージ圧で1000Pa〜2000Pa程度にすると、隙間を流れるガス量も抑えられ、使用に耐えうることが確認できた。炉心管内圧を1000Paに維持し、多孔質ガラス母材の焼結を行った結果、得られたガラス母材の光学特性に問題のないことが確認できた。   In addition, when the pressure in the core tube was set to about 1000 Pa to 2000 Pa in gauge pressure, it was confirmed that the amount of gas flowing in the gap was also suppressed, and it could withstand use. As a result of sintering the porous glass base while maintaining the pressure in the core tube at 1000 Pa, it was confirmed that there is no problem in the optical characteristics of the obtained glass base.

このように、焼結装置10は、上蓋上の円筒内に設けられた円筒部材の穴と保持棒との隙間(クリアランス)を0.1mm〜0.15mmとし、円筒部材の長さを100mm以上として、炉心管内から円筒へ向けてガスを流し、円筒の排気ポートから排気しながら焼結するようにしたことにより、該隙間から炉心管内への外気の侵入を防止することができ、ガラス母材の特性に悪影響を与えることなく焼結することができる。   Thus, in the sintering device 10, the clearance (clearance) between the hole of the cylindrical member provided in the cylinder on the upper lid and the holding bar is 0.1 mm to 0.15 mm, and the length of the cylindrical member is 100 mm or more By flowing the gas from the core tube toward the cylinder and sintering it while exhausting from the exhaust port of the cylinder, it is possible to prevent the entry of outside air from the gap into the core tube, and the glass base material Can be sintered without adversely affecting the properties of

下記の式6は、焼結装置10において、炉心管12における管内ガスの圧力により円筒部材25が浮上する条件を表す。図4は、式6において用いる値を説明する図である。

Figure 0006539609
The following equation 6 represents the conditions under which the cylindrical member 25 is lifted by the pressure of the gas in the core tube 12 in the sintering device 10. FIG. 4 is a diagram for explaining values used in Equation 6.
Figure 0006539609

上記の通り、炉心管12の管内ガスが圧力Pcに達すると、円筒部材25が浮上する。これにより、炉心管12の管内ガスは、蓋部材18の上面と円筒部材25の下面との間の広い間隙を通じて、炉心管12から円筒室24に大量に流れる。これにより、炉心管12の管内ガス圧力が急激に減少する。よって、炉心管12の耐圧に応じて円筒部材25の質量等を設定することにより、炉心管12の内圧の上限を規制して、内圧の上昇に起因する炉心管12の障害を防止できる。   As described above, when the gas in the core tube 12 reaches the pressure Pc, the cylindrical member 25 floats up. As a result, a large amount of gas in the core tube 12 flows from the core tube 12 to the cylindrical chamber 24 through the wide gap between the upper surface of the lid member 18 and the lower surface of the cylindrical member 25. As a result, the gas pressure in the tube of the furnace tube 12 is rapidly reduced. Therefore, by setting the mass or the like of the cylindrical member 25 in accordance with the pressure resistance of the core tube 12, the upper limit of the internal pressure of the core tube 12 can be restricted to prevent the failure of the core tube 12 due to the increase of the internal pressure.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The execution order of each process such as operations, procedures, steps, and steps in the apparatuses, systems, programs, and methods shown in the claims, the specification, and the drawings is particularly “before”, “preceding” It is to be noted that “it is not explicitly stated as“ etc. ”and can be realized in any order as long as the output of the previous process is not used in the later process. With regard to the flow of operations in the claims, the specification and the drawings, even if it is described using “first,” “next,” etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

10 焼結装置、11 ヒータ、12 炉心管、13 上蓋部材、14 保持棒、15 回転チャック、16 多孔質ガラス母材、17 ガス導入ポート、18 蓋部材、19 挿通穴、21 ガス排出ポート、22 供給ポート、23 排気ポート、24 円筒室、25 円筒部材、26 貫通穴 DESCRIPTION OF SYMBOLS 10 sintering apparatus, 11 heater, 12 core tube, 13 upper lid member, 14 holding rod, 15 rotary chuck, 16 porous glass base material, 17 gas introduction port, 18 lid member, 19 insertion hole, 21 gas discharge port, 22 Supply port, 23 exhaust port, 24 cylindrical chamber, 25 cylindrical member, 26 through hole

Claims (8)

