JP6536750B2 - 電源装置及び除電器 - Google Patents

電源装置及び除電器 Download PDF

Info

Publication number
JP6536750B2
JP6536750B2 JP2018532890A JP2018532890A JP6536750B2 JP 6536750 B2 JP6536750 B2 JP 6536750B2 JP 2018532890 A JP2018532890 A JP 2018532890A JP 2018532890 A JP2018532890 A JP 2018532890A JP 6536750 B2 JP6536750 B2 JP 6536750B2
Authority
JP
Japan
Prior art keywords
positive
negative
voltage
capacitor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018532890A
Other languages
English (en)
Other versions
JPWO2018030072A1 (ja
Inventor
崇 黒川
崇 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2018030072A1 publication Critical patent/JPWO2018030072A1/ja
Application granted granted Critical
Publication of JP6536750B2 publication Critical patent/JP6536750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Rectifiers (AREA)
  • Elimination Of Static Electricity (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、正の電流と負の電流とをバランスよく出力する電源装置、及びそれを備えた除電器に関する。
静電気対策として用いられる除電器には、例えば、針状の放電電極へ電界を集中させることにより正負両極性のイオンを発生させ、イオン化した空気で除電する(静電気を取り除く)方式を用いたものがある。この方式の除電器の場合、正負のイオン発生量が偏ると対象物が帯電するため、除電器からは、正負のイオンをバランスよく発生することが望まれる。
特許文献1には、正負イオンをバランスよく発生させるための正負電源回路および除電器が開示されている。特許文献1に記載の正負電源回路は電源電圧を昇圧して電極に印加することで、正と負のイオンを発生させる。このときトランスの二次コイルに接続したコンデンサにより、正負電流が等しくなるように正負電圧が自動的に制御される。
特許第4367580号公報
ところで、高圧電源の高圧発生方法として、コッククロフト・ウォルトン回路方式を用いる方法がある。このコッククロフト・ウォルトン回路を特許文献1に用いる場合、コッククロフト・ウォルトン回路が偶数段であると、正負の直流電流が等しくなる効果が得られないという問題がある。このため、必要な電圧を得るために整流回路の段数を増減させるだけでなく、トランスの出力電圧を変える必要がある。
そこで、本発明の目的は、簡易な構成で、正負の電流をバランスよく出力する電源装置、及びそれを備えた除電器を提供することにある。
本発明に係る電源装置は、交流電圧が入力される一次巻線と、第1端がグランドに接続された二次巻線とを有するトランスと、キャパシタとダイオードとがm段(mは2以上の偶数)に組み合わされ、前記二次巻線の第2端に接続され、前記二次巻線に誘起される正電圧を昇圧して、正側出力端へ出力する第1コッククロフト・ウォルトン回路と、キャパシタとダイオードとがn段(nは2以上の偶数)に組み合わされ、前記二次巻線の前記第2端に接続され、前記二次巻線に誘起される負電圧を昇圧して、負側出力端へ出力する第2コッククロフト・ウォルトン回路と、第1端が、前記第1コッククロフト・ウォルトン回路および前記第2コッククロフト・ウォルトン回路に接続され、第2端がグランドに接続されているキャパシタと、を備えることを特徴とする。
この構成では、キャパシタにより、正負整流回路の各正負電圧ピーク値が、正負電流が等しくなるように増減し、それによって、正側出力端および負側出力端から出力される電流総量を等しくできる。その結果、フィードバック制御などが不要であるため、簡易な構成で、正負の電流をバランスよく出力することができる。また、コッククロフト・ウォルトン回路を用いているため、トランスのコイル出力電圧より高い電圧を出力することができる。
前記二次巻線の第1端は、前記キャパシタの前記第1端に接続されている構成でもよい。
本発明に係る電源装置は、交流電圧が入力される一次巻線と、第1二次巻線および第2二次巻線とを有するトランスと、アノードが前記第1二次巻線の一端に接続され、カソードが正側出力端に接続された第1ダイオードを有し、前記第1二次巻線に誘起される正電圧を昇圧して、前記正側出力端へ出力する第1倍電圧回路と、カソードが前記第2二次巻線の一端に接続され、アノードが負側出力端に接続された第2ダイオードを有し、前記第2二次巻線に誘起される負電圧を昇圧して、前記負側出力端へ出力する第2倍電圧回路と、第1端が、前記第1倍電圧回路および前記第2倍電圧回路に接続され、第2端がグランドに接続されているキャパシタと、を備えることを特徴とする。
この構成では、キャパシタにより、正負整流回路の各正負電圧ピーク値が、正負電流が等しくなるように増減し、それによって、正側出力端および負側出力端から出力される電流総量を等しくできる。その結果、フィードバック制御などが不要であるため、簡易な構成で、正負の電流をバランスよく出力することができる。また、倍電圧回路を用いているため、トランスのコイル出力電圧より高い電圧を出力することができる。
本発明に係る除電器は、本発明の電源装置と、前記正側出力端に接続された正イオン発生子と、前記負側出力端に接続された負イオン発生子と、を疎なることを特徴とする。
この構成では、正イオン発生子および負イオン発生子から出力される電流総量、つまり、正負イオンの発生量を等しくできる。
本発明は、キャパシタにより、正負整流回路の各正負電圧ピーク値が、正負電流が等しくなるように増減し、それによって、正イオン発生子および負イオン発生子から出力される電流総量すなわち正負イオン量を等しくできる。その結果、フィードバック制御などが不要であるため、簡易な構成で、正負の電流をバランスよく出力することができる。