多孔質ガラス母材を焼結する焼結装置であって、
多孔質ガラス母材を収容する、ヒータに取り巻かれた炉心管と、
多孔質ガラス母材に結合された保持棒が挿通される挿通穴を有して前記炉心管の一端に装着される蓋部材と
前記蓋部材に設けられ、前記炉心管の内部を外部に連通させて、前記炉心管の内部から管内ガスを外部に直截に排出するガス排気ポートと、
シールガスを導入する供給ポートとシールガスを排出する排出ポートとを有して、前記挿通穴を覆って前記蓋部材に設けられるシール室と、
前記シール室の内部において前記保持棒を挿通され、前記炉心管の内部の管内ガスと前記シール室の内部のガスとの間に圧力差を生じさせる筒状部材と
を備えることを特徴とする焼結装置。
A sintering apparatus for sintering a porous glass base material, comprising:
A heater-wrapped core tube containing a porous glass matrix;
A lid member attached to one end of the core tube, having an insertion hole through which the holding rod coupled to the porous glass base material is inserted
A gas exhaust port provided on the lid member, communicating the inside of the core tube to the outside, and discharging the gas from the inside of the core tube directly to the outside;
A seal chamber provided in the lid member to cover the insertion hole and having a supply port for introducing a seal gas and a discharge port for discharging the seal gas;
The sintered body is characterized by comprising: a cylindrical member which is inserted through the holding rod inside the seal chamber and causes a pressure difference between the gas inside the core tube and the gas inside the seal chamber. Connection device.
前記筒状部材は、前記圧力差が予め定めた閾値よりも大きくなると、前記蓋部材から離れて前記圧力差を減少させる請求項1に記載の焼結装置。 The sintering apparatus according to claim 1 , wherein the cylindrical member separates from the lid member and reduces the pressure difference when the pressure difference becomes larger than a predetermined threshold value. 前記筒状部材と前記保持棒とのクリアランスが、0.1mm以上、且つ、0.15mm以下であり、前記筒状部材の長さが100mm以上である請求項1または2に記載の焼結装置。 The sintering apparatus according to claim 1 or 2 , wherein the clearance between the cylindrical member and the holding bar is 0.1 mm or more and 0.15 mm or less, and the length of the cylindrical member is 100 mm or more. . 前記筒状部材において前記蓋部材に接触する接触面の表面粗さが、Ra2.0以下である請求項1から3のいずれか一項に記載の焼結装置。 The sintering apparatus according to any one of claims 1 to 3 , wherein a surface roughness of a contact surface of the cylindrical member in contact with the lid member is Ra 2.0 or less. 前記筒状部材において前記保持棒が挿通される貫通穴の内面の垂直度が、前記接触面に対して0.01mm以下である請求項4に記載の焼結装置。 The sintering apparatus according to claim 4 , wherein the perpendicularity of the inner surface of the through hole in the cylindrical member through which the holding bar is inserted is 0.01 mm or less with respect to the contact surface. 前記蓋部材において前記筒状部材に接触する面の表面粗さが、Ra2.0以下である請求項1から5のいずれか一項に記載の焼結装置。 The sintering apparatus according to any one of claims 1 to 5 , wherein a surface roughness of a surface of the lid member in contact with the cylindrical member is Ra 2.0 or less. 多孔質ガラス母材を炉心管に収容して焼結する焼結方法であって、
前記炉心管の内部における管内ガスの圧力を大気圧よりも高く維持しつつ、前記炉心管を取り巻くヒータにより炉心管に収容された多孔質ガラス母材を加熱し、
多孔質ガラス母材に結合された保持棒と、前記保持棒が挿通される挿通穴を有して前記炉心管の一端に装着される蓋部材との間、および、前記保持棒と前記保持棒を挿通された筒状部材との間を通じて、前記挿通穴を覆って前記蓋部材に設けられたシール室に前記管内ガスの一部を排出し、
前記シール室に排出した前記管内ガスの一部を、前記シール室に設けた供給ポートから供給されたシールガスと共に、前記シール室に設けた排出ポートから外部に排出させ、
前記炉心管の内部を外部に連通するガス排気ポートにより、前記炉心管の内部から管内ガスを外部に直截に排出する
ことを特徴とする多孔質ガラス母材の焼結方法。
A sintering method in which a porous glass base material is contained in a core tube and sintered,
The porous glass base material housed in the core tube is heated by the heater surrounding the core tube while maintaining the pressure of the gas in the core tube higher than the atmospheric pressure,
Between a holding rod coupled to a porous glass base material, and a lid member having an insertion hole through which the holding rod is inserted and attached to one end of the core tube, and the holding rod and the holding rod And a part of the gas in the pipe is discharged to a seal chamber provided in the lid member so as to cover the insertion hole and between the cylindrical member into which the
A part of the gas in the pipe discharged into the seal chamber is discharged to the outside from a discharge port provided in the seal chamber together with a seal gas supplied from a supply port provided in the seal chamber;
A method of sintering a porous glass base material , wherein the gas in the pipe is directly discharged from the inside of the core tube to the outside by a gas exhaust port which communicates the inside of the core tube to the outside .
前記炉心管から前記シール室へ流れるガスの流量を予め定めた流量に制御する請求項7に記載の多孔質ガラス母材の焼結方法。 The method of sintering a porous glass base material according to claim 7 , wherein the flow rate of gas flowing from the core tube to the seal chamber is controlled to a predetermined flow rate.
JP2016057846A 2015-03-24 2016-03-23 Sintering apparatus and sintering method Active JP6539609B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610176855.9A CN106007356B (en) 2015-03-24 2016-03-24 Sintering equipment and sintering method
US15/080,467 US9751796B2 (en) 2015-03-24 2016-03-24 Sintering apparatus and method for sintering
DE102016105519.0A DE102016105519A1 (en) 2015-03-24 2016-03-24 Sintering device and sintering method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015060873 2015-03-24
JP2015060873 2015-03-24