図1は、実施形態1に係る除電器の回路図である。 図2(A)は、接続点Aに発生する電圧波形、ダイオードのアノード側、およびダイオードのカソード側の電圧波形、ならびに、正イオン発生子および負イオン発生子への印加電圧波形、図2(B)は、正イオン発生子および負イオン発生子への電流波形、図2(C)は、正側整流回路および負側整流回路それぞれに流出入する電流波形を示す図である。 図3(A)は、初期状態から定常状態までの、正イオン発生子および負イオン発生子への印加電圧波形およびキャパシタの電圧波形、図3(B)は、正イオン発生子および負イオン発生子へ流れる電流波形を示す図である。 図4(A)は、定常状態で、一次巻線に正弦波交流入力電圧を印加した直後の正イオン発生子と負イオン発生子への印加電圧波形、図4(B)は、正イオン発生子と負イオン発生子へ流れる電流波形、図4(C)は正側整流回路および負側整流回路へ流れる電流波形を示す図である。 図5(A)はパルス電圧波形、図5(B)はフライバック電圧波形、図5(C)は矩形波電圧波形を示す図である。 図6は、正イオン発生子および負イオン発生子を複数備えた除電器1の例を示す図である。 図7は、正側整流回路および負側整流回路の段数を4段とした場合の除電器の回路図である。 図8は、正側整流回路及び負側整流回路の段数が奇数である場合の除電器の回路図である。 図9は、別の例の除電器の回路図である。 図10は、別の例の除電器の回路図である。 図11は、別の例の除電器の回路図である。 図12は、別の例の除電器の回路図である。 図13は、別の例の除電器の回路図である。 図14は、別の例の除電器の回路図である。 図15は、実施形態2に係る除電器の回路図である。 図16(A)は、二次巻線の出力端電圧波形と、正イオン発生子および負イオン発生子への印加電圧波形、図16(B)は、正イオン発生子および負イオン発生子への電流波形、図16(C)は、二次巻線の出力電圧端から正側整流回路および負側整流回路に流出入する電流波形を示す図である。 図17(A)は、初期状態から定常状態までの、正イオン発生子および負イオン発生子への印加電圧波形およびキャパシタC4の電圧波形、図17(B)は、正イオン発生子および負イオン発生子の電流波形を示す図である。 図18(A)は、キャパシタへの直流電流成分の流れ込みが無くなった定常状態における二次巻線の出力端電圧波形および正イオン発生子と負イオン発生子の印加電圧波形、図18(B)は、正イオン発生子と負イオン発生子の電流波形、図18(C)は、正側整流回路および負側整流回路に流出入する電流波形を示す図である。 図19は、2つのトランスを備えた除電器の例を示す図である。 図20は、2つのトランスを備えた除電器の例を示す図である。 図21は、2つのトランスを備えた除電器の例を示す図である。
(実施形態1)
図1は、実施形態1に係る除電器1の回路図である。
除電器1は、電源装置10と、正イオン発生子101と、負イオン発生子102とを備えている。電源装置10は、正側出力端O1と負側出力端O2とを有している。電源装置10は、正側出力端O1から正極性の高電圧(以下、正電圧と言う)を出力する。また、電源装置10は、負側出力端O2から負極性の高電圧(以下、負電圧と言う)を出力する。
正イオン発生子101は正側出力端O1に接続されている。負イオン発生子102は負側出力端O2に接続されている。正イオン発生子101および負イオン発生子102はそれぞれ針状の放電電極である。電源装置10により、正側の針状の放電電極に正電圧が印加され、負側の針状の放電電極に負電圧が印加されると、それぞれの放電電極でコロナ放電が発生し、空気が電離されて正イオンおよび負イオンがそれぞれ生成される。
電源装置10は、駆動回路11、トランスT1、正側整流回路12および負側整流回路13を備えている。
トランスT1は、一次巻線N1及び二次巻線N2を有している。一次巻線N1は駆動回路11に接続されている。駆動回路11は交流電圧をトランスT1の一次巻線N1へ供給する。トランスT1の一次巻線N1に交流電圧が印加されると、トランスT1の二次巻線N2には、一次巻線N1に印加された交流電圧の巻数比倍の交流電圧が発生する。以下、一次巻線N1に印加される交流電圧を「入力電圧」という。
トランスT1の二次巻線N2の第1端はグランドに接続されている。二次巻線N2の第2端は、正側整流回路12および負側整流回路13に接続されている。
正側整流回路12は、ダイオードD11,D12およびキャパシタC11,C12が組み合わされて構成されたコッククロフト・ウォルトン回路である。この例では、正側整流回路12は、二次巻線N2に誘起される正電圧を昇圧するように、ダイオードおよびコンデンサが2段に組み合わされて構成されている。初段目のダイオードD11のアノードは、キャパシタC3を介してグランドに接続されている。また、2段目のダイオードD12とキャパシタC12との接続点は、電源装置10の正側出力端O1に接続されている。なお、正側整流回路12は、キャパシタC12の代わりに部品間や配線間に存在する分布容量を代用してもよい。正側整流回路12は、本発明に係る「第1コッククロフト・ウォルトン回路」の一例である。
負側整流回路13は、ダイオードD21,D22およびキャパシタC21,C22が組み合わされて構成されたコッククロフト・ウォルトン回路である。この例では、負側整流回路13は、二次巻線N2に誘起される負電圧を昇圧するように、ダイオードおよびコンデンサが2段に組み合わされて構成されている。初段目のダイオードD21のカソードは、キャパシタC3を介してグランドに接続されている。また、2段目のダイオードD22とキャパシタC22との接続点は、電源装置10の負側出力端O2に接続されている。なお、正側整流回路12は、キャパシタC22の代わりに部品間や配線間に存在する分布容量を代用してもよい。負側整流回路13は、本発明に係る「第2コッククロフト・ウォルトン回路」の一例である。
この構成の除電器1によって、対象物を正負電位が偏ることなく除電するために、正と負とのイオンの発生バランスを調整する必要がある。正と負のイオンの発生バランスを調整するには、正イオン発生子101へ流れる電流(以下、正電流と言う)と、負イオン発生子102へ流れる電流(以下、負電流と言う)の絶対値を等しくし、正イオン発生子101で生成される正イオン量と、負イオン発生子102で生成される負イオン量とを等しくする必要がある。本実施形態では、キャパシタC3を設けることにより、正電流と負電流の絶対値を等しくすることができる。
以下、その理由について説明する。以下では、正側整流回路12および負側整流回路13と二次巻線N2との接続点を、「A点」とする。また、正側整流回路12および負側整流回路13と、キャパシタC3との接続点を、「B点」とする。
図2(A)は、接続点Aに発生する電圧波形、ダイオードD12のアノード側、およびダイオードD22のカソード側の電圧波形、ならびに、正イオン発生子101および負イオン発生子102への印加電圧波形を示す。図2(B)は、正イオン発生子101および負イオン発生子102への電流波形を示す図である。図2(C)は、正側整流回路12および負側整流回路13それぞれに流出入する電流波形を示す図である。
図2(A)では、接続点Aに発生する電圧波形を破線の曲線で示し、ダイオードD12のアノード側の電圧波形を実線の曲線で示し、ダイオードD22のカソード側の電圧波形を点線の曲線で示す。また、正イオン発生子101への印加電圧は、約6kVであり、負イオン発生子102への印加電圧は、約−6kVである。図2(B)および図2(C)それぞれでは、正イオン発生子101および正側整流回路12に関する波形を実線で示し、負イオン発生子102および負側整流回路13に関する波形を実線で示す。
初期状態としてキャパシタC3に電荷が蓄えられていないとする。この場合、一次巻線N1に正弦波交流電圧が印加されると、キャパシタC3の両端間電圧はほぼゼロである。このため、図2(A)に示すように、接続点Aに発生する電圧の正電圧ピーク値と負電圧ピーク値との絶対値はほぼ等しい。ここで、接続点Aに発生する電圧をVppで表すと、正電圧ピーク値はVpp/2、負電圧ピーク値は−Vpp/2である。
正側整流回路12では、正電圧ピーク値(Vpp/2)がキャパシタC11とダイオードD11によって構成される半波整流回路により、キャパシタC11に直流電圧(Vpp/2)が充電される。ダイオードD12のアノードには、交流電圧(Vpp)に、直流電圧(Vpp/2)が重畳された電圧が発生する(図2(A)の実線曲線)。そして、ピーク電圧(Vpp)がダイオードD12とキャパシタC12にて構成される半波整流回路にて整流されて、直流電圧(Vpp)が正イオン発生子101に印加される。
負側整流回路13では、正側整流回路12と正負が逆となる動作により、直流電圧(−Vpp)が負イオン発生子102に印加される。
そして、正イオン発生子101に印加された正電圧と、正イオン発生子101のイオン生成のしやすさとに応じて、正イオン発生子101で正極性コロナ放電が発生して正イオンが生成される。そして、正イオン発生子101には発生したイオン電荷量に等しい正イオン電流が流れる。また、負イオン発生子102に印加された負電圧と負イオン発生子102のイオン生成のしやすさとに応じて、負イオン発生子102で負極性コロナ放電が発生して負イオンが生成される。そして、負イオン発生子102には、発生した負イオン電荷量に等しい負イオン電流が流れる。
例えば、正イオンより負イオンが発生しやすい場合においては、図2(B)のように正イオン発生子101に流れる電流の絶対値(=正イオン量)より、負イオン発生子102に流れる電流の絶対値(=負イオン量)の方が大きくなる。これらのイオン発生子電流は、図2(C)のように正側整流回路12と負側整流回路13それぞれへの流出入パルス電流として、グランドからキャパシタC3を介して正側整流回路12または負側整流回路13へ供給される。この場合、負パルス電流絶対値の方が正パルス電流絶対値より大きくなる。これらを踏まえると、正イオン量と負イオン量を等しくするためには、正電圧ピーク値と負電圧ピーク値とを変化させて、B点から正側整流回路12と負側整流回路13に流れ込む電流値の和(差異)をゼロにすればよいことが分かる。
次に、負イオンの方が正イオンより発生しやすい状態で回路動作が継続されている状態を説明する。
図3(A)は、初期状態から定常状態までの、正イオン発生子101および負イオン発生子102への印加電圧波形およびキャパシタC3の電圧波形、図3(B)は、正イオン発生子101および負イオン発生子102へ流れる電流波形を示す図である。
図3(A)において、実線波形はキャパシタC3の電圧波形、破線波形は正イオン発生子101への印加電圧波形、点線波形は負イオン発生子102への印加電圧波形である。また、図3(B)において、実線波形は、正イオン発生子101へ流入される電流波形、点線波形は、負イオン発生子102へ流入される電流波形を示す。
B点から正側整流回路12と負側整流回路13へ流出入する電荷総量は、グランドを介してキャパシタC3の充放電によって供給されるが、このときキャパシタC3から流出入する電荷量に応じて、キャパシタC3の両端電圧はV=Q(総電荷量)/C(コンデンサ容量)となるように変化する。
初期状態ではA点から正側整流回路12と負側整流回路13へ流入する電流総和が負電流となっている。このため、キャパシタC3は負電流供給量(=負電荷)分だけ電圧が増加し、B点電圧(Vcbとする)も増加する。よって、キャパシタC11に充電される電圧はVcb−(−Vpp/2)=Vpp/2+Vcbとなり、ダイオードD12のカソード側に発生する電圧はVpp+Vcbである。
キャパシタC21に充電される電圧はVcb−Vpp/2となり、ダイオードD22のアノード側に発生する電圧は−Vpp+Vcbである。
これにより、正イオン発生量は増加し、負イオン発生量は減少する。図3(A)に示すように、キャパシタC3の電圧の上昇と正イオン発生子101への印加電圧の変化とは、正負電流の差異(=正負イオンの発生量の差異)が無くなるまで続き、正負電流の差異がなくなるとキャパシタC3への電流の流れ込みとコンデンサ電圧の変化もなくなる。
図4(A)は、定常状態で、一次巻線N1に正弦波交流入力電圧を印加した直後の正イオン発生子101と負イオン発生子102への印加電圧波形、図4(B)は、正イオン発生子101と負イオン発生子102へ流れる電流波形、図4(C)は正側整流回路12および負側整流回路13へ流れる電流波形を示す図である。この図において、A点での電圧波形が正側にシフトし、正イオン発生子101と負イオン発生子102に流れる電流の絶対値と、正側整流回路12および負側整流回路13に流れる電流の絶対値とがそれぞれ等しくなっていることが分かる。
このように、キャパシタC3を設けることにより、正イオン発生子101および負イオン発生子102で生成される正負のイオン量は等しくなり、正と負とのイオンの発生バランスのよい除電器1を実現できる。
また、本実施形態では、キャパシタC3のみを設けるだけで、除電器1の正と負とのイオンの発生バランスが保たれるため、正負イオン量の検出またはイオン電流検出とこれを用いたフィードバック制御を行う必要がない。このため、フィードバック制御回路を設ける必要がなく、製造コストの削減、部品の削減によるコストダウン、小型化が可能となる。
また、本実施形態では、トランスT1の一次巻線N1に印加する入力電圧は正弦波交流電圧であるが、必ずしも正弦波交流電圧である必要はなく、交流波形であればどのような波形形状でもよい。例えば、図5のようなパルス電圧波形又はフライバック電圧波形、矩形波電圧波形であってもよい。図5(A)はパルス電圧波形、図5(B)はフライバック電圧波形、図5(C)は矩形波電圧波形を示す図である。
以下に、実施形態1に係る除電器1の変形例について説明する。
除電器1は、複数の正イオン発生子101および負イオン発生子102を備えていてもよい。
図6は、正イオン発生子および負イオン発生子を複数備えた除電器1の例を示す図である。この例では、除電器1は、5つの正イオン発生子101および負イオン発生子102を備えている。この場合、広範囲にわたり、正負バランスされたイオンで除電することができる。
また、本実施形態では、正側整流回路と負側整流回路それぞれの、キャパシタおよびダイオードの段数を2段としているが、正側整流回路と負側整流回路の段数が偶数であればよい。例えば、正側整流回路が4段、負側整流回路の段数が2段であってもよい。
図7は、正側整流回路および負側整流回路の段数を4段とした場合の除電器1Aの回路図である。
この例で除電器1Aが備える電源装置10Aは、トランスT1の2次側の構成が図1と相違する。電源装置10Aは、正側整流回路12Aと、負側整流回路13Aとを備えている。
正側整流回路12Aは、ダイオードD11,D12,D13,D14およびキャパシタC11,C12,C13,C14を備え、ダイオードおよびコンデンサが4段に組み合わされて構成されている。初段目のダイオードD11のアノードは、キャパシタC3を介してグランドに接続されている。また、4段目のダイオードD14とキャパシタC14との接続点は、電源装置10Aの正側出力端O1に接続されている。正側整流回路12Aは、本発明に係る「第1コッククロフト・ウォルトン回路」の一例である。
負側整流回路13Aは、ダイオードD21,D22,D23,D24およびキャパシタC21,C22,C23,C24を備え、ダイオードおよびコンデンサが4段に組み合わされて構成されている。初段目のダイオードD21のカソードは、キャパシタC3を介してグランドに接続されている。また、4段目のダイオードD24とキャパシタC24との接続点は、電源装置10Aの負側出力端O2に接続されている。負側整流回路13Aは、本発明に係る「第2コッククロフト・ウォルトン回路」の一例である。