Publications (2)

Publication Number Publication Date
JP2016179934A JP2016179934A (en) 2016-10-13
JP6539609B2 true JP6539609B2 (en) 2019-07-03

Family

ID=57131921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057846A Active JP6539609B2 (en) 2015-03-24 2016-03-23 Sintering apparatus and sintering method

Country Status (1)

Country Link
JP (1) JP6539609B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431237Y2 (en) * 1986-02-10 1992-07-28
JP2791380B2 (en) * 1989-02-13 1998-08-27 株式会社フジクラ Dehydration sintering furnace for optical fiber preform
JP2002226218A (en) * 2001-01-29 2002-08-14 Sumitomo Electric Ind Ltd Core tube top cover for glass porous base material sintering furnace, and glass porous base material sintering method
US20030226376A1 (en) * 2002-06-10 2003-12-11 General Electric Company Fabrication of heavy walled silica tubing
JP4398404B2 (en) * 2005-05-27 2010-01-13 信越化学工業株式会社 Heat treatment method for optical fiber preform
JP2014201513A (en) * 2013-04-10 2014-10-27 信越化学工業株式会社 Sintering apparatus

Also Published As

Publication number Publication date
JP2016179934A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
EP2805928B1 (en) Method and apparatus for sintering a glass preform for an optical fiber
JP5346567B2 (en) Optical fiber manufacturing apparatus and optical fiber manufacturing method
CN107601840A (en) Segmented preform sintering furnace device and corresponding optical wand sintering method
EP2789590A1 (en) Sintering apparatus
US9751796B2 (en) Sintering apparatus and method for sintering
CN109264985A (en) A kind of degassing method and device of preform
JP6539609B2 (en) Sintering apparatus and sintering method
JP2012509245A (en) Apparatus and method for sintering optical fiber preforms
JP2015074600A (en) Method of manufacturing optical fiber
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
JP4994591B2 (en) Optical fiber manufacturing method
JP2007269527A (en) Method for manufacturing optical fiber perform and method for determining dehydration condition of porous glass preform
JP4737031B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2008179517A (en) Apparatus and method for producing glass preform
JP6621388B2 (en) Sintering equipment
JP6881214B2 (en) Method for manufacturing silicon single crystal
US11554981B2 (en) Apparatuses and methods for processing optical fiber preforms
JP6729171B2 (en) Optical fiber drawing furnace seal structure and optical fiber manufacturing method
KR101210064B1 (en) Vacuum heat treatment apparatus
JP6519488B2 (en) Method of manufacturing optical fiber base material
JP6816670B2 (en) Seal structure of optical fiber drawing furnace, optical fiber manufacturing method
JP6926951B2 (en) Glass base material manufacturing equipment and manufacturing method
JP2015048262A (en) Breakage detection method for furnace core tube and sintering furnace
JP2003212561A (en) Method and apparatus for manufacturing glass preform
JP4403011B2 (en) Optical fiber preform manufacturing method and optical fiber preform manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6539609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150