この構成における動作は、図1の除電器1と同じであるため、説明は省略する。なお、正側整流回路及び負側整流回路の段数が偶数であれば、その段数は特に限定されない。以下に、段数が奇数の場合は、好ましくない理由を示す。
図8は、正側整流回路及び負側整流回路の段数が奇数である場合の除電器の回路図である。
トランス二次巻線からA点に正弦波交流電圧Vppが印加されると、キャパシタC3の両端間電圧がゼロとすると、正側整流回路12BのC13にはVppがDC電圧として充電され、キャパシタC11には正電圧ピーク値Vpp/2が充電されるため、正側整流回路12Bの出力は+3/2*Vppとなる。
一方、負側整流回路13BのキャパシタC23には−VppがDC成分として充電され、キャパシタC21には負電圧ピーク値−Vpp/2が充電されるため、負側整流回路13Bの出力は−3/2*Vppとなる。
正側整流回路12BはキャパシタC11を介して、負側整流回路13BはキャパシタC21を介して、それぞれキャパシタC3と接続されているが、キャパシタC11およびキャパシタC21はDC電流を流す事はできず、キャパシタC3の両端間に偏ったDC電圧が発生する事はなく、正負の出力電圧がキャパシタC3によって変化することはない。
よって正と負の出力電圧の絶対値は等しくなり、正負出力電流は出力電圧と瀬正と負回路に接続される各負荷によって定まるため、結局この構成では正負電流がバランスする事はない。
なお、本実施形態では、正イオンより負イオンが発生しやすい場合を例として説明しているが、負イオンよりも正イオンが発生しやすい場合においても、同様の効果を奏する。
図9は、別の例の除電器1Cの回路図である。
この除電器1Cの電源装置10Cは、2つの二次巻線N21,N22を有するトランスT2を備える。二次巻線N21,N22それぞれの第1端は、グランドに接続されている。二次巻線N21の第2端は、正側整流回路12が接続されている。二次巻線N22の第2端は、負側整流回路13が接続されている。
この構成であっても、図1に示す除電器1と同じように、キャパシタC3を設けることで、除電器1Cの正と負とのイオンの発生バランスを保つことができる。
図10は、別の例の除電器1Dの回路図である。
図1に示す除電器1では、電源装置10が備えるトランスT1の二次巻線N2の第1端は、グランドに直接接続している。これに対して、図10に示す除電器1Dでは、電源装置10Cの二次巻線N2の第1端は、B点に接続している。つまり、二次巻線N2の第1端は、キャパシタC3を介してグランドに接続している。なお、他の構成は、図1の除電器1と同じである。
電源装置10Dの正側出力端O1と負側出力端O2とからはそれぞれ正負イオン電流が流出入する。この例では、トランスT1の二次側(高圧側)がグランドからキャパシタC3を介してフローティングしている。このため、正負イオン電流はキャパシタC3から供給される。
例えば、正イオンより負イオンが発生しやすい場合、正イオン発生子101に流れる電流の絶対値(=正イオン量)より、負イオン発生子102に流れる電流の絶対値(負イオン量)の方が大きい。正負イオン電流はキャパシタC3より供給されるため、キャパシタC3には正側整流回路12および負側整流回路13から正負電流の差分である負電流が流れ込み、キャパシタC3の両端電圧はVcb=Q(総電荷量)/C(コンデンサ容量)となるように変化する。
よって、正側出力端O1と負側出力端O2とに発生する電圧は初期電圧をV1と−V2で表すと、それぞれV1+Vcbと−V2+Vcbとなる。つまり、正電圧は増加するので正イオン発生量は増加し、負電圧は減少するので負イオン発生量は減少する。キャパシタC3の電圧の上昇と負イオン発生子102への印加電圧の変化は、正負電流の差異(=正負イオンの発生量の差異)が無くなるまで続き、正負電流の差異がなくなるとキャパシタC3への電流の流れ込みとコンデンサ電圧の変化もなくなる。
このように、キャパシタC3を設けることにより、正イオン発生子101および負イオン発生子102で生成される正負のイオン量は等しくなり、正負イオンの発生バランスのよい除電器1Dを実現できる。
図11は、別の例の除電器1Eの回路図である。
この除電器1Eは、図10に示す除電器1Dと、トランスの構成が相違する。詳しくは、除電器1Eの電源装置10Eは、2つの二次巻線N21,N22を有するトランスT2を備える。二次巻線N21,N22それぞれの第1端は、キャパシタC3を介してグランドに接続されている。二次巻線N21の第2端は、正側整流回路12が接続されている。二次巻線N22の第2端は、負側整流回路13が接続されている。
この構成であっても、キャパシタC3により、除電器1Eの正と負とのイオンの発生バランスを保つことができる。
図12は、別の例の除電器1Fの回路図である。
除電器1Fの電源装置10Fは、2つの二次巻線N21,N22を有するトランスT2を備える。二次巻線N21,N22それぞれの第1端は、グランドに接続されている。
二次巻線N21の第2端には、正側整流回路121と負側整流回路131とが接続されている。正側整流回路121と負側整流回路131とは、キャパシタC31を介してグランドに接続されている。正側整流回路121は正側出力端O11に接続され、負側整流回路131は負側出力端O21に接続されている。正側出力端O11には、正イオン発生子101Aが接続されている。負側出力端O21には、負イオン発生子102Aが接続されている。
二次巻線N22の第2端には、正側整流回路122と負側整流回路132とが接続されている。正側整流回路122と負側整流回路132とは、キャパシタC32を介してグランドに接続されている。正側整流回路122は正側出力端O12に接続され、負側整流回路132は負側出力端O22に接続されている。正側出力端O12には、正イオン発生子101Bが接続されている。負側出力端O22には、負イオン発生子102Bが接続されている。
なお、正側整流回路121,122は、正側整流回路12(図1)と同じ構成であり、構成する各素子には同符号を付している。同様に、負側整流回路131,132は、負側整流回路13(図1)と同じ構成であり、構成する各素子には同符号を付している。
この構成であっても、キャパシタC31,C32により、除電器1Fの正と負とのイオンの発生バランスを保つことができる。また。二次巻線N21,N22の巻数を変えることにより、正イオン発生子101Aおよび負イオン発生子102Aと、正イオン発生子101Bおよび負イオン発生子102Bとに印加する電圧を異ならせることができる。これにより、様々な要求仕様に対して柔軟に対応可能となる。
図13は、別の例の除電器1Gの回路図である。
除電器1Gの電源装置10Gは、3つの正側整流回路121,122,123と、3つの負側整流回路131,132,133とを備える。
電源装置10Gは、正側出力端O11,O12,O13と、負側出力端O21,O22,O23を備えている。正側出力端O11,O12,O13には、正イオン発生子101A,101B,101Cが接続されている。負側出力端O21,O22,O23には、負イオン発生子102A,102B,102Cが接続されている。
二次巻線N2の第2端には、図12で説明した、正側整流回路121,122と、負側整流回路131,132と、キャパシタC31,C32とからなる構成の回路が接続されている。さらに、二次巻線N2の第2端には、キャパシタC33介して、正側整流回路123と、負側整流回路133とが接続されている。
正側整流回路123は、ダイオードD15,D16,D17およびキャパシタC15,C16,C17を備え、ダイオードおよびコンデンサが3段に組み合わされて構成されている。初段目のダイオードD15のアノードは、キャパシタC4を介して二次巻線N2に接続されている。また、3段目のダイオードD17とキャパシタC17との接続点は、電源装置10Gの正側出力端O13に接続されている。
負側整流回路133は、ダイオードD25,D26,D27およびキャパシタC25,C26,C27を備え、ダイオードおよびコンデンサが3段に組み合わされて構成されている。初段目のダイオードD25のカソードは、キャパシタC4を介して二次巻線N2に接続されている。また、3段目のダイオードD27とキャパシタC27との接続点は、電源装置10Gの負側出力端O23に接続されている。
この構成において、除電器1Gは、複数の正イオン発生子101A,101B,101Cと、負イオン発生子102A,102B,102Cとをそなえることで、広範囲にわたり、正負バランスされたイオンで除電することができる。針の摩耗や損傷により一部の針のイオンが多かったり、少なかったりすると、その針の近傍でのイオンバランスは悪くなるが、本実施形態では、正イオン素子と負イオンの素子の電流総量がバランスされるため、結果的に広範囲にてイオンバランスされた除電イオンを放出することが可能となる。
また、この例では、正側整流回路121,122と負側整流回路131,132とからはほぼ同程度の電圧が出力され、正側整流回路123と負側整流回路133からは、正側整流回路121,122と負側整流回路131,132からの約1.5倍の電圧が出力されるので、正イオン発生子101Cと負イオン発生子102Cの近傍では正負イオン量がより多く除電効果も高くできる。
また、正負の整流回路とキャパシタとの組み合わせは何組でもよく、各組合せ内における正負の整流回路の個数もそれぞれが1個以上であれば何個でもよく、イオンバランス出力が可能な正負の整流回路を自由に設計、配置することができる。
図14は、別の例の除電器1Hの回路図である。
除電器1Hの電源装置10Hは、正側出力端O11,O12と、負側出力端O21,O22と、を備えている。正側出力端O11には、3つの正イオン発生子101Aが接続されている。負側出力端O21には、2つの負イオン発生子102Aが接続されている。正側出力端O12には、2つの正イオン発生子101Bが接続されている。負側出力端O22には、3つの負イオン発生子102Bが接続されている。
電源装置10Hは、図1に示す正側整流回路12および負側整流回路13と、図7に示す正側整流回路12Aおよび負側整流回路13Aとを備えている。正側整流回路12は正側出力端O11に接続され、負側整流回路13は負側出力端O21に接続されている。正側整流回路12Aは正側出力端O12に接続され、負側整流回路13Aは負側出力端O22に接続されている。
この構成に示すように、整流回路に接続されるイオン発生子の数は何個であってもよい。キャパシタC3と整流回路とでイオンバランスが保つたれるため、正側出力端O11に接続される正イオン発生子101のイオン電流総量と、負側出力端O21に接続される負イオン発生子102のイオン電流総量との絶対値は等しくなる。また、正側出力端O12に接続される正イオン発生子101のイオン電流総量と、負側出力端O22に接続される負イオン発生子102のイオン電流総量との絶対値は等しくなる。
(実施形態2)
以下、実施形態2に係る除電器について説明する。実施形態1では、電源装置のトランスは、一つの二次巻線を備え、その2次側に設けられた正側整流回路および負側整流回路は、コッククロフト・ウォルトン回路である。これに対し、実施形態2では、電源装置のトランスは、二つの二次巻線を備え、その2次側に設けられた正側整流回路および負側整流回路は、倍電圧回路である。
図15は、実施形態2に係る除電器2の回路図である。
除電器2は、電源装置20と、正イオン発生子101と、負イオン発生子102とを備えている。電源装置20の正側出力端O1には正イオン発生子101が接続されている。電源装置20の負側出力端O2には負イオン発生子102が接続されている。
電源装置20はトランスT2を有する。トランスT2は、一次巻線N1と、2つの二次巻線N21,N22とを有する。一次巻線N1には、駆動回路21が接続されている。二次巻線N21は、本発明に係る「第1二次巻線」の一例である。二次巻線N22は、本発明に係る「第2二次巻線」の一例である。
二次巻線N21には正側整流回路22が接続されている。正側整流回路22は、ダイオードD31,D32およびキャパシタC31,C32を備えた倍電圧回路である。ダイオードD31およびキャパシタC31の接続点は、正側出力端O1に接続されている。ダイオードD32およびキャパシタC32の接続点は、キャパシタC4を介してグランドに接続されている。
二次巻線N22には負側整流回路23が接続されている。負側整流回路23は、ダイオードD33,D34およびキャパシタC33,C34を備えた倍電圧回路である。ダイオードD33およびキャパシタC33の接続点は、負側出力端O2に接続されている。ダイオードD34およびキャパシタC34の接続点は、キャパシタC4を介してグランドに接続されている。
正側整流回路22は、本発明に係る「第1倍電圧回路」の一例である。ダイオードD31は、本発明に係る「第1ダイオード」の一例である。負側整流回路23は、本発明に係る「第2倍電圧回路」の一例である。ダイオードD33は、本発明に係る「第2ダイオード」の一例である。
図16(A)は、二次巻線N21,N22の出力端電圧波形と、正イオン発生子101および負イオン発生子102への印加電圧波形、図16(B)は、正イオン発生子101および負イオン発生子102への電流波形、図16(C)は、二次巻線N21,N22の出力電圧端から正側整流回路22および負側整流回路23に流出入する電流波形を示す図である。
図16(A)では、二次巻線N21の出力端電圧波形を実線曲線で示し、二次巻線N22の出力端電圧波形を点線曲線で示す。また、正イオン発生子101への印加電圧は、約6kVであり、負イオン発生子102への印加電圧は、約−6kVである。図16(B)および図16(C)それぞれでは、正イオン発生子101および正側整流回路22に関する波形を実線で示し、負イオン発生子102および負側整流回路23に関する波形を実線で示す。
初期状態としてキャパシタC4に電荷が蓄えられていない場合、キャパシタC4の両端間電圧はほぼゼロである。ここで、一次巻線N1に正弦波交流電圧Vppが印加されると、二次巻線N21の出力電圧が負のとき、二次巻線N21→キャパシタC32→ダイオードD32の経路で、キャパシタC32にはVpp/2が充電される。二次巻線N21の出力電圧が正の時は、二次巻線N21→ダイオードD31→キャパシタC31の経路で、キャパシタC31には、Vpp/2が充電される。よって、正側出力端O1にはキャパシタC31,C32の合計電圧Vppが発生し、正イオン発生子101に印加される。
負側整流回路23では、正側整流回路22と正負が逆となった動作により、負側出力端O2には直流電圧−Vppが発生して負イオン発生子102に印加される。
例えば、正イオンより負イオンが発生しやすい場合においては、図16(B)のように、正イオン発生子101に流れる電流の絶対値(正イオン量)より、負イオン発生子102に流れる電流の絶対値(負イオン量)の方が大きくなる。これらのイオン発生子電流は、図16(C)のように正側整流回路22と負側整流回路23とへの流出入パルス電流として、グランドからキャパシタC4から二次巻線N21を介して、キャパシタC31,C32を充電する。
図17(A)は、初期状態から定常状態までの、正イオン発生子101および負イオン発生子102への印加電圧波形およびキャパシタC4の電圧波形、図17(B)は、正イオン発生子101および負イオン発生子102の電流波形を示す図である。
図17(A)において、実線波形はキャパシタC4の電圧波形、破線波形は正イオン発生子101への印加電圧波形、点線波形は負イオン発生子102への印加電圧波形である。また、図17(B)において、実線波形は、正イオン発生子101へ流入される電流波形、点線波形は、負イオン発生子102へ流入される電流波形を示す。
キャパシタC4から正側整流回路22と負側整流回路23へ流出入する電荷総量は、グランドを介してキャパシタC4の充放電によって供給されるが、このときキャパシタC4から流出入する電荷量に応じて、キャパシタC4の両端電圧はV=Q(総電荷量)/C(コンデンサ容量)となるように変化する。
初期状態では正側整流回路22と負側整流回路23へ流入する電流総和が負電流となっている。このため、キャパシタC4は負電流供給量(=負電荷)分だけ電圧が増加し、キャパシタC4の電圧(Vcbとする)も増加する。よって、正側出力端O1に発生する電圧はVpp+Vcbとなり、負側出力端O2に発生する電圧は−Vpp+Vcbとなる。
これにより、正イオン発生量は増加し、負イオン発生量は減少する。図14(A)に示すように、キャパシタC4の電圧の上昇と、正イオン発生子101および負イオン発生子102への印加電圧の変化とは、正負電流の差異(=正負イオンの発生量の差異)が無くなるまで続き、正負電流の差異がなくなると、キャパシタC4への直流成分の流れ込みと、キャパシタC4の電圧の変化もなくなる。
図18(A)は、キャパシタC4への直流電流成分の流れ込みが無くなった定常状態における二次巻線N21,N22の出力端電圧波形および正イオン発生子101と負イオン発生子102の印加電圧波形、図18(B)は、正イオン発生子101と負イオン発生子102の電流波形、図18(C)は、正側整流回路22および負側整流回路23に流出入する電流波形を示す図である。
図18(A)では、二次巻線N21の出力端電圧波形を実線曲線で示し、二次巻線N22の出力端電圧波形を点線曲線で示す。また、正イオン発生子101への印加電圧は、約8kVであり、負イオン発生子102への印加電圧は、約−5kVである。図18(B)および図18(C)それぞれでは、正イオン発生子101および正側整流回路22に関する波形を実線で示し、負イオン発生子102および負側整流回路23に関する波形を実線で示す(図18(C)ではほぼ重なっている)。
この図において、二次巻線N21,N22の電圧波形は正側にシフトし、正イオン発生子101および負イオン発生子102の電流の絶対値と、正側整流回路22および負側整流回路23の流入電流絶対値がそれぞれ等しくなっていることが分かる。このように、キャパシタC4を設けることにより、実施形態1と同様の効果を実現できる。
また、本実施形態では、トランスT1の一次巻線N1に印加する入力電圧は正弦波交流電圧であるが、必ずしも正弦波交流電圧である必要はなく、交流波形であればどのような波形形状でもよい。例えば、図5のようなパルス電圧波形又はフライバック電圧波形、矩形波電圧波形であってもよい。
実施形態1,2では、電源装置は1つのトランスのみを備えているが、2つのトランスを備えていてもよい。以下、その例について説明する。
図19、図20および図21は、2つのトランスを備えた除電器の例を示す図である。
図19に示す除電器3Aが備える電源装置30Aは、2つのトランスT11,T12を有する。この例では、2つのトランスT11,T12は非絶縁型である。
トランスT11は、一次巻線N11と、二次巻線N21とを有する。一次巻線N11には、駆動回路311が接続されている。二次巻線N21には、正側整流回路12が接続されている。正側整流回路12は、キャパシタC3を介してグランドに接続されている。
トランスT12は、一次巻線N12と、二次巻線N22とを有する。一次巻線N12には、駆動回路312が接続されている。二次巻線N22には、負側整流回路13が接続されている。負側整流回路13は、キャパシタC3を介してグランドに接続されている。
図20に示す除電器3Bが備える電源装置30Bは、2つのトランスT11,T12を有する。この例では、2つのトランスT11,T12は絶縁型である点で、図19の除電器3Aと相違する。
図21に示す除電器3Cが備える電源装置30Cは、2つのトランスT11,T12を有する。この例では、2つのトランスT11,T12は絶縁型である。
トランスT11は、一次巻線N11と、二次巻線N21とを有する。一次巻線N11には、駆動回路311が接続されている。二次巻線N21には、正側整流回路22が接続されている。正側整流回路22は、キャパシタC4を介してグランドに接続されている。
トランスT12は、一次巻線N12と、二次巻線N22とを有する。一次巻線N12には、駆動回路312が接続されている。二次巻線N22には、負側整流回路23が接続されている。負側整流回路23は、キャパシタC4を介してグランドに接続されている。
図19〜図21の場合、図1に示す除電器1と比較して、よりハイパワーを得ることができる。また、図1に示す除電器1等では、トランスT1の二次巻線に複数の整流回路を接続する必要があるが、この例では既存トランス+既存整流回路を流用することができるため、製品設計の応用度の向上や設計の簡素化を図ることが可能となる。
11,C12,C13,C14,C15,C16,C17…キャパシタ
21,C22,C23,C24,C25,C26,C27…キャパシタ
27…キャパシタ
C3…キャパシタ
31,C32,C33,C34…キャパシタ
C4…キャパシタ
11,D12,D13,D14,D15,D16,D17…ダイオード
21,D22,D23,D24,D25,D26,D27…ダイオード
31,D32,D33,D34…ダイオード
N1…一次巻線
N11,N12…一次巻線
N2…二次巻線
N21,N22…二次巻線
O1…正側出力端
O11,O12,O13…正側出力端
O2…負側出力端
O21,O22,O23…負側出力端
pp…−V
T1…トランス
T11…トランス
T11,T12…トランス
T12…トランス
T2…トランス
Vpp…合計電圧
Vpp…正弦波交流電圧
1,1A,1B,1C,1D,1E,1F,1G,1H…除電器
2…除電器
3A,3B,3C…除電器
10…電源装置
10A,10B,10C,10D,10E,10F,10G,10H…電源装置
11…駆動回路
12,12A,12B…正側整流回路
13,13A,13B…負側整流回路
20…電源装置
21…駆動回路
22…正側整流回路
23…負側整流回路
30A,30B,30C…電源装置
101,101A,101B,101C…正イオン発生子
102,102A,102B,102C…負イオン発生子
121,122,123…正側整流回路
131,132,133…負側整流回路
311,312…駆動回路

Claims (4)

  1. 交流電圧が入力される一次巻線と、第1端がグランドに接続された二次巻線とを有するトランスと、
    キャパシタとダイオードとがm段(mは2以上の偶数)に組み合わされ、前記二次巻線の第2端に接続され、前記二次巻線に誘起される正電圧を昇圧して、正側出力端へ出力する第1コッククロフト・ウォルトン回路と、
    キャパシタとダイオードとがn段(nは2以上の偶数)に組み合わされ、前記二次巻線の前記第2端に接続され、前記二次巻線に誘起される負電圧を昇圧して、負側出力端へ出力する第2コッククロフト・ウォルトン回路と、
    第1端が、前記第1コッククロフト・ウォルトン回路および前記第2コッククロフト・ウォルトン回路に接続され、第2端がグランドに接続されているキャパシタと、
    を備えた電源装置。
  2. 前記二次巻線の第1端は、前記キャパシタの前記第1端に接続されている、
    請求項1に記載の電源装置。
  3. 交流電圧が入力される一次巻線と、第1二次巻線および第2二次巻線とを有するトランスと、
    アノードが前記第1二次巻線の一端に接続され、カソードが正側出力端に接続された第1ダイオードを有し、前記第1二次巻線に誘起される正電圧を昇圧して、前記正側出力端へ出力する第1倍電圧回路と、
    カソードが前記第2二次巻線の一端に接続され、アノードが負側出力端に接続された第2ダイオードを有し、前記第2二次巻線に誘起される負電圧を昇圧して、前記負側出力端へ出力する第2倍電圧回路と、
    第1端が、前記第1倍電圧回路および前記第2倍電圧回路に接続され、第2端がグランドに接続されているキャパシタと、
    を備えた電源装置。
  4. 請求項1から3のいずれか1項に記載の電源装置と、
    前記正側出力端に接続された正イオン発生子と、
    前記負側出力端に接続された負イオン発生子と、
    を備えた除電器。
JP2018532890A 2016-08-09 2017-07-14 電源装置及び除電器 Active JP6536750B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016156437 2016-08-09
JP2016156437 2016-08-09
PCT/JP2017/025705 WO2018030072A1 (ja) 2016-08-09 2017-07-14 電源装置及び除電器

Publications (2)

Publication Number Publication Date
JPWO2018030072A1 JPWO2018030072A1 (ja) 2019-06-06
JP6536750B2 true JP6536750B2 (ja) 2019-07-03

Family

ID=61162100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532890A Active JP6536750B2 (ja) 2016-08-09 2017-07-14 電源装置及び除電器

Country Status (4)

Country Link
JP (1) JP6536750B2 (ja)
KR (1) KR102122209B1 (ja)
CN (1) CN109479367B (ja)
WO (1) WO2018030072A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520840B2 (ja) * 1993-05-11 1996-07-31 春日電機株式会社 直流除電器
JP2896882B2 (ja) * 1996-11-08 1999-05-31 春日電機株式会社 除電器の接地方法
JP4367580B2 (ja) * 1997-04-14 2009-11-18 株式会社キーエンス 除電装置
JP4219451B2 (ja) * 1998-06-04 2009-02-04 株式会社キーエンス 除電装置
JP4788793B2 (ja) * 2009-03-13 2011-10-05 オムロン株式会社 除電装置
CN102026464B (zh) * 2010-12-22 2013-05-15 苏州天华超净科技股份有限公司 直流离子风机高效能高压包
JP5508302B2 (ja) * 2011-01-21 2014-05-28 株式会社キーエンス 除電器
CN202423830U (zh) * 2012-01-19 2012-09-05 镇江汉邦科技有限公司 正负离子发生装置
JP5954529B2 (ja) * 2012-03-27 2016-07-20 株式会社村田製作所 倍電圧整流回路
JP6485684B2 (ja) * 2014-12-02 2019-03-20 Smc株式会社 イオナイザ
CN107615887A (zh) * 2015-05-26 2018-01-19 株式会社村田制作所 电源装置以及除电器
CN204885832U (zh) * 2015-05-26 2015-12-16 青岛康伦机电有限公司 一种空气净化用正负离子发生器

Also Published As

Publication number Publication date
CN109479367A (zh) 2019-03-15
KR102122209B1 (ko) 2020-06-12
JPWO2018030072A1 (ja) 2019-06-06
CN109479367B (zh) 2022-04-26
WO2018030072A1 (ja) 2018-02-15
KR20180134408A (ko) 2018-12-18

Similar Documents

Publication Publication Date Title
JP6477871B2 (ja) 電源装置及び除電器
WO2010100737A1 (ja) 無停電電源装置
US9030856B2 (en) High voltage inverter device and electrical leakage detector thereof
US9584032B2 (en) Multi-output DC-to-DC power converter
US20130207717A1 (en) Charge Pump Circuit
US20150207426A1 (en) Non-isolated AC input DC Driver
US9793820B2 (en) Six-phase supplied transformer rectifier unit
JP6536750B2 (ja) 電源装置及び除電器
US9812847B2 (en) Ionizer
US9160248B2 (en) Voltage multiplier
JP5460546B2 (ja) 除電装置
JP6670704B2 (ja) 高電圧発生装置、及びこれを用いたx線高電圧装置
US11329566B2 (en) DC power supply circuit that enhances stability of output voltage
JP6370597B2 (ja) 電圧生成回路
JP2016127645A (ja) 多出力スイッチング電源装置
JP4338105B1 (ja) 高電圧発生回路
Iqbal Elimination of odd harmonics in symmetrical voltage multipliers
JP2008035647A (ja) 直流電源装置
JP2007288973A (ja) 正負切り換え電源装置
KR102119666B1 (ko) 전원 장치
JP5544879B2 (ja) 電源装置
JP3230441B2 (ja) 複数倍電圧整流回路
JPH05137340A (ja) 複数倍電圧整流回路の個別電流検出回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150